ipv4: clean up cookie_v4_check()
[linux/fpc-iii.git] / tools / perf / builtin-sched.c
blobf83c08c0dd87caaa97a8c0b3958320b65a2ed2ef
1 #include "builtin.h"
2 #include "perf.h"
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
15 #include "util/parse-options.h"
16 #include "util/trace-event.h"
18 #include "util/debug.h"
20 #include <sys/prctl.h>
21 #include <sys/resource.h>
23 #include <semaphore.h>
24 #include <pthread.h>
25 #include <math.h>
27 #define PR_SET_NAME 15 /* Set process name */
28 #define MAX_CPUS 4096
29 #define COMM_LEN 20
30 #define SYM_LEN 129
31 #define MAX_PID 65536
33 struct sched_atom;
35 struct task_desc {
36 unsigned long nr;
37 unsigned long pid;
38 char comm[COMM_LEN];
40 unsigned long nr_events;
41 unsigned long curr_event;
42 struct sched_atom **atoms;
44 pthread_t thread;
45 sem_t sleep_sem;
47 sem_t ready_for_work;
48 sem_t work_done_sem;
50 u64 cpu_usage;
53 enum sched_event_type {
54 SCHED_EVENT_RUN,
55 SCHED_EVENT_SLEEP,
56 SCHED_EVENT_WAKEUP,
57 SCHED_EVENT_MIGRATION,
60 struct sched_atom {
61 enum sched_event_type type;
62 int specific_wait;
63 u64 timestamp;
64 u64 duration;
65 unsigned long nr;
66 sem_t *wait_sem;
67 struct task_desc *wakee;
70 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
72 enum thread_state {
73 THREAD_SLEEPING = 0,
74 THREAD_WAIT_CPU,
75 THREAD_SCHED_IN,
76 THREAD_IGNORE
79 struct work_atom {
80 struct list_head list;
81 enum thread_state state;
82 u64 sched_out_time;
83 u64 wake_up_time;
84 u64 sched_in_time;
85 u64 runtime;
88 struct work_atoms {
89 struct list_head work_list;
90 struct thread *thread;
91 struct rb_node node;
92 u64 max_lat;
93 u64 max_lat_at;
94 u64 total_lat;
95 u64 nb_atoms;
96 u64 total_runtime;
99 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
101 struct perf_sched;
103 struct trace_sched_handler {
104 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
105 struct perf_sample *sample, struct machine *machine);
107 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
108 struct perf_sample *sample, struct machine *machine);
110 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
111 struct perf_sample *sample, struct machine *machine);
113 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
114 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
115 struct machine *machine);
117 int (*migrate_task_event)(struct perf_sched *sched,
118 struct perf_evsel *evsel,
119 struct perf_sample *sample,
120 struct machine *machine);
123 struct perf_sched {
124 struct perf_tool tool;
125 const char *sort_order;
126 unsigned long nr_tasks;
127 struct task_desc *pid_to_task[MAX_PID];
128 struct task_desc **tasks;
129 const struct trace_sched_handler *tp_handler;
130 pthread_mutex_t start_work_mutex;
131 pthread_mutex_t work_done_wait_mutex;
132 int profile_cpu;
134 * Track the current task - that way we can know whether there's any
135 * weird events, such as a task being switched away that is not current.
137 int max_cpu;
138 u32 curr_pid[MAX_CPUS];
139 struct thread *curr_thread[MAX_CPUS];
140 char next_shortname1;
141 char next_shortname2;
142 unsigned int replay_repeat;
143 unsigned long nr_run_events;
144 unsigned long nr_sleep_events;
145 unsigned long nr_wakeup_events;
146 unsigned long nr_sleep_corrections;
147 unsigned long nr_run_events_optimized;
148 unsigned long targetless_wakeups;
149 unsigned long multitarget_wakeups;
150 unsigned long nr_runs;
151 unsigned long nr_timestamps;
152 unsigned long nr_unordered_timestamps;
153 unsigned long nr_context_switch_bugs;
154 unsigned long nr_events;
155 unsigned long nr_lost_chunks;
156 unsigned long nr_lost_events;
157 u64 run_measurement_overhead;
158 u64 sleep_measurement_overhead;
159 u64 start_time;
160 u64 cpu_usage;
161 u64 runavg_cpu_usage;
162 u64 parent_cpu_usage;
163 u64 runavg_parent_cpu_usage;
164 u64 sum_runtime;
165 u64 sum_fluct;
166 u64 run_avg;
167 u64 all_runtime;
168 u64 all_count;
169 u64 cpu_last_switched[MAX_CPUS];
170 struct rb_root atom_root, sorted_atom_root;
171 struct list_head sort_list, cmp_pid;
174 static u64 get_nsecs(void)
176 struct timespec ts;
178 clock_gettime(CLOCK_MONOTONIC, &ts);
180 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
183 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
185 u64 T0 = get_nsecs(), T1;
187 do {
188 T1 = get_nsecs();
189 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
192 static void sleep_nsecs(u64 nsecs)
194 struct timespec ts;
196 ts.tv_nsec = nsecs % 999999999;
197 ts.tv_sec = nsecs / 999999999;
199 nanosleep(&ts, NULL);
202 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
204 u64 T0, T1, delta, min_delta = 1000000000ULL;
205 int i;
207 for (i = 0; i < 10; i++) {
208 T0 = get_nsecs();
209 burn_nsecs(sched, 0);
210 T1 = get_nsecs();
211 delta = T1-T0;
212 min_delta = min(min_delta, delta);
214 sched->run_measurement_overhead = min_delta;
216 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
219 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
221 u64 T0, T1, delta, min_delta = 1000000000ULL;
222 int i;
224 for (i = 0; i < 10; i++) {
225 T0 = get_nsecs();
226 sleep_nsecs(10000);
227 T1 = get_nsecs();
228 delta = T1-T0;
229 min_delta = min(min_delta, delta);
