2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex
);
86 DEFINE_SPINLOCK(css_set_lock
);
87 EXPORT_SYMBOL_GPL(cgroup_mutex
);
88 EXPORT_SYMBOL_GPL(css_set_lock
);
90 static DEFINE_MUTEX(cgroup_mutex
);
91 static DEFINE_SPINLOCK(css_set_lock
);
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock
);
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
104 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 static DEFINE_SPINLOCK(release_agent_path_lock
);
112 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
114 #define cgroup_assert_mutex_or_rcu_locked() \
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
117 "cgroup_mutex or RCU read lock required");
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
125 static struct workqueue_struct
*cgroup_destroy_wq
;
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
131 static struct workqueue_struct
*cgroup_pidlist_destroy_wq
;
133 /* generate an array of cgroup subsystem pointers */
134 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
135 static struct cgroup_subsys
*cgroup_subsys
[] = {
136 #include <linux/cgroup_subsys.h>
140 /* array of cgroup subsystem names */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142 static const char *cgroup_subsys_name
[] = {
143 #include <linux/cgroup_subsys.h>
147 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153 #include <linux/cgroup_subsys.h>
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
158 #include <linux/cgroup_subsys.h>
162 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
164 #include <linux/cgroup_subsys.h>
169 * The default hierarchy, reserved for the subsystems that are otherwise
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
173 struct cgroup_root cgrp_dfl_root
;
174 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
180 static bool cgrp_dfl_root_visible
;
182 /* some controllers are not supported in the default hierarchy */
183 static unsigned long cgrp_dfl_root_inhibit_ss_mask
;
185 /* The list of hierarchy roots */
187 static LIST_HEAD(cgroup_roots
);
188 static int cgroup_root_count
;
190 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
191 static DEFINE_IDR(cgroup_hierarchy_idr
);
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
200 static u64 css_serial_nr_next
= 1;
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
207 static unsigned long have_fork_callback __read_mostly
;
208 static unsigned long have_exit_callback __read_mostly
;
209 static unsigned long have_free_callback __read_mostly
;
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly
;
214 static struct cftype cgroup_dfl_base_files
[];
215 static struct cftype cgroup_legacy_base_files
[];
217 static int rebind_subsystems(struct cgroup_root
*dst_root
,
218 unsigned long ss_mask
);
219 static void css_task_iter_advance(struct css_task_iter
*it
);
220 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
221 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
223 static void css_release(struct percpu_ref
*ref
);
224 static void kill_css(struct cgroup_subsys_state
*css
);
225 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
226 struct cgroup
*cgrp
, struct cftype cfts
[],
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
237 static bool cgroup_ssid_enabled(int ssid
)
239 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
243 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244 * @cgrp: the cgroup of interest
246 * The default hierarchy is the v2 interface of cgroup and this function
247 * can be used to test whether a cgroup is on the default hierarchy for
248 * cases where a subsystem should behave differnetly depending on the
251 * The set of behaviors which change on the default hierarchy are still
252 * being determined and the mount option is prefixed with __DEVEL__.
254 * List of changed behaviors:
256 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257 * and "name" are disallowed.
259 * - When mounting an existing superblock, mount options should match.
261 * - Remount is disallowed.
263 * - rename(2) is disallowed.
265 * - "tasks" is removed. Everything should be at process granularity. Use
266 * "cgroup.procs" instead.
268 * - "cgroup.procs" is not sorted. pids will be unique unless they got
269 * recycled inbetween reads.
271 * - "release_agent" and "notify_on_release" are removed. Replacement
272 * notification mechanism will be implemented.
274 * - "cgroup.clone_children" is removed.
276 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
277 * and its descendants contain no task; otherwise, 1. The file also
278 * generates kernfs notification which can be monitored through poll and
279 * [di]notify when the value of the file changes.
281 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282 * take masks of ancestors with non-empty cpus/mems, instead of being
283 * moved to an ancestor.
285 * - cpuset: a task can be moved into an empty cpuset, and again it takes
286 * masks of ancestors.
288 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
291 * - blkcg: blk-throttle becomes properly hierarchical.
293 * - debug: disallowed on the default hierarchy.
295 static bool cgroup_on_dfl(const struct cgroup
*cgrp
)
297 return cgrp
->root
== &cgrp_dfl_root
;
300 /* IDR wrappers which synchronize using cgroup_idr_lock */
301 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
306 idr_preload(gfp_mask
);
307 spin_lock_bh(&cgroup_idr_lock
);
308 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
309 spin_unlock_bh(&cgroup_idr_lock
);
314 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
318 spin_lock_bh(&cgroup_idr_lock
);
319 ret
= idr_replace(idr
, ptr
, id
);
320 spin_unlock_bh(&cgroup_idr_lock
);
324 static void cgroup_idr_remove(struct idr
*idr
, int id
)
326 spin_lock_bh(&cgroup_idr_lock
);
328 spin_unlock_bh(&cgroup_idr_lock
);
331 static struct cgroup
*cgroup_parent(struct cgroup
*cgrp
)
333 struct cgroup_subsys_state
*parent_css
= cgrp
->self
.parent
;
336 return container_of(parent_css
, struct cgroup
, self
);
341 * cgroup_css - obtain a cgroup's css for the specified subsystem
342 * @cgrp: the cgroup of interest
343 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
345 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
346 * function must be called either under cgroup_mutex or rcu_read_lock() and
347 * the caller is responsible for pinning the returned css if it wants to
348 * keep accessing it outside the said locks. This function may return
349 * %NULL if @cgrp doesn't have @subsys_id enabled.
351 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
352 struct cgroup_subsys
*ss
)
355 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
356 lockdep_is_held(&cgroup_mutex
));
362 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
363 * @cgrp: the cgroup of interest
364 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
366 * Similar to cgroup_css() but returns the effective css, which is defined
367 * as the matching css of the nearest ancestor including self which has @ss
368 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
369 * function is guaranteed to return non-NULL css.
371 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
372 struct cgroup_subsys
*ss
)
374 lockdep_assert_held(&cgroup_mutex
);
379 if (!(cgrp
->root
->subsys_mask
& (1 << ss
->id
)))
383 * This function is used while updating css associations and thus
384 * can't test the csses directly. Use ->child_subsys_mask.
386 while (cgroup_parent(cgrp
) &&
387 !(cgroup_parent(cgrp
)->child_subsys_mask
& (1 << ss
->id
)))
388 cgrp
= cgroup_parent(cgrp
);
390 return cgroup_css(cgrp
, ss
);
394 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
395 * @cgrp: the cgroup of interest
396 * @ss: the subsystem of interest
398 * Find and get the effective css of @cgrp for @ss. The effective css is
399 * defined as the matching css of the nearest ancestor including self which
400 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
401 * the root css is returned, so this function always returns a valid css.
402 * The returned css must be put using css_put().
404 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
405 struct cgroup_subsys
*ss
)
407 struct cgroup_subsys_state
*css
;
412 css
= cgroup_css(cgrp
, ss
);
414 if (css
&& css_tryget_online(css
))
416 cgrp
= cgroup_parent(cgrp
);
419 css
= init_css_set
.subsys
[ss
->id
];
426 /* convenient tests for these bits */
427 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
429 return !(cgrp
->self
.flags
& CSS_ONLINE
);
432 static void cgroup_get(struct cgroup
*cgrp
)
434 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
435 css_get(&cgrp
->self
);
438 static bool cgroup_tryget(struct cgroup
*cgrp
)
440 return css_tryget(&cgrp
->self
);
443 static void cgroup_put(struct cgroup
*cgrp
)
445 css_put(&cgrp
->self
);
448 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
450 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
451 struct cftype
*cft
= of_cft(of
);
454 * This is open and unprotected implementation of cgroup_css().
455 * seq_css() is only called from a kernfs file operation which has
456 * an active reference on the file. Because all the subsystem
457 * files are drained before a css is disassociated with a cgroup,
458 * the matching css from the cgroup's subsys table is guaranteed to
459 * be and stay valid until the enclosing operation is complete.
462 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
466 EXPORT_SYMBOL_GPL(of_css
);
469 * cgroup_is_descendant - test ancestry
470 * @cgrp: the cgroup to be tested
471 * @ancestor: possible ancestor of @cgrp
473 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
474 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
475 * and @ancestor are accessible.
477 bool cgroup_is_descendant(struct cgroup
*cgrp
, struct cgroup
*ancestor
)
480 if (cgrp
== ancestor
)
482 cgrp
= cgroup_parent(cgrp
);
487 static int notify_on_release(const struct cgroup
*cgrp
)
489 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
493 * for_each_css - iterate all css's of a cgroup
494 * @css: the iteration cursor
495 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
496 * @cgrp: the target cgroup to iterate css's of
498 * Should be called under cgroup_[tree_]mutex.
500 #define for_each_css(css, ssid, cgrp) \
501 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
502 if (!((css) = rcu_dereference_check( \
503 (cgrp)->subsys[(ssid)], \
504 lockdep_is_held(&cgroup_mutex)))) { } \
508 * for_each_e_css - iterate all effective css's of a cgroup
509 * @css: the iteration cursor
510 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
511 * @cgrp: the target cgroup to iterate css's of
513 * Should be called under cgroup_[tree_]mutex.
515 #define for_each_e_css(css, ssid, cgrp) \
516 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
517 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
522 * for_each_subsys - iterate all enabled cgroup subsystems
523 * @ss: the iteration cursor
524 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
526 #define for_each_subsys(ss, ssid) \
527 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
528 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
531 * for_each_subsys_which - filter for_each_subsys with a bitmask
532 * @ss: the iteration cursor
533 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
534 * @ss_maskp: a pointer to the bitmask
536 * The block will only run for cases where the ssid-th bit (1 << ssid) of
539 #define for_each_subsys_which(ss, ssid, ss_maskp) \
540 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
543 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
544 if (((ss) = cgroup_subsys[ssid]) && false) \
548 /* iterate across the hierarchies */
549 #define for_each_root(root) \
550 list_for_each_entry((root), &cgroup_roots, root_list)
552 /* iterate over child cgrps, lock should be held throughout iteration */
553 #define cgroup_for_each_live_child(child, cgrp) \
554 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
555 if (({ lockdep_assert_held(&cgroup_mutex); \
556 cgroup_is_dead(child); })) \
560 static void cgroup_release_agent(struct work_struct
*work
);
561 static void check_for_release(struct cgroup
*cgrp
);
564 * A cgroup can be associated with multiple css_sets as different tasks may
565 * belong to different cgroups on different hierarchies. In the other
566 * direction, a css_set is naturally associated with multiple cgroups.
567 * This M:N relationship is represented by the following link structure
568 * which exists for each association and allows traversing the associations
571 struct cgrp_cset_link
{
572 /* the cgroup and css_set this link associates */
574 struct css_set
*cset
;
576 /* list of cgrp_cset_links anchored at cgrp->cset_links */
577 struct list_head cset_link
;
579 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
580 struct list_head cgrp_link
;
584 * The default css_set - used by init and its children prior to any
585 * hierarchies being mounted. It contains a pointer to the root state
586 * for each subsystem. Also used to anchor the list of css_sets. Not
587 * reference-counted, to improve performance when child cgroups
588 * haven't been created.
590 struct css_set init_css_set
= {
591 .refcount
= ATOMIC_INIT(1),
592 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
593 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
594 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
595 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
596 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
597 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
600 static int css_set_count
= 1; /* 1 for init_css_set */
603 * css_set_populated - does a css_set contain any tasks?
604 * @cset: target css_set
606 static bool css_set_populated(struct css_set
*cset
)
608 lockdep_assert_held(&css_set_lock
);
610 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
614 * cgroup_update_populated - updated populated count of a cgroup
615 * @cgrp: the target cgroup
616 * @populated: inc or dec populated count
618 * One of the css_sets associated with @cgrp is either getting its first
619 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
620 * count is propagated towards root so that a given cgroup's populated_cnt
621 * is zero iff the cgroup and all its descendants don't contain any tasks.
623 * @cgrp's interface file "cgroup.populated" is zero if
624 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
625 * changes from or to zero, userland is notified that the content of the
626 * interface file has changed. This can be used to detect when @cgrp and
627 * its descendants become populated or empty.
629 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
631 lockdep_assert_held(&css_set_lock
);
637 trigger
= !cgrp
->populated_cnt
++;
639 trigger
= !--cgrp
->populated_cnt
;
644 check_for_release(cgrp
);
645 cgroup_file_notify(&cgrp
->events_file
);
647 cgrp
= cgroup_parent(cgrp
);
652 * css_set_update_populated - update populated state of a css_set
653 * @cset: target css_set
654 * @populated: whether @cset is populated or depopulated
656 * @cset is either getting the first task or losing the last. Update the
657 * ->populated_cnt of all associated cgroups accordingly.
659 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
661 struct cgrp_cset_link
*link
;
663 lockdep_assert_held(&css_set_lock
);
665 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
666 cgroup_update_populated(link
->cgrp
, populated
);
670 * css_set_move_task - move a task from one css_set to another
671 * @task: task being moved
672 * @from_cset: css_set @task currently belongs to (may be NULL)
673 * @to_cset: new css_set @task is being moved to (may be NULL)
674 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
676 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
677 * css_set, @from_cset can be NULL. If @task is being disassociated
678 * instead of moved, @to_cset can be NULL.
680 * This function automatically handles populated_cnt updates and
681 * css_task_iter adjustments but the caller is responsible for managing
682 * @from_cset and @to_cset's reference counts.
684 static void css_set_move_task(struct task_struct
*task
,
685 struct css_set
*from_cset
, struct css_set
*to_cset
,
688 lockdep_assert_held(&css_set_lock
);
691 struct css_task_iter
*it
, *pos
;
693 WARN_ON_ONCE(list_empty(&task
->cg_list
));
696 * @task is leaving, advance task iterators which are
697 * pointing to it so that they can resume at the next
698 * position. Advancing an iterator might remove it from
699 * the list, use safe walk. See css_task_iter_advance*()
702 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
704 if (it
->task_pos
== &task
->cg_list
)
705 css_task_iter_advance(it
);
707 list_del_init(&task
->cg_list
);
708 if (!css_set_populated(from_cset
))
709 css_set_update_populated(from_cset
, false);
711 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
716 * We are synchronized through cgroup_threadgroup_rwsem
717 * against PF_EXITING setting such that we can't race
718 * against cgroup_exit() changing the css_set to
719 * init_css_set and dropping the old one.
721 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
723 if (!css_set_populated(to_cset
))
724 css_set_update_populated(to_cset
, true);
725 rcu_assign_pointer(task
->cgroups
, to_cset
);
726 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
732 * hash table for cgroup groups. This improves the performance to find
733 * an existing css_set. This hash doesn't (currently) take into
734 * account cgroups in empty hierarchies.
736 #define CSS_SET_HASH_BITS 7
737 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
739 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
741 unsigned long key
= 0UL;
742 struct cgroup_subsys
*ss
;
745 for_each_subsys(ss
, i
)
746 key
+= (unsigned long)css
[i
];
747 key
= (key
>> 16) ^ key
;
752 static void put_css_set_locked(struct css_set
*cset
)
754 struct cgrp_cset_link
*link
, *tmp_link
;
755 struct cgroup_subsys
*ss
;
758 lockdep_assert_held(&css_set_lock
);
760 if (!atomic_dec_and_test(&cset
->refcount
))
763 /* This css_set is dead. unlink it and release cgroup and css refs */
764 for_each_subsys(ss
, ssid
) {
765 list_del(&cset
->e_cset_node
[ssid
]);
766 css_put(cset
->subsys
[ssid
]);
768 hash_del(&cset
->hlist
);
771 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
772 list_del(&link
->cset_link
);
773 list_del(&link
->cgrp_link
);
774 if (cgroup_parent(link
->cgrp
))
775 cgroup_put(link
->cgrp
);
779 kfree_rcu(cset
, rcu_head
);
782 static void put_css_set(struct css_set
*cset
)
785 * Ensure that the refcount doesn't hit zero while any readers
786 * can see it. Similar to atomic_dec_and_lock(), but for an
789 if (atomic_add_unless(&cset
->refcount
, -1, 1))
792 spin_lock_bh(&css_set_lock
);
793 put_css_set_locked(cset
);
794 spin_unlock_bh(&css_set_lock
);
798 * refcounted get/put for css_set objects
800 static inline void get_css_set(struct css_set
*cset
)
802 atomic_inc(&cset
->refcount
);
806 * compare_css_sets - helper function for find_existing_css_set().
807 * @cset: candidate css_set being tested
808 * @old_cset: existing css_set for a task
809 * @new_cgrp: cgroup that's being entered by the task
810 * @template: desired set of css pointers in css_set (pre-calculated)
812 * Returns true if "cset" matches "old_cset" except for the hierarchy
813 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
815 static bool compare_css_sets(struct css_set
*cset
,
816 struct css_set
*old_cset
,
817 struct cgroup
*new_cgrp
,
818 struct cgroup_subsys_state
*template[])
820 struct list_head
*l1
, *l2
;
823 * On the default hierarchy, there can be csets which are
824 * associated with the same set of cgroups but different csses.
825 * Let's first ensure that csses match.
827 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
831 * Compare cgroup pointers in order to distinguish between
832 * different cgroups in hierarchies. As different cgroups may
833 * share the same effective css, this comparison is always
836 l1
= &cset
->cgrp_links
;
837 l2
= &old_cset
->cgrp_links
;
839 struct cgrp_cset_link
*link1
, *link2
;
840 struct cgroup
*cgrp1
, *cgrp2
;
844 /* See if we reached the end - both lists are equal length. */
845 if (l1
== &cset
->cgrp_links
) {
846 BUG_ON(l2
!= &old_cset
->cgrp_links
);
849 BUG_ON(l2
== &old_cset
->cgrp_links
);
851 /* Locate the cgroups associated with these links. */
852 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
853 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
856 /* Hierarchies should be linked in the same order. */
857 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
860 * If this hierarchy is the hierarchy of the cgroup
861 * that's changing, then we need to check that this
862 * css_set points to the new cgroup; if it's any other
863 * hierarchy, then this css_set should point to the
864 * same cgroup as the old css_set.
