4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
86 #include <trace/events/sched.h>
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
92 * Minimum number of threads to boot the kernel
94 #define MIN_THREADS 20
97 * Maximum number of threads
99 #define MAX_THREADS FUTEX_TID_MASK
102 * Protected counters by write_lock_irq(&tasklist_lock)
104 unsigned long total_forks
; /* Handle normal Linux uptimes. */
105 int nr_threads
; /* The idle threads do not count.. */
107 int max_threads
; /* tunable limit on nr_threads */
109 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
111 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
116 return lockdep_is_held(&tasklist_lock
);
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
121 int nr_processes(void)
126 for_each_possible_cpu(cpu
)
127 total
+= per_cpu(process_counts
, cpu
);
132 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache
*task_struct_cachep
;
139 static inline struct task_struct
*alloc_task_struct_node(int node
)
141 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
144 static inline void free_task_struct(struct task_struct
*tsk
)
146 kmem_cache_free(task_struct_cachep
, tsk
);
150 void __weak
arch_release_thread_info(struct thread_info
*ti
)
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
164 struct page
*page
= alloc_kmem_pages_node(node
, THREADINFO_GFP
,
167 return page
? page_address(page
) : NULL
;
170 static inline void free_thread_info(struct thread_info
*ti
)
172 free_kmem_pages((unsigned long)ti
, THREAD_SIZE_ORDER
);
175 static struct kmem_cache
*thread_info_cache
;
177 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
180 return kmem_cache_alloc_node(thread_info_cache
, THREADINFO_GFP
, node
);
183 static void free_thread_info(struct thread_info
*ti
)
185 kmem_cache_free(thread_info_cache
, ti
);
188 void thread_info_cache_init(void)
190 thread_info_cache
= kmem_cache_create("thread_info", THREAD_SIZE
,
191 THREAD_SIZE
, 0, NULL
);
192 BUG_ON(thread_info_cache
== NULL
);
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache
*signal_cachep
;
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache
*sighand_cachep
;
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache
*files_cachep
;
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache
*fs_cachep
;
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache
*vm_area_cachep
;
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache
*mm_cachep
;
215 static void account_kernel_stack(struct thread_info
*ti
, int account
)
217 struct zone
*zone
= page_zone(virt_to_page(ti
));
219 mod_zone_page_state(zone
, NR_KERNEL_STACK
, account
);
222 void free_task(struct task_struct
*tsk
)
224 account_kernel_stack(tsk
->stack
, -1);
225 arch_release_thread_info(tsk
->stack
);
226 free_thread_info(tsk
->stack
);
227 rt_mutex_debug_task_free(tsk
);
228 ftrace_graph_exit_task(tsk
);
229 put_seccomp_filter(tsk
);
230 arch_release_task_struct(tsk
);
231 free_task_struct(tsk
);
233 EXPORT_SYMBOL(free_task
);
235 static inline void free_signal_struct(struct signal_struct
*sig
)
237 taskstats_tgid_free(sig
);
238 sched_autogroup_exit(sig
);
239 kmem_cache_free(signal_cachep
, sig
);
242 static inline void put_signal_struct(struct signal_struct
*sig
)
244 if (atomic_dec_and_test(&sig
->sigcnt
))
245 free_signal_struct(sig
);
248 void __put_task_struct(struct task_struct
*tsk
)
250 WARN_ON(!tsk
->exit_state
);
251 WARN_ON(atomic_read(&tsk
->usage
));
252 WARN_ON(tsk
== current
);
256 security_task_free(tsk
);
258 delayacct_tsk_free(tsk
);
259 put_signal_struct(tsk
->signal
);
261 if (!profile_handoff_task(tsk
))
264 EXPORT_SYMBOL_GPL(__put_task_struct
);
266 void __init __weak
arch_task_cache_init(void) { }
271 static void set_max_threads(unsigned int max_threads_suggested
)
276 * The number of threads shall be limited such that the thread
277 * structures may only consume a small part of the available memory.
279 if (fls64(totalram_pages
) + fls64(PAGE_SIZE
) > 64)
280 threads
= MAX_THREADS
;
282 threads
= div64_u64((u64
) totalram_pages
* (u64
) PAGE_SIZE
,
283 (u64
) THREAD_SIZE
* 8UL);
285 if (threads
> max_threads_suggested
)
286 threads
= max_threads_suggested
;
288 max_threads
= clamp_t(u64
, threads
, MIN_THREADS
, MAX_THREADS
);
291 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
292 /* Initialized by the architecture: */
293 int arch_task_struct_size __read_mostly
;
296 void __init
fork_init(void)
298 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
299 #ifndef ARCH_MIN_TASKALIGN
300 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
302 /* create a slab on which task_structs can be allocated */
304 kmem_cache_create("task_struct", arch_task_struct_size
,
305 ARCH_MIN_TASKALIGN
, SLAB_PANIC
| SLAB_NOTRACK
, NULL
);
308 /* do the arch specific task caches init */
309 arch_task_cache_init();
311 set_max_threads(MAX_THREADS
);
313 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
314 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
315 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
316 init_task
.signal
->rlim
[RLIMIT_NPROC
];
319 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
320 struct task_struct
*src
)
326 void set_task_stack_end_magic(struct task_struct
*tsk
)
328 unsigned long *stackend
;
330 stackend
= end_of_stack(tsk
);
331 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
334 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
336 struct task_struct
*tsk
;
337 struct thread_info
*ti
;
338 int node
= tsk_fork_get_node(orig
);
341 tsk
= alloc_task_struct_node(node
);
345 ti
= alloc_thread_info_node(tsk
, node
);
349 err
= arch_dup_task_struct(tsk
, orig
);
354 #ifdef CONFIG_SECCOMP
356 * We must handle setting up seccomp filters once we're under
357 * the sighand lock in case orig has changed between now and
358 * then. Until then, filter must be NULL to avoid messing up
359 * the usage counts on the error path calling free_task.
