1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2002, Linus Torvalds.
9 * 04Jul2002 Andrew Morton
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
13 * 29Oct2002 Andrew Morton
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
45 * How many user pages to map in one call to get_user_pages(). This determines
46 * the size of a structure in the slab cache
51 * Flags for dio_complete()
53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
57 * This code generally works in units of "dio_blocks". A dio_block is
58 * somewhere between the hard sector size and the filesystem block size. it
59 * is determined on a per-invocation basis. When talking to the filesystem
60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
62 * to bio_block quantities by shifting left by blkfactor.
64 * If blkfactor is zero then the user's request was aligned to the filesystem's
68 /* dio_state only used in the submission path */
71 struct bio
*bio
; /* bio under assembly */
72 unsigned blkbits
; /* doesn't change */
73 unsigned blkfactor
; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
81 int pages_in_io
; /* approximate total IO pages */
82 sector_t block_in_file
; /* Current offset into the underlying
83 file in dio_block units. */
84 unsigned blocks_available
; /* At block_in_file. changes */
85 int reap_counter
; /* rate limit reaping */
86 sector_t final_block_in_request
;/* doesn't change */
87 int boundary
; /* prev block is at a boundary */
88 get_block_t
*get_block
; /* block mapping function */
89 dio_submit_t
*submit_io
; /* IO submition function */
91 loff_t logical_offset_in_bio
; /* current first logical block in bio */
92 sector_t final_block_in_bio
; /* current final block in bio + 1 */
93 sector_t next_block_for_io
; /* next block to be put under IO,
94 in dio_blocks units */
97 * Deferred addition of a page to the dio. These variables are
98 * private to dio_send_cur_page(), submit_page_section() and
101 struct page
*cur_page
; /* The page */
102 unsigned cur_page_offset
; /* Offset into it, in bytes */
103 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
104 sector_t cur_page_block
; /* Where it starts */
105 loff_t cur_page_fs_offset
; /* Offset in file */
107 struct iov_iter
*iter
;
109 * Page queue. These variables belong to dio_refill_pages() and
112 unsigned head
; /* next page to process */
113 unsigned tail
; /* last valid page + 1 */
117 /* dio_state communicated between submission path and end_io */
119 int flags
; /* doesn't change */
123 struct gendisk
*bio_disk
;
125 loff_t i_size
; /* i_size when submitted */
126 dio_iodone_t
*end_io
; /* IO completion function */
128 void *private; /* copy from map_bh.b_private */
130 /* BIO completion state */
131 spinlock_t bio_lock
; /* protects BIO fields below */
132 int page_errors
; /* errno from get_user_pages() */
133 int is_async
; /* is IO async ? */
134 bool defer_completion
; /* defer AIO completion to workqueue? */
135 bool should_dirty
; /* if pages should be dirtied */
136 int io_error
; /* IO error in completion path */
137 unsigned long refcount
; /* direct_io_worker() and bios */
138 struct bio
*bio_list
; /* singly linked via bi_private */
139 struct task_struct
*waiter
; /* waiting task (NULL if none) */
141 /* AIO related stuff */
142 struct kiocb
*iocb
; /* kiocb */
143 ssize_t result
; /* IO result */
146 * pages[] (and any fields placed after it) are not zeroed out at
147 * allocation time. Don't add new fields after pages[] unless you
148 * wish that they not be zeroed.
151 struct page
*pages
[DIO_PAGES
]; /* page buffer */
152 struct work_struct complete_work
;/* deferred AIO completion */
154 } ____cacheline_aligned_in_smp
;
156 static struct kmem_cache
*dio_cache __read_mostly
;
159 * How many pages are in the queue?
161 static inline unsigned dio_pages_present(struct dio_submit
*sdio
)
163 return sdio
->tail
- sdio
->head
;
167 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
169 static inline int dio_refill_pages(struct dio
*dio
, struct dio_submit
*sdio
)
173 ret
= iov_iter_get_pages(sdio
->iter
, dio
->pages
, LONG_MAX
, DIO_PAGES
,
176 if (ret
< 0 && sdio
->blocks_available
&& (dio
->op
== REQ_OP_WRITE
)) {
177 struct page
*page
= ZERO_PAGE(0);
179 * A memory fault, but the filesystem has some outstanding
180 * mapped blocks. We need to use those blocks up to avoid
181 * leaking stale data in the file.
183 if (dio
->page_errors
== 0)
184 dio
->page_errors
= ret
;
186 dio
->pages
[0] = page
;
190 sdio
->to
= PAGE_SIZE
;
195 iov_iter_advance(sdio
->iter
, ret
);
198 sdio
->tail
= (ret
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
199 sdio
->to
= ((ret
- 1) & (PAGE_SIZE
- 1)) + 1;
206 * Get another userspace page. Returns an ERR_PTR on error. Pages are
207 * buffered inside the dio so that we can call get_user_pages() against a
208 * decent number of pages, less frequently. To provide nicer use of the
211 static inline struct page
*dio_get_page(struct dio
*dio
,
212 struct dio_submit
*sdio
)
214 if (dio_pages_present(sdio
) == 0) {
217 ret
= dio_refill_pages(dio
, sdio
);
220 BUG_ON(dio_pages_present(sdio
) == 0);
222 return dio
->pages
[sdio
->head
];
226 * dio_complete() - called when all DIO BIO I/O has been completed
228 * This drops i_dio_count, lets interested parties know that a DIO operation
229 * has completed, and calculates the resulting return code for the operation.
