1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 #include <linux/io_uring.h>
67 #include <linux/uaccess.h>
68 #include <asm/mmu_context.h>
71 #include <trace/events/task.h>
74 #include <trace/events/sched.h>
76 static int bprm_creds_from_file(struct linux_binprm
*bprm
);
78 int suid_dumpable
= 0;
80 static LIST_HEAD(formats
);
81 static DEFINE_RWLOCK(binfmt_lock
);
83 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
86 if (WARN_ON(!fmt
->load_binary
))
88 write_lock(&binfmt_lock
);
89 insert
? list_add(&fmt
->lh
, &formats
) :
90 list_add_tail(&fmt
->lh
, &formats
);
91 write_unlock(&binfmt_lock
);
94 EXPORT_SYMBOL(__register_binfmt
);
96 void unregister_binfmt(struct linux_binfmt
* fmt
)
98 write_lock(&binfmt_lock
);
100 write_unlock(&binfmt_lock
);
103 EXPORT_SYMBOL(unregister_binfmt
);
105 static inline void put_binfmt(struct linux_binfmt
* fmt
)
107 module_put(fmt
->module
);
110 bool path_noexec(const struct path
*path
)
112 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
113 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
118 * Note that a shared library must be both readable and executable due to
121 * Also note that we take the address to load from from the file itself.
123 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
125 struct linux_binfmt
*fmt
;
127 struct filename
*tmp
= getname(library
);
128 int error
= PTR_ERR(tmp
);
129 static const struct open_flags uselib_flags
= {
130 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
131 .acc_mode
= MAY_READ
| MAY_EXEC
,
132 .intent
= LOOKUP_OPEN
,
133 .lookup_flags
= LOOKUP_FOLLOW
,
139 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
141 error
= PTR_ERR(file
);
146 * may_open() has already checked for this, so it should be
147 * impossible to trip now. But we need to be extra cautious
148 * and check again at the very end too.
151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file
)->i_mode
) ||
152 path_noexec(&file
->f_path
)))
159 read_lock(&binfmt_lock
);
160 list_for_each_entry(fmt
, &formats
, lh
) {
161 if (!fmt
->load_shlib
)
163 if (!try_module_get(fmt
->module
))
165 read_unlock(&binfmt_lock
);
166 error
= fmt
->load_shlib(file
);
167 read_lock(&binfmt_lock
);
169 if (error
!= -ENOEXEC
)
172 read_unlock(&binfmt_lock
);
178 #endif /* #ifdef CONFIG_USELIB */
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
187 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
189 struct mm_struct
*mm
= current
->mm
;
190 long diff
= (long)(pages
- bprm
->vma_pages
);
195 bprm
->vma_pages
= pages
;
196 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
199 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
204 unsigned int gup_flags
= FOLL_FORCE
;
206 #ifdef CONFIG_STACK_GROWSUP
208 ret
= expand_downwards(bprm
->vma
, pos
);
215 gup_flags
|= FOLL_WRITE
;
218 * We are doing an exec(). 'current' is the process
219 * doing the exec and bprm->mm is the new process's mm.
221 ret
= get_user_pages_remote(bprm
->mm
, pos
, 1, gup_flags
,
227 acct_arg_size(bprm
, vma_pages(bprm
->vma
));
232 static void put_arg_page(struct page
*page
)
237 static void free_arg_pages(struct linux_binprm
*bprm
)
241 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
244 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
247 static int __bprm_mm_init(struct linux_binprm
*bprm
)
250 struct vm_area_struct
*vma
= NULL
;
251 struct mm_struct
*mm
= bprm
->mm
;
253 bprm
->vma
= vma
= vm_area_alloc(mm
);
256 vma_set_anonymous(vma
);
258 if (mmap_write_lock_killable(mm
)) {
264 * Place the stack at the largest stack address the architecture
265 * supports. Later, we'll move this to an appropriate place. We don't
266 * use STACK_TOP because that can depend on attributes which aren't
269 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
270 vma
->vm_end
= STACK_TOP_MAX
;
271 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
272 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
273 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
275 err
= insert_vm_struct(mm
, vma
);
279 mm
->stack_vm
= mm
->total_vm
= 1;
280 mmap_write_unlock(mm
);
281 bprm
->p
= vma
->vm_end
- sizeof(void *);
284 mmap_write_unlock(mm
);
291 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
293 return len
<= MAX_ARG_STRLEN
;
298 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
302 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
307 page
= bprm
->page
[pos
/ PAGE_SIZE
];
308 if (!page
&& write
) {
309 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
312 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
318 static void put_arg_page(struct page
*page
)
322 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
325 __free_page(bprm
->page
[i
]);
326 bprm
->page
[i
] = NULL
;
330 static void free_arg_pages(struct linux_binprm
*bprm
)
334 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
335 free_arg_page(bprm
, i
);
338 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
343 static int __bprm_mm_init(struct linux_binprm
*bprm
)
345 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
349 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
351 return len
<= bprm
->p
;
354 #endif /* CONFIG_MMU */
357 * Create a new mm_struct and populate it with a temporary stack
358 * vm_area_struct. We don't have enough context at this point to set the stack
359 * flags, permissions, and offset, so we use temporary values. We'll update
360 * them later in setup_arg_pages().
362 static int bprm_mm_init(struct linux_binprm
*bprm
)
365 struct mm_struct
*mm
= NULL
;
367 bprm
->mm
= mm
= mm_alloc();
372 /* Save current stack limit for all calculations made during exec. */
373 task_lock(current
->group_leader
);
374 bprm
->rlim_stack
= current
->signal
->rlim
[RLIMIT_STACK
];
375 task_unlock(current
->group_leader
);
377 err
= __bprm_mm_init(bprm
);
392 struct user_arg_ptr
{
397 const char __user
*const __user
*native
;
399 const compat_uptr_t __user
*compat
;
404 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
406 const char __user
*native
;
409 if (unlikely(argv
.is_compat
)) {
410 compat_uptr_t compat
;
412 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
413 return ERR_PTR(-EFAULT
);
415 return compat_ptr(compat
);
419 if (get_user(native
, argv
.ptr
.native
+ nr
))
420 return ERR_PTR(-EFAULT
);
426 * count() counts the number of strings in array ARGV.