361 tsk
->seccomp
.filter
= NULL
;
364 setup_thread_stack(tsk
, orig
);
365 clear_user_return_notifier(tsk
);
366 clear_tsk_need_resched(tsk
);
367 set_task_stack_end_magic(tsk
);
369 #ifdef CONFIG_CC_STACKPROTECTOR
370 tsk
->stack_canary
= get_random_int();
374 * One for us, one for whoever does the "release_task()" (usually
377 atomic_set(&tsk
->usage
, 2);
378 #ifdef CONFIG_BLK_DEV_IO_TRACE
381 tsk
->splice_pipe
= NULL
;
382 tsk
->task_frag
.page
= NULL
;
384 account_kernel_stack(ti
, 1);
389 free_thread_info(ti
);
391 free_task_struct(tsk
);
396 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
398 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
399 struct rb_node
**rb_link
, *rb_parent
;
401 unsigned long charge
;
403 uprobe_start_dup_mmap();
404 down_write(&oldmm
->mmap_sem
);
405 flush_cache_dup_mm(oldmm
);
406 uprobe_dup_mmap(oldmm
, mm
);
408 * Not linked in yet - no deadlock potential:
410 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
412 /* No ordering required: file already has been exposed. */
413 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
415 mm
->total_vm
= oldmm
->total_vm
;
416 mm
->shared_vm
= oldmm
->shared_vm
;
417 mm
->exec_vm
= oldmm
->exec_vm
;
418 mm
->stack_vm
= oldmm
->stack_vm
;
420 rb_link
= &mm
->mm_rb
.rb_node
;
423 retval
= ksm_fork(mm
, oldmm
);
426 retval
= khugepaged_fork(mm
, oldmm
);
431 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
434 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
435 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
440 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
441 unsigned long len
= vma_pages(mpnt
);
443 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
447 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
451 INIT_LIST_HEAD(&tmp
->anon_vma_chain
);
452 retval
= vma_dup_policy(mpnt
, tmp
);
454 goto fail_nomem_policy
;
456 if (anon_vma_fork(tmp
, mpnt
))
457 goto fail_nomem_anon_vma_fork
;
459 ~(VM_LOCKED
|VM_LOCKONFAULT
|VM_UFFD_MISSING
|VM_UFFD_WP
);
460 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
461 tmp
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
464 struct inode
*inode
= file_inode(file
);
465 struct address_space
*mapping
= file
->f_mapping
;
468 if (tmp
->vm_flags
& VM_DENYWRITE
)
469 atomic_dec(&inode
->i_writecount
);
470 i_mmap_lock_write(mapping
);
471 if (tmp
->vm_flags
& VM_SHARED
)
472 atomic_inc(&mapping
->i_mmap_writable
);
473 flush_dcache_mmap_lock(mapping
);
474 /* insert tmp into the share list, just after mpnt */
475 vma_interval_tree_insert_after(tmp
, mpnt
,
477 flush_dcache_mmap_unlock(mapping
);
478 i_mmap_unlock_write(mapping
);
482 * Clear hugetlb-related page reserves for children. This only
483 * affects MAP_PRIVATE mappings. Faults generated by the child
484 * are not guaranteed to succeed, even if read-only
486 if (is_vm_hugetlb_page(tmp
))
487 reset_vma_resv_huge_pages(tmp
);
490 * Link in the new vma and copy the page table entries.
493 pprev
= &tmp
->vm_next
;
497 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
498 rb_link
= &tmp
->vm_rb
.rb_right
;
499 rb_parent
= &tmp
->vm_rb
;
502 retval
= copy_page_range(mm
, oldmm
, mpnt
);
504 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
505 tmp
->vm_ops
->open(tmp
);
510 /* a new mm has just been created */
511 arch_dup_mmap(oldmm
, mm
);
514 up_write(&mm
->mmap_sem
);
516 up_write(&oldmm
->mmap_sem
);
517 uprobe_end_dup_mmap();
519 fail_nomem_anon_vma_fork
:
520 mpol_put(vma_policy(tmp
));
522 kmem_cache_free(vm_area_cachep
, tmp
);
525 vm_unacct_memory(charge
);
529 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
531 mm
->pgd
= pgd_alloc(mm
);
532 if (unlikely(!mm
->pgd
))
537 static inline void mm_free_pgd(struct mm_struct
*mm
)
539 pgd_free(mm
, mm
->pgd
);
542 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
544 down_write(&oldmm
->mmap_sem
);
545 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
546 up_write(&oldmm
->mmap_sem
);
549 #define mm_alloc_pgd(mm) (0)
550 #define mm_free_pgd(mm)
551 #endif /* CONFIG_MMU */
553 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
555 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
556 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
558 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
560 static int __init
coredump_filter_setup(char *s
)
562 default_dump_filter
=
563 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
564 MMF_DUMP_FILTER_MASK
;
568 __setup("coredump_filter=", coredump_filter_setup
);
570 #include <linux/init_task.h>
572 static void mm_init_aio(struct mm_struct
*mm
)
575 spin_lock_init(&mm
->ioctx_lock
);
576 mm
->ioctx_table
= NULL
;
580 static void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
587 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
)
591 mm
->vmacache_seqnum
= 0;
592 atomic_set(&mm
->mm_users
, 1);
593 atomic_set(&mm
->mm_count
, 1);
594 init_rwsem(&mm
->mmap_sem
);
595 INIT_LIST_HEAD(&mm
->mmlist
);
596 mm
->core_state
= NULL
;
597 atomic_long_set(&mm
->nr_ptes
, 0);
602 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
603 spin_lock_init(&mm
->page_table_lock
);
606 mm_init_owner(mm
, p
);
607 mmu_notifier_mm_init(mm
);
608 clear_tlb_flush_pending(mm
);
609 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
610 mm
->pmd_huge_pte
= NULL
;
614 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
615 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
617 mm
->flags
= default_dump_filter
;
621 if (mm_alloc_pgd(mm
))
624 if (init_new_context(p
, mm
))
636 static void check_mm(struct mm_struct
*mm
)
640 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
641 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
644 printk(KERN_ALERT
"BUG: Bad rss-counter state "
645 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
648 if (atomic_long_read(&mm
->nr_ptes
))
649 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
650 atomic_long_read(&mm
->nr_ptes
));
652 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
656 VM_BUG_ON_MM(mm
->pmd_huge_pte
, mm
);
661 * Allocate and initialize an mm_struct.