231 * It lets the filesystem know if it registered an interest earlier via
232 * get_block. Pass the private field of the map buffer_head so that
233 * filesystems can use it to hold additional state between get_block calls and
236 static ssize_t
dio_complete(struct dio
*dio
, ssize_t ret
, unsigned int flags
)
238 loff_t offset
= dio
->iocb
->ki_pos
;
239 ssize_t transferred
= 0;
243 * AIO submission can race with bio completion to get here while
244 * expecting to have the last io completed by bio completion.
245 * In that case -EIOCBQUEUED is in fact not an error we want
246 * to preserve through this call.
248 if (ret
== -EIOCBQUEUED
)
252 transferred
= dio
->result
;
254 /* Check for short read case */
255 if ((dio
->op
== REQ_OP_READ
) &&
256 ((offset
+ transferred
) > dio
->i_size
))
257 transferred
= dio
->i_size
- offset
;
258 /* ignore EFAULT if some IO has been done */
259 if (unlikely(ret
== -EFAULT
) && transferred
)
264 ret
= dio
->page_errors
;
272 err
= dio
->end_io(dio
->iocb
, offset
, ret
, dio
->private);
278 * Try again to invalidate clean pages which might have been cached by
279 * non-direct readahead, or faulted in by get_user_pages() if the source
280 * of the write was an mmap'ed region of the file we're writing. Either
281 * one is a pretty crazy thing to do, so we don't support it 100%. If
282 * this invalidation fails, tough, the write still worked...
284 * And this page cache invalidation has to be after dio->end_io(), as
285 * some filesystems convert unwritten extents to real allocations in
286 * end_io() when necessary, otherwise a racing buffer read would cache
287 * zeros from unwritten extents.
289 if (flags
& DIO_COMPLETE_INVALIDATE
&&
290 ret
> 0 && dio
->op
== REQ_OP_WRITE
&&
291 dio
->inode
->i_mapping
->nrpages
) {
292 err
= invalidate_inode_pages2_range(dio
->inode
->i_mapping
,
293 offset
>> PAGE_SHIFT
,
294 (offset
+ ret
- 1) >> PAGE_SHIFT
);
296 dio_warn_stale_pagecache(dio
->iocb
->ki_filp
);
299 inode_dio_end(dio
->inode
);
301 if (flags
& DIO_COMPLETE_ASYNC
) {
303 * generic_write_sync expects ki_pos to have been updated
304 * already, but the submission path only does this for
307 dio
->iocb
->ki_pos
+= transferred
;
309 if (ret
> 0 && dio
->op
== REQ_OP_WRITE
)
310 ret
= generic_write_sync(dio
->iocb
, ret
);
311 dio
->iocb
->ki_complete(dio
->iocb
, ret
, 0);
314 kmem_cache_free(dio_cache
, dio
);
318 static void dio_aio_complete_work(struct work_struct
*work
)
320 struct dio
*dio
= container_of(work
, struct dio
, complete_work
);
322 dio_complete(dio
, 0, DIO_COMPLETE_ASYNC
| DIO_COMPLETE_INVALIDATE
);
325 static blk_status_t
dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
328 * Asynchronous IO callback.
330 static void dio_bio_end_aio(struct bio
*bio
)
332 struct dio
*dio
= bio
->bi_private
;
333 unsigned long remaining
;
335 bool defer_completion
= false;
337 /* cleanup the bio */
338 dio_bio_complete(dio
, bio
);
340 spin_lock_irqsave(&dio
->bio_lock
, flags
);
341 remaining
= --dio
->refcount
;
342 if (remaining
== 1 && dio
->waiter
)
343 wake_up_process(dio
->waiter
);
344 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
346 if (remaining
== 0) {
348 * Defer completion when defer_completion is set or
349 * when the inode has pages mapped and this is AIO write.
350 * We need to invalidate those pages because there is a
351 * chance they contain stale data in the case buffered IO
352 * went in between AIO submission and completion into the
356 defer_completion
= dio
->defer_completion
||
357 (dio
->op
== REQ_OP_WRITE
&&
358 dio
->inode
->i_mapping
->nrpages
);
359 if (defer_completion
) {
360 INIT_WORK(&dio
->complete_work
, dio_aio_complete_work
);
361 queue_work(dio
->inode
->i_sb
->s_dio_done_wq
,
362 &dio
->complete_work
);
364 dio_complete(dio
, 0, DIO_COMPLETE_ASYNC
);
370 * The BIO completion handler simply queues the BIO up for the process-context
373 * During I/O bi_private points at the dio. After I/O, bi_private is used to
374 * implement a singly-linked list of completed BIOs, at dio->bio_list.