231 min_delta -= 10000;
232 sched->sleep_measurement_overhead = min_delta;
234 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
237 static struct sched_atom *
238 get_new_event(struct task_desc *task, u64 timestamp)
240 struct sched_atom *event = zalloc(sizeof(*event));
241 unsigned long idx = task->nr_events;
242 size_t size;
244 event->timestamp = timestamp;
245 event->nr = idx;
247 task->nr_events++;
248 size = sizeof(struct sched_atom *) * task->nr_events;
249 task->atoms = realloc(task->atoms, size);
250 BUG_ON(!task->atoms);
252 task->atoms[idx] = event;
254 return event;
257 static struct sched_atom *last_event(struct task_desc *task)
259 if (!task->nr_events)
260 return NULL;
262 return task->atoms[task->nr_events - 1];
265 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266 u64 timestamp, u64 duration)
268 struct sched_atom *event, *curr_event = last_event(task);
271 * optimize an existing RUN event by merging this one
272 * to it:
274 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275 sched->nr_run_events_optimized++;
276 curr_event->duration += duration;
277 return;
280 event = get_new_event(task, timestamp);
282 event->type = SCHED_EVENT_RUN;
283 event->duration = duration;
285 sched->nr_run_events++;
288 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289 u64 timestamp, struct task_desc *wakee)
291 struct sched_atom *event, *wakee_event;
293 event = get_new_event(task, timestamp);
294 event->type = SCHED_EVENT_WAKEUP;
295 event->wakee = wakee;
297 wakee_event = last_event(wakee);
298 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299 sched->targetless_wakeups++;
300 return;
302 if (wakee_event->wait_sem) {
303 sched->multitarget_wakeups++;
304 return;
307 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308 sem_init(wakee_event->wait_sem, 0, 0);
309 wakee_event->specific_wait = 1;
310 event->wait_sem = wakee_event->wait_sem;
312 sched->nr_wakeup_events++;
315 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316 u64 timestamp, u64 task_state __maybe_unused)
318 struct sched_atom *event = get_new_event(task, timestamp);
320 event->type = SCHED_EVENT_SLEEP;
322 sched->nr_sleep_events++;
325 static struct task_desc *register_pid(struct perf_sched *sched,
326 unsigned long pid, const char *comm)
328 struct task_desc *task;
330 BUG_ON(pid >= MAX_PID);
332 task = sched->pid_to_task[pid];
334 if (task)
335 return task;
337 task = zalloc(sizeof(*task));
338 task->pid = pid;
339 task->nr = sched->nr_tasks;
340 strcpy(task->comm, comm);
342 * every task starts in sleeping state - this gets ignored
343 * if there's no wakeup pointing to this sleep state:
345 add_sched_event_sleep(sched, task, 0, 0);
347 sched->pid_to_task[pid] = task;
348 sched->nr_tasks++;
349 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350 BUG_ON(!sched->tasks);
351 sched->tasks[task->nr] = task;
353 if (verbose)
354 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
356 return task;
360 static void print_task_traces(struct perf_sched *sched)
362 struct task_desc *task;
363 unsigned long i;
365 for (i = 0; i < sched->nr_tasks; i++) {
366 task = sched->tasks[i];
367 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368 task->nr, task->comm, task->pid, task->nr_events);
372 static void add_cross_task_wakeups(struct perf_sched *sched)
374 struct task_desc *task1, *task2;
375 unsigned long i, j;
377 for (i = 0; i < sched->nr_tasks; i++) {
378 task1 = sched->tasks[i];
379 j = i + 1;
380 if (j == sched->nr_tasks)
381 j = 0;
382 task2 = sched->tasks[j];
383 add_sched_event_wakeup(sched, task1, 0, task2);
387 static void perf_sched__process_event(struct perf_sched *sched,
388 struct sched_atom *atom)
390 int ret = 0;
392 switch (atom->type) {
393 case SCHED_EVENT_RUN:
394 burn_nsecs(sched, atom->duration);
395 break;
396 case SCHED_EVENT_SLEEP:
397 if (atom->wait_sem)
398 ret = sem_wait(atom->wait_sem);
399 BUG_ON(ret);
400 break;
401 case SCHED_EVENT_WAKEUP:
402 if (atom->wait_sem)
403 ret = sem_post(atom->wait_sem);
404 BUG_ON(ret);
405 break;
406 case SCHED_EVENT_MIGRATION:
407 break;
408 default:
409 BUG_ON(1);
413 static u64 get_cpu_usage_nsec_parent(void)
415 struct rusage ru;
416 u64 sum;
417 int err;
419 err = getrusage(RUSAGE_SELF, &ru);
420 BUG_ON(err);
422 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
425 return sum;
428 static int self_open_counters(void)
430 struct perf_event_attr attr;
431 int fd;
433 memset(&attr, 0, sizeof(attr));
435 attr.type = PERF_TYPE_SOFTWARE;
436 attr.config = PERF_COUNT_SW_TASK_CLOCK;
438 fd = sys_perf_event_open(&attr, 0, -1, -1,
439 perf_event_open_cloexec_flag());
441 if (fd < 0)
442 pr_err("Error: sys_perf_event_open() syscall returned "
443 "with %d (%s)\n", fd, strerror(errno));
444 return fd;
447 static u64 get_cpu_usage_nsec_self(int fd)
449 u64 runtime;
450 int ret;
452 ret = read(fd, &runtime, sizeof(runtime));
453 BUG_ON(ret != sizeof(runtime));
455 return runtime;
458 struct sched_thread_parms {
459 struct task_desc *task;
460 struct perf_sched *sched;
463 static void *thread_func(void *ctx)
465 struct sched_thread_parms *parms = ctx;
466 struct task_desc *this_task = parms->task;
467 struct perf_sched *sched = parms->sched;