663 struct mm_struct
*mm_alloc(void)
665 struct mm_struct
*mm
;
671 memset(mm
, 0, sizeof(*mm
));
672 return mm_init(mm
, current
);
676 * Called when the last reference to the mm
677 * is dropped: either by a lazy thread or by
678 * mmput. Free the page directory and the mm.
680 void __mmdrop(struct mm_struct
*mm
)
682 BUG_ON(mm
== &init_mm
);
685 mmu_notifier_mm_destroy(mm
);
689 EXPORT_SYMBOL_GPL(__mmdrop
);
692 * Decrement the use count and release all resources for an mm.
694 void mmput(struct mm_struct
*mm
)
698 if (atomic_dec_and_test(&mm
->mm_users
)) {
699 uprobe_clear_state(mm
);
702 khugepaged_exit(mm
); /* must run before exit_mmap */
704 set_mm_exe_file(mm
, NULL
);
705 if (!list_empty(&mm
->mmlist
)) {
706 spin_lock(&mmlist_lock
);
707 list_del(&mm
->mmlist
);
708 spin_unlock(&mmlist_lock
);
711 module_put(mm
->binfmt
->module
);
715 EXPORT_SYMBOL_GPL(mmput
);
718 * set_mm_exe_file - change a reference to the mm's executable file
720 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
722 * Main users are mmput() and sys_execve(). Callers prevent concurrent
723 * invocations: in mmput() nobody alive left, in execve task is single
724 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
725 * mm->exe_file, but does so without using set_mm_exe_file() in order
726 * to do avoid the need for any locks.
728 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
730 struct file
*old_exe_file
;
733 * It is safe to dereference the exe_file without RCU as
734 * this function is only called if nobody else can access
735 * this mm -- see comment above for justification.
737 old_exe_file
= rcu_dereference_raw(mm
->exe_file
);
740 get_file(new_exe_file
);
741 rcu_assign_pointer(mm
->exe_file
, new_exe_file
);
747 * get_mm_exe_file - acquire a reference to the mm's executable file
749 * Returns %NULL if mm has no associated executable file.
750 * User must release file via fput().
752 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
754 struct file
*exe_file
;
757 exe_file
= rcu_dereference(mm
->exe_file
);
758 if (exe_file
&& !get_file_rcu(exe_file
))
763 EXPORT_SYMBOL(get_mm_exe_file
);
766 * get_task_mm - acquire a reference to the task's mm
768 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
769 * this kernel workthread has transiently adopted a user mm with use_mm,
770 * to do its AIO) is not set and if so returns a reference to it, after
771 * bumping up the use count. User must release the mm via mmput()
772 * after use. Typically used by /proc and ptrace.
774 struct mm_struct
*get_task_mm(struct task_struct
*task
)
776 struct mm_struct
*mm
;
781 if (task
->flags
& PF_KTHREAD
)
784 atomic_inc(&mm
->mm_users
);
789 EXPORT_SYMBOL_GPL(get_task_mm
);
791 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
793 struct mm_struct
*mm
;
796 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
800 mm
= get_task_mm(task
);
801 if (mm
&& mm
!= current
->mm
&&
802 !ptrace_may_access(task
, mode
)) {
804 mm
= ERR_PTR(-EACCES
);
806 mutex_unlock(&task
->signal
->cred_guard_mutex
);
811 static void complete_vfork_done(struct task_struct
*tsk
)
813 struct completion
*vfork
;
816 vfork
= tsk
->vfork_done
;
818 tsk
->vfork_done
= NULL
;
824 static int wait_for_vfork_done(struct task_struct
*child
,
825 struct completion
*vfork
)
829 freezer_do_not_count();
830 killed
= wait_for_completion_killable(vfork
);
835 child
->vfork_done
= NULL
;
839 put_task_struct(child
);
843 /* Please note the differences between mmput and mm_release.
844 * mmput is called whenever we stop holding onto a mm_struct,
845 * error success whatever.
847 * mm_release is called after a mm_struct has been removed
848 * from the current process.
850 * This difference is important for error handling, when we
851 * only half set up a mm_struct for a new process and need to restore
852 * the old one. Because we mmput the new mm_struct before
853 * restoring the old one. . .
854 * Eric Biederman 10 January 1998
856 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
858 /* Get rid of any futexes when releasing the mm */
860 if (unlikely(tsk
->robust_list
)) {
861 exit_robust_list(tsk
);
862 tsk
->robust_list
= NULL
;
865 if (unlikely(tsk
->compat_robust_list
)) {
866 compat_exit_robust_list(tsk
);
867 tsk
->compat_robust_list
= NULL
;
870 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
871 exit_pi_state_list(tsk
);
874 uprobe_free_utask(tsk
);
876 /* Get rid of any cached register state */
877 deactivate_mm(tsk
, mm
);
880 * If we're exiting normally, clear a user-space tid field if
881 * requested. We leave this alone when dying by signal, to leave
882 * the value intact in a core dump, and to save the unnecessary
883 * trouble, say, a killed vfork parent shouldn't touch this mm.
884 * Userland only wants this done for a sys_exit.
886 if (tsk
->clear_child_tid
) {
887 if (!(tsk
->flags
& PF_SIGNALED
) &&
888 atomic_read(&mm
->mm_users
) > 1) {
890 * We don't check the error code - if userspace has
891 * not set up a proper pointer then tough luck.
893 put_user(0, tsk
->clear_child_tid
);
894 sys_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
897 tsk
->clear_child_tid
= NULL
;
901 * All done, finally we can wake up parent and return this mm to him.
902 * Also kthread_stop() uses this completion for synchronization.
