readahead: fault retry breaks mmap file read random detection
[linux/fpc-iii.git] / arch / powerpc / mm / fault.c
blob0a6b28336eb0791354c1dc4439ddddcc4e2b35d7
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/uaccess.h>
42 #include <asm/tlbflush.h>
43 #include <asm/siginfo.h>
44 #include <asm/debug.h>
45 #include <mm/mmu_decl.h>
47 #include "icswx.h"
49 #ifdef CONFIG_KPROBES
50 static inline int notify_page_fault(struct pt_regs *regs)
52 int ret = 0;
54 /* kprobe_running() needs smp_processor_id() */
55 if (!user_mode(regs)) {
56 preempt_disable();
57 if (kprobe_running() && kprobe_fault_handler(regs, 11))
58 ret = 1;
59 preempt_enable();
62 return ret;
64 #else
65 static inline int notify_page_fault(struct pt_regs *regs)
67 return 0;
69 #endif
72 * Check whether the instruction at regs->nip is a store using
73 * an update addressing form which will update r1.
75 static int store_updates_sp(struct pt_regs *regs)
77 unsigned int inst;
79 if (get_user(inst, (unsigned int __user *)regs->nip))
80 return 0;
81 /* check for 1 in the rA field */
82 if (((inst >> 16) & 0x1f) != 1)
83 return 0;
84 /* check major opcode */
85 switch (inst >> 26) {
86 case 37: /* stwu */
87 case 39: /* stbu */
88 case 45: /* sthu */
89 case 53: /* stfsu */
90 case 55: /* stfdu */
91 return 1;
92 case 62: /* std or stdu */
93 return (inst & 3) == 1;
94 case 31:
95 /* check minor opcode */
96 switch ((inst >> 1) & 0x3ff) {
97 case 181: /* stdux */
98 case 183: /* stwux */
99 case 247: /* stbux */
100 case 439: /* sthux */
101 case 695: /* stfsux */
102 case 759: /* stfdux */
103 return 1;
106 return 0;
109 * do_page_fault error handling helpers
112 #define MM_FAULT_RETURN 0
113 #define MM_FAULT_CONTINUE -1
114 #define MM_FAULT_ERR(sig) (sig)
116 static int out_of_memory(struct pt_regs *regs)
119 * We ran out of memory, or some other thing happened to us that made
120 * us unable to handle the page fault gracefully.
122 up_read(&current->mm->mmap_sem);
123 if (!user_mode(regs))
124 return MM_FAULT_ERR(SIGKILL);
125 pagefault_out_of_memory();
126 return MM_FAULT_RETURN;
129 static int do_sigbus(struct pt_regs *regs, unsigned long address)
131 siginfo_t info;
133 up_read(&current->mm->mmap_sem);
135 if (user_mode(regs)) {
136 current->thread.trap_nr = BUS_ADRERR;
137 info.si_signo = SIGBUS;
138 info.si_errno = 0;
139 info.si_code = BUS_ADRERR;
140 info.si_addr = (void __user *)address;
141 force_sig_info(SIGBUS, &info, current);
142 return MM_FAULT_RETURN;
144 return MM_FAULT_ERR(SIGBUS);
147 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
150 * Pagefault was interrupted by SIGKILL. We have no reason to
151 * continue the pagefault.
153 if (fatal_signal_pending(current)) {
155 * If we have retry set, the mmap semaphore will have
156 * alrady been released in __lock_page_or_retry(). Else
157 * we release it now.
159 if (!(fault & VM_FAULT_RETRY))
160 up_read(&current->mm->mmap_sem);
161 /* Coming from kernel, we need to deal with uaccess fixups */
162 if (user_mode(regs))
163 return MM_FAULT_RETURN;
164 return MM_FAULT_ERR(SIGKILL);
167 /* No fault: be happy */
168 if (!(fault & VM_FAULT_ERROR))
169 return MM_FAULT_CONTINUE;
171 /* Out of memory */
172 if (fault & VM_FAULT_OOM)
173 return out_of_memory(regs);
175 /* Bus error. x86 handles HWPOISON here, we'll add this if/when
176 * we support the feature in HW
178 if (fault & VM_FAULT_SIGBUS)
179 return do_sigbus(regs, addr);
181 /* We don't understand the fault code, this is fatal */
182 BUG();
183 return MM_FAULT_CONTINUE;
187 * For 600- and 800-family processors, the error_code parameter is DSISR
188 * for a data fault, SRR1 for an instruction fault. For 400-family processors
189 * the error_code parameter is ESR for a data fault, 0 for an instruction
190 * fault.
191 * For 64-bit processors, the error_code parameter is
192 * - DSISR for a non-SLB data access fault,
193 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
194 * - 0 any SLB fault.
196 * The return value is 0 if the fault was handled, or the signal
197 * number if this is a kernel fault that can't be handled here.