866 if (cgrp1
->root
== new_cgrp
->root
) {
867 if (cgrp1
!= new_cgrp
)
878 * find_existing_css_set - init css array and find the matching css_set
879 * @old_cset: the css_set that we're using before the cgroup transition
880 * @cgrp: the cgroup that we're moving into
881 * @template: out param for the new set of csses, should be clear on entry
883 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
885 struct cgroup_subsys_state
*template[])
887 struct cgroup_root
*root
= cgrp
->root
;
888 struct cgroup_subsys
*ss
;
889 struct css_set
*cset
;
894 * Build the set of subsystem state objects that we want to see in the
895 * new css_set. while subsystems can change globally, the entries here
896 * won't change, so no need for locking.
898 for_each_subsys(ss
, i
) {
899 if (root
->subsys_mask
& (1UL << i
)) {
901 * @ss is in this hierarchy, so we want the
902 * effective css from @cgrp.
904 template[i
] = cgroup_e_css(cgrp
, ss
);
907 * @ss is not in this hierarchy, so we don't want
910 template[i
] = old_cset
->subsys
[i
];
914 key
= css_set_hash(template);
915 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
916 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
919 /* This css_set matches what we need */
923 /* No existing cgroup group matched */
927 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
929 struct cgrp_cset_link
*link
, *tmp_link
;
931 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
932 list_del(&link
->cset_link
);
938 * allocate_cgrp_cset_links - allocate cgrp_cset_links
939 * @count: the number of links to allocate
940 * @tmp_links: list_head the allocated links are put on
942 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
943 * through ->cset_link. Returns 0 on success or -errno.
945 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
947 struct cgrp_cset_link
*link
;
950 INIT_LIST_HEAD(tmp_links
);
952 for (i
= 0; i
< count
; i
++) {
953 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
955 free_cgrp_cset_links(tmp_links
);
958 list_add(&link
->cset_link
, tmp_links
);
964 * link_css_set - a helper function to link a css_set to a cgroup
965 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
966 * @cset: the css_set to be linked
967 * @cgrp: the destination cgroup
969 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
972 struct cgrp_cset_link
*link
;
974 BUG_ON(list_empty(tmp_links
));
976 if (cgroup_on_dfl(cgrp
))
977 cset
->dfl_cgrp
= cgrp
;
979 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
984 * Always add links to the tail of the lists so that the lists are
985 * in choronological order.
987 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
988 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
990 if (cgroup_parent(cgrp
))
995 * find_css_set - return a new css_set with one cgroup updated
996 * @old_cset: the baseline css_set
997 * @cgrp: the cgroup to be updated
999 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1000 * substituted into the appropriate hierarchy.
1002 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1003 struct cgroup
*cgrp
)
1005 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1006 struct css_set
*cset
;
1007 struct list_head tmp_links
;
1008 struct cgrp_cset_link
*link
;
1009 struct cgroup_subsys
*ss
;
1013 lockdep_assert_held(&cgroup_mutex
);
1015 /* First see if we already have a cgroup group that matches
1016 * the desired set */
1017 spin_lock_bh(&css_set_lock
);
1018 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1021 spin_unlock_bh(&css_set_lock
);
1026 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1030 /* Allocate all the cgrp_cset_link objects that we'll need */
1031 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1036 atomic_set(&cset
->refcount
, 1);
1037 INIT_LIST_HEAD(&cset
->cgrp_links
);
1038 INIT_LIST_HEAD(&cset
->tasks
);
1039 INIT_LIST_HEAD(&cset
->mg_tasks
);
1040 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1041 INIT_LIST_HEAD(&cset
->mg_node
);
1042 INIT_LIST_HEAD(&cset
->task_iters
);
1043 INIT_HLIST_NODE(&cset
->hlist
);
1045 /* Copy the set of subsystem state objects generated in
1046 * find_existing_css_set() */
1047 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1049 spin_lock_bh(&css_set_lock
);
1050 /* Add reference counts and links from the new css_set. */
1051 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1052 struct cgroup
*c
= link
->cgrp
;
1054 if (c
->root
== cgrp
->root
)
1056 link_css_set(&tmp_links
, cset
, c
);
1059 BUG_ON(!list_empty(&tmp_links
));
1063 /* Add @cset to the hash table */
1064 key
= css_set_hash(cset
->subsys
);
1065 hash_add(css_set_table
, &cset
->hlist
, key
);
1067 for_each_subsys(ss
, ssid
) {
1068 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1070 list_add_tail(&cset
->e_cset_node
[ssid
],
1071 &css
->cgroup
->e_csets
[ssid
]);
1075 spin_unlock_bh(&css_set_lock
);
1080 static struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1082 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1084 return root_cgrp
->root
;
1087 static int cgroup_init_root_id(struct cgroup_root
*root
)
1091 lockdep_assert_held(&cgroup_mutex
);
1093 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1097 root
->hierarchy_id
= id
;
1101 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1103 lockdep_assert_held(&cgroup_mutex
);
1105 if (root
->hierarchy_id
) {
1106 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1107 root
->hierarchy_id
= 0;
1111 static void cgroup_free_root(struct cgroup_root
*root
)
1114 /* hierarchy ID should already have been released */
1115 WARN_ON_ONCE(root
->hierarchy_id
);
1117 idr_destroy(&root
->cgroup_idr
);
1122 static void cgroup_destroy_root(struct cgroup_root
*root
)
1124 struct cgroup
*cgrp
= &root
->cgrp
;
1125 struct cgrp_cset_link
*link
, *tmp_link
;
1127 mutex_lock(&cgroup_mutex
);
1129 BUG_ON(atomic_read(&root
->nr_cgrps
));
1130 BUG_ON(!list_empty(&cgrp
->self
.children
));
1132 /* Rebind all subsystems back to the default hierarchy */
1133 rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
);
1136 * Release all the links from cset_links to this hierarchy's
1139 spin_lock_bh(&css_set_lock
);
1141 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1142 list_del(&link
->cset_link
);
1143 list_del(&link
->cgrp_link
);
1147 spin_unlock_bh(&css_set_lock
);
1149 if (!list_empty(&root
->root_list
)) {
1150 list_del(&root
->root_list
);
1151 cgroup_root_count
--;
1154 cgroup_exit_root_id(root
);
1156 mutex_unlock(&cgroup_mutex
);
1158 kernfs_destroy_root(root
->kf_root
);
1159 cgroup_free_root(root
);
1162 /* look up cgroup associated with given css_set on the specified hierarchy */
1163 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1164 struct cgroup_root
*root
)
1166 struct cgroup
*res
= NULL
;
1168 lockdep_assert_held(&cgroup_mutex
);
1169 lockdep_assert_held(&css_set_lock
);
1171 if (cset
== &init_css_set
) {
1174 struct cgrp_cset_link
*link
;
1176 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1177 struct cgroup
*c
= link
->cgrp
;
1179 if (c
->root
== root
) {
1191 * Return the cgroup for "task" from the given hierarchy. Must be
1192 * called with cgroup_mutex and css_set_lock held.
1194 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1195 struct cgroup_root
*root
)
1198 * No need to lock the task - since we hold cgroup_mutex the
1199 * task can't change groups, so the only thing that can happen
1200 * is that it exits and its css is set back to init_css_set.
1202 return cset_cgroup_from_root(task_css_set(task
), root
);
1206 * A task must hold cgroup_mutex to modify cgroups.
1208 * Any task can increment and decrement the count field without lock.
1209 * So in general, code holding cgroup_mutex can't rely on the count
1210 * field not changing. However, if the count goes to zero, then only
1211 * cgroup_attach_task() can increment it again. Because a count of zero
1212 * means that no tasks are currently attached, therefore there is no
1213 * way a task attached to that cgroup can fork (the other way to
1214 * increment the count). So code holding cgroup_mutex can safely
1215 * assume that if the count is zero, it will stay zero. Similarly, if
1216 * a task holds cgroup_mutex on a cgroup with zero count, it
1217 * knows that the cgroup won't be removed, as cgroup_rmdir()
1220 * A cgroup can only be deleted if both its 'count' of using tasks
1221 * is zero, and its list of 'children' cgroups is empty. Since all
1222 * tasks in the system use _some_ cgroup, and since there is always at
1223 * least one task in the system (init, pid == 1), therefore, root cgroup
1224 * always has either children cgroups and/or using tasks. So we don't
1225 * need a special hack to ensure that root cgroup cannot be deleted.
1227 * P.S. One more locking exception. RCU is used to guard the
1228 * update of a tasks cgroup pointer by cgroup_attach_task()
1231 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1232 static const struct file_operations proc_cgroupstats_operations
;
1234 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1237 struct cgroup_subsys
*ss
= cft
->ss
;
1239 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1240 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1241 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1242 cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1245 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1250 * cgroup_file_mode - deduce file mode of a control file
1251 * @cft: the control file in question
1253 * S_IRUGO for read, S_IWUSR for write.
1255 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1259 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1262 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1263 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1273 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1274 * @cgrp: the target cgroup
1275 * @subtree_control: the new subtree_control mask to consider
1277 * On the default hierarchy, a subsystem may request other subsystems to be
1278 * enabled together through its ->depends_on mask. In such cases, more
1279 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1281 * This function calculates which subsystems need to be enabled if
1282 * @subtree_control is to be applied to @cgrp. The returned mask is always
1283 * a superset of @subtree_control and follows the usual hierarchy rules.
1285 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup
*cgrp
,
1286 unsigned long subtree_control
)
1288 struct cgroup
*parent
= cgroup_parent(cgrp
);
1289 unsigned long cur_ss_mask
= subtree_control
;
1290 struct cgroup_subsys
*ss
;
1293 lockdep_assert_held(&cgroup_mutex
);
1295 if (!cgroup_on_dfl(cgrp
))
1299 unsigned long new_ss_mask
= cur_ss_mask
;
1301 for_each_subsys_which(ss
, ssid
, &cur_ss_mask
)
1302 new_ss_mask
|= ss
->depends_on
;
1305 * Mask out subsystems which aren't available. This can
1306 * happen only if some depended-upon subsystems were bound
1307 * to non-default hierarchies.
1310 new_ss_mask
&= parent
->child_subsys_mask
;
1312 new_ss_mask
&= cgrp
->root
->subsys_mask
;
1314 if (new_ss_mask
== cur_ss_mask
)
1316 cur_ss_mask
= new_ss_mask
;
1323 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1324 * @cgrp: the target cgroup
1326 * Update @cgrp->child_subsys_mask according to the current
1327 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1329 static void cgroup_refresh_child_subsys_mask(struct cgroup
*cgrp
)
1331 cgrp
->child_subsys_mask
=
1332 cgroup_calc_child_subsys_mask(cgrp
, cgrp
->subtree_control
);
1336 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1337 * @kn: the kernfs_node being serviced
1339 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1340 * the method finishes if locking succeeded. Note that once this function
1341 * returns the cgroup returned by cgroup_kn_lock_live() may become
1342 * inaccessible any time. If the caller intends to continue to access the
1343 * cgroup, it should pin it before invoking this function.
1345 static void cgroup_kn_unlock(struct kernfs_node
*kn
)
1347 struct cgroup
*cgrp
;
1349 if (kernfs_type(kn
) == KERNFS_DIR
)
1352 cgrp
= kn
->parent
->priv
;
1354 mutex_unlock(&cgroup_mutex
);
1356 kernfs_unbreak_active_protection(kn
);
1361 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1362 * @kn: the kernfs_node being serviced
1364 * This helper is to be used by a cgroup kernfs method currently servicing
1365 * @kn. It breaks the active protection, performs cgroup locking and
1366 * verifies that the associated cgroup is alive. Returns the cgroup if
1367 * alive; otherwise, %NULL. A successful return should be undone by a
1368 * matching cgroup_kn_unlock() invocation.
1370 * Any cgroup kernfs method implementation which requires locking the
1371 * associated cgroup should use this helper. It avoids nesting cgroup
1372 * locking under kernfs active protection and allows all kernfs operations
1373 * including self-removal.
1375 static struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
)
1377 struct cgroup
*cgrp
;
1379 if (kernfs_type(kn
) == KERNFS_DIR
)
1382 cgrp
= kn
->parent
->priv
;
1385 * We're gonna grab cgroup_mutex which nests outside kernfs
1386 * active_ref. cgroup liveliness check alone provides enough
1387 * protection against removal. Ensure @cgrp stays accessible and
1388 * break the active_ref protection.
1390 if (!cgroup_tryget(cgrp
))
1392 kernfs_break_active_protection(kn
);
1394 mutex_lock(&cgroup_mutex
);
1396 if (!cgroup_is_dead(cgrp
))
1399 cgroup_kn_unlock(kn
);
1403 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1405 char name
[CGROUP_FILE_NAME_MAX
];
1407 lockdep_assert_held(&cgroup_mutex
);
1409 if (cft
->file_offset
) {
1410 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1411 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1413 spin_lock_irq(&cgroup_file_kn_lock
);
1415 spin_unlock_irq(&cgroup_file_kn_lock
);
1418 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1422 * css_clear_dir - remove subsys files in a cgroup directory
1424 * @cgrp_override: specify if target cgroup is different from css->cgroup
1426 static void css_clear_dir(struct cgroup_subsys_state
*css
,
1427 struct cgroup
*cgrp_override
)
1429 struct cgroup
*cgrp
= cgrp_override
?: css
->cgroup
;
1430 struct cftype
*cfts
;
1432 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1433 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1437 * css_populate_dir - create subsys files in a cgroup directory
1439 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1441 * On failure, no file is added.
1443 static int css_populate_dir(struct cgroup_subsys_state
*css
,
1444 struct cgroup
*cgrp_override
)
1446 struct cgroup
*cgrp
= cgrp_override
?: css
->cgroup
;
1447 struct cftype
*cfts
, *failed_cfts
;
1451 if (cgroup_on_dfl(cgrp
))
1452 cfts
= cgroup_dfl_base_files
;
1454 cfts
= cgroup_legacy_base_files
;
1456 return cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1459 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1460 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1468 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1469 if (cfts
== failed_cfts
)
1471 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1476 static int rebind_subsystems(struct cgroup_root
*dst_root
,
1477 unsigned long ss_mask
)
1479 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1480 struct cgroup_subsys
*ss
;
1481 unsigned long tmp_ss_mask
;
1484 lockdep_assert_held(&cgroup_mutex
);
1486 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
1487 /* if @ss has non-root csses attached to it, can't move */
1488 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)))
1491 /* can't move between two non-dummy roots either */
1492 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1496 /* skip creating root files on dfl_root for inhibited subsystems */
1497 tmp_ss_mask
= ss_mask
;
1498 if (dst_root
== &cgrp_dfl_root
)
1499 tmp_ss_mask
&= ~cgrp_dfl_root_inhibit_ss_mask
;
1501 for_each_subsys_which(ss
, ssid
, &tmp_ss_mask
) {
1502 struct cgroup
*scgrp
= &ss
->root
->cgrp
;
1505 ret
= css_populate_dir(cgroup_css(scgrp
, ss
), dcgrp
);
1510 * Rebinding back to the default root is not allowed to
1511 * fail. Using both default and non-default roots should
1512 * be rare. Moving subsystems back and forth even more so.
1513 * Just warn about it and continue.
1515 if (dst_root
== &cgrp_dfl_root
) {
1516 if (cgrp_dfl_root_visible
) {
1517 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1519 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1524 for_each_subsys_which(ss
, tssid
, &tmp_ss_mask
) {
1527 css_clear_dir(cgroup_css(scgrp
, ss
), dcgrp
);
1533 * Nothing can fail from this point on. Remove files for the
1534 * removed subsystems and rebind each subsystem.
1536 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
1537 struct cgroup_root
*src_root
= ss
->root
;
1538 struct cgroup
*scgrp
= &src_root
->cgrp
;
1539 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1540 struct css_set
*cset
;
1542 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1544 css_clear_dir(css
, NULL
);
1546 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1547 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1548 ss
->root
= dst_root
;
1549 css
->cgroup
= dcgrp
;
1551 spin_lock_bh(&css_set_lock
);
1552 hash_for_each(css_set_table
, i
, cset
, hlist
)
1553 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1554 &dcgrp
->e_csets
[ss
->id
]);
1555 spin_unlock_bh(&css_set_lock
);
1557 src_root
->subsys_mask
&= ~(1 << ssid
);
1558 scgrp
->subtree_control
&= ~(1 << ssid
);
1559 cgroup_refresh_child_subsys_mask(scgrp
);
1561 /* default hierarchy doesn't enable controllers by default */
1562 dst_root
->subsys_mask
|= 1 << ssid
;
1563 if (dst_root
== &cgrp_dfl_root
) {
1564 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1566 dcgrp
->subtree_control
|= 1 << ssid
;
1567 cgroup_refresh_child_subsys_mask(dcgrp
);
1568 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1575 kernfs_activate(dcgrp
->kn
);
1579 static int cgroup_show_options(struct seq_file
*seq
,
1580 struct kernfs_root
*kf_root
)
1582 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1583 struct cgroup_subsys
*ss
;
1586 if (root
!= &cgrp_dfl_root
)
1587 for_each_subsys(ss
, ssid
)
1588 if (root
->subsys_mask
& (1 << ssid
))
1589 seq_show_option(seq
, ss
->legacy_name
, NULL
);
1590 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1591 seq_puts(seq
, ",noprefix");
1592 if (root
->flags
& CGRP_ROOT_XATTR
)
1593 seq_puts(seq
, ",xattr");
1595 spin_lock(&release_agent_path_lock
);
1596 if (strlen(root
->release_agent_path
))
1597 seq_show_option(seq
, "release_agent",
1598 root
->release_agent_path
);
1599 spin_unlock(&release_agent_path_lock
);
1601 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
))
1602 seq_puts(seq
, ",clone_children");
1603 if (strlen(root
->name
))
1604 seq_show_option(seq
, "name", root
->name
);
1608 struct cgroup_sb_opts
{
1609 unsigned long subsys_mask
;
1611 char *release_agent
;
1612 bool cpuset_clone_children
;
1614 /* User explicitly requested empty subsystem */
1618 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1620 char *token
, *o
= data
;
1621 bool all_ss
= false, one_ss
= false;
1622 unsigned long mask
= -1UL;
1623 struct cgroup_subsys
*ss
;
1627 #ifdef CONFIG_CPUSETS
1628 mask
= ~(1U << cpuset_cgrp_id
);
1631 memset(opts
, 0, sizeof(*opts
));
1633 while ((token
= strsep(&o
, ",")) != NULL
) {
1638 if (!strcmp(token
, "none")) {
1639 /* Explicitly have no subsystems */
1643 if (!strcmp(token
, "all")) {
1644 /* Mutually exclusive option 'all' + subsystem name */
1650 if (!strcmp(token
, "__DEVEL__sane_behavior")) {
1651 opts
->flags
|= CGRP_ROOT_SANE_BEHAVIOR
;
1654 if (!strcmp(token
, "noprefix")) {
1655 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1658 if (!strcmp(token
, "clone_children")) {
1659 opts
->cpuset_clone_children
= true;
1662 if (!strcmp(token
, "xattr")) {
1663 opts
->flags
|= CGRP_ROOT_XATTR
;
1666 if (!strncmp(token
, "release_agent=", 14)) {
1667 /* Specifying two release agents is forbidden */
1668 if (opts
->release_agent
)
1670 opts
->release_agent
=
1671 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1672 if (!opts
->release_agent
)
1676 if (!strncmp(token
, "name=", 5)) {
1677 const char *name
= token
+ 5;
1678 /* Can't specify an empty name */
1681 /* Must match [\w.-]+ */
1682 for (i
= 0; i
< strlen(name
); i
++) {
1686 if ((c
== '.') || (c
== '-') || (c
== '_'))
1690 /* Specifying two names is forbidden */
1693 opts
->name
= kstrndup(name
,
1694 MAX_CGROUP_ROOT_NAMELEN
- 1,
1702 for_each_subsys(ss
, i
) {
1703 if (strcmp(token
, ss
->legacy_name
))
1705 if (!cgroup_ssid_enabled(i
))
1708 /* Mutually exclusive option 'all' + subsystem name */
1711 opts
->subsys_mask
|= (1 << i
);
1716 if (i
== CGROUP_SUBSYS_COUNT
)
1720 if (opts
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1721 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1723 pr_err("sane_behavior: no other mount options allowed\n");
1730 * If the 'all' option was specified select all the subsystems,
1731 * otherwise if 'none', 'name=' and a subsystem name options were
1732 * not specified, let's default to 'all'
1734 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1735 for_each_subsys(ss
, i
)
1736 if (cgroup_ssid_enabled(i
))
1737 opts
->subsys_mask
|= (1 << i
);
1740 * We either have to specify by name or by subsystems. (So all
1741 * empty hierarchies must have a name).