376 static void dio_bio_end_io(struct bio
*bio
)
378 struct dio
*dio
= bio
->bi_private
;
381 spin_lock_irqsave(&dio
->bio_lock
, flags
);
382 bio
->bi_private
= dio
->bio_list
;
384 if (--dio
->refcount
== 1 && dio
->waiter
)
385 wake_up_process(dio
->waiter
);
386 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
390 * dio_end_io - handle the end io action for the given bio
391 * @bio: The direct io bio thats being completed
393 * This is meant to be called by any filesystem that uses their own dio_submit_t
394 * so that the DIO specific endio actions are dealt with after the filesystem
395 * has done it's completion work.
397 void dio_end_io(struct bio
*bio
)
399 struct dio
*dio
= bio
->bi_private
;
402 dio_bio_end_aio(bio
);
406 EXPORT_SYMBOL_GPL(dio_end_io
);
409 dio_bio_alloc(struct dio
*dio
, struct dio_submit
*sdio
,
410 struct block_device
*bdev
,
411 sector_t first_sector
, int nr_vecs
)
416 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
417 * we request a valid number of vectors.
419 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
421 bio_set_dev(bio
, bdev
);
422 bio
->bi_iter
.bi_sector
= first_sector
;
423 bio_set_op_attrs(bio
, dio
->op
, dio
->op_flags
);
425 bio
->bi_end_io
= dio_bio_end_aio
;
427 bio
->bi_end_io
= dio_bio_end_io
;
429 bio
->bi_write_hint
= dio
->iocb
->ki_hint
;
432 sdio
->logical_offset_in_bio
= sdio
->cur_page_fs_offset
;
436 * In the AIO read case we speculatively dirty the pages before starting IO.
437 * During IO completion, any of these pages which happen to have been written
438 * back will be redirtied by bio_check_pages_dirty().
440 * bios hold a dio reference between submit_bio and ->end_io.
442 static inline void dio_bio_submit(struct dio
*dio
, struct dio_submit
*sdio
)
444 struct bio
*bio
= sdio
->bio
;
447 bio
->bi_private
= dio
;
449 spin_lock_irqsave(&dio
->bio_lock
, flags
);
451 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
453 if (dio
->is_async
&& dio
->op
== REQ_OP_READ
&& dio
->should_dirty
)
454 bio_set_pages_dirty(bio
);
456 dio
->bio_disk
= bio
->bi_disk
;
458 if (sdio
->submit_io
) {
459 sdio
->submit_io(bio
, dio
->inode
, sdio
->logical_offset_in_bio
);
460 dio
->bio_cookie
= BLK_QC_T_NONE
;
462 dio
->bio_cookie
= submit_bio(bio
);
466 sdio
->logical_offset_in_bio
= 0;
470 * Release any resources in case of a failure
472 static inline void dio_cleanup(struct dio
*dio
, struct dio_submit
*sdio
)
474 while (sdio
->head
< sdio
->tail
)
475 put_page(dio
->pages
[sdio
->head
++]);
479 * Wait for the next BIO to complete. Remove it and return it. NULL is
480 * returned once all BIOs have been completed. This must only be called once
481 * all bios have been issued so that dio->refcount can only decrease. This
482 * requires that that the caller hold a reference on the dio.
484 static struct bio
*dio_await_one(struct dio
*dio
)
487 struct bio
*bio
= NULL
;
489 spin_lock_irqsave(&dio
->bio_lock
, flags
);
492 * Wait as long as the list is empty and there are bios in flight. bio
493 * completion drops the count, maybe adds to the list, and wakes while
494 * holding the bio_lock so we don't need set_current_state()'s barrier
495 * and can call it after testing our condition.
497 while (dio
->refcount
> 1 && dio
->bio_list
== NULL
) {
498 __set_current_state(TASK_UNINTERRUPTIBLE
);
499 dio
->waiter
= current
;
500 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
501 if (!(dio
->iocb
->ki_flags
& IOCB_HIPRI
) ||
502 !blk_poll(dio
->bio_disk
->queue
, dio
->bio_cookie
, true))
504 /* wake up sets us TASK_RUNNING */
505 spin_lock_irqsave(&dio
->bio_lock
, flags
);
510 dio
->bio_list
= bio
->bi_private
;
512 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
517 * Process one completed BIO. No locks are held.
519 static blk_status_t
dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
521 blk_status_t err
= bio
->bi_status
;
522 bool should_dirty
= dio
->op
== REQ_OP_READ
&& dio
->should_dirty
;
525 if (err
== BLK_STS_AGAIN
&& (bio
->bi_opf
& REQ_NOWAIT
))
526 dio
->io_error
= -EAGAIN
;
528 dio
->io_error
= -EIO
;
531 if (dio
->is_async
&& should_dirty
) {
532 bio_check_pages_dirty(bio
); /* transfers ownership */
534 bio_release_pages(bio
, should_dirty
);
541 * Wait on and process all in-flight BIOs. This must only be called once
542 * all bios have been issued so that the refcount can only decrease.
543 * This just waits for all bios to make it through dio_bio_complete. IO
544 * errors are propagated through dio->io_error and should be propagated via
547 static void dio_await_completion(struct dio
*dio
)
551 bio
= dio_await_one(dio
);
553 dio_bio_complete(dio
, bio
);
558 * A really large O_DIRECT read or write can generate a lot of BIOs. So
559 * to keep the memory consumption sane we periodically reap any completed BIOs
560 * during the BIO generation phase.
562 * This also helps to limit the peak amount of pinned userspace memory.