199 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
200 unsigned long error_code)
202 struct vm_area_struct * vma;
203 struct mm_struct *mm = current->mm;
204 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
205 int code = SEGV_MAPERR;
206 int is_write = 0;
207 int trap = TRAP(regs);
208 int is_exec = trap == 0x400;
209 int fault;
211 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
213 * Fortunately the bit assignments in SRR1 for an instruction
214 * fault and DSISR for a data fault are mostly the same for the
215 * bits we are interested in. But there are some bits which
216 * indicate errors in DSISR but can validly be set in SRR1.
218 if (trap == 0x400)
219 error_code &= 0x48200000;
220 else
221 is_write = error_code & DSISR_ISSTORE;
222 #else
223 is_write = error_code & ESR_DST;
224 #endif /* CONFIG_4xx || CONFIG_BOOKE */
226 if (is_write)
227 flags |= FAULT_FLAG_WRITE;
229 #ifdef CONFIG_PPC_ICSWX
231 * we need to do this early because this "data storage
232 * interrupt" does not update the DAR/DEAR so we don't want to
233 * look at it
235 if (error_code & ICSWX_DSI_UCT) {
236 int rc = acop_handle_fault(regs, address, error_code);
237 if (rc)
238 return rc;
240 #endif /* CONFIG_PPC_ICSWX */
242 if (notify_page_fault(regs))
243 return 0;
245 if (unlikely(debugger_fault_handler(regs)))
246 return 0;
248 /* On a kernel SLB miss we can only check for a valid exception entry */
249 if (!user_mode(regs) && (address >= TASK_SIZE))
250 return SIGSEGV;
252 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
253 defined(CONFIG_PPC_BOOK3S_64))
254 if (error_code & DSISR_DABRMATCH) {
255 /* DABR match */
256 do_dabr(regs, address, error_code);
257 return 0;
259 #endif
261 /* We restore the interrupt state now */
262 if (!arch_irq_disabled_regs(regs))
263 local_irq_enable();
265 if (in_atomic() || mm == NULL) {
266 if (!user_mode(regs))
267 return SIGSEGV;
268 /* in_atomic() in user mode is really bad,
269 as is current->mm == NULL. */
270 printk(KERN_EMERG "Page fault in user mode with "
271 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
272 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
273 regs->nip, regs->msr);
274 die("Weird page fault", regs, SIGSEGV);
277 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
279 /* When running in the kernel we expect faults to occur only to
280 * addresses in user space. All other faults represent errors in the
281 * kernel and should generate an OOPS. Unfortunately, in the case of an
282 * erroneous fault occurring in a code path which already holds mmap_sem
283 * we will deadlock attempting to validate the fault against the
284 * address space. Luckily the kernel only validly references user
285 * space from well defined areas of code, which are listed in the
286 * exceptions table.
288 * As the vast majority of faults will be valid we will only perform
289 * the source reference check when there is a possibility of a deadlock.
290 * Attempt to lock the address space, if we cannot we then validate the
291 * source. If this is invalid we can skip the address space check,
292 * thus avoiding the deadlock.
294 if (!down_read_trylock(&mm->mmap_sem)) {
295 if (!user_mode(regs) && !search_exception_tables(regs->nip))
296 goto bad_area_nosemaphore;
298 retry:
299 down_read(&mm->mmap_sem);
300 } else {
302 * The above down_read_trylock() might have succeeded in
303 * which case we'll have missed the might_sleep() from
304 * down_read():
306 might_sleep();
309 vma = find_vma(mm, address);
310 if (!vma)
311 goto bad_area;
312 if (vma->vm_start <= address)
313 goto good_area;
314 if (!(vma->vm_flags & VM_GROWSDOWN))
315 goto bad_area;
318 * N.B. The POWER/Open ABI allows programs to access up to
319 * 288 bytes below the stack pointer.
320 * The kernel signal delivery code writes up to about 1.5kB
321 * below the stack pointer (r1) before decrementing it.
322 * The exec code can write slightly over 640kB to the stack
323 * before setting the user r1. Thus we allow the stack to
324 * expand to 1MB without further checks.
326 if (address + 0x100000 < vma->vm_end) {
327 /* get user regs even if this fault is in kernel mode */
328 struct pt_regs *uregs = current->thread.regs;
329 if (uregs == NULL)
330 goto bad_area;
333 * A user-mode access to an address a long way below
334 * the stack pointer is only valid if the instruction
335 * is one which would update the stack pointer to the
336 * address accessed if the instruction completed,
337 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
338 * (or the byte, halfword, float or double forms).
340 * If we don't check this then any write to the area
341 * between the last mapped region and the stack will
342 * expand the stack rather than segfaulting.
344 if (address + 2048 < uregs->gpr[1]
345 && (!user_mode(regs) || !store_updates_sp(regs)))
346 goto bad_area;
348 if (expand_stack(vma, address))
349 goto bad_area;
351 good_area:
352 code = SEGV_ACCERR;
353 #if defined(CONFIG_6xx)
354 if (error_code & 0x95700000)
355 /* an error such as lwarx to I/O controller space,
356 address matching DABR, eciwx, etc. */
357 goto bad_area;
358 #endif /* CONFIG_6xx */
359 #if defined(CONFIG_8xx)
360 /* 8xx sometimes need to load a invalid/non-present TLBs.