905 complete_vfork_done(tsk
);
909 * Allocate a new mm structure and copy contents from the
910 * mm structure of the passed in task structure.
912 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
914 struct mm_struct
*mm
, *oldmm
= current
->mm
;
921 memcpy(mm
, oldmm
, sizeof(*mm
));
923 if (!mm_init(mm
, tsk
))
926 err
= dup_mmap(mm
, oldmm
);
930 mm
->hiwater_rss
= get_mm_rss(mm
);
931 mm
->hiwater_vm
= mm
->total_vm
;
933 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
939 /* don't put binfmt in mmput, we haven't got module yet */
947 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
949 struct mm_struct
*mm
, *oldmm
;
952 tsk
->min_flt
= tsk
->maj_flt
= 0;
953 tsk
->nvcsw
= tsk
->nivcsw
= 0;
954 #ifdef CONFIG_DETECT_HUNG_TASK
955 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
959 tsk
->active_mm
= NULL
;
962 * Are we cloning a kernel thread?
964 * We need to steal a active VM for that..
970 /* initialize the new vmacache entries */
973 if (clone_flags
& CLONE_VM
) {
974 atomic_inc(&oldmm
->mm_users
);
993 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
995 struct fs_struct
*fs
= current
->fs
;
996 if (clone_flags
& CLONE_FS
) {
997 /* tsk->fs is already what we want */
998 spin_lock(&fs
->lock
);
1000 spin_unlock(&fs
->lock
);
1004 spin_unlock(&fs
->lock
);
1007 tsk
->fs
= copy_fs_struct(fs
);
1013 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
1015 struct files_struct
*oldf
, *newf
;
1019 * A background process may not have any files ...
1021 oldf
= current
->files
;
1025 if (clone_flags
& CLONE_FILES
) {
1026 atomic_inc(&oldf
->count
);
1030 newf
= dup_fd(oldf
, &error
);
1040 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
1043 struct io_context
*ioc
= current
->io_context
;
1044 struct io_context
*new_ioc
;
1049 * Share io context with parent, if CLONE_IO is set
1051 if (clone_flags
& CLONE_IO
) {
1053 tsk
->io_context
= ioc
;
1054 } else if (ioprio_valid(ioc
->ioprio
)) {
1055 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
1056 if (unlikely(!new_ioc
))
1059 new_ioc
->ioprio
= ioc
->ioprio
;
1060 put_io_context(new_ioc
);
1066 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1068 struct sighand_struct
*sig
;
1070 if (clone_flags
& CLONE_SIGHAND
) {
1071 atomic_inc(¤t
->sighand
->count
);
1074 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1075 rcu_assign_pointer(tsk
->sighand
, sig
);
1079 atomic_set(&sig
->count
, 1);
1080 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1084 void __cleanup_sighand(struct sighand_struct
*sighand
)
1086 if (atomic_dec_and_test(&sighand
->count
)) {
1087 signalfd_cleanup(sighand
);
1089 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1090 * without an RCU grace period, see __lock_task_sighand().
1092 kmem_cache_free(sighand_cachep
, sighand
);
1097 * Initialize POSIX timer handling for a thread group.
1099 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1101 unsigned long cpu_limit
;
1103 cpu_limit
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1104 if (cpu_limit
!= RLIM_INFINITY
) {
1105 sig
->cputime_expires
.prof_exp
= secs_to_cputime(cpu_limit
);
1106 sig
->cputimer
.running
= true;
1109 /* The timer lists. */
1110 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1111 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1112 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1115 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1117 struct signal_struct
*sig
;
1119 if (clone_flags
& CLONE_THREAD
)
1122 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1127 sig
->nr_threads
= 1;
1128 atomic_set(&sig
->live
, 1);
1129 atomic_set(&sig
->sigcnt
, 1);
1131 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1132 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1133 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1135 init_waitqueue_head(&sig
->wait_chldexit
);
1136 sig
->curr_target
= tsk
;
1137 init_sigpending(&sig
->shared_pending
);
1138 INIT_LIST_HEAD(&sig
->posix_timers
);
1139 seqlock_init(&sig
->stats_lock
);
1140 prev_cputime_init(&sig
->prev_cputime
);
1142 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1143 sig
->real_timer
.function
= it_real_fn
;
1145 task_lock(current
->group_leader
);
1146 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1147 task_unlock(current
->group_leader
);
1149 posix_cpu_timers_init_group(sig
);
1151 tty_audit_fork(sig
);
1152 sched_autogroup_fork(sig
);
1154 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1155 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1157 sig
->has_child_subreaper
= current
->signal
->has_child_subreaper
||
1158 current
->signal
->is_child_subreaper
;
1160 mutex_init(&sig
->cred_guard_mutex
);
1165 static void copy_seccomp(struct task_struct
*p
)
1167 #ifdef CONFIG_SECCOMP
1169 * Must be called with sighand->lock held, which is common to
1170 * all threads in the group. Holding cred_guard_mutex is not
1171 * needed because this new task is not yet running and cannot
1174 assert_spin_locked(¤t
->sighand
->siglock
);
1176 /* Ref-count the new filter user, and assign it. */
1177 get_seccomp_filter(current
);
1178 p
->seccomp
= current
->seccomp
;
1181 * Explicitly enable no_new_privs here in case it got set
1182 * between the task_struct being duplicated and holding the
1183 * sighand lock. The seccomp state and nnp must be in sync.
1185 if (task_no_new_privs(current
))
1186 task_set_no_new_privs(p
);
1189 * If the parent gained a seccomp mode after copying thread
1190 * flags and between before we held the sighand lock, we have
1191 * to manually enable the seccomp thread flag here.
1193 if (p
->seccomp
.mode
!= SECCOMP_MODE_DISABLED
)
1194 set_tsk_thread_flag(p
, TIF_SECCOMP
);
1198 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1200 current
->clear_child_tid
= tidptr
;
1202 return task_pid_vnr(current
);
1205 static void rt_mutex_init_task(struct task_struct
*p
)
1207 raw_spin_lock_init(&p
->pi_lock
);
1208 #ifdef CONFIG_RT_MUTEXES
1209 p
->pi_waiters
= RB_ROOT
;
1210 p
->pi_waiters_leftmost
= NULL
;
1211 p
->pi_blocked_on
= NULL
;
1216 * Initialize POSIX timer handling for a single task.