468 u64 cpu_usage_0, cpu_usage_1;
469 unsigned long i, ret;
470 char comm2[22];
471 int fd;
473 zfree(&parms);
475 sprintf(comm2, ":%s", this_task->comm);
476 prctl(PR_SET_NAME, comm2);
477 fd = self_open_counters();
478 if (fd < 0)
479 return NULL;
480 again:
481 ret = sem_post(&this_task->ready_for_work);
482 BUG_ON(ret);
483 ret = pthread_mutex_lock(&sched->start_work_mutex);
484 BUG_ON(ret);
485 ret = pthread_mutex_unlock(&sched->start_work_mutex);
486 BUG_ON(ret);
488 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
490 for (i = 0; i < this_task->nr_events; i++) {
491 this_task->curr_event = i;
492 perf_sched__process_event(sched, this_task->atoms[i]);
495 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
496 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
497 ret = sem_post(&this_task->work_done_sem);
498 BUG_ON(ret);
500 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
501 BUG_ON(ret);
502 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
503 BUG_ON(ret);
505 goto again;
508 static void create_tasks(struct perf_sched *sched)
510 struct task_desc *task;
511 pthread_attr_t attr;
512 unsigned long i;
513 int err;
515 err = pthread_attr_init(&attr);
516 BUG_ON(err);
517 err = pthread_attr_setstacksize(&attr,
518 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
519 BUG_ON(err);
520 err = pthread_mutex_lock(&sched->start_work_mutex);
521 BUG_ON(err);
522 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
523 BUG_ON(err);
524 for (i = 0; i < sched->nr_tasks; i++) {
525 struct sched_thread_parms *parms = malloc(sizeof(*parms));
526 BUG_ON(parms == NULL);
527 parms->task = task = sched->tasks[i];
528 parms->sched = sched;
529 sem_init(&task->sleep_sem, 0, 0);
530 sem_init(&task->ready_for_work, 0, 0);
531 sem_init(&task->work_done_sem, 0, 0);
532 task->curr_event = 0;
533 err = pthread_create(&task->thread, &attr, thread_func, parms);
534 BUG_ON(err);
538 static void wait_for_tasks(struct perf_sched *sched)
540 u64 cpu_usage_0, cpu_usage_1;
541 struct task_desc *task;
542 unsigned long i, ret;
544 sched->start_time = get_nsecs();
545 sched->cpu_usage = 0;
546 pthread_mutex_unlock(&sched->work_done_wait_mutex);
548 for (i = 0; i < sched->nr_tasks; i++) {
549 task = sched->tasks[i];
550 ret = sem_wait(&task->ready_for_work);
551 BUG_ON(ret);
552 sem_init(&task->ready_for_work, 0, 0);
554 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
555 BUG_ON(ret);
557 cpu_usage_0 = get_cpu_usage_nsec_parent();
559 pthread_mutex_unlock(&sched->start_work_mutex);
561 for (i = 0; i < sched->nr_tasks; i++) {
562 task = sched->tasks[i];
563 ret = sem_wait(&task->work_done_sem);
564 BUG_ON(ret);
565 sem_init(&task->work_done_sem, 0, 0);
566 sched->cpu_usage += task->cpu_usage;
567 task->cpu_usage = 0;
570 cpu_usage_1 = get_cpu_usage_nsec_parent();
571 if (!sched->runavg_cpu_usage)
572 sched->runavg_cpu_usage = sched->cpu_usage;
573 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
575 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
576 if (!sched->runavg_parent_cpu_usage)
577 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
578 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
579 sched->parent_cpu_usage)/10;
581 ret = pthread_mutex_lock(&sched->start_work_mutex);
582 BUG_ON(ret);
584 for (i = 0; i < sched->nr_tasks; i++) {
585 task = sched->tasks[i];
586 sem_init(&task->sleep_sem, 0, 0);
587 task->curr_event = 0;
591 static void run_one_test(struct perf_sched *sched)
593 u64 T0, T1, delta, avg_delta, fluct;
595 T0 = get_nsecs();
596 wait_for_tasks(sched);
597 T1 = get_nsecs();
599 delta = T1 - T0;
600 sched->sum_runtime += delta;
601 sched->nr_runs++;
603 avg_delta = sched->sum_runtime / sched->nr_runs;
604 if (delta < avg_delta)
605 fluct = avg_delta - delta;
606 else
607 fluct = delta - avg_delta;
608 sched->sum_fluct += fluct;
609 if (!sched->run_avg)
610 sched->run_avg = delta;
611 sched->run_avg = (sched->run_avg * 9 + delta) / 10;
613 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
615 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
617 printf("cpu: %0.2f / %0.2f",
618 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
620 #if 0
622 * rusage statistics done by the parent, these are less
623 * accurate than the sched->sum_exec_runtime based statistics:
625 printf(" [%0.2f / %0.2f]",
626 (double)sched->parent_cpu_usage/1e6,
627 (double)sched->runavg_parent_cpu_usage/1e6);
628 #endif
630 printf("\n");
632 if (sched->nr_sleep_corrections)
633 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
634 sched->nr_sleep_corrections = 0;
637 static void test_calibrations(struct perf_sched *sched)
639 u64 T0, T1;
641 T0 = get_nsecs();
642 burn_nsecs(sched, 1e6);
643 T1 = get_nsecs();
645 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
647 T0 = get_nsecs();
648 sleep_nsecs(1e6);
649 T1 = get_nsecs();
651 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
654 static int
655 replay_wakeup_event(struct perf_sched *sched,
656 struct perf_evsel *evsel, struct perf_sample *sample,
657 struct machine *machine __maybe_unused)
659 const char *comm = perf_evsel__strval(evsel, sample, "comm");
660 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