428 static int count(struct user_arg_ptr argv
, int max
)
432 if (argv
.ptr
.native
!= NULL
) {
434 const char __user
*p
= get_user_arg_ptr(argv
, i
);
446 if (fatal_signal_pending(current
))
447 return -ERESTARTNOHAND
;
454 static int count_strings_kernel(const char *const *argv
)
461 for (i
= 0; argv
[i
]; ++i
) {
462 if (i
>= MAX_ARG_STRINGS
)
464 if (fatal_signal_pending(current
))
465 return -ERESTARTNOHAND
;
471 static int bprm_stack_limits(struct linux_binprm
*bprm
)
473 unsigned long limit
, ptr_size
;
476 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
477 * (whichever is smaller) for the argv+env strings.
479 * - the remaining binfmt code will not run out of stack space,
480 * - the program will have a reasonable amount of stack left
483 limit
= _STK_LIM
/ 4 * 3;
484 limit
= min(limit
, bprm
->rlim_stack
.rlim_cur
/ 4);
486 * We've historically supported up to 32 pages (ARG_MAX)
487 * of argument strings even with small stacks
489 limit
= max_t(unsigned long, limit
, ARG_MAX
);
491 * We must account for the size of all the argv and envp pointers to
492 * the argv and envp strings, since they will also take up space in
493 * the stack. They aren't stored until much later when we can't
494 * signal to the parent that the child has run out of stack space.
495 * Instead, calculate it here so it's possible to fail gracefully.
497 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
498 if (limit
<= ptr_size
)
502 bprm
->argmin
= bprm
->p
- limit
;
507 * 'copy_strings()' copies argument/environment strings from the old
508 * processes's memory to the new process's stack. The call to get_user_pages()
509 * ensures the destination page is created and not swapped out.
511 static int copy_strings(int argc
, struct user_arg_ptr argv
,
512 struct linux_binprm
*bprm
)
514 struct page
*kmapped_page
= NULL
;
516 unsigned long kpos
= 0;
520 const char __user
*str
;
525 str
= get_user_arg_ptr(argv
, argc
);
529 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
534 if (!valid_arg_len(bprm
, len
))
537 /* We're going to work our way backwords. */
542 if (bprm
->p
< bprm
->argmin
)
547 int offset
, bytes_to_copy
;
549 if (fatal_signal_pending(current
)) {
550 ret
= -ERESTARTNOHAND
;
555 offset
= pos
% PAGE_SIZE
;
559 bytes_to_copy
= offset
;
560 if (bytes_to_copy
> len
)
563 offset
-= bytes_to_copy
;
564 pos
-= bytes_to_copy
;
565 str
-= bytes_to_copy
;
566 len
-= bytes_to_copy
;
568 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
571 page
= get_arg_page(bprm
, pos
, 1);
578 flush_kernel_dcache_page(kmapped_page
);
579 kunmap(kmapped_page
);
580 put_arg_page(kmapped_page
);
583 kaddr
= kmap(kmapped_page
);
584 kpos
= pos
& PAGE_MASK
;
585 flush_arg_page(bprm
, kpos
, kmapped_page
);
587 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
596 flush_kernel_dcache_page(kmapped_page
);
597 kunmap(kmapped_page
);
598 put_arg_page(kmapped_page
);
604 * Copy and argument/environment string from the kernel to the processes stack.
606 int copy_string_kernel(const char *arg
, struct linux_binprm
*bprm
)
608 int len
= strnlen(arg
, MAX_ARG_STRLEN
) + 1 /* terminating NUL */;
609 unsigned long pos
= bprm
->p
;
613 if (!valid_arg_len(bprm
, len
))
616 /* We're going to work our way backwards. */
619 if (IS_ENABLED(CONFIG_MMU
) && bprm
->p
< bprm
->argmin
)
623 unsigned int bytes_to_copy
= min_t(unsigned int, len
,
624 min_not_zero(offset_in_page(pos
), PAGE_SIZE
));
628 pos
-= bytes_to_copy
;
629 arg
-= bytes_to_copy
;
630 len
-= bytes_to_copy
;
632 page
= get_arg_page(bprm
, pos
, 1);
635 kaddr
= kmap_atomic(page
);
636 flush_arg_page(bprm
, pos
& PAGE_MASK
, page
);
637 memcpy(kaddr
+ offset_in_page(pos
), arg
, bytes_to_copy
);
638 flush_kernel_dcache_page(page
);
639 kunmap_atomic(kaddr
);
645 EXPORT_SYMBOL(copy_string_kernel
);
647 static int copy_strings_kernel(int argc
, const char *const *argv
,
648 struct linux_binprm
*bprm
)
651 int ret
= copy_string_kernel(argv
[argc
], bprm
);
654 if (fatal_signal_pending(current
))
655 return -ERESTARTNOHAND
;
664 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
665 * the binfmt code determines where the new stack should reside, we shift it to
666 * its final location. The process proceeds as follows:
668 * 1) Use shift to calculate the new vma endpoints.
669 * 2) Extend vma to cover both the old and new ranges. This ensures the
670 * arguments passed to subsequent functions are consistent.
671 * 3) Move vma's page tables to the new range.
672 * 4) Free up any cleared pgd range.
673 * 5) Shrink the vma to cover only the new range.
675 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
677 struct mm_struct
*mm
= vma
->vm_mm
;
678 unsigned long old_start
= vma
->vm_start
;
679 unsigned long old_end
= vma
->vm_end
;
680 unsigned long length
= old_end
- old_start
;
681 unsigned long new_start
= old_start
- shift
;
682 unsigned long new_end
= old_end
- shift
;
683 struct mmu_gather tlb
;
685 BUG_ON(new_start
> new_end
);
688 * ensure there are no vmas between where we want to go
691 if (vma
!= find_vma(mm
, new_start
))
695 * cover the whole range: [new_start, old_end)
697 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
701 * move the page tables downwards, on failure we rely on
702 * process cleanup to remove whatever mess we made.