1218 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1220 tsk
->cputime_expires
.prof_exp
= 0;
1221 tsk
->cputime_expires
.virt_exp
= 0;
1222 tsk
->cputime_expires
.sched_exp
= 0;
1223 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1224 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1225 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1229 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1231 task
->pids
[type
].pid
= pid
;
1235 * This creates a new process as a copy of the old one,
1236 * but does not actually start it yet.
1238 * It copies the registers, and all the appropriate
1239 * parts of the process environment (as per the clone
1240 * flags). The actual kick-off is left to the caller.
1242 static struct task_struct
*copy_process(unsigned long clone_flags
,
1243 unsigned long stack_start
,
1244 unsigned long stack_size
,
1245 int __user
*child_tidptr
,
1251 struct task_struct
*p
;
1252 void *cgrp_ss_priv
[CGROUP_CANFORK_COUNT
] = {};
1254 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1255 return ERR_PTR(-EINVAL
);
1257 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1258 return ERR_PTR(-EINVAL
);
1261 * Thread groups must share signals as well, and detached threads
1262 * can only be started up within the thread group.
1264 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1265 return ERR_PTR(-EINVAL
);
1268 * Shared signal handlers imply shared VM. By way of the above,
1269 * thread groups also imply shared VM. Blocking this case allows
1270 * for various simplifications in other code.
1272 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1273 return ERR_PTR(-EINVAL
);
1276 * Siblings of global init remain as zombies on exit since they are
1277 * not reaped by their parent (swapper). To solve this and to avoid
1278 * multi-rooted process trees, prevent global and container-inits
1279 * from creating siblings.
1281 if ((clone_flags
& CLONE_PARENT
) &&
1282 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1283 return ERR_PTR(-EINVAL
);
1286 * If the new process will be in a different pid or user namespace
1287 * do not allow it to share a thread group with the forking task.
1289 if (clone_flags
& CLONE_THREAD
) {
1290 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1291 (task_active_pid_ns(current
) !=
1292 current
->nsproxy
->pid_ns_for_children
))
1293 return ERR_PTR(-EINVAL
);
1296 retval
= security_task_create(clone_flags
);
1301 p
= dup_task_struct(current
);
1305 ftrace_graph_init_task(p
);
1307 rt_mutex_init_task(p
);
1309 #ifdef CONFIG_PROVE_LOCKING
1310 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1311 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1314 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1315 task_rlimit(p
, RLIMIT_NPROC
)) {
1316 if (p
->real_cred
->user
!= INIT_USER
&&
1317 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1320 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1322 retval
= copy_creds(p
, clone_flags
);
1327 * If multiple threads are within copy_process(), then this check
1328 * triggers too late. This doesn't hurt, the check is only there
1329 * to stop root fork bombs.
1332 if (nr_threads
>= max_threads
)
1333 goto bad_fork_cleanup_count
;
1335 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1336 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
);
1337 p
->flags
|= PF_FORKNOEXEC
;
1338 INIT_LIST_HEAD(&p
->children
);
1339 INIT_LIST_HEAD(&p
->sibling
);
1340 rcu_copy_process(p
);
1341 p
->vfork_done
= NULL
;
1342 spin_lock_init(&p
->alloc_lock
);
1344 init_sigpending(&p
->pending
);
1346 p
->utime
= p
->stime
= p
->gtime
= 0;
1347 p
->utimescaled
= p
->stimescaled
= 0;
1348 prev_cputime_init(&p
->prev_cputime
);
1350 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1351 seqlock_init(&p
->vtime_seqlock
);
1353 p
->vtime_snap_whence
= VTIME_SLEEPING
;
1356 #if defined(SPLIT_RSS_COUNTING)
1357 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1360 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1362 task_io_accounting_init(&p
->ioac
);
1363 acct_clear_integrals(p
);
1365 posix_cpu_timers_init(p
);
1367 p
->start_time
= ktime_get_ns();
1368 p
->real_start_time
= ktime_get_boot_ns();
1369 p
->io_context
= NULL
;
1370 p
->audit_context
= NULL
;
1371 threadgroup_change_begin(current
);
1374 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1375 if (IS_ERR(p
->mempolicy
)) {
1376 retval
= PTR_ERR(p
->mempolicy
);
1377 p
->mempolicy
= NULL
;
1378 goto bad_fork_cleanup_threadgroup_lock
;
1381 #ifdef CONFIG_CPUSETS
1382 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1383 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1384 seqcount_init(&p
->mems_allowed_seq
);
1386 #ifdef CONFIG_TRACE_IRQFLAGS
1388 p
->hardirqs_enabled
= 0;
1389 p
->hardirq_enable_ip
= 0;
1390 p
->hardirq_enable_event
= 0;
1391 p
->hardirq_disable_ip
= _THIS_IP_
;
1392 p
->hardirq_disable_event
= 0;
1393 p
->softirqs_enabled
= 1;
1394 p
->softirq_enable_ip
= _THIS_IP_
;
1395 p
->softirq_enable_event
= 0;
1396 p
->softirq_disable_ip
= 0;
1397 p
->softirq_disable_event
= 0;
1398 p
->hardirq_context
= 0;
1399 p
->softirq_context
= 0;
1402 p
->pagefault_disabled
= 0;
1404 #ifdef CONFIG_LOCKDEP
1405 p
->lockdep_depth
= 0; /* no locks held yet */
1406 p
->curr_chain_key
= 0;
1407 p
->lockdep_recursion
= 0;
1410 #ifdef CONFIG_DEBUG_MUTEXES
1411 p
->blocked_on
= NULL
; /* not blocked yet */
1413 #ifdef CONFIG_BCACHE
1414 p
->sequential_io
= 0;
1415 p
->sequential_io_avg
= 0;
1418 /* Perform scheduler related setup. Assign this task to a CPU. */
1419 retval
= sched_fork(clone_flags
, p
);
1421 goto bad_fork_cleanup_policy
;
1423 retval
= perf_event_init_task(p
);
1425 goto bad_fork_cleanup_policy
;
1426 retval
= audit_alloc(p
);
1428 goto bad_fork_cleanup_perf
;
1429 /* copy all the process information */
1431 retval
= copy_semundo(clone_flags
, p
);
1433 goto bad_fork_cleanup_audit
;
1434 retval
= copy_files(clone_flags
, p
);
1436 goto bad_fork_cleanup_semundo
;
1437 retval
= copy_fs(clone_flags
, p
);
1439 goto bad_fork_cleanup_files
;
1440 retval
= copy_sighand(clone_flags
, p
);
1442 goto bad_fork_cleanup_fs
;
1443 retval
= copy_signal(clone_flags
, p
);
1445 goto bad_fork_cleanup_sighand
;
1446 retval
= copy_mm(clone_flags
, p
);
1448 goto bad_fork_cleanup_signal
;
1449 retval
= copy_namespaces(clone_flags
, p
);
1451 goto bad_fork_cleanup_mm
;
1452 retval
= copy_io(clone_flags
, p
);
1454 goto bad_fork_cleanup_namespaces
;
1455 retval
= copy_thread_tls(clone_flags
, stack_start
, stack_size
, p
, tls
);
1457 goto bad_fork_cleanup_io
;
1459 if (pid
!= &init_struct_pid
) {
1460 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1462 retval
= PTR_ERR(pid
);
1463 goto bad_fork_cleanup_io
;
1467 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1469 * Clear TID on mm_release()?