564 static inline int dio_bio_reap(struct dio
*dio
, struct dio_submit
*sdio
)
568 if (sdio
->reap_counter
++ >= 64) {
569 while (dio
->bio_list
) {
574 spin_lock_irqsave(&dio
->bio_lock
, flags
);
576 dio
->bio_list
= bio
->bi_private
;
577 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
578 ret2
= blk_status_to_errno(dio_bio_complete(dio
, bio
));
582 sdio
->reap_counter
= 0;
588 * Create workqueue for deferred direct IO completions. We allocate the
589 * workqueue when it's first needed. This avoids creating workqueue for
590 * filesystems that don't need it and also allows us to create the workqueue
591 * late enough so the we can include s_id in the name of the workqueue.
593 int sb_init_dio_done_wq(struct super_block
*sb
)
595 struct workqueue_struct
*old
;
596 struct workqueue_struct
*wq
= alloc_workqueue("dio/%s",
602 * This has to be atomic as more DIOs can race to create the workqueue
604 old
= cmpxchg(&sb
->s_dio_done_wq
, NULL
, wq
);
605 /* Someone created workqueue before us? Free ours... */
607 destroy_workqueue(wq
);
611 static int dio_set_defer_completion(struct dio
*dio
)
613 struct super_block
*sb
= dio
->inode
->i_sb
;
615 if (dio
->defer_completion
)
617 dio
->defer_completion
= true;
618 if (!sb
->s_dio_done_wq
)
619 return sb_init_dio_done_wq(sb
);
624 * Call into the fs to map some more disk blocks. We record the current number
625 * of available blocks at sdio->blocks_available. These are in units of the
626 * fs blocksize, i_blocksize(inode).
628 * The fs is allowed to map lots of blocks at once. If it wants to do that,
629 * it uses the passed inode-relative block number as the file offset, as usual.
631 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
632 * has remaining to do. The fs should not map more than this number of blocks.
634 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
635 * indicate how much contiguous disk space has been made available at
638 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
639 * This isn't very efficient...
641 * In the case of filesystem holes: the fs may return an arbitrarily-large
642 * hole by returning an appropriate value in b_size and by clearing
643 * buffer_mapped(). However the direct-io code will only process holes one
644 * block at a time - it will repeatedly call get_block() as it walks the hole.
646 static int get_more_blocks(struct dio
*dio
, struct dio_submit
*sdio
,
647 struct buffer_head
*map_bh
)
650 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
651 sector_t fs_endblk
; /* Into file, in filesystem-sized blocks */
652 unsigned long fs_count
; /* Number of filesystem-sized blocks */
654 unsigned int i_blkbits
= sdio
->blkbits
+ sdio
->blkfactor
;
658 * If there was a memory error and we've overwritten all the
659 * mapped blocks then we can now return that memory error
661 ret
= dio
->page_errors
;
663 BUG_ON(sdio
->block_in_file
>= sdio
->final_block_in_request
);
664 fs_startblk
= sdio
->block_in_file
>> sdio
->blkfactor
;
665 fs_endblk
= (sdio
->final_block_in_request
- 1) >>
667 fs_count
= fs_endblk
- fs_startblk
+ 1;
670 map_bh
->b_size
= fs_count
<< i_blkbits
;
673 * For writes that could fill holes inside i_size on a
674 * DIO_SKIP_HOLES filesystem we forbid block creations: only
675 * overwrites are permitted. We will return early to the caller
676 * once we see an unmapped buffer head returned, and the caller
677 * will fall back to buffered I/O.
679 * Otherwise the decision is left to the get_blocks method,
680 * which may decide to handle it or also return an unmapped
683 create
= dio
->op
== REQ_OP_WRITE
;
684 if (dio
->flags
& DIO_SKIP_HOLES
) {
685 i_size
= i_size_read(dio
->inode
);
686 if (i_size
&& fs_startblk
<= (i_size
- 1) >> i_blkbits
)
690 ret
= (*sdio
->get_block
)(dio
->inode
, fs_startblk
,
693 /* Store for completion */
694 dio
->private = map_bh
->b_private
;
696 if (ret
== 0 && buffer_defer_completion(map_bh
))
697 ret
= dio_set_defer_completion(dio
);
703 * There is no bio. Make one now.
705 static inline int dio_new_bio(struct dio
*dio
, struct dio_submit
*sdio
,
706 sector_t start_sector
, struct buffer_head
*map_bh
)
711 ret
= dio_bio_reap(dio
, sdio
);
714 sector
= start_sector
<< (sdio
->blkbits
- 9);
715 nr_pages
= min(sdio
->pages_in_io
, BIO_MAX_PAGES
);
716 BUG_ON(nr_pages
<= 0);
717 dio_bio_alloc(dio
, sdio
, map_bh
->b_bdev
, sector
, nr_pages
);
724 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
725 * that was successful then update final_block_in_bio and take a ref against
726 * the just-added page.
728 * Return zero on success. Non-zero means the caller needs to start a new BIO.