704 if (length
!= move_page_tables(vma
, old_start
,
705 vma
, new_start
, length
, false))
709 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
710 if (new_end
> old_start
) {
712 * when the old and new regions overlap clear from new_end.
714 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
715 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
718 * otherwise, clean from old_start; this is done to not touch
719 * the address space in [new_end, old_start) some architectures
720 * have constraints on va-space that make this illegal (IA64) -
721 * for the others its just a little faster.
723 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
724 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
726 tlb_finish_mmu(&tlb
, old_start
, old_end
);
729 * Shrink the vma to just the new range. Always succeeds.
731 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
737 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
738 * the stack is optionally relocated, and some extra space is added.
740 int setup_arg_pages(struct linux_binprm
*bprm
,
741 unsigned long stack_top
,
742 int executable_stack
)
745 unsigned long stack_shift
;
746 struct mm_struct
*mm
= current
->mm
;
747 struct vm_area_struct
*vma
= bprm
->vma
;
748 struct vm_area_struct
*prev
= NULL
;
749 unsigned long vm_flags
;
750 unsigned long stack_base
;
751 unsigned long stack_size
;
752 unsigned long stack_expand
;
753 unsigned long rlim_stack
;
755 #ifdef CONFIG_STACK_GROWSUP
756 /* Limit stack size */
757 stack_base
= bprm
->rlim_stack
.rlim_max
;
758 if (stack_base
> STACK_SIZE_MAX
)
759 stack_base
= STACK_SIZE_MAX
;
761 /* Add space for stack randomization. */
762 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
764 /* Make sure we didn't let the argument array grow too large. */
765 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
768 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
770 stack_shift
= vma
->vm_start
- stack_base
;
771 mm
->arg_start
= bprm
->p
- stack_shift
;
772 bprm
->p
= vma
->vm_end
- stack_shift
;
774 stack_top
= arch_align_stack(stack_top
);
775 stack_top
= PAGE_ALIGN(stack_top
);
777 if (unlikely(stack_top
< mmap_min_addr
) ||
778 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
781 stack_shift
= vma
->vm_end
- stack_top
;
783 bprm
->p
-= stack_shift
;
784 mm
->arg_start
= bprm
->p
;
788 bprm
->loader
-= stack_shift
;
789 bprm
->exec
-= stack_shift
;
791 if (mmap_write_lock_killable(mm
))
794 vm_flags
= VM_STACK_FLAGS
;
797 * Adjust stack execute permissions; explicitly enable for
798 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
799 * (arch default) otherwise.
801 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
803 else if (executable_stack
== EXSTACK_DISABLE_X
)
804 vm_flags
&= ~VM_EXEC
;
805 vm_flags
|= mm
->def_flags
;
806 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
808 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
814 if (unlikely(vm_flags
& VM_EXEC
)) {
815 pr_warn_once("process '%pD4' started with executable stack\n",
819 /* Move stack pages down in memory. */
821 ret
= shift_arg_pages(vma
, stack_shift
);
826 /* mprotect_fixup is overkill to remove the temporary stack flags */
827 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
829 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
830 stack_size
= vma
->vm_end
- vma
->vm_start
;
832 * Align this down to a page boundary as expand_stack
835 rlim_stack
= bprm
->rlim_stack
.rlim_cur
& PAGE_MASK
;
836 #ifdef CONFIG_STACK_GROWSUP
837 if (stack_size
+ stack_expand
> rlim_stack
)
838 stack_base
= vma
->vm_start
+ rlim_stack
;
840 stack_base
= vma
->vm_end
+ stack_expand
;
842 if (stack_size
+ stack_expand
> rlim_stack
)
843 stack_base
= vma
->vm_end
- rlim_stack
;
845 stack_base
= vma
->vm_start
- stack_expand
;
847 current
->mm
->start_stack
= bprm
->p
;
848 ret
= expand_stack(vma
, stack_base
);
853 mmap_write_unlock(mm
);
856 EXPORT_SYMBOL(setup_arg_pages
);
861 * Transfer the program arguments and environment from the holding pages
862 * onto the stack. The provided stack pointer is adjusted accordingly.
864 int transfer_args_to_stack(struct linux_binprm
*bprm
,
865 unsigned long *sp_location
)
867 unsigned long index
, stop
, sp
;
870 stop
= bprm
->p
>> PAGE_SHIFT
;
873 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
874 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
875 char *src
= kmap(bprm
->page
[index
]) + offset
;
876 sp
-= PAGE_SIZE
- offset
;
877 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
879 kunmap(bprm
->page
[index
]);
889 EXPORT_SYMBOL(transfer_args_to_stack
);
891 #endif /* CONFIG_MMU */
893 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
897 struct open_flags open_exec_flags
= {
898 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
899 .acc_mode
= MAY_EXEC
,
900 .intent
= LOOKUP_OPEN
,
901 .lookup_flags
= LOOKUP_FOLLOW
,
904 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
905 return ERR_PTR(-EINVAL
);
906 if (flags
& AT_SYMLINK_NOFOLLOW
)
907 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
908 if (flags
& AT_EMPTY_PATH
)
909 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
911 file
= do_filp_open(fd
, name
, &open_exec_flags
);
916 * may_open() has already checked for this, so it should be
917 * impossible to trip now. But we need to be extra cautious
918 * and check again at the very end too.