1743 if (!opts
->subsys_mask
&& !opts
->name
)
1747 * Option noprefix was introduced just for backward compatibility
1748 * with the old cpuset, so we allow noprefix only if mounting just
1749 * the cpuset subsystem.
1751 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1754 /* Can't specify "none" and some subsystems */
1755 if (opts
->subsys_mask
&& opts
->none
)
1761 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1764 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1765 struct cgroup_sb_opts opts
;
1766 unsigned long added_mask
, removed_mask
;
1768 if (root
== &cgrp_dfl_root
) {
1769 pr_err("remount is not allowed\n");
1773 mutex_lock(&cgroup_mutex
);
1775 /* See what subsystems are wanted */
1776 ret
= parse_cgroupfs_options(data
, &opts
);
1780 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1781 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1782 task_tgid_nr(current
), current
->comm
);
1784 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1785 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1787 /* Don't allow flags or name to change at remount */
1788 if ((opts
.flags
^ root
->flags
) ||
1789 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1790 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1791 opts
.flags
, opts
.name
?: "", root
->flags
, root
->name
);
1796 /* remounting is not allowed for populated hierarchies */
1797 if (!list_empty(&root
->cgrp
.self
.children
)) {
1802 ret
= rebind_subsystems(root
, added_mask
);
1806 rebind_subsystems(&cgrp_dfl_root
, removed_mask
);
1808 if (opts
.release_agent
) {
1809 spin_lock(&release_agent_path_lock
);
1810 strcpy(root
->release_agent_path
, opts
.release_agent
);
1811 spin_unlock(&release_agent_path_lock
);
1814 kfree(opts
.release_agent
);
1816 mutex_unlock(&cgroup_mutex
);
1821 * To reduce the fork() overhead for systems that are not actually using
1822 * their cgroups capability, we don't maintain the lists running through
1823 * each css_set to its tasks until we see the list actually used - in other
1824 * words after the first mount.
1826 static bool use_task_css_set_links __read_mostly
;
1828 static void cgroup_enable_task_cg_lists(void)
1830 struct task_struct
*p
, *g
;
1832 spin_lock_bh(&css_set_lock
);
1834 if (use_task_css_set_links
)
1837 use_task_css_set_links
= true;
1840 * We need tasklist_lock because RCU is not safe against
1841 * while_each_thread(). Besides, a forking task that has passed
1842 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1843 * is not guaranteed to have its child immediately visible in the
1844 * tasklist if we walk through it with RCU.
1846 read_lock(&tasklist_lock
);
1847 do_each_thread(g
, p
) {
1848 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1849 task_css_set(p
) != &init_css_set
);
1852 * We should check if the process is exiting, otherwise
1853 * it will race with cgroup_exit() in that the list
1854 * entry won't be deleted though the process has exited.
1855 * Do it while holding siglock so that we don't end up
1856 * racing against cgroup_exit().
1858 spin_lock_irq(&p
->sighand
->siglock
);
1859 if (!(p
->flags
& PF_EXITING
)) {
1860 struct css_set
*cset
= task_css_set(p
);
1862 if (!css_set_populated(cset
))
1863 css_set_update_populated(cset
, true);
1864 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1867 spin_unlock_irq(&p
->sighand
->siglock
);
1868 } while_each_thread(g
, p
);
1869 read_unlock(&tasklist_lock
);
1871 spin_unlock_bh(&css_set_lock
);
1874 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1876 struct cgroup_subsys
*ss
;
1879 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1880 INIT_LIST_HEAD(&cgrp
->self
.children
);
1881 INIT_LIST_HEAD(&cgrp
->cset_links
);
1882 INIT_LIST_HEAD(&cgrp
->pidlists
);
1883 mutex_init(&cgrp
->pidlist_mutex
);
1884 cgrp
->self
.cgroup
= cgrp
;
1885 cgrp
->self
.flags
|= CSS_ONLINE
;
1887 for_each_subsys(ss
, ssid
)
1888 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1890 init_waitqueue_head(&cgrp
->offline_waitq
);
1891 INIT_WORK(&cgrp
->release_agent_work
, cgroup_release_agent
);
1894 static void init_cgroup_root(struct cgroup_root
*root
,
1895 struct cgroup_sb_opts
*opts
)
1897 struct cgroup
*cgrp
= &root
->cgrp
;
1899 INIT_LIST_HEAD(&root
->root_list
);
1900 atomic_set(&root
->nr_cgrps
, 1);
1902 init_cgroup_housekeeping(cgrp
);
1903 idr_init(&root
->cgroup_idr
);
1905 root
->flags
= opts
->flags
;
1906 if (opts
->release_agent
)
1907 strcpy(root
->release_agent_path
, opts
->release_agent
);
1909 strcpy(root
->name
, opts
->name
);
1910 if (opts
->cpuset_clone_children
)
1911 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1914 static int cgroup_setup_root(struct cgroup_root
*root
, unsigned long ss_mask
)
1916 LIST_HEAD(tmp_links
);
1917 struct cgroup
*root_cgrp
= &root
->cgrp
;
1918 struct css_set
*cset
;
1921 lockdep_assert_held(&cgroup_mutex
);
1923 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
1926 root_cgrp
->id
= ret
;
1928 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
, 0,
1934 * We're accessing css_set_count without locking css_set_lock here,
1935 * but that's OK - it can only be increased by someone holding
1936 * cgroup_lock, and that's us. The worst that can happen is that we
1937 * have some link structures left over
1939 ret
= allocate_cgrp_cset_links(css_set_count
, &tmp_links
);
1943 ret
= cgroup_init_root_id(root
);
1947 root
->kf_root
= kernfs_create_root(&cgroup_kf_syscall_ops
,
1948 KERNFS_ROOT_CREATE_DEACTIVATED
,
1950 if (IS_ERR(root
->kf_root
)) {
1951 ret
= PTR_ERR(root
->kf_root
);
1954 root_cgrp
->kn
= root
->kf_root
->kn
;
1956 ret
= css_populate_dir(&root_cgrp
->self
, NULL
);
1960 ret
= rebind_subsystems(root
, ss_mask
);
1965 * There must be no failure case after here, since rebinding takes
1966 * care of subsystems' refcounts, which are explicitly dropped in
1967 * the failure exit path.
1969 list_add(&root
->root_list
, &cgroup_roots
);
1970 cgroup_root_count
++;
1973 * Link the root cgroup in this hierarchy into all the css_set
1976 spin_lock_bh(&css_set_lock
);
1977 hash_for_each(css_set_table
, i
, cset
, hlist
) {
1978 link_css_set(&tmp_links
, cset
, root_cgrp
);
1979 if (css_set_populated(cset
))
1980 cgroup_update_populated(root_cgrp
, true);
1982 spin_unlock_bh(&css_set_lock
);
1984 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1985 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1987 kernfs_activate(root_cgrp
->kn
);
1992 kernfs_destroy_root(root
->kf_root
);
1993 root
->kf_root
= NULL
;
1995 cgroup_exit_root_id(root
);
1997 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
1999 free_cgrp_cset_links(&tmp_links
);
2003 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
2004 int flags
, const char *unused_dev_name
,
2007 struct super_block
*pinned_sb
= NULL
;
2008 struct cgroup_subsys
*ss
;
2009 struct cgroup_root
*root
;
2010 struct cgroup_sb_opts opts
;
2011 struct dentry
*dentry
;
2017 * The first time anyone tries to mount a cgroup, enable the list
2018 * linking each css_set to its tasks and fix up all existing tasks.
2020 if (!use_task_css_set_links
)
2021 cgroup_enable_task_cg_lists();
2023 mutex_lock(&cgroup_mutex
);
2025 /* First find the desired set of subsystems */
2026 ret
= parse_cgroupfs_options(data
, &opts
);
2030 /* look for a matching existing root */
2031 if (opts
.flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
2032 cgrp_dfl_root_visible
= true;
2033 root
= &cgrp_dfl_root
;
2034 cgroup_get(&root
->cgrp
);
2040 * Destruction of cgroup root is asynchronous, so subsystems may
2041 * still be dying after the previous unmount. Let's drain the
2042 * dying subsystems. We just need to ensure that the ones
2043 * unmounted previously finish dying and don't care about new ones
2044 * starting. Testing ref liveliness is good enough.
2046 for_each_subsys(ss
, i
) {
2047 if (!(opts
.subsys_mask
& (1 << i
)) ||
2048 ss
->root
== &cgrp_dfl_root
)
2051 if (!percpu_ref_tryget_live(&ss
->root
->cgrp
.self
.refcnt
)) {
2052 mutex_unlock(&cgroup_mutex
);
2054 ret
= restart_syscall();
2057 cgroup_put(&ss
->root
->cgrp
);
2060 for_each_root(root
) {
2061 bool name_match
= false;
2063 if (root
== &cgrp_dfl_root
)
2067 * If we asked for a name then it must match. Also, if
2068 * name matches but sybsys_mask doesn't, we should fail.
2069 * Remember whether name matched.
2072 if (strcmp(opts
.name
, root
->name
))
2078 * If we asked for subsystems (or explicitly for no
2079 * subsystems) then they must match.
2081 if ((opts
.subsys_mask
|| opts
.none
) &&
2082 (opts
.subsys_mask
!= root
->subsys_mask
)) {
2089 if (root
->flags
^ opts
.flags
)
2090 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2093 * We want to reuse @root whose lifetime is governed by its
2094 * ->cgrp. Let's check whether @root is alive and keep it
2095 * that way. As cgroup_kill_sb() can happen anytime, we
2096 * want to block it by pinning the sb so that @root doesn't
2097 * get killed before mount is complete.
2099 * With the sb pinned, tryget_live can reliably indicate
2100 * whether @root can be reused. If it's being killed,
2101 * drain it. We can use wait_queue for the wait but this
2102 * path is super cold. Let's just sleep a bit and retry.
2104 pinned_sb
= kernfs_pin_sb(root
->kf_root
, NULL
);
2105 if (IS_ERR(pinned_sb
) ||
2106 !percpu_ref_tryget_live(&root
->cgrp
.self
.refcnt
)) {
2107 mutex_unlock(&cgroup_mutex
);
2108 if (!IS_ERR_OR_NULL(pinned_sb
))
2109 deactivate_super(pinned_sb
);
2111 ret
= restart_syscall();
2120 * No such thing, create a new one. name= matching without subsys
2121 * specification is allowed for already existing hierarchies but we
2122 * can't create new one without subsys specification.
2124 if (!opts
.subsys_mask
&& !opts
.none
) {
2129 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
2135 init_cgroup_root(root
, &opts
);
2137 ret
= cgroup_setup_root(root
, opts
.subsys_mask
);
2139 cgroup_free_root(root
);
2142 mutex_unlock(&cgroup_mutex
);
2144 kfree(opts
.release_agent
);
2148 return ERR_PTR(ret
);
2150 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
,
2151 CGROUP_SUPER_MAGIC
, &new_sb
);
2152 if (IS_ERR(dentry
) || !new_sb
)
2153 cgroup_put(&root
->cgrp
);
2156 * If @pinned_sb, we're reusing an existing root and holding an
2157 * extra ref on its sb. Mount is complete. Put the extra ref.
2161 deactivate_super(pinned_sb
);
2167 static void cgroup_kill_sb(struct super_block
*sb
)
2169 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2170 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2173 * If @root doesn't have any mounts or children, start killing it.
2174 * This prevents new mounts by disabling percpu_ref_tryget_live().
2175 * cgroup_mount() may wait for @root's release.
2177 * And don't kill the default root.
2179 if (!list_empty(&root
->cgrp
.self
.children
) ||
2180 root
== &cgrp_dfl_root
)
2181 cgroup_put(&root
->cgrp
);
2183 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2188 static struct file_system_type cgroup_fs_type
= {
2190 .mount
= cgroup_mount
,
2191 .kill_sb
= cgroup_kill_sb
,
2195 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2196 * @task: target task
2197 * @buf: the buffer to write the path into
2198 * @buflen: the length of the buffer
2200 * Determine @task's cgroup on the first (the one with the lowest non-zero
2201 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2202 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2203 * cgroup controller callbacks.
2205 * Return value is the same as kernfs_path().
2207 char *task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2209 struct cgroup_root
*root
;
2210 struct cgroup
*cgrp
;
2211 int hierarchy_id
= 1;
2214 mutex_lock(&cgroup_mutex
);
2215 spin_lock_bh(&css_set_lock
);
2217 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2220 cgrp
= task_cgroup_from_root(task
, root
);
2221 path
= cgroup_path(cgrp
, buf
, buflen
);
2223 /* if no hierarchy exists, everyone is in "/" */
2224 if (strlcpy(buf
, "/", buflen
) < buflen
)
2228 spin_unlock_bh(&css_set_lock
);
2229 mutex_unlock(&cgroup_mutex
);
2232 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2234 /* used to track tasks and other necessary states during migration */
2235 struct cgroup_taskset
{
2236 /* the src and dst cset list running through cset->mg_node */
2237 struct list_head src_csets
;
2238 struct list_head dst_csets
;
2240 /* the subsys currently being processed */
2244 * Fields for cgroup_taskset_*() iteration.
2246 * Before migration is committed, the target migration tasks are on
2247 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2248 * the csets on ->dst_csets. ->csets point to either ->src_csets
2249 * or ->dst_csets depending on whether migration is committed.
2251 * ->cur_csets and ->cur_task point to the current task position
2254 struct list_head
*csets
;
2255 struct css_set
*cur_cset
;
2256 struct task_struct
*cur_task
;
2259 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2260 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2261 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2262 .csets = &tset.src_csets, \
2266 * cgroup_taskset_add - try to add a migration target task to a taskset
2267 * @task: target task
2268 * @tset: target taskset
2270 * Add @task, which is a migration target, to @tset. This function becomes
2271 * noop if @task doesn't need to be migrated. @task's css_set should have
2272 * been added as a migration source and @task->cg_list will be moved from
2273 * the css_set's tasks list to mg_tasks one.
2275 static void cgroup_taskset_add(struct task_struct
*task
,
2276 struct cgroup_taskset
*tset
)
2278 struct css_set
*cset
;
2280 lockdep_assert_held(&css_set_lock
);
2282 /* @task either already exited or can't exit until the end */
2283 if (task
->flags
& PF_EXITING
)
2286 /* leave @task alone if post_fork() hasn't linked it yet */
2287 if (list_empty(&task
->cg_list
))
2290 cset
= task_css_set(task
);
2291 if (!cset
->mg_src_cgrp
)
2294 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2295 if (list_empty(&cset
->mg_node
))
2296 list_add_tail(&cset
->mg_node
, &tset
->src_csets
);
2297 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2298 list_move_tail(&cset
->mg_dst_cset
->mg_node
,
2303 * cgroup_taskset_first - reset taskset and return the first task
2304 * @tset: taskset of interest
2305 * @dst_cssp: output variable for the destination css
2307 * @tset iteration is initialized and the first task is returned.
2309 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2310 struct cgroup_subsys_state
**dst_cssp
)
2312 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2313 tset
->cur_task
= NULL
;
2315 return cgroup_taskset_next(tset
, dst_cssp
);
2319 * cgroup_taskset_next - iterate to the next task in taskset
2320 * @tset: taskset of interest
2321 * @dst_cssp: output variable for the destination css
2323 * Return the next task in @tset. Iteration must have been initialized
2324 * with cgroup_taskset_first().
2326 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2327 struct cgroup_subsys_state
**dst_cssp
)
2329 struct css_set
*cset
= tset
->cur_cset
;
2330 struct task_struct
*task
= tset
->cur_task
;
2332 while (&cset
->mg_node
!= tset
->csets
) {
2334 task
= list_first_entry(&cset
->mg_tasks
,
2335 struct task_struct
, cg_list
);
2337 task
= list_next_entry(task
, cg_list
);
2339 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2340 tset
->cur_cset
= cset
;
2341 tset
->cur_task
= task
;
2344 * This function may be called both before and
2345 * after cgroup_taskset_migrate(). The two cases
2346 * can be distinguished by looking at whether @cset
2347 * has its ->mg_dst_cset set.