730 static inline int dio_bio_add_page(struct dio_submit
*sdio
)
734 ret
= bio_add_page(sdio
->bio
, sdio
->cur_page
,
735 sdio
->cur_page_len
, sdio
->cur_page_offset
);
736 if (ret
== sdio
->cur_page_len
) {
738 * Decrement count only, if we are done with this page
740 if ((sdio
->cur_page_len
+ sdio
->cur_page_offset
) == PAGE_SIZE
)
742 get_page(sdio
->cur_page
);
743 sdio
->final_block_in_bio
= sdio
->cur_page_block
+
744 (sdio
->cur_page_len
>> sdio
->blkbits
);
753 * Put cur_page under IO. The section of cur_page which is described by
754 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
755 * starts on-disk at cur_page_block.
757 * We take a ref against the page here (on behalf of its presence in the bio).
759 * The caller of this function is responsible for removing cur_page from the
760 * dio, and for dropping the refcount which came from that presence.
762 static inline int dio_send_cur_page(struct dio
*dio
, struct dio_submit
*sdio
,
763 struct buffer_head
*map_bh
)
768 loff_t cur_offset
= sdio
->cur_page_fs_offset
;
769 loff_t bio_next_offset
= sdio
->logical_offset_in_bio
+
770 sdio
->bio
->bi_iter
.bi_size
;
773 * See whether this new request is contiguous with the old.
775 * Btrfs cannot handle having logically non-contiguous requests
776 * submitted. For example if you have
778 * Logical: [0-4095][HOLE][8192-12287]
779 * Physical: [0-4095] [4096-8191]
781 * We cannot submit those pages together as one BIO. So if our
782 * current logical offset in the file does not equal what would
783 * be the next logical offset in the bio, submit the bio we
786 if (sdio
->final_block_in_bio
!= sdio
->cur_page_block
||
787 cur_offset
!= bio_next_offset
)
788 dio_bio_submit(dio
, sdio
);
791 if (sdio
->bio
== NULL
) {
792 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
797 if (dio_bio_add_page(sdio
) != 0) {
798 dio_bio_submit(dio
, sdio
);
799 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
801 ret
= dio_bio_add_page(sdio
);
810 * An autonomous function to put a chunk of a page under deferred IO.
812 * The caller doesn't actually know (or care) whether this piece of page is in
813 * a BIO, or is under IO or whatever. We just take care of all possible
814 * situations here. The separation between the logic of do_direct_IO() and
815 * that of submit_page_section() is important for clarity. Please don't break.
817 * The chunk of page starts on-disk at blocknr.
819 * We perform deferred IO, by recording the last-submitted page inside our
820 * private part of the dio structure. If possible, we just expand the IO
821 * across that page here.
823 * If that doesn't work out then we put the old page into the bio and add this
824 * page to the dio instead.
827 submit_page_section(struct dio
*dio
, struct dio_submit
*sdio
, struct page
*page
,
828 unsigned offset
, unsigned len
, sector_t blocknr
,
829 struct buffer_head
*map_bh
)
833 if (dio
->op
== REQ_OP_WRITE
) {
835 * Read accounting is performed in submit_bio()
837 task_io_account_write(len
);
841 * Can we just grow the current page's presence in the dio?
843 if (sdio
->cur_page
== page
&&
844 sdio
->cur_page_offset
+ sdio
->cur_page_len
== offset
&&
845 sdio
->cur_page_block
+
846 (sdio
->cur_page_len
>> sdio
->blkbits
) == blocknr
) {
847 sdio
->cur_page_len
+= len
;
852 * If there's a deferred page already there then send it.
854 if (sdio
->cur_page
) {
855 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
856 put_page(sdio
->cur_page
);
857 sdio
->cur_page
= NULL
;
862 get_page(page
); /* It is in dio */
863 sdio
->cur_page
= page
;
864 sdio
->cur_page_offset
= offset
;
865 sdio
->cur_page_len
= len
;
866 sdio
->cur_page_block
= blocknr
;
867 sdio
->cur_page_fs_offset
= sdio
->block_in_file
<< sdio
->blkbits
;
870 * If sdio->boundary then we want to schedule the IO now to
871 * avoid metadata seeks.
873 if (sdio
->boundary
) {
874 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
876 dio_bio_submit(dio
, sdio
);
877 put_page(sdio
->cur_page
);
878 sdio
->cur_page
= NULL
;
884 * If we are not writing the entire block and get_block() allocated
885 * the block for us, we need to fill-in the unused portion of the
886 * block with zeros. This happens only if user-buffer, fileoffset or
887 * io length is not filesystem block-size multiple.
889 * `end' is zero if we're doing the start of the IO, 1 at the end of the
892 static inline void dio_zero_block(struct dio
*dio
, struct dio_submit
*sdio
,
893 int end
, struct buffer_head
*map_bh
)
895 unsigned dio_blocks_per_fs_block
;
896 unsigned this_chunk_blocks
; /* In dio_blocks */
897 unsigned this_chunk_bytes
;
900 sdio
->start_zero_done
= 1;
901 if (!sdio
->blkfactor
|| !buffer_new(map_bh
))
904 dio_blocks_per_fs_block
= 1 << sdio
->blkfactor
;
905 this_chunk_blocks
= sdio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
907 if (!this_chunk_blocks
)
911 * We need to zero out part of an fs block. It is either at the
912 * beginning or the end of the fs block.