661 struct task_desc *waker, *wakee;
663 if (verbose) {
664 printf("sched_wakeup event %p\n", evsel);
666 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
669 waker = register_pid(sched, sample->tid, "<unknown>");
670 wakee = register_pid(sched, pid, comm);
672 add_sched_event_wakeup(sched, waker, sample->time, wakee);
673 return 0;
676 static int replay_switch_event(struct perf_sched *sched,
677 struct perf_evsel *evsel,
678 struct perf_sample *sample,
679 struct machine *machine __maybe_unused)
681 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
682 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
683 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
684 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
685 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
686 struct task_desc *prev, __maybe_unused *next;
687 u64 timestamp0, timestamp = sample->time;
688 int cpu = sample->cpu;
689 s64 delta;
691 if (verbose)
692 printf("sched_switch event %p\n", evsel);
694 if (cpu >= MAX_CPUS || cpu < 0)
695 return 0;
697 timestamp0 = sched->cpu_last_switched[cpu];
698 if (timestamp0)
699 delta = timestamp - timestamp0;
700 else
701 delta = 0;
703 if (delta < 0) {
704 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
705 return -1;
708 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
709 prev_comm, prev_pid, next_comm, next_pid, delta);
711 prev = register_pid(sched, prev_pid, prev_comm);
712 next = register_pid(sched, next_pid, next_comm);
714 sched->cpu_last_switched[cpu] = timestamp;
716 add_sched_event_run(sched, prev, timestamp, delta);
717 add_sched_event_sleep(sched, prev, timestamp, prev_state);
719 return 0;
722 static int replay_fork_event(struct perf_sched *sched,
723 union perf_event *event,
724 struct machine *machine)
726 struct thread *child, *parent;
728 child = machine__findnew_thread(machine, event->fork.pid,
729 event->fork.tid);
730 parent = machine__findnew_thread(machine, event->fork.ppid,
731 event->fork.ptid);
733 if (child == NULL || parent == NULL) {
734 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
735 child, parent);
736 return 0;
739 if (verbose) {
740 printf("fork event\n");
741 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
742 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
745 register_pid(sched, parent->tid, thread__comm_str(parent));
746 register_pid(sched, child->tid, thread__comm_str(child));
747 return 0;
750 struct sort_dimension {
751 const char *name;
752 sort_fn_t cmp;
753 struct list_head list;
756 static int
757 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
759 struct sort_dimension *sort;
760 int ret = 0;
762 BUG_ON(list_empty(list));
764 list_for_each_entry(sort, list, list) {
765 ret = sort->cmp(l, r);
766 if (ret)
767 return ret;
770 return ret;
773 static struct work_atoms *
774 thread_atoms_search(struct rb_root *root, struct thread *thread,
775 struct list_head *sort_list)
777 struct rb_node *node = root->rb_node;
778 struct work_atoms key = { .thread = thread };
780 while (node) {
781 struct work_atoms *atoms;
782 int cmp;
784 atoms = container_of(node, struct work_atoms, node);
786 cmp = thread_lat_cmp(sort_list, &key, atoms);
787 if (cmp > 0)
788 node = node->rb_left;
789 else if (cmp < 0)
790 node = node->rb_right;
791 else {
792 BUG_ON(thread != atoms->thread);
793 return atoms;
796 return NULL;
799 static void
800 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
801 struct list_head *sort_list)
803 struct rb_node **new = &(root->rb_node), *parent = NULL;
805 while (*new) {
806 struct work_atoms *this;
807 int cmp;
809 this = container_of(*new, struct work_atoms, node);
810 parent = *new;
812 cmp = thread_lat_cmp(sort_list, data, this);
814 if (cmp > 0)
815 new = &((*new)->rb_left);
816 else
817 new = &((*new)->rb_right);
820 rb_link_node(&data->node, parent, new);
821 rb_insert_color(&data->node, root);
824 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
826 struct work_atoms *atoms = zalloc(sizeof(*atoms));
827 if (!atoms) {
828 pr_err("No memory at %s\n", __func__);
829 return -1;
832 atoms->thread = thread;
833 INIT_LIST_HEAD(&atoms->work_list);
834 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
835 return 0;
838 static char sched_out_state(u64 prev_state)
840 const char *str = TASK_STATE_TO_CHAR_STR;
842 return str[prev_state];
845 static int
846 add_sched_out_event(struct work_atoms *atoms,
847 char run_state,
848 u64 timestamp)
850 struct work_atom *atom = zalloc(sizeof(*atom));
851 if (!atom) {
852 pr_err("Non memory at %s", __func__);
853 return -1;
856 atom->sched_out_time = timestamp;
858 if (run_state == 'R') {
859 atom->state = THREAD_WAIT_CPU;
860 atom->wake_up_time = atom->sched_out_time;
863 list_add_tail(&atom->list, &atoms->work_list);
864 return 0;
867 static void
868 add_runtime_event(struct work_atoms *atoms, u64 delta,
869 u64 timestamp __maybe_unused)
871 struct work_atom *atom;
873 BUG_ON(list_empty(&atoms->work_list));
875 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
877 atom->runtime += delta;
878 atoms->total_runtime += delta;
881 static void
882 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
884 struct work_atom *atom;
885 u64 delta;
