x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / cris / arch-v32 / mach-fs / arbiter.c
blob3f8ebb5c14771300e49106f78dc58acaba67d037
1 /*
2 * Memory arbiter functions. Allocates bandwidth through the
3 * arbiter and sets up arbiter breakpoints.
5 * The algorithm first assigns slots to the clients that has specified
6 * bandwidth (e.g. ethernet) and then the remaining slots are divided
7 * on all the active clients.
9 * Copyright (c) 2004-2007 Axis Communications AB.
12 #include <hwregs/reg_map.h>
13 #include <hwregs/reg_rdwr.h>
14 #include <hwregs/marb_defs.h>
15 #include <arbiter.h>
16 #include <hwregs/intr_vect.h>
17 #include <linux/interrupt.h>
18 #include <linux/signal.h>
19 #include <linux/errno.h>
20 #include <linux/spinlock.h>
21 #include <asm/io.h>
22 #include <asm/irq_regs.h>
24 struct crisv32_watch_entry {
25 unsigned long instance;
26 watch_callback *cb;
27 unsigned long start;
28 unsigned long end;
29 int used;
32 #define NUMBER_OF_BP 4
33 #define NBR_OF_CLIENTS 14
34 #define NBR_OF_SLOTS 64
35 #define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */
36 #define INTMEM_BANDWIDTH 400000000
37 #define NBR_OF_REGIONS 2
39 static struct crisv32_watch_entry watches[NUMBER_OF_BP] = {
40 {regi_marb_bp0},
41 {regi_marb_bp1},
42 {regi_marb_bp2},
43 {regi_marb_bp3}
46 static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
47 static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
48 static int max_bandwidth[NBR_OF_REGIONS] =
49 { SDRAM_BANDWIDTH, INTMEM_BANDWIDTH };
51 DEFINE_SPINLOCK(arbiter_lock);
53 static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id);
56 * "I'm the arbiter, I know the score.
57 * From square one I'll be watching all 64."
58 * (memory arbiter slots, that is)
60 * Or in other words:
61 * Program the memory arbiter slots for "region" according to what's
62 * in requested_slots[] and active_clients[], while minimizing
63 * latency. A caller may pass a non-zero positive amount for
64 * "unused_slots", which must then be the unallocated, remaining
65 * number of slots, free to hand out to any client.
68 static void crisv32_arbiter_config(int region, int unused_slots)
70 int slot;
71 int client;
72 int interval = 0;
75 * This vector corresponds to the hardware arbiter slots (see
76 * the hardware documentation for semantics). We initialize
77 * each slot with a suitable sentinel value outside the valid
78 * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
79 * client indexes. Then it's fed to the hardware.
81 s8 val[NBR_OF_SLOTS];
83 for (slot = 0; slot < NBR_OF_SLOTS; slot++)
84 val[slot] = -1;
86 for (client = 0; client < NBR_OF_CLIENTS; client++) {
87 int pos;
88 /* Allocate the requested non-zero number of slots, but
89 * also give clients with zero-requests one slot each
90 * while stocks last. We do the latter here, in client
91 * order. This makes sure zero-request clients are the
92 * first to get to any spare slots, else those slots
93 * could, when bandwidth is allocated close to the limit,
94 * all be allocated to low-index non-zero-request clients
95 * in the default-fill loop below. Another positive but
96 * secondary effect is a somewhat better spread of the
97 * zero-bandwidth clients in the vector, avoiding some of
98 * the latency that could otherwise be caused by the
99 * partitioning of non-zero-bandwidth clients at low
100 * indexes and zero-bandwidth clients at high
101 * indexes. (Note that this spreading can only affect the
102 * unallocated bandwidth.) All the above only matters for
103 * memory-intensive situations, of course.
105 if (!requested_slots[region][client]) {
107 * Skip inactive clients. Also skip zero-slot
108 * allocations in this pass when there are no known
109 * free slots.