2349 if (cset
->mg_dst_cset
)
2350 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2352 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2357 cset
= list_next_entry(cset
, mg_node
);
2365 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2366 * @tset: taget taskset
2367 * @dst_cgrp: destination cgroup
2369 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2370 * ->can_attach callbacks fails and guarantees that either all or none of
2371 * the tasks in @tset are migrated. @tset is consumed regardless of
2374 static int cgroup_taskset_migrate(struct cgroup_taskset
*tset
,
2375 struct cgroup
*dst_cgrp
)
2377 struct cgroup_subsys_state
*css
, *failed_css
= NULL
;
2378 struct task_struct
*task
, *tmp_task
;
2379 struct css_set
*cset
, *tmp_cset
;
2382 /* methods shouldn't be called if no task is actually migrating */
2383 if (list_empty(&tset
->src_csets
))
2386 /* check that we can legitimately attach to the cgroup */
2387 for_each_e_css(css
, i
, dst_cgrp
) {
2388 if (css
->ss
->can_attach
) {
2390 ret
= css
->ss
->can_attach(tset
);
2393 goto out_cancel_attach
;
2399 * Now that we're guaranteed success, proceed to move all tasks to
2400 * the new cgroup. There are no failure cases after here, so this
2401 * is the commit point.
2403 spin_lock_bh(&css_set_lock
);
2404 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2405 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2406 struct css_set
*from_cset
= task_css_set(task
);
2407 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2409 get_css_set(to_cset
);
2410 css_set_move_task(task
, from_cset
, to_cset
, true);
2411 put_css_set_locked(from_cset
);
2414 spin_unlock_bh(&css_set_lock
);
2417 * Migration is committed, all target tasks are now on dst_csets.
2418 * Nothing is sensitive to fork() after this point. Notify
2419 * controllers that migration is complete.
2421 tset
->csets
= &tset
->dst_csets
;
2423 for_each_e_css(css
, i
, dst_cgrp
) {
2424 if (css
->ss
->attach
) {
2426 css
->ss
->attach(tset
);
2431 goto out_release_tset
;
2434 for_each_e_css(css
, i
, dst_cgrp
) {
2435 if (css
== failed_css
)
2437 if (css
->ss
->cancel_attach
) {
2439 css
->ss
->cancel_attach(tset
);
2443 spin_lock_bh(&css_set_lock
);
2444 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2445 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2446 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2447 list_del_init(&cset
->mg_node
);
2449 spin_unlock_bh(&css_set_lock
);
2454 * cgroup_migrate_finish - cleanup after attach
2455 * @preloaded_csets: list of preloaded css_sets
2457 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2458 * those functions for details.
2460 static void cgroup_migrate_finish(struct list_head
*preloaded_csets
)
2462 struct css_set
*cset
, *tmp_cset
;
2464 lockdep_assert_held(&cgroup_mutex
);
2466 spin_lock_bh(&css_set_lock
);
2467 list_for_each_entry_safe(cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2468 cset
->mg_src_cgrp
= NULL
;
2469 cset
->mg_dst_cset
= NULL
;
2470 list_del_init(&cset
->mg_preload_node
);
2471 put_css_set_locked(cset
);
2473 spin_unlock_bh(&css_set_lock
);
2477 * cgroup_migrate_add_src - add a migration source css_set
2478 * @src_cset: the source css_set to add
2479 * @dst_cgrp: the destination cgroup
2480 * @preloaded_csets: list of preloaded css_sets
2482 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2483 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2484 * up by cgroup_migrate_finish().
2486 * This function may be called without holding cgroup_threadgroup_rwsem
2487 * even if the target is a process. Threads may be created and destroyed
2488 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2489 * into play and the preloaded css_sets are guaranteed to cover all
2492 static void cgroup_migrate_add_src(struct css_set
*src_cset
,
2493 struct cgroup
*dst_cgrp
,
2494 struct list_head
*preloaded_csets
)
2496 struct cgroup
*src_cgrp
;
2498 lockdep_assert_held(&cgroup_mutex
);
2499 lockdep_assert_held(&css_set_lock
);
2501 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2503 if (!list_empty(&src_cset
->mg_preload_node
))
2506 WARN_ON(src_cset
->mg_src_cgrp
);
2507 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2508 WARN_ON(!list_empty(&src_cset
->mg_node
));
2510 src_cset
->mg_src_cgrp
= src_cgrp
;
2511 get_css_set(src_cset
);
2512 list_add(&src_cset
->mg_preload_node
, preloaded_csets
);
2516 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2517 * @dst_cgrp: the destination cgroup (may be %NULL)
2518 * @preloaded_csets: list of preloaded source css_sets
2520 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2521 * have been preloaded to @preloaded_csets. This function looks up and
2522 * pins all destination css_sets, links each to its source, and append them
2523 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2524 * source css_set is assumed to be its cgroup on the default hierarchy.
2526 * This function must be called after cgroup_migrate_add_src() has been
2527 * called on each migration source css_set. After migration is performed
2528 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2531 static int cgroup_migrate_prepare_dst(struct cgroup
*dst_cgrp
,
2532 struct list_head
*preloaded_csets
)
2535 struct css_set
*src_cset
, *tmp_cset
;
2537 lockdep_assert_held(&cgroup_mutex
);
2540 * Except for the root, child_subsys_mask must be zero for a cgroup
2541 * with tasks so that child cgroups don't compete against tasks.
2543 if (dst_cgrp
&& cgroup_on_dfl(dst_cgrp
) && cgroup_parent(dst_cgrp
) &&
2544 dst_cgrp
->child_subsys_mask
)
2547 /* look up the dst cset for each src cset and link it to src */
2548 list_for_each_entry_safe(src_cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2549 struct css_set
*dst_cset
;
2551 dst_cset
= find_css_set(src_cset
,
2552 dst_cgrp
?: src_cset
->dfl_cgrp
);
2556 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2559 * If src cset equals dst, it's noop. Drop the src.
2560 * cgroup_migrate() will skip the cset too. Note that we
2561 * can't handle src == dst as some nodes are used by both.
2563 if (src_cset
== dst_cset
) {
2564 src_cset
->mg_src_cgrp
= NULL
;
2565 list_del_init(&src_cset
->mg_preload_node
);
2566 put_css_set(src_cset
);
2567 put_css_set(dst_cset
);
2571 src_cset
->mg_dst_cset
= dst_cset
;
2573 if (list_empty(&dst_cset
->mg_preload_node
))
2574 list_add(&dst_cset
->mg_preload_node
, &csets
);
2576 put_css_set(dst_cset
);
2579 list_splice_tail(&csets
, preloaded_csets
);
2582 cgroup_migrate_finish(&csets
);
2587 * cgroup_migrate - migrate a process or task to a cgroup
2588 * @leader: the leader of the process or the task to migrate
2589 * @threadgroup: whether @leader points to the whole process or a single task
2590 * @cgrp: the destination cgroup
2592 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2593 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2594 * caller is also responsible for invoking cgroup_migrate_add_src() and
2595 * cgroup_migrate_prepare_dst() on the targets before invoking this
2596 * function and following up with cgroup_migrate_finish().
2598 * As long as a controller's ->can_attach() doesn't fail, this function is
2599 * guaranteed to succeed. This means that, excluding ->can_attach()
2600 * failure, when migrating multiple targets, the success or failure can be
2601 * decided for all targets by invoking group_migrate_prepare_dst() before
2602 * actually starting migrating.
2604 static int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2605 struct cgroup
*cgrp
)
2607 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
2608 struct task_struct
*task
;
2611 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2612 * already PF_EXITING could be freed from underneath us unless we
2613 * take an rcu_read_lock.
2615 spin_lock_bh(&css_set_lock
);
2619 cgroup_taskset_add(task
, &tset
);
2622 } while_each_thread(leader
, task
);
2624 spin_unlock_bh(&css_set_lock
);
2626 return cgroup_taskset_migrate(&tset
, cgrp
);
2630 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2631 * @dst_cgrp: the cgroup to attach to
2632 * @leader: the task or the leader of the threadgroup to be attached
2633 * @threadgroup: attach the whole threadgroup?
2635 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2637 static int cgroup_attach_task(struct cgroup
*dst_cgrp
,
2638 struct task_struct
*leader
, bool threadgroup
)
2640 LIST_HEAD(preloaded_csets
);
2641 struct task_struct
*task
;
2644 /* look up all src csets */
2645 spin_lock_bh(&css_set_lock
);
2649 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
,
2653 } while_each_thread(leader
, task
);
2655 spin_unlock_bh(&css_set_lock
);
2657 /* prepare dst csets and commit */
2658 ret
= cgroup_migrate_prepare_dst(dst_cgrp
, &preloaded_csets
);
2660 ret
= cgroup_migrate(leader
, threadgroup
, dst_cgrp
);
2662 cgroup_migrate_finish(&preloaded_csets
);
2666 static int cgroup_procs_write_permission(struct task_struct
*task
,
2667 struct cgroup
*dst_cgrp
,
2668 struct kernfs_open_file
*of
)
2670 const struct cred
*cred
= current_cred();
2671 const struct cred
*tcred
= get_task_cred(task
);
2675 * even if we're attaching all tasks in the thread group, we only
2676 * need to check permissions on one of them.
2678 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2679 !uid_eq(cred
->euid
, tcred
->uid
) &&
2680 !uid_eq(cred
->euid
, tcred
->suid
))
2683 if (!ret
&& cgroup_on_dfl(dst_cgrp
)) {
2684 struct super_block
*sb
= of
->file
->f_path
.dentry
->d_sb
;
2685 struct cgroup
*cgrp
;
2686 struct inode
*inode
;
2688 spin_lock_bh(&css_set_lock
);
2689 cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
2690 spin_unlock_bh(&css_set_lock
);
2692 while (!cgroup_is_descendant(dst_cgrp
, cgrp
))
2693 cgrp
= cgroup_parent(cgrp
);
2696 inode
= kernfs_get_inode(sb
, cgrp
->procs_file
.kn
);
2698 ret
= inode_permission(inode
, MAY_WRITE
);
2708 * Find the task_struct of the task to attach by vpid and pass it along to the
2709 * function to attach either it or all tasks in its threadgroup. Will lock
2710 * cgroup_mutex and threadgroup.
2712 static ssize_t
__cgroup_procs_write(struct kernfs_open_file
*of
, char *buf
,
2713 size_t nbytes
, loff_t off
, bool threadgroup
)
2715 struct task_struct
*tsk
;
2716 struct cgroup
*cgrp
;
2720 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2723 cgrp
= cgroup_kn_lock_live(of
->kn
);
2727 percpu_down_write(&cgroup_threadgroup_rwsem
);
2730 tsk
= find_task_by_vpid(pid
);
2733 goto out_unlock_rcu
;
2740 tsk
= tsk
->group_leader
;
2743 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2744 * trapped in a cpuset, or RT worker may be born in a cgroup
2745 * with no rt_runtime allocated. Just say no.
2747 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2749 goto out_unlock_rcu
;
2752 get_task_struct(tsk
);
2755 ret
= cgroup_procs_write_permission(tsk
, cgrp
, of
);
2757 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2759 put_task_struct(tsk
);
2760 goto out_unlock_threadgroup
;
2764 out_unlock_threadgroup
:
2765 percpu_up_write(&cgroup_threadgroup_rwsem
);
2766 cgroup_kn_unlock(of
->kn
);
2767 return ret
?: nbytes
;
2771 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2772 * @from: attach to all cgroups of a given task
2773 * @tsk: the task to be attached
2775 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2777 struct cgroup_root
*root
;
2780 mutex_lock(&cgroup_mutex
);
2781 for_each_root(root
) {
2782 struct cgroup
*from_cgrp
;
2784 if (root
== &cgrp_dfl_root
)
2787 spin_lock_bh(&css_set_lock
);
2788 from_cgrp
= task_cgroup_from_root(from
, root
);
2789 spin_unlock_bh(&css_set_lock
);
2791 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2795 mutex_unlock(&cgroup_mutex
);
2799 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2801 static ssize_t
cgroup_tasks_write(struct kernfs_open_file
*of
,
2802 char *buf
, size_t nbytes
, loff_t off
)
2804 return __cgroup_procs_write(of
, buf
, nbytes
, off
, false);
2807 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
2808 char *buf
, size_t nbytes
, loff_t off
)
2810 return __cgroup_procs_write(of
, buf
, nbytes
, off
, true);
2813 static ssize_t
cgroup_release_agent_write(struct kernfs_open_file
*of
,
2814 char *buf
, size_t nbytes
, loff_t off
)
2816 struct cgroup
*cgrp
;
2818 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2820 cgrp
= cgroup_kn_lock_live(of
->kn
);
2823 spin_lock(&release_agent_path_lock
);
2824 strlcpy(cgrp
->root
->release_agent_path
, strstrip(buf
),
2825 sizeof(cgrp
->root
->release_agent_path
));
2826 spin_unlock(&release_agent_path_lock
);
2827 cgroup_kn_unlock(of
->kn
);
2831 static int cgroup_release_agent_show(struct seq_file
*seq
, void *v
)
2833 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2835 spin_lock(&release_agent_path_lock
);
2836 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2837 spin_unlock(&release_agent_path_lock
);
2838 seq_putc(seq
, '\n');
2842 static int cgroup_sane_behavior_show(struct seq_file
*seq
, void *v
)
2844 seq_puts(seq
, "0\n");
2848 static void cgroup_print_ss_mask(struct seq_file
*seq
, unsigned long ss_mask
)
2850 struct cgroup_subsys
*ss
;
2851 bool printed
= false;
2854 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
2857 seq_printf(seq
, "%s", ss
->name
);
2861 seq_putc(seq
, '\n');
2864 /* show controllers which are currently attached to the default hierarchy */
2865 static int cgroup_root_controllers_show(struct seq_file
*seq
, void *v
)
2867 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2869 cgroup_print_ss_mask(seq
, cgrp
->root
->subsys_mask
&
2870 ~cgrp_dfl_root_inhibit_ss_mask
);
2874 /* show controllers which are enabled from the parent */
2875 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2877 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2879 cgroup_print_ss_mask(seq
, cgroup_parent(cgrp
)->subtree_control
);
2883 /* show controllers which are enabled for a given cgroup's children */
2884 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2886 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2888 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2893 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2894 * @cgrp: root of the subtree to update csses for
2896 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2897 * css associations need to be updated accordingly. This function looks up
2898 * all css_sets which are attached to the subtree, creates the matching
2899 * updated css_sets and migrates the tasks to the new ones.
2901 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2903 LIST_HEAD(preloaded_csets
);
2904 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
2905 struct cgroup_subsys_state
*css
;
2906 struct css_set
*src_cset
;
2909 lockdep_assert_held(&cgroup_mutex
);
2911 percpu_down_write(&cgroup_threadgroup_rwsem
);
2913 /* look up all csses currently attached to @cgrp's subtree */
2914 spin_lock_bh(&css_set_lock
);
2915 css_for_each_descendant_pre(css
, cgroup_css(cgrp
, NULL
)) {
2916 struct cgrp_cset_link
*link
;
2918 /* self is not affected by child_subsys_mask change */
2919 if (css
->cgroup
== cgrp
)
2922 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
)
2923 cgroup_migrate_add_src(link
->cset
, cgrp
,
2926 spin_unlock_bh(&css_set_lock
);
2928 /* NULL dst indicates self on default hierarchy */
2929 ret
= cgroup_migrate_prepare_dst(NULL
, &preloaded_csets
);
2933 spin_lock_bh(&css_set_lock
);
2934 list_for_each_entry(src_cset
, &preloaded_csets
, mg_preload_node
) {
2935 struct task_struct
*task
, *ntask
;
2937 /* src_csets precede dst_csets, break on the first dst_cset */
2938 if (!src_cset
->mg_src_cgrp
)
2941 /* all tasks in src_csets need to be migrated */
2942 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2943 cgroup_taskset_add(task
, &tset
);
2945 spin_unlock_bh(&css_set_lock
);
2947 ret
= cgroup_taskset_migrate(&tset
, cgrp
);
2949 cgroup_migrate_finish(&preloaded_csets
);
2950 percpu_up_write(&cgroup_threadgroup_rwsem
);
2954 /* change the enabled child controllers for a cgroup in the default hierarchy */
2955 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
2956 char *buf
, size_t nbytes
,
2959 unsigned long enable
= 0, disable
= 0;
2960 unsigned long css_enable
, css_disable
, old_sc
, new_sc
, old_ss
, new_ss
;
2961 struct cgroup
*cgrp
, *child
;
2962 struct cgroup_subsys
*ss
;
2967 * Parse input - space separated list of subsystem names prefixed
2968 * with either + or -.
2970 buf
= strstrip(buf
);
2971 while ((tok
= strsep(&buf
, " "))) {
2972 unsigned long tmp_ss_mask
= ~cgrp_dfl_root_inhibit_ss_mask
;
2976 for_each_subsys_which(ss
, ssid
, &tmp_ss_mask
) {
2977 if (!cgroup_ssid_enabled(ssid
) ||
2978 strcmp(tok
+ 1, ss
->name
))
2982 enable
|= 1 << ssid
;
2983 disable
&= ~(1 << ssid
);
2984 } else if (*tok
== '-') {
2985 disable
|= 1 << ssid
;
2986 enable
&= ~(1 << ssid
);
2992 if (ssid
== CGROUP_SUBSYS_COUNT
)
2996 cgrp
= cgroup_kn_lock_live(of
->kn
);
3000 for_each_subsys(ss
, ssid
) {
3001 if (enable
& (1 << ssid
)) {
3002 if (cgrp
->subtree_control
& (1 << ssid
)) {
3003 enable
&= ~(1 << ssid
);
3007 /* unavailable or not enabled on the parent? */
3008 if (!(cgrp_dfl_root
.subsys_mask
& (1 << ssid
)) ||
3009 (cgroup_parent(cgrp
) &&
3010 !(cgroup_parent(cgrp
)->subtree_control
& (1 << ssid
)))) {
3014 } else if (disable
& (1 << ssid
)) {
3015 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3016 disable
&= ~(1 << ssid
);
3020 /* a child has it enabled? */
3021 cgroup_for_each_live_child(child
, cgrp
) {
3022 if (child
->subtree_control
& (1 << ssid
)) {
3030 if (!enable
&& !disable
) {
3036 * Except for the root, subtree_control must be zero for a cgroup
3037 * with tasks so that child cgroups don't compete against tasks.