921 if (WARN_ON_ONCE(!S_ISREG(file_inode(file
)->i_mode
) ||
922 path_noexec(&file
->f_path
)))
925 err
= deny_write_access(file
);
929 if (name
->name
[0] != '\0')
940 struct file
*open_exec(const char *name
)
942 struct filename
*filename
= getname_kernel(name
);
943 struct file
*f
= ERR_CAST(filename
);
945 if (!IS_ERR(filename
)) {
946 f
= do_open_execat(AT_FDCWD
, filename
, 0);
951 EXPORT_SYMBOL(open_exec
);
953 int kernel_read_file(struct file
*file
, void **buf
, loff_t
*size
,
954 loff_t max_size
, enum kernel_read_file_id id
)
958 void *allocated
= NULL
;
961 if (!S_ISREG(file_inode(file
)->i_mode
) || max_size
< 0)
964 ret
= deny_write_access(file
);
968 ret
= security_kernel_read_file(file
, id
);
972 i_size
= i_size_read(file_inode(file
));
977 if (i_size
> SIZE_MAX
|| (max_size
> 0 && i_size
> max_size
)) {
983 *buf
= allocated
= vmalloc(i_size
);
990 while (pos
< i_size
) {
991 bytes
= kernel_read(file
, *buf
+ pos
, i_size
- pos
, &pos
);
1001 if (pos
!= i_size
) {
1006 ret
= security_kernel_post_read_file(file
, *buf
, i_size
, id
);
1019 allow_write_access(file
);
1022 EXPORT_SYMBOL_GPL(kernel_read_file
);
1024 int kernel_read_file_from_path(const char *path
, void **buf
, loff_t
*size
,
1025 loff_t max_size
, enum kernel_read_file_id id
)
1030 if (!path
|| !*path
)
1033 file
= filp_open(path
, O_RDONLY
, 0);
1035 return PTR_ERR(file
);
1037 ret
= kernel_read_file(file
, buf
, size
, max_size
, id
);
1041 EXPORT_SYMBOL_GPL(kernel_read_file_from_path
);
1043 int kernel_read_file_from_path_initns(const char *path
, void **buf
,
1044 loff_t
*size
, loff_t max_size
,
1045 enum kernel_read_file_id id
)
1051 if (!path
|| !*path
)
1054 task_lock(&init_task
);
1055 get_fs_root(init_task
.fs
, &root
);
1056 task_unlock(&init_task
);
1058 file
= file_open_root(root
.dentry
, root
.mnt
, path
, O_RDONLY
, 0);
1061 return PTR_ERR(file
);
1063 ret
= kernel_read_file(file
, buf
, size
, max_size
, id
);
1067 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns
);
1069 int kernel_read_file_from_fd(int fd
, void **buf
, loff_t
*size
, loff_t max_size
,
1070 enum kernel_read_file_id id
)
1072 struct fd f
= fdget(fd
);
1078 ret
= kernel_read_file(f
.file
, buf
, size
, max_size
, id
);
1083 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd
);
1085 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1086 defined(CONFIG_BINFMT_ELF_FDPIC)
1087 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
1089 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
1091 flush_icache_user_range(addr
, addr
+ len
);
1094 EXPORT_SYMBOL(read_code
);
1098 * Maps the mm_struct mm into the current task struct.
1099 * On success, this function returns with the mutex
1100 * exec_update_mutex locked.
1102 static int exec_mmap(struct mm_struct
*mm
)
1104 struct task_struct
*tsk
;
1105 struct mm_struct
*old_mm
, *active_mm
;
1108 /* Notify parent that we're no longer interested in the old VM */
1110 old_mm
= current
->mm
;
1111 exec_mm_release(tsk
, old_mm
);
1113 sync_mm_rss(old_mm
);
1115 ret
= mutex_lock_killable(&tsk
->signal
->exec_update_mutex
);
1121 * Make sure that if there is a core dump in progress
1122 * for the old mm, we get out and die instead of going
1123 * through with the exec. We must hold mmap_lock around
1124 * checking core_state and changing tsk->mm.
1126 mmap_read_lock(old_mm
);
1127 if (unlikely(old_mm
->core_state
)) {
1128 mmap_read_unlock(old_mm
);
1129 mutex_unlock(&tsk
->signal
->exec_update_mutex
);
1135 membarrier_exec_mmap(mm
);
1137 local_irq_disable();
1138 active_mm
= tsk
->active_mm
;
1139 tsk
->active_mm
= mm
;
1142 * This prevents preemption while active_mm is being loaded and
1143 * it and mm are being updated, which could cause problems for
1144 * lazy tlb mm refcounting when these are updated by context
1145 * switches. Not all architectures can handle irqs off over
1148 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM
))
1150 activate_mm(active_mm
, mm
);
1151 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM
))
1153 tsk
->mm
->vmacache_seqnum
= 0;
1154 vmacache_flush(tsk
);
1157 mmap_read_unlock(old_mm
);
1158 BUG_ON(active_mm
!= old_mm
);
1159 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1160 mm_update_next_owner(old_mm
);
1168 static int de_thread(struct task_struct
*tsk
)
1170 struct signal_struct
*sig
= tsk
->signal
;
1171 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1172 spinlock_t
*lock
= &oldsighand
->siglock
;
1174 if (thread_group_empty(tsk
))
1175 goto no_thread_group
;
1178 * Kill all other threads in the thread group.
1180 spin_lock_irq(lock
);
1181 if (signal_group_exit(sig
)) {
1183 * Another group action in progress, just
1184 * return so that the signal is processed.
1186 spin_unlock_irq(lock
);
1190 sig
->group_exit_task
= tsk
;
1191 sig
->notify_count
= zap_other_threads(tsk
);
1192 if (!thread_group_leader(tsk
))
1193 sig
->notify_count
--;
1195 while (sig
->notify_count
) {
1196 __set_current_state(TASK_KILLABLE
);
1197 spin_unlock_irq(lock
);
1199 if (__fatal_signal_pending(tsk
))
1201 spin_lock_irq(lock
);
1203 spin_unlock_irq(lock
);
1206 * At this point all other threads have exited, all we have to
1207 * do is to wait for the thread group leader to become inactive,
1208 * and to assume its PID:
1210 if (!thread_group_leader(tsk
)) {
1211 struct task_struct
*leader
= tsk
->group_leader
;
1214 cgroup_threadgroup_change_begin(tsk
);
1215 write_lock_irq(&tasklist_lock
);
1217 * Do this under tasklist_lock to ensure that
1218 * exit_notify() can't miss ->group_exit_task
1220 sig
->notify_count
= -1;
1221 if (likely(leader
->exit_state
))
1223 __set_current_state(TASK_KILLABLE
);
1224 write_unlock_irq(&tasklist_lock
);
1225 cgroup_threadgroup_change_end(tsk
);
1227 if (__fatal_signal_pending(tsk
))
1232 * The only record we have of the real-time age of a
1233 * process, regardless of execs it's done, is start_time.