915 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
917 this_chunk_bytes
= this_chunk_blocks
<< sdio
->blkbits
;
920 if (submit_page_section(dio
, sdio
, page
, 0, this_chunk_bytes
,
921 sdio
->next_block_for_io
, map_bh
))
924 sdio
->next_block_for_io
+= this_chunk_blocks
;
928 * Walk the user pages, and the file, mapping blocks to disk and generating
929 * a sequence of (page,offset,len,block) mappings. These mappings are injected
930 * into submit_page_section(), which takes care of the next stage of submission
932 * Direct IO against a blockdev is different from a file. Because we can
933 * happily perform page-sized but 512-byte aligned IOs. It is important that
934 * blockdev IO be able to have fine alignment and large sizes.
936 * So what we do is to permit the ->get_block function to populate bh.b_size
937 * with the size of IO which is permitted at this offset and this i_blkbits.
939 * For best results, the blockdev should be set up with 512-byte i_blkbits and
940 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
941 * fine alignment but still allows this function to work in PAGE_SIZE units.
943 static int do_direct_IO(struct dio
*dio
, struct dio_submit
*sdio
,
944 struct buffer_head
*map_bh
)
946 const unsigned blkbits
= sdio
->blkbits
;
947 const unsigned i_blkbits
= blkbits
+ sdio
->blkfactor
;
950 while (sdio
->block_in_file
< sdio
->final_block_in_request
) {
954 page
= dio_get_page(dio
, sdio
);
959 from
= sdio
->head
? 0 : sdio
->from
;
960 to
= (sdio
->head
== sdio
->tail
- 1) ? sdio
->to
: PAGE_SIZE
;
964 unsigned this_chunk_bytes
; /* # of bytes mapped */
965 unsigned this_chunk_blocks
; /* # of blocks */
968 if (sdio
->blocks_available
== 0) {
970 * Need to go and map some more disk
972 unsigned long blkmask
;
973 unsigned long dio_remainder
;
975 ret
= get_more_blocks(dio
, sdio
, map_bh
);
980 if (!buffer_mapped(map_bh
))
983 sdio
->blocks_available
=
984 map_bh
->b_size
>> blkbits
;
985 sdio
->next_block_for_io
=
986 map_bh
->b_blocknr
<< sdio
->blkfactor
;
987 if (buffer_new(map_bh
)) {
991 map_bh
->b_size
>> i_blkbits
);
994 if (!sdio
->blkfactor
)
997 blkmask
= (1 << sdio
->blkfactor
) - 1;
998 dio_remainder
= (sdio
->block_in_file
& blkmask
);
1001 * If we are at the start of IO and that IO
1002 * starts partway into a fs-block,
1003 * dio_remainder will be non-zero. If the IO
1004 * is a read then we can simply advance the IO
1005 * cursor to the first block which is to be
1006 * read. But if the IO is a write and the
1007 * block was newly allocated we cannot do that;
1008 * the start of the fs block must be zeroed out
1011 if (!buffer_new(map_bh
))
1012 sdio
->next_block_for_io
+= dio_remainder
;
1013 sdio
->blocks_available
-= dio_remainder
;
1017 if (!buffer_mapped(map_bh
)) {
1018 loff_t i_size_aligned
;
1020 /* AKPM: eargh, -ENOTBLK is a hack */
1021 if (dio
->op
== REQ_OP_WRITE
) {
1027 * Be sure to account for a partial block as the
1028 * last block in the file
1030 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
1032 if (sdio
->block_in_file
>=
1033 i_size_aligned
>> blkbits
) {
1038 zero_user(page
, from
, 1 << blkbits
);
1039 sdio
->block_in_file
++;
1040 from
+= 1 << blkbits
;
1041 dio
->result
+= 1 << blkbits
;
1046 * If we're performing IO which has an alignment which
1047 * is finer than the underlying fs, go check to see if
1048 * we must zero out the start of this block.
1050 if (unlikely(sdio
->blkfactor
&& !sdio
->start_zero_done
))
1051 dio_zero_block(dio
, sdio
, 0, map_bh
);
1054 * Work out, in this_chunk_blocks, how much disk we
1055 * can add to this page
1057 this_chunk_blocks
= sdio
->blocks_available
;
1058 u
= (to
- from
) >> blkbits
;
1059 if (this_chunk_blocks
> u
)
1060 this_chunk_blocks
= u
;
1061 u
= sdio
->final_block_in_request
- sdio
->block_in_file
;
1062 if (this_chunk_blocks
> u
)
1063 this_chunk_blocks
= u
;
1064 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
1065 BUG_ON(this_chunk_bytes
== 0);
1067 if (this_chunk_blocks
== sdio
->blocks_available
)
1068 sdio
->boundary
= buffer_boundary(map_bh
);
1069 ret
= submit_page_section(dio
, sdio
, page
,
1072 sdio
->next_block_for_io
,
1078 sdio
->next_block_for_io
+= this_chunk_blocks
;
1080 sdio
->block_in_file
+= this_chunk_blocks
;
1081 from
+= this_chunk_bytes
;
1082 dio
->result
+= this_chunk_bytes
;
1083 sdio
->blocks_available
-= this_chunk_blocks
;
1085 BUG_ON(sdio
->block_in_file
> sdio
->final_block_in_request
);
1086 if (sdio
->block_in_file
== sdio
->final_block_in_request
)
1090 /* Drop the ref which was taken in get_user_pages() */
1097 static inline int drop_refcount(struct dio
*dio
)
1100 unsigned long flags
;
1103 * Sync will always be dropping the final ref and completing the
1104 * operation. AIO can if it was a broken operation described above or
1105 * in fact if all the bios race to complete before we get here. In
1106 * that case dio_complete() translates the EIOCBQUEUED into the proper
1107 * return code that the caller will hand to ->complete().