887 if (list_empty(&atoms->work_list))
888 return;
890 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
892 if (atom->state != THREAD_WAIT_CPU)
893 return;
895 if (timestamp < atom->wake_up_time) {
896 atom->state = THREAD_IGNORE;
897 return;
900 atom->state = THREAD_SCHED_IN;
901 atom->sched_in_time = timestamp;
903 delta = atom->sched_in_time - atom->wake_up_time;
904 atoms->total_lat += delta;
905 if (delta > atoms->max_lat) {
906 atoms->max_lat = delta;
907 atoms->max_lat_at = timestamp;
909 atoms->nb_atoms++;
912 static int latency_switch_event(struct perf_sched *sched,
913 struct perf_evsel *evsel,
914 struct perf_sample *sample,
915 struct machine *machine)
917 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
918 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
919 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
920 struct work_atoms *out_events, *in_events;
921 struct thread *sched_out, *sched_in;
922 u64 timestamp0, timestamp = sample->time;
923 int cpu = sample->cpu;
924 s64 delta;
926 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
928 timestamp0 = sched->cpu_last_switched[cpu];
929 sched->cpu_last_switched[cpu] = timestamp;
930 if (timestamp0)
931 delta = timestamp - timestamp0;
932 else
933 delta = 0;
935 if (delta < 0) {
936 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
937 return -1;
940 sched_out = machine__findnew_thread(machine, -1, prev_pid);
941 sched_in = machine__findnew_thread(machine, -1, next_pid);
943 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
944 if (!out_events) {
945 if (thread_atoms_insert(sched, sched_out))
946 return -1;
947 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
948 if (!out_events) {
949 pr_err("out-event: Internal tree error");
950 return -1;
953 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
954 return -1;
956 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
957 if (!in_events) {
958 if (thread_atoms_insert(sched, sched_in))
959 return -1;
960 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
961 if (!in_events) {
962 pr_err("in-event: Internal tree error");
963 return -1;
966 * Take came in we have not heard about yet,
967 * add in an initial atom in runnable state:
969 if (add_sched_out_event(in_events, 'R', timestamp))
970 return -1;
972 add_sched_in_event(in_events, timestamp);
974 return 0;
977 static int latency_runtime_event(struct perf_sched *sched,
978 struct perf_evsel *evsel,
979 struct perf_sample *sample,
980 struct machine *machine)
982 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
983 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
984 struct thread *thread = machine__findnew_thread(machine, -1, pid);
985 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
986 u64 timestamp = sample->time;
987 int cpu = sample->cpu;
989 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
990 if (!atoms) {
991 if (thread_atoms_insert(sched, thread))
992 return -1;
993 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
994 if (!atoms) {
995 pr_err("in-event: Internal tree error");
996 return -1;
998 if (add_sched_out_event(atoms, 'R', timestamp))
999 return -1;
1002 add_runtime_event(atoms, runtime, timestamp);
1003 return 0;
1006 static int latency_wakeup_event(struct perf_sched *sched,
1007 struct perf_evsel *evsel,
1008 struct perf_sample *sample,
1009 struct machine *machine)
1011 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1012 struct work_atoms *atoms;
1013 struct work_atom *atom;
1014 struct thread *wakee;
1015 u64 timestamp = sample->time;
1017 wakee = machine__findnew_thread(machine, -1, pid);
1018 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1019 if (!atoms) {
1020 if (thread_atoms_insert(sched, wakee))
1021 return -1;
1022 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1023 if (!atoms) {
1024 pr_err("wakeup-event: Internal tree error");
1025 return -1;
1027 if (add_sched_out_event(atoms, 'S', timestamp))
1028 return -1;
1031 BUG_ON(list_empty(&atoms->work_list));
1033 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1036 * As we do not guarantee the wakeup event happens when
1037 * task is out of run queue, also may happen when task is
1038 * on run queue and wakeup only change ->state to TASK_RUNNING,
1039 * then we should not set the ->wake_up_time when wake up a
1040 * task which is on run queue.
1042 * You WILL be missing events if you've recorded only
1043 * one CPU, or are only looking at only one, so don't
1044 * skip in this case.
1046 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1047 return 0;
1049 sched->nr_timestamps++;
1050 if (atom->sched_out_time > timestamp) {
1051 sched->nr_unordered_timestamps++;
1052 return 0;
1055 atom->state = THREAD_WAIT_CPU;
1056 atom->wake_up_time = timestamp;
1057 return 0;
1060 static int latency_migrate_task_event(struct perf_sched *sched,
1061 struct perf_evsel *evsel,
1062 struct perf_sample *sample,
1063 struct machine *machine)
1065 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1066 u64 timestamp = sample->time;
1067 struct work_atoms *atoms;
1068 struct work_atom *atom;
1069 struct thread *migrant;
1072 * Only need to worry about migration when profiling one CPU.