1234 * All the past CPU time is accumulated in signal_struct
1235 * from sister threads now dead. But in this non-leader
1236 * exec, nothing survives from the original leader thread,
1237 * whose birth marks the true age of this process now.
1238 * When we take on its identity by switching to its PID, we
1239 * also take its birthdate (always earlier than our own).
1241 tsk
->start_time
= leader
->start_time
;
1242 tsk
->start_boottime
= leader
->start_boottime
;
1244 BUG_ON(!same_thread_group(leader
, tsk
));
1246 * An exec() starts a new thread group with the
1247 * TGID of the previous thread group. Rehash the
1248 * two threads with a switched PID, and release
1249 * the former thread group leader:
1252 /* Become a process group leader with the old leader's pid.
1253 * The old leader becomes a thread of the this thread group.
1255 exchange_tids(tsk
, leader
);
1256 transfer_pid(leader
, tsk
, PIDTYPE_TGID
);
1257 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1258 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1260 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1261 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1263 tsk
->group_leader
= tsk
;
1264 leader
->group_leader
= tsk
;
1266 tsk
->exit_signal
= SIGCHLD
;
1267 leader
->exit_signal
= -1;
1269 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1270 leader
->exit_state
= EXIT_DEAD
;
1273 * We are going to release_task()->ptrace_unlink() silently,
1274 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1275 * the tracer wont't block again waiting for this thread.
1277 if (unlikely(leader
->ptrace
))
1278 __wake_up_parent(leader
, leader
->parent
);
1279 write_unlock_irq(&tasklist_lock
);
1280 cgroup_threadgroup_change_end(tsk
);
1282 release_task(leader
);
1285 sig
->group_exit_task
= NULL
;
1286 sig
->notify_count
= 0;
1289 /* we have changed execution domain */
1290 tsk
->exit_signal
= SIGCHLD
;
1292 BUG_ON(!thread_group_leader(tsk
));
1296 /* protects against exit_notify() and __exit_signal() */
1297 read_lock(&tasklist_lock
);
1298 sig
->group_exit_task
= NULL
;
1299 sig
->notify_count
= 0;
1300 read_unlock(&tasklist_lock
);
1306 * This function makes sure the current process has its own signal table,
1307 * so that flush_signal_handlers can later reset the handlers without
1308 * disturbing other processes. (Other processes might share the signal
1309 * table via the CLONE_SIGHAND option to clone().)
1311 static int unshare_sighand(struct task_struct
*me
)
1313 struct sighand_struct
*oldsighand
= me
->sighand
;
1315 if (refcount_read(&oldsighand
->count
) != 1) {
1316 struct sighand_struct
*newsighand
;
1318 * This ->sighand is shared with the CLONE_SIGHAND
1319 * but not CLONE_THREAD task, switch to the new one.
1321 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1325 refcount_set(&newsighand
->count
, 1);
1326 memcpy(newsighand
->action
, oldsighand
->action
,
1327 sizeof(newsighand
->action
));
1329 write_lock_irq(&tasklist_lock
);
1330 spin_lock(&oldsighand
->siglock
);
1331 rcu_assign_pointer(me
->sighand
, newsighand
);
1332 spin_unlock(&oldsighand
->siglock
);
1333 write_unlock_irq(&tasklist_lock
);
1335 __cleanup_sighand(oldsighand
);
1340 char *__get_task_comm(char *buf
, size_t buf_size
, struct task_struct
*tsk
)
1343 strncpy(buf
, tsk
->comm
, buf_size
);
1347 EXPORT_SYMBOL_GPL(__get_task_comm
);
1350 * These functions flushes out all traces of the currently running executable
1351 * so that a new one can be started
1354 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1357 trace_task_rename(tsk
, buf
);
1358 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1360 perf_event_comm(tsk
, exec
);
1364 * Calling this is the point of no return. None of the failures will be
1365 * seen by userspace since either the process is already taking a fatal
1366 * signal (via de_thread() or coredump), or will have SEGV raised
1367 * (after exec_mmap()) by search_binary_handler (see below).
1369 int begin_new_exec(struct linux_binprm
* bprm
)
1371 struct task_struct
*me
= current
;
1374 /* Once we are committed compute the creds */
1375 retval
= bprm_creds_from_file(bprm
);
1380 * Ensure all future errors are fatal.
1382 bprm
->point_of_no_return
= true;
1385 * Make this the only thread in the thread group.
1387 retval
= de_thread(me
);
1392 * Must be called _before_ exec_mmap() as bprm->mm is
1393 * not visibile until then. This also enables the update
1396 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1398 /* If the binary is not readable then enforce mm->dumpable=0 */
1399 would_dump(bprm
, bprm
->file
);
1400 if (bprm
->have_execfd
)
1401 would_dump(bprm
, bprm
->executable
);
1404 * Release all of the old mmap stuff
1406 acct_arg_size(bprm
, 0);
1407 retval
= exec_mmap(bprm
->mm
);
1413 #ifdef CONFIG_POSIX_TIMERS
1414 exit_itimers(me
->signal
);
1415 flush_itimer_signals();
1419 * Make the signal table private.
1421 retval
= unshare_sighand(me
);
1426 * Ensure that the uaccess routines can actually operate on userspace
1429 force_uaccess_begin();
1431 me
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1432 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1434 me
->personality
&= ~bprm
->per_clear
;
1437 * We have to apply CLOEXEC before we change whether the process is
1438 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1439 * trying to access the should-be-closed file descriptors of a process
1440 * undergoing exec(2).