3039 if (enable
&& cgroup_parent(cgrp
) && !list_empty(&cgrp
->cset_links
)) {
3045 * Update subsys masks and calculate what needs to be done. More
3046 * subsystems than specified may need to be enabled or disabled
3047 * depending on subsystem dependencies.
3049 old_sc
= cgrp
->subtree_control
;
3050 old_ss
= cgrp
->child_subsys_mask
;
3051 new_sc
= (old_sc
| enable
) & ~disable
;
3052 new_ss
= cgroup_calc_child_subsys_mask(cgrp
, new_sc
);
3054 css_enable
= ~old_ss
& new_ss
;
3055 css_disable
= old_ss
& ~new_ss
;
3056 enable
|= css_enable
;
3057 disable
|= css_disable
;
3060 * Because css offlining is asynchronous, userland might try to
3061 * re-enable the same controller while the previous instance is
3062 * still around. In such cases, wait till it's gone using
3065 for_each_subsys_which(ss
, ssid
, &css_enable
) {
3066 cgroup_for_each_live_child(child
, cgrp
) {
3069 if (!cgroup_css(child
, ss
))
3073 prepare_to_wait(&child
->offline_waitq
, &wait
,
3074 TASK_UNINTERRUPTIBLE
);
3075 cgroup_kn_unlock(of
->kn
);
3077 finish_wait(&child
->offline_waitq
, &wait
);
3080 return restart_syscall();
3084 cgrp
->subtree_control
= new_sc
;
3085 cgrp
->child_subsys_mask
= new_ss
;
3088 * Create new csses or make the existing ones visible. A css is
3089 * created invisible if it's being implicitly enabled through
3090 * dependency. An invisible css is made visible when the userland
3091 * explicitly enables it.
3093 for_each_subsys(ss
, ssid
) {
3094 if (!(enable
& (1 << ssid
)))
3097 cgroup_for_each_live_child(child
, cgrp
) {
3098 if (css_enable
& (1 << ssid
))
3099 ret
= create_css(child
, ss
,
3100 cgrp
->subtree_control
& (1 << ssid
));
3102 ret
= css_populate_dir(cgroup_css(child
, ss
),
3110 * At this point, cgroup_e_css() results reflect the new csses
3111 * making the following cgroup_update_dfl_csses() properly update
3112 * css associations of all tasks in the subtree.
3114 ret
= cgroup_update_dfl_csses(cgrp
);
3119 * All tasks are migrated out of disabled csses. Kill or hide
3120 * them. A css is hidden when the userland requests it to be
3121 * disabled while other subsystems are still depending on it. The
3122 * css must not actively control resources and be in the vanilla
3123 * state if it's made visible again later. Controllers which may
3124 * be depended upon should provide ->css_reset() for this purpose.
3126 for_each_subsys(ss
, ssid
) {
3127 if (!(disable
& (1 << ssid
)))
3130 cgroup_for_each_live_child(child
, cgrp
) {
3131 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
3133 if (css_disable
& (1 << ssid
)) {
3136 css_clear_dir(css
, NULL
);
3144 * The effective csses of all the descendants (excluding @cgrp) may
3145 * have changed. Subsystems can optionally subscribe to this event
3146 * by implementing ->css_e_css_changed() which is invoked if any of
3147 * the effective csses seen from the css's cgroup may have changed.
3149 for_each_subsys(ss
, ssid
) {
3150 struct cgroup_subsys_state
*this_css
= cgroup_css(cgrp
, ss
);
3151 struct cgroup_subsys_state
*css
;
3153 if (!ss
->css_e_css_changed
|| !this_css
)
3156 css_for_each_descendant_pre(css
, this_css
)
3157 if (css
!= this_css
)
3158 ss
->css_e_css_changed(css
);
3161 kernfs_activate(cgrp
->kn
);
3164 cgroup_kn_unlock(of
->kn
);
3165 return ret
?: nbytes
;
3168 cgrp
->subtree_control
= old_sc
;
3169 cgrp
->child_subsys_mask
= old_ss
;
3171 for_each_subsys(ss
, ssid
) {
3172 if (!(enable
& (1 << ssid
)))
3175 cgroup_for_each_live_child(child
, cgrp
) {
3176 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
3181 if (css_enable
& (1 << ssid
))
3184 css_clear_dir(css
, NULL
);
3190 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3192 seq_printf(seq
, "populated %d\n",
3193 cgroup_is_populated(seq_css(seq
)->cgroup
));
3197 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3198 size_t nbytes
, loff_t off
)
3200 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3201 struct cftype
*cft
= of
->kn
->priv
;
3202 struct cgroup_subsys_state
*css
;
3206 return cft
->write(of
, buf
, nbytes
, off
);
3209 * kernfs guarantees that a file isn't deleted with operations in
3210 * flight, which means that the matching css is and stays alive and
3211 * doesn't need to be pinned. The RCU locking is not necessary
3212 * either. It's just for the convenience of using cgroup_css().
3215 css
= cgroup_css(cgrp
, cft
->ss
);
3218 if (cft
->write_u64
) {
3219 unsigned long long v
;
3220 ret
= kstrtoull(buf
, 0, &v
);
3222 ret
= cft
->write_u64(css
, cft
, v
);
3223 } else if (cft
->write_s64
) {
3225 ret
= kstrtoll(buf
, 0, &v
);
3227 ret
= cft
->write_s64(css
, cft
, v
);
3232 return ret
?: nbytes
;
3235 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3237 return seq_cft(seq
)->seq_start(seq
, ppos
);
3240 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3242 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3245 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3247 seq_cft(seq
)->seq_stop(seq
, v
);
3250 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3252 struct cftype
*cft
= seq_cft(m
);
3253 struct cgroup_subsys_state
*css
= seq_css(m
);
3256 return cft
->seq_show(m
, arg
);
3259 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3260 else if (cft
->read_s64
)
3261 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3267 static struct kernfs_ops cgroup_kf_single_ops
= {
3268 .atomic_write_len
= PAGE_SIZE
,
3269 .write
= cgroup_file_write
,
3270 .seq_show
= cgroup_seqfile_show
,
3273 static struct kernfs_ops cgroup_kf_ops
= {
3274 .atomic_write_len
= PAGE_SIZE
,
3275 .write
= cgroup_file_write
,
3276 .seq_start
= cgroup_seqfile_start
,
3277 .seq_next
= cgroup_seqfile_next
,
3278 .seq_stop
= cgroup_seqfile_stop
,
3279 .seq_show
= cgroup_seqfile_show
,
3283 * cgroup_rename - Only allow simple rename of directories in place.
3285 static int cgroup_rename(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
3286 const char *new_name_str
)
3288 struct cgroup
*cgrp
= kn
->priv
;
3291 if (kernfs_type(kn
) != KERNFS_DIR
)
3293 if (kn
->parent
!= new_parent
)
3297 * This isn't a proper migration and its usefulness is very
3298 * limited. Disallow on the default hierarchy.
3300 if (cgroup_on_dfl(cgrp
))
3304 * We're gonna grab cgroup_mutex which nests outside kernfs
3305 * active_ref. kernfs_rename() doesn't require active_ref
3306 * protection. Break them before grabbing cgroup_mutex.
3308 kernfs_break_active_protection(new_parent
);
3309 kernfs_break_active_protection(kn
);
3311 mutex_lock(&cgroup_mutex
);
3313 ret
= kernfs_rename(kn
, new_parent
, new_name_str
);
3315 mutex_unlock(&cgroup_mutex
);
3317 kernfs_unbreak_active_protection(kn
);
3318 kernfs_unbreak_active_protection(new_parent
);
3322 /* set uid and gid of cgroup dirs and files to that of the creator */
3323 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3325 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3326 .ia_uid
= current_fsuid(),
3327 .ia_gid
= current_fsgid(), };
3329 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3330 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3333 return kernfs_setattr(kn
, &iattr
);
3336 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3339 char name
[CGROUP_FILE_NAME_MAX
];
3340 struct kernfs_node
*kn
;
3341 struct lock_class_key
*key
= NULL
;
3344 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3345 key
= &cft
->lockdep_key
;
3347 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3348 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3353 ret
= cgroup_kn_set_ugid(kn
);
3359 if (cft
->file_offset
) {
3360 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3362 spin_lock_irq(&cgroup_file_kn_lock
);
3364 spin_unlock_irq(&cgroup_file_kn_lock
);
3371 * cgroup_addrm_files - add or remove files to a cgroup directory
3372 * @css: the target css
3373 * @cgrp: the target cgroup (usually css->cgroup)
3374 * @cfts: array of cftypes to be added
3375 * @is_add: whether to add or remove
3377 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3378 * For removals, this function never fails.
3380 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3381 struct cgroup
*cgrp
, struct cftype cfts
[],
3384 struct cftype
*cft
, *cft_end
= NULL
;
3387 lockdep_assert_held(&cgroup_mutex
);
3390 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3391 /* does cft->flags tell us to skip this file on @cgrp? */
3392 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3394 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3396 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3398 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3402 ret
= cgroup_add_file(css
, cgrp
, cft
);
3404 pr_warn("%s: failed to add %s, err=%d\n",
3405 __func__
, cft
->name
, ret
);
3411 cgroup_rm_file(cgrp
, cft
);
3417 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3420 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3421 struct cgroup
*root
= &ss
->root
->cgrp
;
3422 struct cgroup_subsys_state
*css
;
3425 lockdep_assert_held(&cgroup_mutex
);
3427 /* add/rm files for all cgroups created before */
3428 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3429 struct cgroup
*cgrp
= css
->cgroup
;
3431 if (cgroup_is_dead(cgrp
))
3434 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3440 kernfs_activate(root
->kn
);
3444 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3448 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3449 /* free copy for custom atomic_write_len, see init_cftypes() */
3450 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3455 /* revert flags set by cgroup core while adding @cfts */
3456 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3460 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3464 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3465 struct kernfs_ops
*kf_ops
;
3467 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3470 kf_ops
= &cgroup_kf_ops
;
3472 kf_ops
= &cgroup_kf_single_ops
;
3475 * Ugh... if @cft wants a custom max_write_len, we need to
3476 * make a copy of kf_ops to set its atomic_write_len.
3478 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3479 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3481 cgroup_exit_cftypes(cfts
);
3484 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3487 cft
->kf_ops
= kf_ops
;
3494 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3496 lockdep_assert_held(&cgroup_mutex
);
3498 if (!cfts
|| !cfts
[0].ss
)
3501 list_del(&cfts
->node
);
3502 cgroup_apply_cftypes(cfts
, false);
3503 cgroup_exit_cftypes(cfts
);
3508 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3509 * @cfts: zero-length name terminated array of cftypes
3511 * Unregister @cfts. Files described by @cfts are removed from all
3512 * existing cgroups and all future cgroups won't have them either. This
3513 * function can be called anytime whether @cfts' subsys is attached or not.
3515 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3518 int cgroup_rm_cftypes(struct cftype
*cfts
)
3522 mutex_lock(&cgroup_mutex
);
3523 ret
= cgroup_rm_cftypes_locked(cfts
);
3524 mutex_unlock(&cgroup_mutex
);
3529 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3530 * @ss: target cgroup subsystem
3531 * @cfts: zero-length name terminated array of cftypes
3533 * Register @cfts to @ss. Files described by @cfts are created for all
3534 * existing cgroups to which @ss is attached and all future cgroups will
3535 * have them too. This function can be called anytime whether @ss is
3538 * Returns 0 on successful registration, -errno on failure. Note that this
3539 * function currently returns 0 as long as @cfts registration is successful
3540 * even if some file creation attempts on existing cgroups fail.
3542 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3546 if (!cgroup_ssid_enabled(ss
->id
))
3549 if (!cfts
|| cfts
[0].name
[0] == '\0')
3552 ret
= cgroup_init_cftypes(ss
, cfts
);
3556 mutex_lock(&cgroup_mutex
);
3558 list_add_tail(&cfts
->node
, &ss
->cfts
);
3559 ret
= cgroup_apply_cftypes(cfts
, true);
3561 cgroup_rm_cftypes_locked(cfts
);
3563 mutex_unlock(&cgroup_mutex
);
3568 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3569 * @ss: target cgroup subsystem
3570 * @cfts: zero-length name terminated array of cftypes
3572 * Similar to cgroup_add_cftypes() but the added files are only used for
3573 * the default hierarchy.
3575 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3579 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3580 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3581 return cgroup_add_cftypes(ss
, cfts
);
3585 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3586 * @ss: target cgroup subsystem
3587 * @cfts: zero-length name terminated array of cftypes
3589 * Similar to cgroup_add_cftypes() but the added files are only used for
3590 * the legacy hierarchies.
3592 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3596 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3597 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3598 return cgroup_add_cftypes(ss
, cfts
);
3602 * cgroup_file_notify - generate a file modified event for a cgroup_file
3603 * @cfile: target cgroup_file
3605 * @cfile must have been obtained by setting cftype->file_offset.
3607 void cgroup_file_notify(struct cgroup_file
*cfile
)
3609 unsigned long flags
;
3611 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
3613 kernfs_notify(cfile
->kn
);
3614 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
3618 * cgroup_task_count - count the number of tasks in a cgroup.
3619 * @cgrp: the cgroup in question
3621 * Return the number of tasks in the cgroup.
3623 static int cgroup_task_count(const struct cgroup
*cgrp
)
3626 struct cgrp_cset_link
*link
;
3628 spin_lock_bh(&css_set_lock
);
3629 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
3630 count
+= atomic_read(&link
->cset
->refcount
);
3631 spin_unlock_bh(&css_set_lock
);
3636 * css_next_child - find the next child of a given css
3637 * @pos: the current position (%NULL to initiate traversal)
3638 * @parent: css whose children to walk
3640 * This function returns the next child of @parent and should be called
3641 * under either cgroup_mutex or RCU read lock. The only requirement is
3642 * that @parent and @pos are accessible. The next sibling is guaranteed to
3643 * be returned regardless of their states.
3645 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3646 * css which finished ->css_online() is guaranteed to be visible in the
3647 * future iterations and will stay visible until the last reference is put.
3648 * A css which hasn't finished ->css_online() or already finished
3649 * ->css_offline() may show up during traversal. It's each subsystem's
3650 * responsibility to synchronize against on/offlining.
3652 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3653 struct cgroup_subsys_state
*parent
)
3655 struct cgroup_subsys_state
*next
;
3657 cgroup_assert_mutex_or_rcu_locked();
3660 * @pos could already have been unlinked from the sibling list.
3661 * Once a cgroup is removed, its ->sibling.next is no longer
3662 * updated when its next sibling changes. CSS_RELEASED is set when
3663 * @pos is taken off list, at which time its next pointer is valid,
3664 * and, as releases are serialized, the one pointed to by the next
3665 * pointer is guaranteed to not have started release yet. This
3666 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3667 * critical section, the one pointed to by its next pointer is
3668 * guaranteed to not have finished its RCU grace period even if we
3669 * have dropped rcu_read_lock() inbetween iterations.
3671 * If @pos has CSS_RELEASED set, its next pointer can't be
3672 * dereferenced; however, as each css is given a monotonically
3673 * increasing unique serial number and always appended to the
3674 * sibling list, the next one can be found by walking the parent's
3675 * children until the first css with higher serial number than
3676 * @pos's. While this path can be slower, it happens iff iteration
3677 * races against release and the race window is very small.
3680 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3681 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3682 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3684 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3685 if (next
->serial_nr
> pos
->serial_nr
)
3690 * @next, if not pointing to the head, can be dereferenced and is
3693 if (&next
->sibling
!= &parent
->children
)
3699 * css_next_descendant_pre - find the next descendant for pre-order walk
3700 * @pos: the current position (%NULL to initiate traversal)
3701 * @root: css whose descendants to walk
3703 * To be used by css_for_each_descendant_pre(). Find the next descendant
3704 * to visit for pre-order traversal of @root's descendants. @root is
3705 * included in the iteration and the first node to be visited.
3707 * While this function requires cgroup_mutex or RCU read locking, it
3708 * doesn't require the whole traversal to be contained in a single critical
3709 * section. This function will return the correct next descendant as long
3710 * as both @pos and @root are accessible and @pos is a descendant of @root.
3712 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3713 * css which finished ->css_online() is guaranteed to be visible in the
3714 * future iterations and will stay visible until the last reference is put.
3715 * A css which hasn't finished ->css_online() or already finished
3716 * ->css_offline() may show up during traversal. It's each subsystem's
3717 * responsibility to synchronize against on/offlining.
3719 struct cgroup_subsys_state
*
3720 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3721 struct cgroup_subsys_state
*root
)
3723 struct cgroup_subsys_state
*next
;
3725 cgroup_assert_mutex_or_rcu_locked();
3727 /* if first iteration, visit @root */
3731 /* visit the first child if exists */
3732 next
= css_next_child(NULL
, pos
);
3736 /* no child, visit my or the closest ancestor's next sibling */
3737 while (pos
!= root
) {
3738 next
= css_next_child(pos
, pos
->parent
);
3748 * css_rightmost_descendant - return the rightmost descendant of a css
3749 * @pos: css of interest
3751 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3752 * is returned. This can be used during pre-order traversal to skip
3755 * While this function requires cgroup_mutex or RCU read locking, it
3756 * doesn't require the whole traversal to be contained in a single critical
3757 * section. This function will return the correct rightmost descendant as
3758 * long as @pos is accessible.
3760 struct cgroup_subsys_state
*
3761 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3763 struct cgroup_subsys_state
*last
, *tmp
;
3765 cgroup_assert_mutex_or_rcu_locked();
3769 /* ->prev isn't RCU safe, walk ->next till the end */
3771 css_for_each_child(tmp
, last
)
3778 static struct cgroup_subsys_state
*
3779 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3781 struct cgroup_subsys_state
*last
;
3785 pos
= css_next_child(NULL
, pos
);
3792 * css_next_descendant_post - find the next descendant for post-order walk
3793 * @pos: the current position (%NULL to initiate traversal)
3794 * @root: css whose descendants to walk
3796 * To be used by css_for_each_descendant_post(). Find the next descendant
3797 * to visit for post-order traversal of @root's descendants. @root is
3798 * included in the iteration and the last node to be visited.