1471 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1476 p
->robust_list
= NULL
;
1477 #ifdef CONFIG_COMPAT
1478 p
->compat_robust_list
= NULL
;
1480 INIT_LIST_HEAD(&p
->pi_state_list
);
1481 p
->pi_state_cache
= NULL
;
1484 * sigaltstack should be cleared when sharing the same VM
1486 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1487 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1490 * Syscall tracing and stepping should be turned off in the
1491 * child regardless of CLONE_PTRACE.
1493 user_disable_single_step(p
);
1494 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1495 #ifdef TIF_SYSCALL_EMU
1496 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1498 clear_all_latency_tracing(p
);
1500 /* ok, now we should be set up.. */
1501 p
->pid
= pid_nr(pid
);
1502 if (clone_flags
& CLONE_THREAD
) {
1503 p
->exit_signal
= -1;
1504 p
->group_leader
= current
->group_leader
;
1505 p
->tgid
= current
->tgid
;
1507 if (clone_flags
& CLONE_PARENT
)
1508 p
->exit_signal
= current
->group_leader
->exit_signal
;
1510 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1511 p
->group_leader
= p
;
1516 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1517 p
->dirty_paused_when
= 0;
1519 p
->pdeath_signal
= 0;
1520 INIT_LIST_HEAD(&p
->thread_group
);
1521 p
->task_works
= NULL
;
1524 * Ensure that the cgroup subsystem policies allow the new process to be
1525 * forked. It should be noted the the new process's css_set can be changed
1526 * between here and cgroup_post_fork() if an organisation operation is in
1529 retval
= cgroup_can_fork(p
, cgrp_ss_priv
);
1531 goto bad_fork_free_pid
;
1534 * Make it visible to the rest of the system, but dont wake it up yet.
1535 * Need tasklist lock for parent etc handling!
1537 write_lock_irq(&tasklist_lock
);
1539 /* CLONE_PARENT re-uses the old parent */
1540 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1541 p
->real_parent
= current
->real_parent
;
1542 p
->parent_exec_id
= current
->parent_exec_id
;
1544 p
->real_parent
= current
;
1545 p
->parent_exec_id
= current
->self_exec_id
;
1548 spin_lock(¤t
->sighand
->siglock
);
1551 * Copy seccomp details explicitly here, in case they were changed
1552 * before holding sighand lock.
1557 * Process group and session signals need to be delivered to just the
1558 * parent before the fork or both the parent and the child after the
1559 * fork. Restart if a signal comes in before we add the new process to
1560 * it's process group.
1561 * A fatal signal pending means that current will exit, so the new
1562 * thread can't slip out of an OOM kill (or normal SIGKILL).