1442 do_close_on_exec(me
->files
);
1444 if (bprm
->secureexec
) {
1445 /* Make sure parent cannot signal privileged process. */
1446 me
->pdeath_signal
= 0;
1449 * For secureexec, reset the stack limit to sane default to
1450 * avoid bad behavior from the prior rlimits. This has to
1451 * happen before arch_pick_mmap_layout(), which examines
1452 * RLIMIT_STACK, but after the point of no return to avoid
1453 * needing to clean up the change on failure.
1455 if (bprm
->rlim_stack
.rlim_cur
> _STK_LIM
)
1456 bprm
->rlim_stack
.rlim_cur
= _STK_LIM
;
1459 me
->sas_ss_sp
= me
->sas_ss_size
= 0;
1462 * Figure out dumpability. Note that this checking only of current
1463 * is wrong, but userspace depends on it. This should be testing
1464 * bprm->secureexec instead.
1466 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
||
1467 !(uid_eq(current_euid(), current_uid()) &&
1468 gid_eq(current_egid(), current_gid())))
1469 set_dumpable(current
->mm
, suid_dumpable
);
1471 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1474 __set_task_comm(me
, kbasename(bprm
->filename
), true);
1476 /* An exec changes our domain. We are no longer part of the thread
1478 WRITE_ONCE(me
->self_exec_id
, me
->self_exec_id
+ 1);
1479 flush_signal_handlers(me
, 0);
1482 * install the new credentials for this executable
1484 security_bprm_committing_creds(bprm
);
1486 commit_creds(bprm
->cred
);
1490 * Disable monitoring for regular users
1491 * when executing setuid binaries. Must
1492 * wait until new credentials are committed
1493 * by commit_creds() above
1495 if (get_dumpable(me
->mm
) != SUID_DUMP_USER
)
1496 perf_event_exit_task(me
);
1498 * cred_guard_mutex must be held at least to this point to prevent
1499 * ptrace_attach() from altering our determination of the task's
1500 * credentials; any time after this it may be unlocked.
1502 security_bprm_committed_creds(bprm
);
1504 /* Pass the opened binary to the interpreter. */
1505 if (bprm
->have_execfd
) {
1506 retval
= get_unused_fd_flags(0);
1509 fd_install(retval
, bprm
->executable
);
1510 bprm
->executable
= NULL
;
1511 bprm
->execfd
= retval
;
1516 mutex_unlock(&me
->signal
->exec_update_mutex
);
1520 EXPORT_SYMBOL(begin_new_exec
);
1522 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1524 struct inode
*inode
= file_inode(file
);
1525 if (inode_permission(inode
, MAY_READ
) < 0) {
1526 struct user_namespace
*old
, *user_ns
;
1527 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1529 /* Ensure mm->user_ns contains the executable */
1530 user_ns
= old
= bprm
->mm
->user_ns
;
1531 while ((user_ns
!= &init_user_ns
) &&
1532 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1533 user_ns
= user_ns
->parent
;
1535 if (old
!= user_ns
) {
1536 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1541 EXPORT_SYMBOL(would_dump
);
1543 void setup_new_exec(struct linux_binprm
* bprm
)
1545 /* Setup things that can depend upon the personality */
1546 struct task_struct
*me
= current
;
1548 arch_pick_mmap_layout(me
->mm
, &bprm
->rlim_stack
);
1550 arch_setup_new_exec();
1552 /* Set the new mm task size. We have to do that late because it may
1553 * depend on TIF_32BIT which is only updated in flush_thread() on
1554 * some architectures like powerpc
1556 me
->mm
->task_size
= TASK_SIZE
;
1557 mutex_unlock(&me
->signal
->exec_update_mutex
);
1558 mutex_unlock(&me
->signal
->cred_guard_mutex
);
1560 EXPORT_SYMBOL(setup_new_exec
);
1562 /* Runs immediately before start_thread() takes over. */
1563 void finalize_exec(struct linux_binprm
*bprm
)
1565 /* Store any stack rlimit changes before starting thread. */
1566 task_lock(current
->group_leader
);
1567 current
->signal
->rlim
[RLIMIT_STACK
] = bprm
->rlim_stack
;
1568 task_unlock(current
->group_leader
);
1570 EXPORT_SYMBOL(finalize_exec
);
1573 * Prepare credentials and lock ->cred_guard_mutex.
1574 * setup_new_exec() commits the new creds and drops the lock.