3800 * While this function requires cgroup_mutex or RCU read locking, it
3801 * doesn't require the whole traversal to be contained in a single critical
3802 * section. This function will return the correct next descendant as long
3803 * as both @pos and @cgroup are accessible and @pos is a descendant of
3806 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3807 * css which finished ->css_online() is guaranteed to be visible in the
3808 * future iterations and will stay visible until the last reference is put.
3809 * A css which hasn't finished ->css_online() or already finished
3810 * ->css_offline() may show up during traversal. It's each subsystem's
3811 * responsibility to synchronize against on/offlining.
3813 struct cgroup_subsys_state
*
3814 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3815 struct cgroup_subsys_state
*root
)
3817 struct cgroup_subsys_state
*next
;
3819 cgroup_assert_mutex_or_rcu_locked();
3821 /* if first iteration, visit leftmost descendant which may be @root */
3823 return css_leftmost_descendant(root
);
3825 /* if we visited @root, we're done */
3829 /* if there's an unvisited sibling, visit its leftmost descendant */
3830 next
= css_next_child(pos
, pos
->parent
);
3832 return css_leftmost_descendant(next
);
3834 /* no sibling left, visit parent */
3839 * css_has_online_children - does a css have online children
3840 * @css: the target css
3842 * Returns %true if @css has any online children; otherwise, %false. This
3843 * function can be called from any context but the caller is responsible
3844 * for synchronizing against on/offlining as necessary.
3846 bool css_has_online_children(struct cgroup_subsys_state
*css
)
3848 struct cgroup_subsys_state
*child
;
3852 css_for_each_child(child
, css
) {
3853 if (child
->flags
& CSS_ONLINE
) {
3863 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3864 * @it: the iterator to advance
3866 * Advance @it to the next css_set to walk.
3868 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
3870 struct list_head
*l
= it
->cset_pos
;
3871 struct cgrp_cset_link
*link
;
3872 struct css_set
*cset
;
3874 lockdep_assert_held(&css_set_lock
);
3876 /* Advance to the next non-empty css_set */
3879 if (l
== it
->cset_head
) {
3880 it
->cset_pos
= NULL
;
3881 it
->task_pos
= NULL
;
3886 cset
= container_of(l
, struct css_set
,
3887 e_cset_node
[it
->ss
->id
]);
3889 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
3892 } while (!css_set_populated(cset
));
3896 if (!list_empty(&cset
->tasks
))
3897 it
->task_pos
= cset
->tasks
.next
;
3899 it
->task_pos
= cset
->mg_tasks
.next
;
3901 it
->tasks_head
= &cset
->tasks
;
3902 it
->mg_tasks_head
= &cset
->mg_tasks
;
3905 * We don't keep css_sets locked across iteration steps and thus
3906 * need to take steps to ensure that iteration can be resumed after
3907 * the lock is re-acquired. Iteration is performed at two levels -
3908 * css_sets and tasks in them.
3910 * Once created, a css_set never leaves its cgroup lists, so a
3911 * pinned css_set is guaranteed to stay put and we can resume
3912 * iteration afterwards.
3914 * Tasks may leave @cset across iteration steps. This is resolved
3915 * by registering each iterator with the css_set currently being
3916 * walked and making css_set_move_task() advance iterators whose
3917 * next task is leaving.
3920 list_del(&it
->iters_node
);
3921 put_css_set_locked(it
->cur_cset
);
3924 it
->cur_cset
= cset
;
3925 list_add(&it
->iters_node
, &cset
->task_iters
);
3928 static void css_task_iter_advance(struct css_task_iter
*it
)
3930 struct list_head
*l
= it
->task_pos
;
3932 lockdep_assert_held(&css_set_lock
);
3936 * Advance iterator to find next entry. cset->tasks is consumed
3937 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3942 if (l
== it
->tasks_head
)
3943 l
= it
->mg_tasks_head
->next
;
3945 if (l
== it
->mg_tasks_head
)
3946 css_task_iter_advance_css_set(it
);
3952 * css_task_iter_start - initiate task iteration
3953 * @css: the css to walk tasks of
3954 * @it: the task iterator to use
3956 * Initiate iteration through the tasks of @css. The caller can call
3957 * css_task_iter_next() to walk through the tasks until the function
3958 * returns NULL. On completion of iteration, css_task_iter_end() must be
3961 void css_task_iter_start(struct cgroup_subsys_state
*css
,
3962 struct css_task_iter
*it
)
3964 /* no one should try to iterate before mounting cgroups */
3965 WARN_ON_ONCE(!use_task_css_set_links
);
3967 memset(it
, 0, sizeof(*it
));
3969 spin_lock_bh(&css_set_lock
);
3974 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
3976 it
->cset_pos
= &css
->cgroup
->cset_links
;
3978 it
->cset_head
= it
->cset_pos
;
3980 css_task_iter_advance_css_set(it
);
3982 spin_unlock_bh(&css_set_lock
);
3986 * css_task_iter_next - return the next task for the iterator
3987 * @it: the task iterator being iterated
3989 * The "next" function for task iteration. @it should have been
3990 * initialized via css_task_iter_start(). Returns NULL when the iteration
3993 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
3996 put_task_struct(it
->cur_task
);
3997 it
->cur_task
= NULL
;
4000 spin_lock_bh(&css_set_lock
);
4003 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4005 get_task_struct(it
->cur_task
);
4006 css_task_iter_advance(it
);
4009 spin_unlock_bh(&css_set_lock
);
4011 return it
->cur_task
;
4015 * css_task_iter_end - finish task iteration
4016 * @it: the task iterator to finish
4018 * Finish task iteration started by css_task_iter_start().
4020 void css_task_iter_end(struct css_task_iter
*it
)
4023 spin_lock_bh(&css_set_lock
);
4024 list_del(&it
->iters_node
);
4025 put_css_set_locked(it
->cur_cset
);
4026 spin_unlock_bh(&css_set_lock
);
4030 put_task_struct(it
->cur_task
);
4034 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4035 * @to: cgroup to which the tasks will be moved
4036 * @from: cgroup in which the tasks currently reside
4038 * Locking rules between cgroup_post_fork() and the migration path
4039 * guarantee that, if a task is forking while being migrated, the new child
4040 * is guaranteed to be either visible in the source cgroup after the
4041 * parent's migration is complete or put into the target cgroup. No task
4042 * can slip out of migration through forking.
4044 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
4046 LIST_HEAD(preloaded_csets
);
4047 struct cgrp_cset_link
*link
;
4048 struct css_task_iter it
;
4049 struct task_struct
*task
;
4052 mutex_lock(&cgroup_mutex
);
4054 /* all tasks in @from are being moved, all csets are source */
4055 spin_lock_bh(&css_set_lock
);
4056 list_for_each_entry(link
, &from
->cset_links
, cset_link
)
4057 cgroup_migrate_add_src(link
->cset
, to
, &preloaded_csets
);
4058 spin_unlock_bh(&css_set_lock
);
4060 ret
= cgroup_migrate_prepare_dst(to
, &preloaded_csets
);
4065 * Migrate tasks one-by-one until @form is empty. This fails iff
4066 * ->can_attach() fails.
4069 css_task_iter_start(&from
->self
, &it
);
4070 task
= css_task_iter_next(&it
);
4072 get_task_struct(task
);
4073 css_task_iter_end(&it
);
4076 ret
= cgroup_migrate(task
, false, to
);
4077 put_task_struct(task
);
4079 } while (task
&& !ret
);
4081 cgroup_migrate_finish(&preloaded_csets
);
4082 mutex_unlock(&cgroup_mutex
);
4087 * Stuff for reading the 'tasks'/'procs' files.
4089 * Reading this file can return large amounts of data if a cgroup has
4090 * *lots* of attached tasks. So it may need several calls to read(),
4091 * but we cannot guarantee that the information we produce is correct
4092 * unless we produce it entirely atomically.
4096 /* which pidlist file are we talking about? */
4097 enum cgroup_filetype
{
4103 * A pidlist is a list of pids that virtually represents the contents of one
4104 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4105 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4108 struct cgroup_pidlist
{
4110 * used to find which pidlist is wanted. doesn't change as long as
4111 * this particular list stays in the list.
4113 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
4116 /* how many elements the above list has */
4118 /* each of these stored in a list by its cgroup */
4119 struct list_head links
;
4120 /* pointer to the cgroup we belong to, for list removal purposes */
4121 struct cgroup
*owner
;
4122 /* for delayed destruction */
4123 struct delayed_work destroy_dwork
;
4127 * The following two functions "fix" the issue where there are more pids
4128 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4129 * TODO: replace with a kernel-wide solution to this problem
4131 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4132 static void *pidlist_allocate(int count
)
4134 if (PIDLIST_TOO_LARGE(count
))
4135 return vmalloc(count
* sizeof(pid_t
));
4137 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
4140 static void pidlist_free(void *p
)
4146 * Used to destroy all pidlists lingering waiting for destroy timer. None
4147 * should be left afterwards.
4149 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
)
4151 struct cgroup_pidlist
*l
, *tmp_l
;
4153 mutex_lock(&cgrp
->pidlist_mutex
);
4154 list_for_each_entry_safe(l
, tmp_l
, &cgrp
->pidlists
, links
)
4155 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
, 0);
4156 mutex_unlock(&cgrp
->pidlist_mutex
);
4158 flush_workqueue(cgroup_pidlist_destroy_wq
);
4159 BUG_ON(!list_empty(&cgrp
->pidlists
));
4162 static void cgroup_pidlist_destroy_work_fn(struct work_struct
*work
)
4164 struct delayed_work
*dwork
= to_delayed_work(work
);
4165 struct cgroup_pidlist
*l
= container_of(dwork
, struct cgroup_pidlist
,
4167 struct cgroup_pidlist
*tofree
= NULL
;
4169 mutex_lock(&l
->owner
->pidlist_mutex
);
4172 * Destroy iff we didn't get queued again. The state won't change
4173 * as destroy_dwork can only be queued while locked.
4175 if (!delayed_work_pending(dwork
)) {
4176 list_del(&l
->links
);
4177 pidlist_free(l
->list
);
4178 put_pid_ns(l
->key
.ns
);
4182 mutex_unlock(&l
->owner
->pidlist_mutex
);
4187 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4188 * Returns the number of unique elements.
4190 static int pidlist_uniq(pid_t
*list
, int length
)
4195 * we presume the 0th element is unique, so i starts at 1. trivial
4196 * edge cases first; no work needs to be done for either
4198 if (length
== 0 || length
== 1)
4200 /* src and dest walk down the list; dest counts unique elements */
4201 for (src
= 1; src
< length
; src
++) {
4202 /* find next unique element */
4203 while (list
[src
] == list
[src
-1]) {
4208 /* dest always points to where the next unique element goes */
4209 list
[dest
] = list
[src
];
4217 * The two pid files - task and cgroup.procs - guaranteed that the result
4218 * is sorted, which forced this whole pidlist fiasco. As pid order is
4219 * different per namespace, each namespace needs differently sorted list,
4220 * making it impossible to use, for example, single rbtree of member tasks
4221 * sorted by task pointer. As pidlists can be fairly large, allocating one
4222 * per open file is dangerous, so cgroup had to implement shared pool of
4223 * pidlists keyed by cgroup and namespace.
4225 * All this extra complexity was caused by the original implementation
4226 * committing to an entirely unnecessary property. In the long term, we
4227 * want to do away with it. Explicitly scramble sort order if on the
4228 * default hierarchy so that no such expectation exists in the new
4231 * Scrambling is done by swapping every two consecutive bits, which is
4232 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4234 static pid_t
pid_fry(pid_t pid
)
4236 unsigned a
= pid
& 0x55555555;
4237 unsigned b
= pid
& 0xAAAAAAAA;
4239 return (a
<< 1) | (b
>> 1);
4242 static pid_t
cgroup_pid_fry(struct cgroup
*cgrp
, pid_t pid
)
4244 if (cgroup_on_dfl(cgrp
))
4245 return pid_fry(pid
);
4250 static int cmppid(const void *a
, const void *b
)
4252 return *(pid_t
*)a
- *(pid_t
*)b
;
4255 static int fried_cmppid(const void *a
, const void *b
)
4257 return pid_fry(*(pid_t
*)a
) - pid_fry(*(pid_t
*)b
);
4260 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
4261 enum cgroup_filetype type
)
4263 struct cgroup_pidlist
*l
;
4264 /* don't need task_nsproxy() if we're looking at ourself */
4265 struct pid_namespace
*ns
= task_active_pid_ns(current
);
4267 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4269 list_for_each_entry(l
, &cgrp
->pidlists
, links
)
4270 if (l
->key
.type
== type
&& l
->key
.ns
== ns
)
4276 * find the appropriate pidlist for our purpose (given procs vs tasks)
4277 * returns with the lock on that pidlist already held, and takes care
4278 * of the use count, or returns NULL with no locks held if we're out of
4281 static struct cgroup_pidlist
*cgroup_pidlist_find_create(struct cgroup
*cgrp
,
4282 enum cgroup_filetype type
)
4284 struct cgroup_pidlist
*l
;
4286 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4288 l
= cgroup_pidlist_find(cgrp
, type
);
4292 /* entry not found; create a new one */
4293 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
4297 INIT_DELAYED_WORK(&l
->destroy_dwork
, cgroup_pidlist_destroy_work_fn
);
4299 /* don't need task_nsproxy() if we're looking at ourself */
4300 l
->key
.ns
= get_pid_ns(task_active_pid_ns(current
));
4302 list_add(&l
->links
, &cgrp
->pidlists
);
4307 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4309 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
4310 struct cgroup_pidlist
**lp
)
4314 int pid
, n
= 0; /* used for populating the array */
4315 struct css_task_iter it
;
4316 struct task_struct
*tsk
;
4317 struct cgroup_pidlist
*l
;
4319 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4322 * If cgroup gets more users after we read count, we won't have
4323 * enough space - tough. This race is indistinguishable to the
4324 * caller from the case that the additional cgroup users didn't
4325 * show up until sometime later on.
4327 length
= cgroup_task_count(cgrp
);
4328 array
= pidlist_allocate(length
);
4331 /* now, populate the array */
4332 css_task_iter_start(&cgrp
->self
, &it
);
4333 while ((tsk
= css_task_iter_next(&it
))) {
4334 if (unlikely(n
== length
))
4336 /* get tgid or pid for procs or tasks file respectively */
4337 if (type
== CGROUP_FILE_PROCS
)
4338 pid
= task_tgid_vnr(tsk
);
4340 pid
= task_pid_vnr(tsk
);
4341 if (pid
> 0) /* make sure to only use valid results */
4344 css_task_iter_end(&it
);
4346 /* now sort & (if procs) strip out duplicates */
4347 if (cgroup_on_dfl(cgrp
))
4348 sort(array
, length
, sizeof(pid_t
), fried_cmppid
, NULL
);
4350 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
4351 if (type
== CGROUP_FILE_PROCS
)
4352 length
= pidlist_uniq(array
, length
);
4354 l
= cgroup_pidlist_find_create(cgrp
, type
);
4356 pidlist_free(array
);
4360 /* store array, freeing old if necessary */
4361 pidlist_free(l
->list
);
4369 * cgroupstats_build - build and fill cgroupstats
4370 * @stats: cgroupstats to fill information into
4371 * @dentry: A dentry entry belonging to the cgroup for which stats have
4374 * Build and fill cgroupstats so that taskstats can export it to user
4377 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
4379 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
4380 struct cgroup
*cgrp
;
4381 struct css_task_iter it
;
4382 struct task_struct
*tsk
;
4384 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4385 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
4386 kernfs_type(kn
) != KERNFS_DIR
)
4389 mutex_lock(&cgroup_mutex
);
4392 * We aren't being called from kernfs and there's no guarantee on
4393 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4394 * @kn->priv is RCU safe. Let's do the RCU dancing.
4397 cgrp
= rcu_dereference(kn
->priv
);
4398 if (!cgrp
|| cgroup_is_dead(cgrp
)) {
4400 mutex_unlock(&cgroup_mutex
);
4405 css_task_iter_start(&cgrp
->self
, &it
);
4406 while ((tsk
= css_task_iter_next(&it
))) {
4407 switch (tsk
->state
) {
4409 stats
->nr_running
++;
4411 case TASK_INTERRUPTIBLE
:
4412 stats
->nr_sleeping
++;
4414 case TASK_UNINTERRUPTIBLE
:
4415 stats
->nr_uninterruptible
++;
4418 stats
->nr_stopped
++;
4421 if (delayacct_is_task_waiting_on_io(tsk
))
4422 stats
->nr_io_wait
++;
4426 css_task_iter_end(&it
);
4428 mutex_unlock(&cgroup_mutex
);
4434 * seq_file methods for the tasks/procs files. The seq_file position is the
4435 * next pid to display; the seq_file iterator is a pointer to the pid
4436 * in the cgroup->l->list array.
4439 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
4442 * Initially we receive a position value that corresponds to
4443 * one more than the last pid shown (or 0 on the first call or
4444 * after a seek to the start). Use a binary-search to find the
4445 * next pid to display, if any
4447 struct kernfs_open_file
*of
= s
->private;
4448 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4449 struct cgroup_pidlist
*l
;
4450 enum cgroup_filetype type
= seq_cft(s
)->private;
4451 int index
= 0, pid
= *pos
;
4454 mutex_lock(&cgrp
->pidlist_mutex
);
4457 * !NULL @of->priv indicates that this isn't the first start()
4458 * after open. If the matching pidlist is around, we can use that.
4459 * Look for it. Note that @of->priv can't be used directly. It
4460 * could already have been destroyed.
4463 of
->priv
= cgroup_pidlist_find(cgrp
, type
);
4466 * Either this is the first start() after open or the matching
4467 * pidlist has been destroyed inbetween. Create a new one.