1564 recalc_sigpending();
1565 if (signal_pending(current
)) {
1566 spin_unlock(¤t
->sighand
->siglock
);
1567 write_unlock_irq(&tasklist_lock
);
1568 retval
= -ERESTARTNOINTR
;
1569 goto bad_fork_cancel_cgroup
;
1572 if (likely(p
->pid
)) {
1573 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1575 init_task_pid(p
, PIDTYPE_PID
, pid
);
1576 if (thread_group_leader(p
)) {
1577 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1578 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
1580 if (is_child_reaper(pid
)) {
1581 ns_of_pid(pid
)->child_reaper
= p
;
1582 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
1585 p
->signal
->leader_pid
= pid
;
1586 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1587 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1588 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1589 attach_pid(p
, PIDTYPE_PGID
);
1590 attach_pid(p
, PIDTYPE_SID
);
1591 __this_cpu_inc(process_counts
);
1593 current
->signal
->nr_threads
++;
1594 atomic_inc(¤t
->signal
->live
);
1595 atomic_inc(¤t
->signal
->sigcnt
);
1596 list_add_tail_rcu(&p
->thread_group
,
1597 &p
->group_leader
->thread_group
);
1598 list_add_tail_rcu(&p
->thread_node
,
1599 &p
->signal
->thread_head
);
1601 attach_pid(p
, PIDTYPE_PID
);
1606 spin_unlock(¤t
->sighand
->siglock
);
1607 syscall_tracepoint_update(p
);
1608 write_unlock_irq(&tasklist_lock
);
1610 proc_fork_connector(p
);
1611 cgroup_post_fork(p
, cgrp_ss_priv
);
1612 threadgroup_change_end(current
);
1615 trace_task_newtask(p
, clone_flags
);
1616 uprobe_copy_process(p
, clone_flags
);
1620 bad_fork_cancel_cgroup
:
1621 cgroup_cancel_fork(p
, cgrp_ss_priv
);
1623 if (pid
!= &init_struct_pid
)
1625 bad_fork_cleanup_io
:
1628 bad_fork_cleanup_namespaces
:
1629 exit_task_namespaces(p
);
1630 bad_fork_cleanup_mm
:
1633 bad_fork_cleanup_signal
:
1634 if (!(clone_flags
& CLONE_THREAD
))
1635 free_signal_struct(p
->signal
);
1636 bad_fork_cleanup_sighand
:
1637 __cleanup_sighand(p
->sighand
);
1638 bad_fork_cleanup_fs
:
1639 exit_fs(p
); /* blocking */
1640 bad_fork_cleanup_files
:
1641 exit_files(p
); /* blocking */
1642 bad_fork_cleanup_semundo
:
1644 bad_fork_cleanup_audit
:
1646 bad_fork_cleanup_perf
:
1647 perf_event_free_task(p
);
1648 bad_fork_cleanup_policy
:
1650 mpol_put(p
->mempolicy
);
1651 bad_fork_cleanup_threadgroup_lock
:
1653 threadgroup_change_end(current
);
1654 delayacct_tsk_free(p
);
1655 bad_fork_cleanup_count
:
1656 atomic_dec(&p
->cred
->user
->processes
);
1661 return ERR_PTR(retval
);
1664 static inline void init_idle_pids(struct pid_link
*links
)
1668 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1669 INIT_HLIST_NODE(&links
[type
].node
); /* not really needed */
1670 links
[type
].pid
= &init_struct_pid
;
1674 struct task_struct
*fork_idle(int cpu
)
1676 struct task_struct
*task
;
1677 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0, 0);
1678 if (!IS_ERR(task
)) {
1679 init_idle_pids(task
->pids
);
1680 init_idle(task
, cpu
);
1687 * Ok, this is the main fork-routine.
1689 * It copies the process, and if successful kick-starts
1690 * it and waits for it to finish using the VM if required.
1692 long _do_fork(unsigned long clone_flags
,
1693 unsigned long stack_start
,
1694 unsigned long stack_size
,
1695 int __user
*parent_tidptr
,
1696 int __user
*child_tidptr
,
1699 struct task_struct
*p
;
1704 * Determine whether and which event to report to ptracer. When
1705 * called from kernel_thread or CLONE_UNTRACED is explicitly
1706 * requested, no event is reported; otherwise, report if the event
1707 * for the type of forking is enabled.
1709 if (!(clone_flags
& CLONE_UNTRACED
)) {
1710 if (clone_flags
& CLONE_VFORK
)
1711 trace
= PTRACE_EVENT_VFORK
;
1712 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
1713 trace
= PTRACE_EVENT_CLONE
;
1715 trace
= PTRACE_EVENT_FORK
;
1717 if (likely(!ptrace_event_enabled(current
, trace
)))
1721 p
= copy_process(clone_flags
, stack_start
, stack_size
,
1722 child_tidptr
, NULL
, trace
, tls
);
1724 * Do this prior waking up the new thread - the thread pointer
1725 * might get invalid after that point, if the thread exits quickly.
1728 struct completion vfork
;
1731 trace_sched_process_fork(current
, p
);
1733 pid
= get_task_pid(p
, PIDTYPE_PID
);
1736 if (clone_flags
& CLONE_PARENT_SETTID
)
1737 put_user(nr
, parent_tidptr
);
1739 if (clone_flags
& CLONE_VFORK
) {
1740 p
->vfork_done
= &vfork
;
1741 init_completion(&vfork
);
1745 wake_up_new_task(p
);
1747 /* forking complete and child started to run, tell ptracer */
1748 if (unlikely(trace
))
1749 ptrace_event_pid(trace
, pid
);
1751 if (clone_flags
& CLONE_VFORK
) {
1752 if (!wait_for_vfork_done(p
, &vfork
))
1753 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
1763 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1764 /* For compatibility with architectures that call do_fork directly rather than
1765 * using the syscall entry points below. */
1766 long do_fork(unsigned long clone_flags
,
1767 unsigned long stack_start
,
1768 unsigned long stack_size
,
1769 int __user
*parent_tidptr
,
1770 int __user
*child_tidptr
)
1772 return _do_fork(clone_flags
, stack_start
, stack_size
,
1773 parent_tidptr
, child_tidptr
, 0);
1778 * Create a kernel thread.
1780 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
1782 return _do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
1783 (unsigned long)arg
, NULL
, NULL
, 0);
1786 #ifdef __ARCH_WANT_SYS_FORK
1787 SYSCALL_DEFINE0(fork
)
1790 return _do_fork(SIGCHLD
, 0, 0, NULL
, NULL
, 0);
1792 /* can not support in nommu mode */
1798 #ifdef __ARCH_WANT_SYS_VFORK
1799 SYSCALL_DEFINE0(vfork
)
1801 return _do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
1806 #ifdef __ARCH_WANT_SYS_CLONE
1807 #ifdef CONFIG_CLONE_BACKWARDS
1808 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1809 int __user
*, parent_tidptr
,
1811 int __user
*, child_tidptr
)
1812 #elif defined(CONFIG_CLONE_BACKWARDS2)
1813 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
1814 int __user
*, parent_tidptr
,
1815 int __user
*, child_tidptr
,
1817 #elif defined(CONFIG_CLONE_BACKWARDS3)
1818 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1820 int __user
*, parent_tidptr
,
1821 int __user
*, child_tidptr
,
1824 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1825 int __user
*, parent_tidptr
,
1826 int __user
*, child_tidptr
,
1830 return _do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
, tls
);
1834 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1835 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1838 static void sighand_ctor(void *data
)
1840 struct sighand_struct
*sighand
= data
;
1842 spin_lock_init(&sighand
->siglock
);
1843 init_waitqueue_head(&sighand
->signalfd_wqh
);
1846 void __init
proc_caches_init(void)
1848 sighand_cachep
= kmem_cache_create("sighand_cache",
1849 sizeof(struct sighand_struct
), 0,
1850 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
|
1851 SLAB_NOTRACK
, sighand_ctor
);
1852 signal_cachep
= kmem_cache_create("signal_cache",
1853 sizeof(struct signal_struct
), 0,
1854 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1855 files_cachep
= kmem_cache_create("files_cache",
1856 sizeof(struct files_struct
), 0,
1857 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1858 fs_cachep
= kmem_cache_create("fs_cache",
1859 sizeof(struct fs_struct
), 0,
1860 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1862 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1863 * whole struct cpumask for the OFFSTACK case. We could change
1864 * this to *only* allocate as much of it as required by the
1865 * maximum number of CPU's we can ever have. The cpumask_allocation
1866 * is at the end of the structure, exactly for that reason.