1074 if (sched->profile_cpu == -1)
1075 return 0;
1077 migrant = machine__findnew_thread(machine, -1, pid);
1078 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1079 if (!atoms) {
1080 if (thread_atoms_insert(sched, migrant))
1081 return -1;
1082 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1083 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1084 if (!atoms) {
1085 pr_err("migration-event: Internal tree error");
1086 return -1;
1088 if (add_sched_out_event(atoms, 'R', timestamp))
1089 return -1;
1092 BUG_ON(list_empty(&atoms->work_list));
1094 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1095 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1097 sched->nr_timestamps++;
1099 if (atom->sched_out_time > timestamp)
1100 sched->nr_unordered_timestamps++;
1102 return 0;
1105 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1107 int i;
1108 int ret;
1109 u64 avg;
1111 if (!work_list->nb_atoms)
1112 return;
1114 * Ignore idle threads:
1116 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1117 return;
1119 sched->all_runtime += work_list->total_runtime;
1120 sched->all_count += work_list->nb_atoms;
1122 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1124 for (i = 0; i < 24 - ret; i++)
1125 printf(" ");
1127 avg = work_list->total_lat / work_list->nb_atoms;
1129 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1130 (double)work_list->total_runtime / 1e6,
1131 work_list->nb_atoms, (double)avg / 1e6,
1132 (double)work_list->max_lat / 1e6,
1133 (double)work_list->max_lat_at / 1e9);
1136 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1138 if (l->thread->tid < r->thread->tid)
1139 return -1;
1140 if (l->thread->tid > r->thread->tid)
1141 return 1;
1143 return 0;
1146 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1148 u64 avgl, avgr;
1150 if (!l->nb_atoms)
1151 return -1;
1153 if (!r->nb_atoms)
1154 return 1;
1156 avgl = l->total_lat / l->nb_atoms;
1157 avgr = r->total_lat / r->nb_atoms;
1159 if (avgl < avgr)
1160 return -1;
1161 if (avgl > avgr)
1162 return 1;
1164 return 0;
1167 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1169 if (l->max_lat < r->max_lat)
1170 return -1;
1171 if (l->max_lat > r->max_lat)
1172 return 1;
1174 return 0;
1177 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1179 if (l->nb_atoms < r->nb_atoms)
1180 return -1;
1181 if (l->nb_atoms > r->nb_atoms)
1182 return 1;
1184 return 0;
1187 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1189 if (l->total_runtime < r->total_runtime)
1190 return -1;
1191 if (l->total_runtime > r->total_runtime)
1192 return 1;
1194 return 0;
1197 static int sort_dimension__add(const char *tok, struct list_head *list)
1199 size_t i;
1200 static struct sort_dimension avg_sort_dimension = {
1201 .name = "avg",
1202 .cmp = avg_cmp,
1204 static struct sort_dimension max_sort_dimension = {
1205 .name = "max",
1206 .cmp = max_cmp,
1208 static struct sort_dimension pid_sort_dimension = {
1209 .name = "pid",
1210 .cmp = pid_cmp,
1212 static struct sort_dimension runtime_sort_dimension = {
1213 .name = "runtime",
1214 .cmp = runtime_cmp,
1216 static struct sort_dimension switch_sort_dimension = {
1217 .name = "switch",
1218 .cmp = switch_cmp,
1220 struct sort_dimension *available_sorts[] = {
1221 &pid_sort_dimension,
1222 &avg_sort_dimension,
1223 &max_sort_dimension,
1224 &switch_sort_dimension,
1225 &runtime_sort_dimension,
1228 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1229 if (!strcmp(available_sorts[i]->name, tok)) {
1230 list_add_tail(&available_sorts[i]->list, list);
1232 return 0;
1236 return -1;
1239 static void perf_sched__sort_lat(struct perf_sched *sched)
1241 struct rb_node *node;
1243 for (;;) {
1244 struct work_atoms *data;
1245 node = rb_first(&sched->atom_root);
1246 if (!node)
1247 break;
1249 rb_erase(node, &sched->atom_root);
1250 data = rb_entry(node, struct work_atoms, node);
1251 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1255 static int process_sched_wakeup_event(struct perf_tool *tool,
1256 struct perf_evsel *evsel,
1257 struct perf_sample *sample,
1258 struct machine *machine)
1260 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1262 if (sched->tp_handler->wakeup_event)
1263 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1265 return 0;
1268 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1269 struct perf_sample *sample, struct machine *machine)
1271 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1272 struct thread *sched_in;
1273 int new_shortname;
1274 u64 timestamp0, timestamp = sample->time;
1275 s64 delta;
1276 int cpu, this_cpu = sample->cpu;
1278 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1280 if (this_cpu > sched->max_cpu)
1281 sched->max_cpu = this_cpu;
1283 timestamp0 = sched->cpu_last_switched[this_cpu];
1284 sched->cpu_last_switched[this_cpu] = timestamp;
1285 if (timestamp0)
1286 delta = timestamp - timestamp0;
1287 else
1288 delta = 0;
1290 if (delta < 0) {
1291 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1292 return -1;
1295 sched_in = machine__findnew_thread(machine, -1, next_pid);
1297 sched->curr_thread[this_cpu] = sched_in;
1299 printf(" ");
1301 new_shortname = 0;
1302 if (!sched_in->shortname[0]) {
1303 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1305 * Don't allocate a letter-number for swapper:0
1306 * as a shortname. Instead, we use '.' for it.
1308 sched_in->shortname[0] = '.';
1309 sched_in->shortname[1] = ' ';
1310 } else {
1311 sched_in->shortname[0] = sched->next_shortname1;
1312 sched_in->shortname[1] = sched->next_shortname2;
1314 if (sched->next_shortname1 < 'Z') {
1315 sched->next_shortname1++;
1316 } else {
1317 sched->next_shortname1 = 'A';
1318 if (sched->next_shortname2 < '9')
1319 sched->next_shortname2++;
1320 else
1321 sched->next_shortname2 = '0';
1324 new_shortname = 1;
1327 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1328 if (cpu != this_cpu)
1329 printf(" ");
1330 else
1331 printf("*");
1333 if (sched->curr_thread[cpu])
1334 printf("%2s ", sched->curr_thread[cpu]->shortname);
1335 else
1336 printf(" ");
1339 printf(" %12.6f secs ", (double)timestamp/1e9);
1340 if (new_shortname) {
1341 printf("%s => %s:%d\n",
1342 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1343 } else {
1344 printf("\n");
1347 return 0;
1350 static int process_sched_switch_event(struct perf_tool *tool,
1351 struct perf_evsel *evsel,
1352 struct perf_sample *sample,
1353 struct machine *machine)
1355 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1356 int this_cpu = sample->cpu, err = 0;
1357 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1358 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1360 if (sched->curr_pid[this_cpu] != (u32)-1) {
1362 * Are we trying to switch away a PID that is
1363 * not current?