4470 ret
= pidlist_array_load(cgrp
, type
,
4471 (struct cgroup_pidlist
**)&of
->priv
);
4473 return ERR_PTR(ret
);
4478 int end
= l
->length
;
4480 while (index
< end
) {
4481 int mid
= (index
+ end
) / 2;
4482 if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) == pid
) {
4485 } else if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) <= pid
)
4491 /* If we're off the end of the array, we're done */
4492 if (index
>= l
->length
)
4494 /* Update the abstract position to be the actual pid that we found */
4495 iter
= l
->list
+ index
;
4496 *pos
= cgroup_pid_fry(cgrp
, *iter
);
4500 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
4502 struct kernfs_open_file
*of
= s
->private;
4503 struct cgroup_pidlist
*l
= of
->priv
;
4506 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
,
4507 CGROUP_PIDLIST_DESTROY_DELAY
);
4508 mutex_unlock(&seq_css(s
)->cgroup
->pidlist_mutex
);
4511 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4513 struct kernfs_open_file
*of
= s
->private;
4514 struct cgroup_pidlist
*l
= of
->priv
;
4516 pid_t
*end
= l
->list
+ l
->length
;
4518 * Advance to the next pid in the array. If this goes off the
4525 *pos
= cgroup_pid_fry(seq_css(s
)->cgroup
, *p
);
4530 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
4532 seq_printf(s
, "%d\n", *(int *)v
);
4537 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
4540 return notify_on_release(css
->cgroup
);
4543 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
4544 struct cftype
*cft
, u64 val
)
4547 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4549 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4553 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4556 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4559 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4560 struct cftype
*cft
, u64 val
)
4563 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4565 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4569 /* cgroup core interface files for the default hierarchy */
4570 static struct cftype cgroup_dfl_base_files
[] = {
4572 .name
= "cgroup.procs",
4573 .file_offset
= offsetof(struct cgroup
, procs_file
),
4574 .seq_start
= cgroup_pidlist_start
,
4575 .seq_next
= cgroup_pidlist_next
,
4576 .seq_stop
= cgroup_pidlist_stop
,
4577 .seq_show
= cgroup_pidlist_show
,
4578 .private = CGROUP_FILE_PROCS
,
4579 .write
= cgroup_procs_write
,
4582 .name
= "cgroup.controllers",
4583 .flags
= CFTYPE_ONLY_ON_ROOT
,
4584 .seq_show
= cgroup_root_controllers_show
,
4587 .name
= "cgroup.controllers",
4588 .flags
= CFTYPE_NOT_ON_ROOT
,
4589 .seq_show
= cgroup_controllers_show
,
4592 .name
= "cgroup.subtree_control",
4593 .seq_show
= cgroup_subtree_control_show
,
4594 .write
= cgroup_subtree_control_write
,
4597 .name
= "cgroup.events",
4598 .flags
= CFTYPE_NOT_ON_ROOT
,
4599 .file_offset
= offsetof(struct cgroup
, events_file
),
4600 .seq_show
= cgroup_events_show
,
4605 /* cgroup core interface files for the legacy hierarchies */
4606 static struct cftype cgroup_legacy_base_files
[] = {
4608 .name
= "cgroup.procs",
4609 .seq_start
= cgroup_pidlist_start
,
4610 .seq_next
= cgroup_pidlist_next
,
4611 .seq_stop
= cgroup_pidlist_stop
,
4612 .seq_show
= cgroup_pidlist_show
,
4613 .private = CGROUP_FILE_PROCS
,
4614 .write
= cgroup_procs_write
,
4617 .name
= "cgroup.clone_children",
4618 .read_u64
= cgroup_clone_children_read
,
4619 .write_u64
= cgroup_clone_children_write
,
4622 .name
= "cgroup.sane_behavior",
4623 .flags
= CFTYPE_ONLY_ON_ROOT
,
4624 .seq_show
= cgroup_sane_behavior_show
,
4628 .seq_start
= cgroup_pidlist_start
,
4629 .seq_next
= cgroup_pidlist_next
,
4630 .seq_stop
= cgroup_pidlist_stop
,
4631 .seq_show
= cgroup_pidlist_show
,
4632 .private = CGROUP_FILE_TASKS
,
4633 .write
= cgroup_tasks_write
,
4636 .name
= "notify_on_release",
4637 .read_u64
= cgroup_read_notify_on_release
,
4638 .write_u64
= cgroup_write_notify_on_release
,
4641 .name
= "release_agent",
4642 .flags
= CFTYPE_ONLY_ON_ROOT
,
4643 .seq_show
= cgroup_release_agent_show
,
4644 .write
= cgroup_release_agent_write
,
4645 .max_write_len
= PATH_MAX
- 1,
4651 * css destruction is four-stage process.
4653 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4654 * Implemented in kill_css().
4656 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4657 * and thus css_tryget_online() is guaranteed to fail, the css can be
4658 * offlined by invoking offline_css(). After offlining, the base ref is
4659 * put. Implemented in css_killed_work_fn().
4661 * 3. When the percpu_ref reaches zero, the only possible remaining
4662 * accessors are inside RCU read sections. css_release() schedules the
4665 * 4. After the grace period, the css can be freed. Implemented in
4666 * css_free_work_fn().
4668 * It is actually hairier because both step 2 and 4 require process context
4669 * and thus involve punting to css->destroy_work adding two additional
4670 * steps to the already complex sequence.
4672 static void css_free_work_fn(struct work_struct
*work
)
4674 struct cgroup_subsys_state
*css
=
4675 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4676 struct cgroup_subsys
*ss
= css
->ss
;
4677 struct cgroup
*cgrp
= css
->cgroup
;
4679 percpu_ref_exit(&css
->refcnt
);
4686 css_put(css
->parent
);
4689 cgroup_idr_remove(&ss
->css_idr
, id
);
4692 /* cgroup free path */
4693 atomic_dec(&cgrp
->root
->nr_cgrps
);
4694 cgroup_pidlist_destroy_all(cgrp
);
4695 cancel_work_sync(&cgrp
->release_agent_work
);
4697 if (cgroup_parent(cgrp
)) {
4699 * We get a ref to the parent, and put the ref when
4700 * this cgroup is being freed, so it's guaranteed
4701 * that the parent won't be destroyed before its
4704 cgroup_put(cgroup_parent(cgrp
));
4705 kernfs_put(cgrp
->kn
);
4709 * This is root cgroup's refcnt reaching zero,
4710 * which indicates that the root should be
4713 cgroup_destroy_root(cgrp
->root
);
4718 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4720 struct cgroup_subsys_state
*css
=
4721 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4723 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4724 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4727 static void css_release_work_fn(struct work_struct
*work
)
4729 struct cgroup_subsys_state
*css
=
4730 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4731 struct cgroup_subsys
*ss
= css
->ss
;
4732 struct cgroup
*cgrp
= css
->cgroup
;
4734 mutex_lock(&cgroup_mutex
);
4736 css
->flags
|= CSS_RELEASED
;
4737 list_del_rcu(&css
->sibling
);
4740 /* css release path */
4741 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4742 if (ss
->css_released
)
4743 ss
->css_released(css
);
4745 /* cgroup release path */
4746 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4750 * There are two control paths which try to determine
4751 * cgroup from dentry without going through kernfs -
4752 * cgroupstats_build() and css_tryget_online_from_dir().
4753 * Those are supported by RCU protecting clearing of
4754 * cgrp->kn->priv backpointer.
4756 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
, NULL
);
4759 mutex_unlock(&cgroup_mutex
);
4761 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4764 static void css_release(struct percpu_ref
*ref
)
4766 struct cgroup_subsys_state
*css
=
4767 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4769 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4770 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4773 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4774 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4776 lockdep_assert_held(&cgroup_mutex
);
4780 memset(css
, 0, sizeof(*css
));
4783 INIT_LIST_HEAD(&css
->sibling
);
4784 INIT_LIST_HEAD(&css
->children
);
4785 css
->serial_nr
= css_serial_nr_next
++;
4787 if (cgroup_parent(cgrp
)) {
4788 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4789 css_get(css
->parent
);
4792 BUG_ON(cgroup_css(cgrp
, ss
));
4795 /* invoke ->css_online() on a new CSS and mark it online if successful */
4796 static int online_css(struct cgroup_subsys_state
*css
)
4798 struct cgroup_subsys
*ss
= css
->ss
;
4801 lockdep_assert_held(&cgroup_mutex
);
4804 ret
= ss
->css_online(css
);
4806 css
->flags
|= CSS_ONLINE
;
4807 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4812 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4813 static void offline_css(struct cgroup_subsys_state
*css
)
4815 struct cgroup_subsys
*ss
= css
->ss
;
4817 lockdep_assert_held(&cgroup_mutex
);
4819 if (!(css
->flags
& CSS_ONLINE
))
4822 if (ss
->css_offline
)
4823 ss
->css_offline(css
);
4825 css
->flags
&= ~CSS_ONLINE
;
4826 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4828 wake_up_all(&css
->cgroup
->offline_waitq
);
4832 * create_css - create a cgroup_subsys_state
4833 * @cgrp: the cgroup new css will be associated with
4834 * @ss: the subsys of new css
4835 * @visible: whether to create control knobs for the new css or not
4837 * Create a new css associated with @cgrp - @ss pair. On success, the new
4838 * css is online and installed in @cgrp with all interface files created if
4839 * @visible. Returns 0 on success, -errno on failure.
4841 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
4844 struct cgroup
*parent
= cgroup_parent(cgrp
);
4845 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4846 struct cgroup_subsys_state
*css
;
4849 lockdep_assert_held(&cgroup_mutex
);
4851 css
= ss
->css_alloc(parent_css
);
4853 return PTR_ERR(css
);
4855 init_and_link_css(css
, ss
, cgrp
);
4857 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
4861 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
4863 goto err_free_percpu_ref
;
4867 err
= css_populate_dir(css
, NULL
);
4872 /* @css is ready to be brought online now, make it visible */
4873 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4874 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4876 err
= online_css(css
);
4880 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4881 cgroup_parent(parent
)) {
4882 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4883 current
->comm
, current
->pid
, ss
->name
);
4884 if (!strcmp(ss
->name
, "memory"))
4885 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4886 ss
->warned_broken_hierarchy
= true;
4892 list_del_rcu(&css
->sibling
);
4893 css_clear_dir(css
, NULL
);
4895 cgroup_idr_remove(&ss
->css_idr
, css
->id
);
4896 err_free_percpu_ref
:
4897 percpu_ref_exit(&css
->refcnt
);
4899 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4903 static int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
4906 struct cgroup
*parent
, *cgrp
;
4907 struct cgroup_root
*root
;
4908 struct cgroup_subsys
*ss
;
4909 struct kernfs_node
*kn
;
4912 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4914 if (strchr(name
, '\n'))
4917 parent
= cgroup_kn_lock_live(parent_kn
);
4920 root
= parent
->root
;
4922 /* allocate the cgroup and its ID, 0 is reserved for the root */
4923 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4929 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
4934 * Temporarily set the pointer to NULL, so idr_find() won't return
4935 * a half-baked cgroup.
4937 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
4940 goto out_cancel_ref
;
4943 init_cgroup_housekeeping(cgrp
);
4945 cgrp
->self
.parent
= &parent
->self
;
4948 if (notify_on_release(parent
))
4949 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4951 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4952 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4954 /* create the directory */
4955 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4963 * This extra ref will be put in cgroup_free_fn() and guarantees
4964 * that @cgrp->kn is always accessible.
4968 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
4970 /* allocation complete, commit to creation */
4971 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
4972 atomic_inc(&root
->nr_cgrps
);
4976 * @cgrp is now fully operational. If something fails after this
4977 * point, it'll be released via the normal destruction path.
4979 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4981 ret
= cgroup_kn_set_ugid(kn
);
4985 ret
= css_populate_dir(&cgrp
->self
, NULL
);
4989 /* let's create and online css's */
4990 for_each_subsys(ss
, ssid
) {
4991 if (parent
->child_subsys_mask
& (1 << ssid
)) {
4992 ret
= create_css(cgrp
, ss
,
4993 parent
->subtree_control
& (1 << ssid
));
5000 * On the default hierarchy, a child doesn't automatically inherit
5001 * subtree_control from the parent. Each is configured manually.
5003 if (!cgroup_on_dfl(cgrp
)) {
5004 cgrp
->subtree_control
= parent
->subtree_control
;
5005 cgroup_refresh_child_subsys_mask(cgrp
);
5008 kernfs_activate(kn
);
5014 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
5016 percpu_ref_exit(&cgrp
->self
.refcnt
);
5020 cgroup_kn_unlock(parent_kn
);
5024 cgroup_destroy_locked(cgrp
);
5029 * This is called when the refcnt of a css is confirmed to be killed.
5030 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5031 * initate destruction and put the css ref from kill_css().
5033 static void css_killed_work_fn(struct work_struct
*work
)
5035 struct cgroup_subsys_state
*css
=
5036 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5038 mutex_lock(&cgroup_mutex
);
5040 mutex_unlock(&cgroup_mutex
);
5045 /* css kill confirmation processing requires process context, bounce */
5046 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5048 struct cgroup_subsys_state
*css
=
5049 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5051 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5052 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5056 * kill_css - destroy a css
5057 * @css: css to destroy
5059 * This function initiates destruction of @css by removing cgroup interface
5060 * files and putting its base reference. ->css_offline() will be invoked
5061 * asynchronously once css_tryget_online() is guaranteed to fail and when
5062 * the reference count reaches zero, @css will be released.
5064 static void kill_css(struct cgroup_subsys_state
*css
)
5066 lockdep_assert_held(&cgroup_mutex
);
5069 * This must happen before css is disassociated with its cgroup.
5070 * See seq_css() for details.
5072 css_clear_dir(css
, NULL
);
5075 * Killing would put the base ref, but we need to keep it alive
5076 * until after ->css_offline().
5081 * cgroup core guarantees that, by the time ->css_offline() is
5082 * invoked, no new css reference will be given out via
5083 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5084 * proceed to offlining css's because percpu_ref_kill() doesn't
5085 * guarantee that the ref is seen as killed on all CPUs on return.
5087 * Use percpu_ref_kill_and_confirm() to get notifications as each
5088 * css is confirmed to be seen as killed on all CPUs.
5090 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5094 * cgroup_destroy_locked - the first stage of cgroup destruction
5095 * @cgrp: cgroup to be destroyed
5097 * css's make use of percpu refcnts whose killing latency shouldn't be
5098 * exposed to userland and are RCU protected. Also, cgroup core needs to
5099 * guarantee that css_tryget_online() won't succeed by the time
5100 * ->css_offline() is invoked. To satisfy all the requirements,
5101 * destruction is implemented in the following two steps.
5103 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5104 * userland visible parts and start killing the percpu refcnts of
5105 * css's. Set up so that the next stage will be kicked off once all
5106 * the percpu refcnts are confirmed to be killed.
5108 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5109 * rest of destruction. Once all cgroup references are gone, the
5110 * cgroup is RCU-freed.
5112 * This function implements s1. After this step, @cgrp is gone as far as
5113 * the userland is concerned and a new cgroup with the same name may be
5114 * created. As cgroup doesn't care about the names internally, this
5115 * doesn't cause any problem.
5117 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5118 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5120 struct cgroup_subsys_state
*css
;
5123 lockdep_assert_held(&cgroup_mutex
);
5126 * Only migration can raise populated from zero and we're already
5127 * holding cgroup_mutex.
5129 if (cgroup_is_populated(cgrp
))
5133 * Make sure there's no live children. We can't test emptiness of
5134 * ->self.children as dead children linger on it while being
5135 * drained; otherwise, "rmdir parent/child parent" may fail.
5137 if (css_has_online_children(&cgrp
->self
))
5141 * Mark @cgrp dead. This prevents further task migration and child
5142 * creation by disabling cgroup_lock_live_group().
5144 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5146 /* initiate massacre of all css's */
5147 for_each_css(css
, ssid
, cgrp
)
5151 * Remove @cgrp directory along with the base files. @cgrp has an
5152 * extra ref on its kn.
5154 kernfs_remove(cgrp
->kn
);
5156 check_for_release(cgroup_parent(cgrp
));
5158 /* put the base reference */
5159 percpu_ref_kill(&cgrp
->self
.refcnt
);
5164 static int cgroup_rmdir(struct kernfs_node
*kn
)
5166 struct cgroup
*cgrp
;
5169 cgrp
= cgroup_kn_lock_live(kn
);
5173 ret
= cgroup_destroy_locked(cgrp
);
5175 cgroup_kn_unlock(kn
);
5179 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5180 .remount_fs
= cgroup_remount
,
5181 .show_options
= cgroup_show_options
,
5182 .mkdir
= cgroup_mkdir
,
5183 .rmdir
= cgroup_rmdir
,
5184 .rename
= cgroup_rename
,
5187 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5189 struct cgroup_subsys_state
*css
;
5191 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
5193 mutex_lock(&cgroup_mutex
);
5195 idr_init(&ss
->css_idr
);
5196 INIT_LIST_HEAD(&ss
->cfts
);
5198 /* Create the root cgroup state for this subsystem */
5199 ss
->root
= &cgrp_dfl_root
;
5200 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5201 /* We don't handle early failures gracefully */
5202 BUG_ON(IS_ERR(css
));
5203 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5206 * Root csses are never destroyed and we can't initialize
5207 * percpu_ref during early init. Disable refcnting.
5209 css
->flags
|= CSS_NO_REF
;
5212 /* allocation can't be done safely during early init */
5215 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5216 BUG_ON(css
->id
< 0);
5219 /* Update the init_css_set to contain a subsys
5220 * pointer to this state - since the subsystem is
5221 * newly registered, all tasks and hence the
5222 * init_css_set is in the subsystem's root cgroup. */
5223 init_css_set
.subsys
[ss
->id
] = css
;
5225 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5226 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5227 have_free_callback
|= (bool)ss
->free
<< ss
->id
;
5228 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5230 /* At system boot, before all subsystems have been
5231 * registered, no tasks have been forked, so we don't
5232 * need to invoke fork callbacks here. */
5233 BUG_ON(!list_empty(&init_task
.tasks
));
5235 BUG_ON(online_css(css
));
5237 mutex_unlock(&cgroup_mutex
);
5241 * cgroup_init_early - cgroup initialization at system boot
5243 * Initialize cgroups at system boot, and initialize any
5244 * subsystems that request early init.