111 if (!active_clients[region][client]
112 || unused_slots <= 0)
113 continue;
115 unused_slots--;
117 /* Only allocate one slot for this client. */
118 interval = NBR_OF_SLOTS;
119 } else
120 interval =
121 NBR_OF_SLOTS / requested_slots[region][client];
123 pos = 0;
124 while (pos < NBR_OF_SLOTS) {
125 if (val[pos] >= 0)
126 pos++;
127 else {
128 val[pos] = client;
129 pos += interval;
134 client = 0;
135 for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
137 * Allocate remaining slots in round-robin
138 * client-number order for active clients. For this
139 * pass, we ignore requested bandwidth and previous
140 * allocations.
142 if (val[slot] < 0) {
143 int first = client;
144 while (!active_clients[region][client]) {
145 client = (client + 1) % NBR_OF_CLIENTS;
146 if (client == first)
147 break;
149 val[slot] = client;
150 client = (client + 1) % NBR_OF_CLIENTS;
152 if (region == EXT_REGION)
153 REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot,
154 val[slot]);
155 else if (region == INT_REGION)
156 REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot,
157 val[slot]);
161 extern char _stext, _etext;
163 static void crisv32_arbiter_init(void)
165 static int initialized;
167 if (initialized)
168 return;
170 initialized = 1;
173 * CPU caches are always set to active, but with zero
174 * bandwidth allocated. It should be ok to allocate zero
175 * bandwidth for the caches, because DMA for other channels
176 * will supposedly finish, once their programmed amount is
177 * done, and then the caches will get access according to the
178 * "fixed scheme" for unclaimed slots. Though, if for some
179 * use-case somewhere, there's a maximum CPU latency for
180 * e.g. some interrupt, we have to start allocating specific
181 * bandwidth for the CPU caches too.
183 active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
184 crisv32_arbiter_config(EXT_REGION, 0);
185 crisv32_arbiter_config(INT_REGION, 0);
187 if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, IRQF_DISABLED,
188 "arbiter", NULL))
189 printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
191 #ifndef CONFIG_ETRAX_KGDB
192 /* Global watch for writes to kernel text segment. */
193 crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
194 arbiter_all_clients, arbiter_all_write, NULL);
195 #endif
198 /* Main entry for bandwidth allocation. */
200 int crisv32_arbiter_allocate_bandwidth(int client, int region,
201 unsigned long bandwidth)
203 int i;
204 int total_assigned = 0;
205 int total_clients = 0;
206 int req;
208 crisv32_arbiter_init();
210 for (i = 0; i < NBR_OF_CLIENTS; i++) {
211 total_assigned += requested_slots[region][i];
212 total_clients += active_clients[region][i];
215 /* Avoid division by 0 for 0-bandwidth requests. */
216 req = bandwidth == 0
217 ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
220 * We make sure that there are enough slots only for non-zero
221 * requests. Requesting 0 bandwidth *may* allocate slots,
222 * though if all bandwidth is allocated, such a client won't
223 * get any and will have to rely on getting memory access
224 * according to the fixed scheme that's the default when one
225 * of the slot-allocated clients doesn't claim their slot.
227 if (total_assigned + req > NBR_OF_SLOTS)
228 return -ENOMEM;
230 active_clients[region][client] = 1;
231 requested_slots[region][client] = req;
232 crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
234 return 0;
238 * Main entry for bandwidth deallocation.
240 * Strictly speaking, for a somewhat constant set of clients where
241 * each client gets a constant bandwidth and is just enabled or
242 * disabled (somewhat dynamically), no action is necessary here to
243 * avoid starvation for non-zero-allocation clients, as the allocated
244 * slots will just be unused. However, handing out those unused slots
245 * to active clients avoids needless latency if the "fixed scheme"
246 * would give unclaimed slots to an eager low-index client.