1365 if (sched->curr_pid[this_cpu] != prev_pid)
1366 sched->nr_context_switch_bugs++;
1369 if (sched->tp_handler->switch_event)
1370 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1372 sched->curr_pid[this_cpu] = next_pid;
1373 return err;
1376 static int process_sched_runtime_event(struct perf_tool *tool,
1377 struct perf_evsel *evsel,
1378 struct perf_sample *sample,
1379 struct machine *machine)
1381 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1383 if (sched->tp_handler->runtime_event)
1384 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1386 return 0;
1389 static int perf_sched__process_fork_event(struct perf_tool *tool,
1390 union perf_event *event,
1391 struct perf_sample *sample,
1392 struct machine *machine)
1394 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1396 /* run the fork event through the perf machineruy */
1397 perf_event__process_fork(tool, event, sample, machine);
1399 /* and then run additional processing needed for this command */
1400 if (sched->tp_handler->fork_event)
1401 return sched->tp_handler->fork_event(sched, event, machine);
1403 return 0;
1406 static int process_sched_migrate_task_event(struct perf_tool *tool,
1407 struct perf_evsel *evsel,
1408 struct perf_sample *sample,
1409 struct machine *machine)
1411 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1413 if (sched->tp_handler->migrate_task_event)
1414 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1416 return 0;
1419 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1420 struct perf_evsel *evsel,
1421 struct perf_sample *sample,
1422 struct machine *machine);
1424 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1425 union perf_event *event __maybe_unused,
1426 struct perf_sample *sample,
1427 struct perf_evsel *evsel,
1428 struct machine *machine)
1430 int err = 0;
1432 evsel->hists.stats.total_period += sample->period;
1433 hists__inc_nr_samples(&evsel->hists, true);
1435 if (evsel->handler != NULL) {
1436 tracepoint_handler f = evsel->handler;
1437 err = f(tool, evsel, sample, machine);
1440 return err;
1443 static int perf_sched__read_events(struct perf_sched *sched,
1444 struct perf_session **psession)
1446 const struct perf_evsel_str_handler handlers[] = {
1447 { "sched:sched_switch", process_sched_switch_event, },
1448 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1449 { "sched:sched_wakeup", process_sched_wakeup_event, },
1450 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1451 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1453 struct perf_session *session;
1454 struct perf_data_file file = {
1455 .path = input_name,
1456 .mode = PERF_DATA_MODE_READ,
1459 session = perf_session__new(&file, false, &sched->tool);
1460 if (session == NULL) {
1461 pr_debug("No Memory for session\n");
1462 return -1;
1465 if (perf_session__set_tracepoints_handlers(session, handlers))
1466 goto out_delete;
1468 if (perf_session__has_traces(session, "record -R")) {
1469 int err = perf_session__process_events(session, &sched->tool);
1470 if (err) {
1471 pr_err("Failed to process events, error %d", err);
1472 goto out_delete;
1475 sched->nr_events = session->stats.nr_events[0];
1476 sched->nr_lost_events = session->stats.total_lost;
1477 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1480 if (psession)
1481 *psession = session;
1482 else
1483 perf_session__delete(session);
1485 return 0;
1487 out_delete:
1488 perf_session__delete(session);
1489 return -1;
1492 static void print_bad_events(struct perf_sched *sched)
1494 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1495 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1496 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1497 sched->nr_unordered_timestamps, sched->nr_timestamps);
1499 if (sched->nr_lost_events && sched->nr_events) {
1500 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1501 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1502 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1504 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1505 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1506 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1507 sched->nr_context_switch_bugs, sched->nr_timestamps);
1508 if (sched->nr_lost_events)
1509 printf(" (due to lost events?)");
1510 printf("\n");
1514 static int perf_sched__lat(struct perf_sched *sched)
1516 struct rb_node *next;
1517 struct perf_session *session;
1519 setup_pager();
1521 /* save session -- references to threads are held in work_list */
1522 if (perf_sched__read_events(sched, &session))
1523 return -1;
1525 perf_sched__sort_lat(sched);
1527 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1528 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1529 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1531 next = rb_first(&sched->sorted_atom_root);
1533 while (next) {
1534 struct work_atoms *work_list;
1536 work_list = rb_entry(next, struct work_atoms, node);
1537 output_lat_thread(sched, work_list);
1538 next = rb_next(next);
1541 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1542 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1543 (double)sched->all_runtime / 1e6, sched->all_count);
1545 printf(" ---------------------------------------------------\n");
1547 print_bad_events(sched);
1548 printf("\n");
1550 perf_session__delete(session);
1551 return 0;
1554 static int perf_sched__map(struct perf_sched *sched)
1556 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1558 setup_pager();
1559 if (perf_sched__read_events(sched, NULL))
1560 return -1;
1561 print_bad_events(sched);
1562 return 0;
1565 static int perf_sched__replay(struct perf_sched *sched)
1567 unsigned long i;
1569 calibrate_run_measurement_overhead(sched);
1570 calibrate_sleep_measurement_overhead(sched);
1572 test_calibrations(sched);
1574 if (perf_sched__read_events(sched, NULL))
1575 return -1;
1577 printf("nr_run_events: %ld\n", sched->nr_run_events);
1578 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1579 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1581 if (sched->targetless_wakeups)