361 * These must be invalidated separately as linux mm don't.
363 if (error_code & 0x40000000) /* no translation? */
364 _tlbil_va(address, 0, 0, 0);
366 /* The MPC8xx seems to always set 0x80000000, which is
367 * "undefined". Of those that can be set, this is the only
368 * one which seems bad.
370 if (error_code & 0x10000000)
371 /* Guarded storage error. */
372 goto bad_area;
373 #endif /* CONFIG_8xx */
375 if (is_exec) {
376 #ifdef CONFIG_PPC_STD_MMU
377 /* Protection fault on exec go straight to failure on
378 * Hash based MMUs as they either don't support per-page
379 * execute permission, or if they do, it's handled already
380 * at the hash level. This test would probably have to
381 * be removed if we change the way this works to make hash
382 * processors use the same I/D cache coherency mechanism
383 * as embedded.
385 if (error_code & DSISR_PROTFAULT)
386 goto bad_area;
387 #endif /* CONFIG_PPC_STD_MMU */
390 * Allow execution from readable areas if the MMU does not
391 * provide separate controls over reading and executing.
393 * Note: That code used to not be enabled for 4xx/BookE.
394 * It is now as I/D cache coherency for these is done at
395 * set_pte_at() time and I see no reason why the test
396 * below wouldn't be valid on those processors. This -may-
397 * break programs compiled with a really old ABI though.
399 if (!(vma->vm_flags & VM_EXEC) &&
400 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
401 !(vma->vm_flags & (VM_READ | VM_WRITE))))
402 goto bad_area;
403 /* a write */
404 } else if (is_write) {
405 if (!(vma->vm_flags & VM_WRITE))
406 goto bad_area;
407 /* a read */
408 } else {
409 /* protection fault */
410 if (error_code & 0x08000000)
411 goto bad_area;
412 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
413 goto bad_area;
417 * If for any reason at all we couldn't handle the fault,
418 * make sure we exit gracefully rather than endlessly redo
419 * the fault.
421 fault = handle_mm_fault(mm, vma, address, flags);
422 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
423 int rc = mm_fault_error(regs, address, fault);
424 if (rc >= MM_FAULT_RETURN)
425 return rc;
429 * Major/minor page fault accounting is only done on the
430 * initial attempt. If we go through a retry, it is extremely
431 * likely that the page will be found in page cache at that point.
433 if (flags & FAULT_FLAG_ALLOW_RETRY) {
434 if (fault & VM_FAULT_MAJOR) {
435 current->maj_flt++;
436 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
437 regs, address);
438 #ifdef CONFIG_PPC_SMLPAR
439 if (firmware_has_feature(FW_FEATURE_CMO)) {
440 preempt_disable();
441 get_lppaca()->page_ins += (1 << PAGE_FACTOR);
442 preempt_enable();
444 #endif /* CONFIG_PPC_SMLPAR */
445 } else {
446 current->min_flt++;
447 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
448 regs, address);
450 if (fault & VM_FAULT_RETRY) {
451 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
452 * of starvation. */
453 flags &= ~FAULT_FLAG_ALLOW_RETRY;
454 flags |= FAULT_FLAG_TRIED;
455 goto retry;
459 up_read(&mm->mmap_sem);
460 return 0;
462 bad_area:
463 up_read(&mm->mmap_sem);
465 bad_area_nosemaphore:
466 /* User mode accesses cause a SIGSEGV */
467 if (user_mode(regs)) {
468 _exception(SIGSEGV, regs, code, address);
469 return 0;
472 if (is_exec && (error_code & DSISR_PROTFAULT))
473 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
474 " page (%lx) - exploit attempt? (uid: %d)\n",
475 address, from_kuid(&init_user_ns, current_uid()));
477 return SIGSEGV;
482 * bad_page_fault is called when we have a bad access from the kernel.
483 * It is called from the DSI and ISI handlers in head.S and from some
484 * of the procedures in traps.c.
486 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
488 const struct exception_table_entry *entry;
489 unsigned long *stackend;
491 /* Are we prepared to handle this fault? */
492 if ((entry = search_exception_tables(regs->nip)) != NULL) {
493 regs->nip = entry->fixup;
494 return;
497 /* kernel has accessed a bad area */
499 switch (regs->trap) {
500 case 0x300:
501 case 0x380:
502 printk(KERN_ALERT "Unable to handle kernel paging request for "
503 "data at address 0x%08lx\n", regs->dar);
504 break;
505 case 0x400:
506 case 0x480:
507 printk(KERN_ALERT "Unable to handle kernel paging request for "
508 "instruction fetch\n");
509 break;
510 default:
511 printk(KERN_ALERT "Unable to handle kernel paging request for "
512 "unknown fault\n");
513 break;
515 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
516 regs->nip);
518 stackend = end_of_stack(current);
519 if (current != &init_task && *stackend != STACK_END_MAGIC)
520 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
522 die("Kernel access of bad area", regs, sig);