5246 int __init
cgroup_init_early(void)
5248 static struct cgroup_sb_opts __initdata opts
;
5249 struct cgroup_subsys
*ss
;
5252 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5253 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5255 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5257 for_each_subsys(ss
, i
) {
5258 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5259 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5260 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5262 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5263 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5266 ss
->name
= cgroup_subsys_name
[i
];
5267 if (!ss
->legacy_name
)
5268 ss
->legacy_name
= cgroup_subsys_name
[i
];
5271 cgroup_init_subsys(ss
, true);
5276 static unsigned long cgroup_disable_mask __initdata
;
5279 * cgroup_init - cgroup initialization
5281 * Register cgroup filesystem and /proc file, and initialize
5282 * any subsystems that didn't request early init.
5284 int __init
cgroup_init(void)
5286 struct cgroup_subsys
*ss
;
5290 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5291 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_dfl_base_files
));
5292 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_legacy_base_files
));
5294 mutex_lock(&cgroup_mutex
);
5296 /* Add init_css_set to the hash table */
5297 key
= css_set_hash(init_css_set
.subsys
);
5298 hash_add(css_set_table
, &init_css_set
.hlist
, key
);
5300 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5302 mutex_unlock(&cgroup_mutex
);
5304 for_each_subsys(ss
, ssid
) {
5305 if (ss
->early_init
) {
5306 struct cgroup_subsys_state
*css
=
5307 init_css_set
.subsys
[ss
->id
];
5309 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5311 BUG_ON(css
->id
< 0);
5313 cgroup_init_subsys(ss
, false);
5316 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5317 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5320 * Setting dfl_root subsys_mask needs to consider the
5321 * disabled flag and cftype registration needs kmalloc,
5322 * both of which aren't available during early_init.
5324 if (cgroup_disable_mask
& (1 << ssid
)) {
5325 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5326 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5331 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5333 if (!ss
->dfl_cftypes
)
5334 cgrp_dfl_root_inhibit_ss_mask
|= 1 << ss
->id
;
5336 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5337 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5339 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5340 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5344 ss
->bind(init_css_set
.subsys
[ssid
]);
5347 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5348 WARN_ON(register_filesystem(&cgroup_fs_type
));
5349 WARN_ON(!proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
));
5354 static int __init
cgroup_wq_init(void)
5357 * There isn't much point in executing destruction path in
5358 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5359 * Use 1 for @max_active.
5361 * We would prefer to do this in cgroup_init() above, but that
5362 * is called before init_workqueues(): so leave this until after.
5364 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5365 BUG_ON(!cgroup_destroy_wq
);
5368 * Used to destroy pidlists and separate to serve as flush domain.
5369 * Cap @max_active to 1 too.
5371 cgroup_pidlist_destroy_wq
= alloc_workqueue("cgroup_pidlist_destroy",
5373 BUG_ON(!cgroup_pidlist_destroy_wq
);
5377 core_initcall(cgroup_wq_init
);
5380 * proc_cgroup_show()
5381 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5382 * - Used for /proc/<pid>/cgroup.
5384 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5385 struct pid
*pid
, struct task_struct
*tsk
)
5389 struct cgroup_root
*root
;
5392 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5396 mutex_lock(&cgroup_mutex
);
5397 spin_lock_bh(&css_set_lock
);
5399 for_each_root(root
) {
5400 struct cgroup_subsys
*ss
;
5401 struct cgroup
*cgrp
;
5402 int ssid
, count
= 0;
5404 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_root_visible
)
5407 seq_printf(m
, "%d:", root
->hierarchy_id
);
5408 if (root
!= &cgrp_dfl_root
)
5409 for_each_subsys(ss
, ssid
)
5410 if (root
->subsys_mask
& (1 << ssid
))
5411 seq_printf(m
, "%s%s", count
++ ? "," : "",
5413 if (strlen(root
->name
))
5414 seq_printf(m
, "%sname=%s", count
? "," : "",
5418 cgrp
= task_cgroup_from_root(tsk
, root
);
5421 * On traditional hierarchies, all zombie tasks show up as
5422 * belonging to the root cgroup. On the default hierarchy,
5423 * while a zombie doesn't show up in "cgroup.procs" and
5424 * thus can't be migrated, its /proc/PID/cgroup keeps
5425 * reporting the cgroup it belonged to before exiting. If
5426 * the cgroup is removed before the zombie is reaped,
5427 * " (deleted)" is appended to the cgroup path.
5429 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5430 path
= cgroup_path(cgrp
, buf
, PATH_MAX
);
5432 retval
= -ENAMETOOLONG
;
5441 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5442 seq_puts(m
, " (deleted)\n");
5449 spin_unlock_bh(&css_set_lock
);
5450 mutex_unlock(&cgroup_mutex
);
5456 /* Display information about each subsystem and each hierarchy */
5457 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5459 struct cgroup_subsys
*ss
;
5462 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5464 * ideally we don't want subsystems moving around while we do this.
5465 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5466 * subsys/hierarchy state.
5468 mutex_lock(&cgroup_mutex
);
5470 for_each_subsys(ss
, i
)
5471 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5472 ss
->legacy_name
, ss
->root
->hierarchy_id
,
5473 atomic_read(&ss
->root
->nr_cgrps
),
5474 cgroup_ssid_enabled(i
));
5476 mutex_unlock(&cgroup_mutex
);
5480 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5482 return single_open(file
, proc_cgroupstats_show
, NULL
);
5485 static const struct file_operations proc_cgroupstats_operations
= {
5486 .open
= cgroupstats_open
,
5488 .llseek
= seq_lseek
,
5489 .release
= single_release
,
5492 static void **subsys_canfork_priv_p(void *ss_priv
[CGROUP_CANFORK_COUNT
], int i
)
5494 if (CGROUP_CANFORK_START
<= i
&& i
< CGROUP_CANFORK_END
)
5495 return &ss_priv
[i
- CGROUP_CANFORK_START
];
5499 static void *subsys_canfork_priv(void *ss_priv
[CGROUP_CANFORK_COUNT
], int i
)
5501 void **private = subsys_canfork_priv_p(ss_priv
, i
);
5502 return private ? *private : NULL
;
5506 * cgroup_fork - initialize cgroup related fields during copy_process()
5507 * @child: pointer to task_struct of forking parent process.
5509 * A task is associated with the init_css_set until cgroup_post_fork()
5510 * attaches it to the parent's css_set. Empty cg_list indicates that
5511 * @child isn't holding reference to its css_set.
5513 void cgroup_fork(struct task_struct
*child
)
5515 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5516 INIT_LIST_HEAD(&child
->cg_list
);
5520 * cgroup_can_fork - called on a new task before the process is exposed
5521 * @child: the task in question.
5523 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5524 * returns an error, the fork aborts with that error code. This allows for
5525 * a cgroup subsystem to conditionally allow or deny new forks.
5527 int cgroup_can_fork(struct task_struct
*child
,
5528 void *ss_priv
[CGROUP_CANFORK_COUNT
])
5530 struct cgroup_subsys
*ss
;
5533 for_each_subsys_which(ss
, i
, &have_canfork_callback
) {
5534 ret
= ss
->can_fork(child
, subsys_canfork_priv_p(ss_priv
, i
));
5542 for_each_subsys(ss
, j
) {
5545 if (ss
->cancel_fork
)
5546 ss
->cancel_fork(child
, subsys_canfork_priv(ss_priv
, j
));
5553 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5554 * @child: the task in question
5556 * This calls the cancel_fork() callbacks if a fork failed *after*
5557 * cgroup_can_fork() succeded.
5559 void cgroup_cancel_fork(struct task_struct
*child
,
5560 void *ss_priv
[CGROUP_CANFORK_COUNT
])
5562 struct cgroup_subsys
*ss
;
5565 for_each_subsys(ss
, i
)
5566 if (ss
->cancel_fork
)
5567 ss
->cancel_fork(child
, subsys_canfork_priv(ss_priv
, i
));
5571 * cgroup_post_fork - called on a new task after adding it to the task list
5572 * @child: the task in question
5574 * Adds the task to the list running through its css_set if necessary and
5575 * call the subsystem fork() callbacks. Has to be after the task is
5576 * visible on the task list in case we race with the first call to
5577 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5580 void cgroup_post_fork(struct task_struct
*child
,
5581 void *old_ss_priv
[CGROUP_CANFORK_COUNT
])
5583 struct cgroup_subsys
*ss
;
5587 * This may race against cgroup_enable_task_cg_lists(). As that
5588 * function sets use_task_css_set_links before grabbing
5589 * tasklist_lock and we just went through tasklist_lock to add
5590 * @child, it's guaranteed that either we see the set
5591 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5592 * @child during its iteration.
5594 * If we won the race, @child is associated with %current's
5595 * css_set. Grabbing css_set_lock guarantees both that the
5596 * association is stable, and, on completion of the parent's
5597 * migration, @child is visible in the source of migration or
5598 * already in the destination cgroup. This guarantee is necessary
5599 * when implementing operations which need to migrate all tasks of
5600 * a cgroup to another.
5602 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5603 * will remain in init_css_set. This is safe because all tasks are
5604 * in the init_css_set before cg_links is enabled and there's no
5605 * operation which transfers all tasks out of init_css_set.
5607 if (use_task_css_set_links
) {
5608 struct css_set
*cset
;
5610 spin_lock_bh(&css_set_lock
);
5611 cset
= task_css_set(current
);
5612 if (list_empty(&child
->cg_list
)) {
5614 css_set_move_task(child
, NULL
, cset
, false);
5616 spin_unlock_bh(&css_set_lock
);
5620 * Call ss->fork(). This must happen after @child is linked on
5621 * css_set; otherwise, @child might change state between ->fork()
5622 * and addition to css_set.
5624 for_each_subsys_which(ss
, i
, &have_fork_callback
)
5625 ss
->fork(child
, subsys_canfork_priv(old_ss_priv
, i
));
5629 * cgroup_exit - detach cgroup from exiting task
5630 * @tsk: pointer to task_struct of exiting process
5632 * Description: Detach cgroup from @tsk and release it.
5634 * Note that cgroups marked notify_on_release force every task in
5635 * them to take the global cgroup_mutex mutex when exiting.
5636 * This could impact scaling on very large systems. Be reluctant to
5637 * use notify_on_release cgroups where very high task exit scaling
5638 * is required on large systems.
5640 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5641 * call cgroup_exit() while the task is still competent to handle
5642 * notify_on_release(), then leave the task attached to the root cgroup in
5643 * each hierarchy for the remainder of its exit. No need to bother with
5644 * init_css_set refcnting. init_css_set never goes away and we can't race
5645 * with migration path - PF_EXITING is visible to migration path.
5647 void cgroup_exit(struct task_struct
*tsk
)
5649 struct cgroup_subsys
*ss
;
5650 struct css_set
*cset
;
5654 * Unlink from @tsk from its css_set. As migration path can't race
5655 * with us, we can check css_set and cg_list without synchronization.
5657 cset
= task_css_set(tsk
);
5659 if (!list_empty(&tsk
->cg_list
)) {
5660 spin_lock_bh(&css_set_lock
);
5661 css_set_move_task(tsk
, cset
, NULL
, false);
5662 spin_unlock_bh(&css_set_lock
);
5667 /* see cgroup_post_fork() for details */
5668 for_each_subsys_which(ss
, i
, &have_exit_callback
)
5672 void cgroup_free(struct task_struct
*task
)
5674 struct css_set
*cset
= task_css_set(task
);
5675 struct cgroup_subsys
*ss
;
5678 for_each_subsys_which(ss
, ssid
, &have_free_callback
)
5684 static void check_for_release(struct cgroup
*cgrp
)
5686 if (notify_on_release(cgrp
) && !cgroup_is_populated(cgrp
) &&
5687 !css_has_online_children(&cgrp
->self
) && !cgroup_is_dead(cgrp
))
5688 schedule_work(&cgrp
->release_agent_work
);
5692 * Notify userspace when a cgroup is released, by running the
5693 * configured release agent with the name of the cgroup (path
5694 * relative to the root of cgroup file system) as the argument.
5696 * Most likely, this user command will try to rmdir this cgroup.
5698 * This races with the possibility that some other task will be
5699 * attached to this cgroup before it is removed, or that some other
5700 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5701 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5702 * unused, and this cgroup will be reprieved from its death sentence,
5703 * to continue to serve a useful existence. Next time it's released,
5704 * we will get notified again, if it still has 'notify_on_release' set.
5706 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5707 * means only wait until the task is successfully execve()'d. The
5708 * separate release agent task is forked by call_usermodehelper(),
5709 * then control in this thread returns here, without waiting for the
5710 * release agent task. We don't bother to wait because the caller of
5711 * this routine has no use for the exit status of the release agent
5712 * task, so no sense holding our caller up for that.
5714 static void cgroup_release_agent(struct work_struct
*work
)
5716 struct cgroup
*cgrp
=
5717 container_of(work
, struct cgroup
, release_agent_work
);
5718 char *pathbuf
= NULL
, *agentbuf
= NULL
, *path
;
5719 char *argv
[3], *envp
[3];
5721 mutex_lock(&cgroup_mutex
);
5723 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5724 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5725 if (!pathbuf
|| !agentbuf
)
5728 path
= cgroup_path(cgrp
, pathbuf
, PATH_MAX
);
5736 /* minimal command environment */
5738 envp
[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5741 mutex_unlock(&cgroup_mutex
);
5742 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5745 mutex_unlock(&cgroup_mutex
);
5751 static int __init
cgroup_disable(char *str
)
5753 struct cgroup_subsys
*ss
;
5757 while ((token
= strsep(&str
, ",")) != NULL
) {
5761 for_each_subsys(ss
, i
) {
5762 if (strcmp(token
, ss
->name
) &&
5763 strcmp(token
, ss
->legacy_name
))
5765 cgroup_disable_mask
|= 1 << i
;
5770 __setup("cgroup_disable=", cgroup_disable
);
5773 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5774 * @dentry: directory dentry of interest
5775 * @ss: subsystem of interest
5777 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5778 * to get the corresponding css and return it. If such css doesn't exist
5779 * or can't be pinned, an ERR_PTR value is returned.
5781 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5782 struct cgroup_subsys
*ss
)
5784 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5785 struct cgroup_subsys_state
*css
= NULL
;
5786 struct cgroup
*cgrp
;
5788 /* is @dentry a cgroup dir? */
5789 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
5790 kernfs_type(kn
) != KERNFS_DIR
)
5791 return ERR_PTR(-EBADF
);
5796 * This path doesn't originate from kernfs and @kn could already
5797 * have been or be removed at any point. @kn->priv is RCU
5798 * protected for this access. See css_release_work_fn() for details.
5800 cgrp
= rcu_dereference(kn
->priv
);
5802 css
= cgroup_css(cgrp
, ss
);
5804 if (!css
|| !css_tryget_online(css
))
5805 css
= ERR_PTR(-ENOENT
);
5812 * css_from_id - lookup css by id
5813 * @id: the cgroup id
5814 * @ss: cgroup subsys to be looked into
5816 * Returns the css if there's valid one with @id, otherwise returns NULL.
5817 * Should be called under rcu_read_lock().
5819 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5821 WARN_ON_ONCE(!rcu_read_lock_held());
5822 return id
> 0 ? idr_find(&ss
->css_idr
, id
) : NULL
;
5825 #ifdef CONFIG_CGROUP_DEBUG
5826 static struct cgroup_subsys_state
*
5827 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
5829 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5832 return ERR_PTR(-ENOMEM
);
5837 static void debug_css_free(struct cgroup_subsys_state
*css
)
5842 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
5845 return cgroup_task_count(css
->cgroup
);
5848 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
5851 return (u64
)(unsigned long)current
->cgroups
;
5854 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
5860 count
= atomic_read(&task_css_set(current
)->refcount
);
5865 static int current_css_set_cg_links_read(struct seq_file
*seq
, void *v
)
5867 struct cgrp_cset_link
*link
;
5868 struct css_set
*cset
;
5871 name_buf
= kmalloc(NAME_MAX
+ 1, GFP_KERNEL
);
5875 spin_lock_bh(&css_set_lock
);
5877 cset
= rcu_dereference(current
->cgroups
);
5878 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
5879 struct cgroup
*c
= link
->cgrp
;
5881 cgroup_name(c
, name_buf
, NAME_MAX
+ 1);
5882 seq_printf(seq
, "Root %d group %s\n",
5883 c
->root
->hierarchy_id
, name_buf
);
5886 spin_unlock_bh(&css_set_lock
);
5891 #define MAX_TASKS_SHOWN_PER_CSS 25
5892 static int cgroup_css_links_read(struct seq_file
*seq
, void *v
)
5894 struct cgroup_subsys_state
*css
= seq_css(seq
);
5895 struct cgrp_cset_link
*link
;
5897 spin_lock_bh(&css_set_lock
);
5898 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
5899 struct css_set
*cset
= link
->cset
;
5900 struct task_struct
*task
;
5903 seq_printf(seq
, "css_set %p\n", cset
);
5905 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
5906 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5908 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5911 list_for_each_entry(task
, &cset
->mg_tasks
, cg_list
) {
5912 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5914 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5918 seq_puts(seq
, " ...\n");
5920 spin_unlock_bh(&css_set_lock
);
5924 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
5926 return (!cgroup_is_populated(css
->cgroup
) &&
5927 !css_has_online_children(&css
->cgroup
->self
));
5930 static struct cftype debug_files
[] = {
5932 .name
= "taskcount",
5933 .read_u64
= debug_taskcount_read
,
5937 .name
= "current_css_set",
5938 .read_u64
= current_css_set_read
,
5942 .name
= "current_css_set_refcount",
5943 .read_u64
= current_css_set_refcount_read
,
5947 .name
= "current_css_set_cg_links",
5948 .seq_show
= current_css_set_cg_links_read
,
5952 .name
= "cgroup_css_links",
5953 .seq_show
= cgroup_css_links_read
,
5957 .name
= "releasable",
5958 .read_u64
= releasable_read
,
5964 struct cgroup_subsys debug_cgrp_subsys
= {
5965 .css_alloc
= debug_css_alloc
,
5966 .css_free
= debug_css_free
,
5967 .legacy_cftypes
= debug_files
,
5969 #endif /* CONFIG_CGROUP_DEBUG */