1575 * Or, if exec fails before, free_bprm() should release ->cred and
1578 static int prepare_bprm_creds(struct linux_binprm
*bprm
)
1580 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1581 return -ERESTARTNOINTR
;
1583 bprm
->cred
= prepare_exec_creds();
1584 if (likely(bprm
->cred
))
1587 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1591 static void free_bprm(struct linux_binprm
*bprm
)
1594 acct_arg_size(bprm
, 0);
1597 free_arg_pages(bprm
);
1599 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1600 abort_creds(bprm
->cred
);
1603 allow_write_access(bprm
->file
);
1606 if (bprm
->executable
)
1607 fput(bprm
->executable
);
1608 /* If a binfmt changed the interp, free it. */
1609 if (bprm
->interp
!= bprm
->filename
)
1610 kfree(bprm
->interp
);
1611 kfree(bprm
->fdpath
);
1615 static struct linux_binprm
*alloc_bprm(int fd
, struct filename
*filename
)
1617 struct linux_binprm
*bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1618 int retval
= -ENOMEM
;
1622 if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1623 bprm
->filename
= filename
->name
;
1625 if (filename
->name
[0] == '\0')
1626 bprm
->fdpath
= kasprintf(GFP_KERNEL
, "/dev/fd/%d", fd
);
1628 bprm
->fdpath
= kasprintf(GFP_KERNEL
, "/dev/fd/%d/%s",
1629 fd
, filename
->name
);
1633 bprm
->filename
= bprm
->fdpath
;
1635 bprm
->interp
= bprm
->filename
;
1637 retval
= bprm_mm_init(bprm
);
1645 return ERR_PTR(retval
);
1648 int bprm_change_interp(const char *interp
, struct linux_binprm
*bprm
)
1650 /* If a binfmt changed the interp, free it first. */
1651 if (bprm
->interp
!= bprm
->filename
)
1652 kfree(bprm
->interp
);
1653 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1658 EXPORT_SYMBOL(bprm_change_interp
);
1661 * determine how safe it is to execute the proposed program
1662 * - the caller must hold ->cred_guard_mutex to protect against
1663 * PTRACE_ATTACH or seccomp thread-sync
1665 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1667 struct task_struct
*p
= current
, *t
;
1671 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1674 * This isn't strictly necessary, but it makes it harder for LSMs to
1677 if (task_no_new_privs(current
))
1678 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1682 spin_lock(&p
->fs
->lock
);
1684 while_each_thread(p
, t
) {
1690 if (p
->fs
->users
> n_fs
)
1691 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1694 spin_unlock(&p
->fs
->lock
);
1697 static void bprm_fill_uid(struct linux_binprm
*bprm
, struct file
*file
)
1699 /* Handle suid and sgid on files */
1700 struct inode
*inode
;
1705 if (!mnt_may_suid(file
->f_path
.mnt
))
1708 if (task_no_new_privs(current
))
1711 inode
= file
->f_path
.dentry
->d_inode
;
1712 mode
= READ_ONCE(inode
->i_mode
);
1713 if (!(mode
& (S_ISUID
|S_ISGID
)))
1716 /* Be careful if suid/sgid is set */
1719 /* reload atomically mode/uid/gid now that lock held */
1720 mode
= inode
->i_mode
;
1723 inode_unlock(inode
);
1725 /* We ignore suid/sgid if there are no mappings for them in the ns */
1726 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1727 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1730 if (mode
& S_ISUID
) {
1731 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1732 bprm
->cred
->euid
= uid
;
1735 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1736 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1737 bprm
->cred
->egid
= gid
;
1742 * Compute brpm->cred based upon the final binary.
1744 static int bprm_creds_from_file(struct linux_binprm
*bprm
)
1746 /* Compute creds based on which file? */
1747 struct file
*file
= bprm
->execfd_creds
? bprm
->executable
: bprm
->file
;
1749 bprm_fill_uid(bprm
, file
);
1750 return security_bprm_creds_from_file(bprm
, file
);
1754 * Fill the binprm structure from the inode.
1755 * Read the first BINPRM_BUF_SIZE bytes
1757 * This may be called multiple times for binary chains (scripts for example).
1759 static int prepare_binprm(struct linux_binprm
*bprm
)
1763 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1764 return kernel_read(bprm
->file
, bprm
->buf
, BINPRM_BUF_SIZE
, &pos
);
1768 * Arguments are '\0' separated strings found at the location bprm->p
1769 * points to; chop off the first by relocating brpm->p to right after
1770 * the first '\0' encountered.
1772 int remove_arg_zero(struct linux_binprm
*bprm
)
1775 unsigned long offset
;
1783 offset
= bprm
->p
& ~PAGE_MASK
;
1784 page
= get_arg_page(bprm
, bprm
->p
, 0);
1789 kaddr
= kmap_atomic(page
);
1791 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1792 offset
++, bprm
->p
++)
1795 kunmap_atomic(kaddr
);
1797 } while (offset
== PAGE_SIZE
);
1806 EXPORT_SYMBOL(remove_arg_zero
);
1808 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1810 * cycle the list of binary formats handler, until one recognizes the image
1812 static int search_binary_handler(struct linux_binprm
*bprm
)
1814 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1815 struct linux_binfmt
*fmt
;
1818 retval
= prepare_binprm(bprm
);
1822 retval
= security_bprm_check(bprm
);
1828 read_lock(&binfmt_lock
);
1829 list_for_each_entry(fmt
, &formats
, lh
) {
1830 if (!try_module_get(fmt
->module
))
1832 read_unlock(&binfmt_lock
);
1834 retval
= fmt
->load_binary(bprm
);
1836 read_lock(&binfmt_lock
);
1838 if (bprm
->point_of_no_return
|| (retval
!= -ENOEXEC
)) {
1839 read_unlock(&binfmt_lock
);
1843 read_unlock(&binfmt_lock
);
1846 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1847 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1849 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1858 static int exec_binprm(struct linux_binprm
*bprm
)
1860 pid_t old_pid
, old_vpid
;
1863 /* Need to fetch pid before load_binary changes it */
1864 old_pid
= current
->pid
;
1866 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1869 /* This allows 4 levels of binfmt rewrites before failing hard. */
1870 for (depth
= 0;; depth
++) {
1875 ret
= search_binary_handler(bprm
);
1878 if (!bprm
->interpreter
)
1882 bprm
->file
= bprm
->interpreter
;
1883 bprm
->interpreter
= NULL
;
1885 allow_write_access(exec
);
1886 if (unlikely(bprm
->have_execfd
)) {
1887 if (bprm
->executable
) {
1891 bprm
->executable
= exec
;
1897 trace_sched_process_exec(current
, old_pid
, bprm
);
1898 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1899 proc_exec_connector(current
);
1904 * sys_execve() executes a new program.
1906 static int bprm_execve(struct linux_binprm
*bprm
,
1907 int fd
, struct filename
*filename
, int flags
)
1910 struct files_struct
*displaced
;
1914 * Cancel any io_uring activity across execve
1916 io_uring_task_cancel();
1918 retval
= unshare_files(&displaced
);
1922 retval
= prepare_bprm_creds(bprm
);
1926 check_unsafe_exec(bprm
);
1927 current
->in_execve
= 1;
1929 file
= do_open_execat(fd
, filename
, flags
);
1930 retval
= PTR_ERR(file
);
1938 * Record that a name derived from an O_CLOEXEC fd will be
1939 * inaccessible after exec. Relies on having exclusive access to
1940 * current->files (due to unshare_files above).