1582 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1583 if (sched->multitarget_wakeups)
1584 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1585 if (sched->nr_run_events_optimized)
1586 printf("run atoms optimized: %ld\n",
1587 sched->nr_run_events_optimized);
1589 print_task_traces(sched);
1590 add_cross_task_wakeups(sched);
1592 create_tasks(sched);
1593 printf("------------------------------------------------------------\n");
1594 for (i = 0; i < sched->replay_repeat; i++)
1595 run_one_test(sched);
1597 return 0;
1600 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1601 const char * const usage_msg[])
1603 char *tmp, *tok, *str = strdup(sched->sort_order);
1605 for (tok = strtok_r(str, ", ", &tmp);
1606 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1607 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1608 error("Unknown --sort key: `%s'", tok);
1609 usage_with_options(usage_msg, options);
1613 free(str);
1615 sort_dimension__add("pid", &sched->cmp_pid);
1618 static int __cmd_record(int argc, const char **argv)
1620 unsigned int rec_argc, i, j;
1621 const char **rec_argv;
1622 const char * const record_args[] = {
1623 "record",
1624 "-a",
1625 "-R",
1626 "-m", "1024",
1627 "-c", "1",
1628 "-e", "sched:sched_switch",
1629 "-e", "sched:sched_stat_wait",
1630 "-e", "sched:sched_stat_sleep",
1631 "-e", "sched:sched_stat_iowait",
1632 "-e", "sched:sched_stat_runtime",
1633 "-e", "sched:sched_process_fork",
1634 "-e", "sched:sched_wakeup",
1635 "-e", "sched:sched_wakeup_new",
1636 "-e", "sched:sched_migrate_task",
1639 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1640 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1642 if (rec_argv == NULL)
1643 return -ENOMEM;
1645 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1646 rec_argv[i] = strdup(record_args[i]);
1648 for (j = 1; j < (unsigned int)argc; j++, i++)
1649 rec_argv[i] = argv[j];
1651 BUG_ON(i != rec_argc);
1653 return cmd_record(i, rec_argv, NULL);
1656 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1658 const char default_sort_order[] = "avg, max, switch, runtime";
1659 struct perf_sched sched = {
1660 .tool = {
1661 .sample = perf_sched__process_tracepoint_sample,
1662 .comm = perf_event__process_comm,
1663 .lost = perf_event__process_lost,
1664 .fork = perf_sched__process_fork_event,
1665 .ordered_samples = true,
1667 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1668 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1669 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1670 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1671 .sort_order = default_sort_order,
1672 .replay_repeat = 10,
1673 .profile_cpu = -1,
1674 .next_shortname1 = 'A',
1675 .next_shortname2 = '0',
1677 const struct option latency_options[] = {
1678 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1679 "sort by key(s): runtime, switch, avg, max"),
1680 OPT_INCR('v', "verbose", &verbose,
1681 "be more verbose (show symbol address, etc)"),
1682 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1683 "CPU to profile on"),
1684 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1685 "dump raw trace in ASCII"),
1686 OPT_END()
1688 const struct option replay_options[] = {
1689 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1690 "repeat the workload replay N times (-1: infinite)"),
1691 OPT_INCR('v', "verbose", &verbose,
1692 "be more verbose (show symbol address, etc)"),
1693 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1694 "dump raw trace in ASCII"),
1695 OPT_END()
1697 const struct option sched_options[] = {
1698 OPT_STRING('i', "input", &input_name, "file",
1699 "input file name"),
1700 OPT_INCR('v', "verbose", &verbose,
1701 "be more verbose (show symbol address, etc)"),
1702 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1703 "dump raw trace in ASCII"),
1704 OPT_END()
1706 const char * const latency_usage[] = {
1707 "perf sched latency [<options>]",
1708 NULL
1710 const char * const replay_usage[] = {
1711 "perf sched replay [<options>]",
1712 NULL
1714 const char *const sched_subcommands[] = { "record", "latency", "map",
1715 "replay", "script", NULL };
1716 const char *sched_usage[] = {
1717 NULL,
1718 NULL
1720 struct trace_sched_handler lat_ops = {
1721 .wakeup_event = latency_wakeup_event,
1722 .switch_event = latency_switch_event,
1723 .runtime_event = latency_runtime_event,
1724 .migrate_task_event = latency_migrate_task_event,
1726 struct trace_sched_handler map_ops = {
1727 .switch_event = map_switch_event,
1729 struct trace_sched_handler replay_ops = {
1730 .wakeup_event = replay_wakeup_event,
1731 .switch_event = replay_switch_event,
1732 .fork_event = replay_fork_event,
1734 unsigned int i;
1736 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1737 sched.curr_pid[i] = -1;
1739 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1740 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1741 if (!argc)
1742 usage_with_options(sched_usage, sched_options);
1745 * Aliased to 'perf script' for now:
1747 if (!strcmp(argv[0], "script"))
1748 return cmd_script(argc, argv, prefix);
1750 symbol__init();
1751 if (!strncmp(argv[0], "rec", 3)) {
1752 return __cmd_record(argc, argv);
1753 } else if (!strncmp(argv[0], "lat", 3)) {
1754 sched.tp_handler = &lat_ops;
1755 if (argc > 1) {
1756 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757 if (argc)
1758 usage_with_options(latency_usage, latency_options);
1760 setup_sorting(&sched, latency_options, latency_usage);
1761 return perf_sched__lat(&sched);
1762 } else if (!strcmp(argv[0], "map")) {
1763 sched.tp_handler = &map_ops;
1764 setup_sorting(&sched, latency_options, latency_usage);
1765 return perf_sched__map(&sched);
1766 } else if (!strncmp(argv[0], "rep", 3)) {
1767 sched.tp_handler = &replay_ops;
1768 if (argc) {
1769 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770 if (argc)
1771 usage_with_options(replay_usage, replay_options);
1773 return perf_sched__replay(&sched);
1774 } else {
1775 usage_with_options(sched_usage, sched_options);
1778 return 0;