1109 * This is managed by the bio_lock instead of being an atomic_t so that
1110 * completion paths can drop their ref and use the remaining count to
1111 * decide to wake the submission path atomically.
1113 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1114 ret2
= --dio
->refcount
;
1115 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1120 * This is a library function for use by filesystem drivers.
1122 * The locking rules are governed by the flags parameter:
1123 * - if the flags value contains DIO_LOCKING we use a fancy locking
1124 * scheme for dumb filesystems.
1125 * For writes this function is called under i_mutex and returns with
1126 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1127 * taken and dropped again before returning.
1128 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1129 * internal locking but rather rely on the filesystem to synchronize
1130 * direct I/O reads/writes versus each other and truncate.
1132 * To help with locking against truncate we incremented the i_dio_count
1133 * counter before starting direct I/O, and decrement it once we are done.
1134 * Truncate can wait for it to reach zero to provide exclusion. It is
1135 * expected that filesystem provide exclusion between new direct I/O
1136 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1137 * but other filesystems need to take care of this on their own.
1139 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1140 * is always inlined. Otherwise gcc is unable to split the structure into
1141 * individual fields and will generate much worse code. This is important
1142 * for the whole file.
1144 static inline ssize_t
1145 do_blockdev_direct_IO(struct kiocb
*iocb
, struct inode
*inode
,
1146 struct block_device
*bdev
, struct iov_iter
*iter
,
1147 get_block_t get_block
, dio_iodone_t end_io
,
1148 dio_submit_t submit_io
, int flags
)
1150 unsigned i_blkbits
= READ_ONCE(inode
->i_blkbits
);
1151 unsigned blkbits
= i_blkbits
;
1152 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1153 ssize_t retval
= -EINVAL
;
1154 const size_t count
= iov_iter_count(iter
);
1155 loff_t offset
= iocb
->ki_pos
;
1156 const loff_t end
= offset
+ count
;
1158 struct dio_submit sdio
= { 0, };
1159 struct buffer_head map_bh
= { 0, };
1160 struct blk_plug plug
;
1161 unsigned long align
= offset
| iov_iter_alignment(iter
);
1164 * Avoid references to bdev if not absolutely needed to give
1165 * the early prefetch in the caller enough time.
1168 if (align
& blocksize_mask
) {
1170 blkbits
= blksize_bits(bdev_logical_block_size(bdev
));
1171 blocksize_mask
= (1 << blkbits
) - 1;
1172 if (align
& blocksize_mask
)
1176 /* watch out for a 0 len io from a tricksy fs */
1177 if (iov_iter_rw(iter
) == READ
&& !count
)
1180 dio
= kmem_cache_alloc(dio_cache
, GFP_KERNEL
);
1185 * Believe it or not, zeroing out the page array caused a .5%
1186 * performance regression in a database benchmark. So, we take
1187 * care to only zero out what's needed.
1189 memset(dio
, 0, offsetof(struct dio
, pages
));
1192 if (dio
->flags
& DIO_LOCKING
) {
1193 if (iov_iter_rw(iter
) == READ
) {
1194 struct address_space
*mapping
=
1195 iocb
->ki_filp
->f_mapping
;
1197 /* will be released by direct_io_worker */
1200 retval
= filemap_write_and_wait_range(mapping
, offset
,
1203 inode_unlock(inode
);
1204 kmem_cache_free(dio_cache
, dio
);
1210 /* Once we sampled i_size check for reads beyond EOF */
1211 dio
->i_size
= i_size_read(inode
);
1212 if (iov_iter_rw(iter
) == READ
&& offset
>= dio
->i_size
) {
1213 if (dio
->flags
& DIO_LOCKING
)
1214 inode_unlock(inode
);
1215 kmem_cache_free(dio_cache
, dio
);
1221 * For file extending writes updating i_size before data writeouts
1222 * complete can expose uninitialized blocks in dumb filesystems.
1223 * In that case we need to wait for I/O completion even if asked
1224 * for an asynchronous write.
1226 if (is_sync_kiocb(iocb
))
1227 dio
->is_async
= false;
1228 else if (iov_iter_rw(iter
) == WRITE
&& end
> i_size_read(inode
))
1229 dio
->is_async
= false;
1231 dio
->is_async
= true;
1234 if (iov_iter_rw(iter
) == WRITE
) {
1235 dio
->op
= REQ_OP_WRITE
;
1236 dio
->op_flags
= REQ_SYNC
| REQ_IDLE
;
1237 if (iocb
->ki_flags
& IOCB_NOWAIT
)
1238 dio
->op_flags
|= REQ_NOWAIT
;
1240 dio
->op
= REQ_OP_READ
;
1242 if (iocb
->ki_flags
& IOCB_HIPRI
)
1243 dio
->op_flags
|= REQ_HIPRI
;
1246 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1247 * so that we can call ->fsync.