1943 close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1944 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1946 /* Set the unchanging part of bprm->cred */
1947 retval
= security_bprm_creds_for_exec(bprm
);
1951 retval
= exec_binprm(bprm
);
1955 /* execve succeeded */
1956 current
->fs
->in_exec
= 0;
1957 current
->in_execve
= 0;
1958 rseq_execve(current
);
1959 acct_update_integrals(current
);
1960 task_numa_free(current
, false);
1962 put_files_struct(displaced
);
1967 * If past the point of no return ensure the the code never
1968 * returns to the userspace process. Use an existing fatal
1969 * signal if present otherwise terminate the process with
1972 if (bprm
->point_of_no_return
&& !fatal_signal_pending(current
))
1973 force_sigsegv(SIGSEGV
);
1976 current
->fs
->in_exec
= 0;
1977 current
->in_execve
= 0;
1981 reset_files_struct(displaced
);
1986 static int do_execveat_common(int fd
, struct filename
*filename
,
1987 struct user_arg_ptr argv
,
1988 struct user_arg_ptr envp
,
1991 struct linux_binprm
*bprm
;
1994 if (IS_ERR(filename
))
1995 return PTR_ERR(filename
);
1998 * We move the actual failure in case of RLIMIT_NPROC excess from
1999 * set*uid() to execve() because too many poorly written programs
2000 * don't check setuid() return code. Here we additionally recheck
2001 * whether NPROC limit is still exceeded.
2003 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
2004 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
2009 /* We're below the limit (still or again), so we don't want to make
2010 * further execve() calls fail. */
2011 current
->flags
&= ~PF_NPROC_EXCEEDED
;
2013 bprm
= alloc_bprm(fd
, filename
);
2015 retval
= PTR_ERR(bprm
);
2019 retval
= count(argv
, MAX_ARG_STRINGS
);
2022 bprm
->argc
= retval
;
2024 retval
= count(envp
, MAX_ARG_STRINGS
);
2027 bprm
->envc
= retval
;
2029 retval
= bprm_stack_limits(bprm
);
2033 retval
= copy_string_kernel(bprm
->filename
, bprm
);
2036 bprm
->exec
= bprm
->p
;
2038 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
2042 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
2046 retval
= bprm_execve(bprm
, fd
, filename
, flags
);
2055 int kernel_execve(const char *kernel_filename
,
2056 const char *const *argv
, const char *const *envp
)
2058 struct filename
*filename
;
2059 struct linux_binprm
*bprm
;
2063 filename
= getname_kernel(kernel_filename
);
2064 if (IS_ERR(filename
))
2065 return PTR_ERR(filename
);
2067 bprm
= alloc_bprm(fd
, filename
);
2069 retval
= PTR_ERR(bprm
);
2073 retval
= count_strings_kernel(argv
);
2076 bprm
->argc
= retval
;
2078 retval
= count_strings_kernel(envp
);
2081 bprm
->envc
= retval
;
2083 retval
= bprm_stack_limits(bprm
);
2087 retval
= copy_string_kernel(bprm
->filename
, bprm
);
2090 bprm
->exec
= bprm
->p
;
2092 retval
= copy_strings_kernel(bprm
->envc
, envp
, bprm
);
2096 retval
= copy_strings_kernel(bprm
->argc
, argv
, bprm
);
2100 retval
= bprm_execve(bprm
, fd
, filename
, 0);
2108 static int do_execve(struct filename
*filename
,
2109 const char __user
*const __user
*__argv
,
2110 const char __user
*const __user
*__envp
)
2112 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
2113 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
2114 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
2117 static int do_execveat(int fd
, struct filename
*filename
,
2118 const char __user
*const __user
*__argv
,
2119 const char __user
*const __user
*__envp
,
2122 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
2123 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
2125 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
2128 #ifdef CONFIG_COMPAT
2129 static int compat_do_execve(struct filename
*filename
,
2130 const compat_uptr_t __user
*__argv
,
2131 const compat_uptr_t __user
*__envp
)
2133 struct user_arg_ptr argv
= {
2135 .ptr
.compat
= __argv
,
2137 struct user_arg_ptr envp
= {
2139 .ptr
.compat
= __envp
,
2141 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
2144 static int compat_do_execveat(int fd
, struct filename
*filename
,
2145 const compat_uptr_t __user
*__argv
,
2146 const compat_uptr_t __user
*__envp
,
2149 struct user_arg_ptr argv
= {
2151 .ptr
.compat
= __argv
,
2153 struct user_arg_ptr envp
= {
2155 .ptr
.compat
= __envp
,
2157 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
2161 void set_binfmt(struct linux_binfmt
*new)
2163 struct mm_struct
*mm
= current
->mm
;
2166 module_put(mm
->binfmt
->module
);
2170 __module_get(new->module
);
2172 EXPORT_SYMBOL(set_binfmt
);
2175 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2177 void set_dumpable(struct mm_struct
*mm
, int value
)
2179 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
2182 set_mask_bits(&mm
->flags
, MMF_DUMPABLE_MASK
, value
);
2185 SYSCALL_DEFINE3(execve
,
2186 const char __user
*, filename
,
2187 const char __user
*const __user
*, argv
,
2188 const char __user
*const __user
*, envp
)
2190 return do_execve(getname(filename
), argv
, envp
);
2193 SYSCALL_DEFINE5(execveat
,
2194 int, fd
, const char __user
*, filename
,
2195 const char __user
*const __user
*, argv
,
2196 const char __user
*const __user
*, envp
,
2199 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
2201 return do_execveat(fd
,
2202 getname_flags(filename
, lookup_flags
, NULL
),
2206 #ifdef CONFIG_COMPAT
2207 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
2208 const compat_uptr_t __user
*, argv
,
2209 const compat_uptr_t __user
*, envp
)
2211 return compat_do_execve(getname(filename
), argv
, envp
);
2214 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
2215 const char __user
*, filename
,
2216 const compat_uptr_t __user
*, argv
,
2217 const compat_uptr_t __user
*, envp
,
2220 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
2222 return compat_do_execveat(fd
,
2223 getname_flags(filename
, lookup_flags
, NULL
),