1868 mm_cachep
= kmem_cache_create("mm_struct",
1869 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1870 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1871 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
);
1873 nsproxy_cache_init();
1877 * Check constraints on flags passed to the unshare system call.
1879 static int check_unshare_flags(unsigned long unshare_flags
)
1881 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1882 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1883 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
1884 CLONE_NEWUSER
|CLONE_NEWPID
))
1887 * Not implemented, but pretend it works if there is nothing
1888 * to unshare. Note that unsharing the address space or the
1889 * signal handlers also need to unshare the signal queues (aka
1892 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
1893 if (!thread_group_empty(current
))
1896 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
1897 if (atomic_read(¤t
->sighand
->count
) > 1)
1900 if (unshare_flags
& CLONE_VM
) {
1901 if (!current_is_single_threaded())
1909 * Unshare the filesystem structure if it is being shared
1911 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1913 struct fs_struct
*fs
= current
->fs
;
1915 if (!(unshare_flags
& CLONE_FS
) || !fs
)
1918 /* don't need lock here; in the worst case we'll do useless copy */
1922 *new_fsp
= copy_fs_struct(fs
);
1930 * Unshare file descriptor table if it is being shared
1932 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1934 struct files_struct
*fd
= current
->files
;
1937 if ((unshare_flags
& CLONE_FILES
) &&
1938 (fd
&& atomic_read(&fd
->count
) > 1)) {
1939 *new_fdp
= dup_fd(fd
, &error
);
1948 * unshare allows a process to 'unshare' part of the process
1949 * context which was originally shared using clone. copy_*
1950 * functions used by do_fork() cannot be used here directly
1951 * because they modify an inactive task_struct that is being
1952 * constructed. Here we are modifying the current, active,
1955 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
1957 struct fs_struct
*fs
, *new_fs
= NULL
;
1958 struct files_struct
*fd
, *new_fd
= NULL
;
1959 struct cred
*new_cred
= NULL
;
1960 struct nsproxy
*new_nsproxy
= NULL
;
1965 * If unsharing a user namespace must also unshare the thread group
1966 * and unshare the filesystem root and working directories.
1968 if (unshare_flags
& CLONE_NEWUSER
)
1969 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
1971 * If unsharing vm, must also unshare signal handlers.
1973 if (unshare_flags
& CLONE_VM
)
1974 unshare_flags
|= CLONE_SIGHAND
;
1976 * If unsharing a signal handlers, must also unshare the signal queues.
1978 if (unshare_flags
& CLONE_SIGHAND
)
1979 unshare_flags
|= CLONE_THREAD
;
1981 * If unsharing namespace, must also unshare filesystem information.
1983 if (unshare_flags
& CLONE_NEWNS
)
1984 unshare_flags
|= CLONE_FS
;
1986 err
= check_unshare_flags(unshare_flags
);
1988 goto bad_unshare_out
;
1990 * CLONE_NEWIPC must also detach from the undolist: after switching
1991 * to a new ipc namespace, the semaphore arrays from the old
1992 * namespace are unreachable.
1994 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
1996 err
= unshare_fs(unshare_flags
, &new_fs
);
1998 goto bad_unshare_out
;
1999 err
= unshare_fd(unshare_flags
, &new_fd
);
2001 goto bad_unshare_cleanup_fs
;
2002 err
= unshare_userns(unshare_flags
, &new_cred
);
2004 goto bad_unshare_cleanup_fd
;
2005 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
2008 goto bad_unshare_cleanup_cred
;
2010 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
2013 * CLONE_SYSVSEM is equivalent to sys_exit().
2017 if (unshare_flags
& CLONE_NEWIPC
) {
2018 /* Orphan segments in old ns (see sem above). */
2020 shm_init_task(current
);
2024 switch_task_namespaces(current
, new_nsproxy
);
2030 spin_lock(&fs
->lock
);
2031 current
->fs
= new_fs
;
2036 spin_unlock(&fs
->lock
);
2040 fd
= current
->files
;
2041 current
->files
= new_fd
;
2045 task_unlock(current
);
2048 /* Install the new user namespace */
2049 commit_creds(new_cred
);
2054 bad_unshare_cleanup_cred
:
2057 bad_unshare_cleanup_fd
:
2059 put_files_struct(new_fd
);
2061 bad_unshare_cleanup_fs
:
2063 free_fs_struct(new_fs
);
2070 * Helper to unshare the files of the current task.
2071 * We don't want to expose copy_files internals to
2072 * the exec layer of the kernel.
2075 int unshare_files(struct files_struct
**displaced
)
2077 struct task_struct
*task
= current
;
2078 struct files_struct
*copy
= NULL
;
2081 error
= unshare_fd(CLONE_FILES
, ©
);
2082 if (error
|| !copy
) {
2086 *displaced
= task
->files
;
2093 int sysctl_max_threads(struct ctl_table
*table
, int write
,
2094 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2098 int threads
= max_threads
;
2099 int min
= MIN_THREADS
;
2100 int max
= MAX_THREADS
;
2107 ret
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2111 set_max_threads(threads
);