1249 if (dio
->is_async
&& iov_iter_rw(iter
) == WRITE
) {
1251 if (iocb
->ki_flags
& IOCB_DSYNC
)
1252 retval
= dio_set_defer_completion(dio
);
1253 else if (!dio
->inode
->i_sb
->s_dio_done_wq
) {
1255 * In case of AIO write racing with buffered read we
1256 * need to defer completion. We can't decide this now,
1257 * however the workqueue needs to be initialized here.
1259 retval
= sb_init_dio_done_wq(dio
->inode
->i_sb
);
1263 * We grab i_mutex only for reads so we don't have
1264 * to release it here
1266 kmem_cache_free(dio_cache
, dio
);
1272 * Will be decremented at I/O completion time.
1274 inode_dio_begin(inode
);
1277 sdio
.blkbits
= blkbits
;
1278 sdio
.blkfactor
= i_blkbits
- blkbits
;
1279 sdio
.block_in_file
= offset
>> blkbits
;
1281 sdio
.get_block
= get_block
;
1282 dio
->end_io
= end_io
;
1283 sdio
.submit_io
= submit_io
;
1284 sdio
.final_block_in_bio
= -1;
1285 sdio
.next_block_for_io
= -1;
1289 spin_lock_init(&dio
->bio_lock
);
1292 dio
->should_dirty
= iter_is_iovec(iter
) && iov_iter_rw(iter
) == READ
;
1294 sdio
.final_block_in_request
= end
>> blkbits
;
1297 * In case of non-aligned buffers, we may need 2 more
1298 * pages since we need to zero out first and last block.
1300 if (unlikely(sdio
.blkfactor
))
1301 sdio
.pages_in_io
= 2;
1303 sdio
.pages_in_io
+= iov_iter_npages(iter
, INT_MAX
);
1305 blk_start_plug(&plug
);
1307 retval
= do_direct_IO(dio
, &sdio
, &map_bh
);
1309 dio_cleanup(dio
, &sdio
);
1311 if (retval
== -ENOTBLK
) {
1313 * The remaining part of the request will be
1314 * be handled by buffered I/O when we return
1319 * There may be some unwritten disk at the end of a part-written
1320 * fs-block-sized block. Go zero that now.
1322 dio_zero_block(dio
, &sdio
, 1, &map_bh
);
1324 if (sdio
.cur_page
) {
1327 ret2
= dio_send_cur_page(dio
, &sdio
, &map_bh
);
1330 put_page(sdio
.cur_page
);
1331 sdio
.cur_page
= NULL
;
1334 dio_bio_submit(dio
, &sdio
);
1336 blk_finish_plug(&plug
);
1339 * It is possible that, we return short IO due to end of file.
1340 * In that case, we need to release all the pages we got hold on.
1342 dio_cleanup(dio
, &sdio
);
1345 * All block lookups have been performed. For READ requests
1346 * we can let i_mutex go now that its achieved its purpose
1347 * of protecting us from looking up uninitialized blocks.
1349 if (iov_iter_rw(iter
) == READ
&& (dio
->flags
& DIO_LOCKING
))
1350 inode_unlock(dio
->inode
);
1353 * The only time we want to leave bios in flight is when a successful
1354 * partial aio read or full aio write have been setup. In that case
1355 * bio completion will call aio_complete. The only time it's safe to
1356 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1357 * This had *better* be the only place that raises -EIOCBQUEUED.
1359 BUG_ON(retval
== -EIOCBQUEUED
);
1360 if (dio
->is_async
&& retval
== 0 && dio
->result
&&
1361 (iov_iter_rw(iter
) == READ
|| dio
->result
== count
))
1362 retval
= -EIOCBQUEUED
;
1364 dio_await_completion(dio
);
1366 if (drop_refcount(dio
) == 0) {
1367 retval
= dio_complete(dio
, retval
, DIO_COMPLETE_INVALIDATE
);
1369 BUG_ON(retval
!= -EIOCBQUEUED
);
1375 ssize_t
__blockdev_direct_IO(struct kiocb
*iocb
, struct inode
*inode
,
1376 struct block_device
*bdev
, struct iov_iter
*iter
,
1377 get_block_t get_block
,
1378 dio_iodone_t end_io
, dio_submit_t submit_io
,
1382 * The block device state is needed in the end to finally
1383 * submit everything. Since it's likely to be cache cold
1384 * prefetch it here as first thing to hide some of the
1387 * Attempt to prefetch the pieces we likely need later.
1389 prefetch(&bdev
->bd_disk
->part_tbl
);
1390 prefetch(bdev
->bd_disk
->queue
);
1391 prefetch((char *)bdev
->bd_disk
->queue
+ SMP_CACHE_BYTES
);
1393 return do_blockdev_direct_IO(iocb
, inode
, bdev
, iter
, get_block
,
1394 end_io
, submit_io
, flags
);
1397 EXPORT_SYMBOL(__blockdev_direct_IO
);
1399 static __init
int dio_init(void)
1401 dio_cache
= KMEM_CACHE(dio
, SLAB_PANIC
);
1404 module_init(dio_init
)