249 void crisv32_arbiter_deallocate_bandwidth(int client, int region)
251 int i;
252 int total_assigned = 0;
254 requested_slots[region][client] = 0;
255 active_clients[region][client] = 0;
257 for (i = 0; i < NBR_OF_CLIENTS; i++)
258 total_assigned += requested_slots[region][i];
260 crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
263 int crisv32_arbiter_watch(unsigned long start, unsigned long size,
264 unsigned long clients, unsigned long accesses,
265 watch_callback *cb)
267 int i;
269 crisv32_arbiter_init();
271 if (start > 0x80000000) {
272 printk(KERN_ERR "Arbiter: %lX doesn't look like a "
273 "physical address", start);
274 return -EFAULT;
277 spin_lock(&arbiter_lock);
279 for (i = 0; i < NUMBER_OF_BP; i++) {
280 if (!watches[i].used) {
281 reg_marb_rw_intr_mask intr_mask =
282 REG_RD(marb, regi_marb, rw_intr_mask);
284 watches[i].used = 1;
285 watches[i].start = start;
286 watches[i].end = start + size;
287 watches[i].cb = cb;
289 REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr,
290 watches[i].start);
291 REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr,
292 watches[i].end);
293 REG_WR_INT(marb_bp, watches[i].instance, rw_op,
294 accesses);
295 REG_WR_INT(marb_bp, watches[i].instance, rw_clients,
296 clients);
298 if (i == 0)
299 intr_mask.bp0 = regk_marb_yes;
300 else if (i == 1)
301 intr_mask.bp1 = regk_marb_yes;
302 else if (i == 2)
303 intr_mask.bp2 = regk_marb_yes;
304 else if (i == 3)
305 intr_mask.bp3 = regk_marb_yes;
307 REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
308 spin_unlock(&arbiter_lock);
310 return i;
313 spin_unlock(&arbiter_lock);
314 return -ENOMEM;
317 int crisv32_arbiter_unwatch(int id)
319 reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
321 crisv32_arbiter_init();
323 spin_lock(&arbiter_lock);
325 if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
326 spin_unlock(&arbiter_lock);
327 return -EINVAL;
330 memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
332 if (id == 0)
333 intr_mask.bp0 = regk_marb_no;
334 else if (id == 1)
335 intr_mask.bp1 = regk_marb_no;
336 else if (id == 2)
337 intr_mask.bp2 = regk_marb_no;
338 else if (id == 3)
339 intr_mask.bp3 = regk_marb_no;
341 REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
343 spin_unlock(&arbiter_lock);
344 return 0;
347 extern void show_registers(struct pt_regs *regs);
349 static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id)
351 reg_marb_r_masked_intr masked_intr =
352 REG_RD(marb, regi_marb, r_masked_intr);
353 reg_marb_bp_r_brk_clients r_clients;
354 reg_marb_bp_r_brk_addr r_addr;
355 reg_marb_bp_r_brk_op r_op;
356 reg_marb_bp_r_brk_first_client r_first;
357 reg_marb_bp_r_brk_size r_size;
358 reg_marb_bp_rw_ack ack = { 0 };
359 reg_marb_rw_ack_intr ack_intr = {
360 .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
362 struct crisv32_watch_entry *watch;
364 if (masked_intr.bp0) {
365 watch = &watches[0];
366 ack_intr.bp0 = regk_marb_yes;
367 } else if (masked_intr.bp1) {
368 watch = &watches[1];
369 ack_intr.bp1 = regk_marb_yes;
370 } else if (masked_intr.bp2) {
371 watch = &watches[2];
372 ack_intr.bp2 = regk_marb_yes;
373 } else if (masked_intr.bp3) {
374 watch = &watches[3];
375 ack_intr.bp3 = regk_marb_yes;
376 } else {
377 return IRQ_NONE;
380 /* Retrieve all useful information and print it. */
381 r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
382 r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
383 r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
384 r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
385 r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
387 printk(KERN_INFO "Arbiter IRQ\n");
388 printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n",
389 REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
390 REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
391 REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
392 REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
393 REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
395 REG_WR(marb_bp, watch->instance, rw_ack, ack);
396 REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
398 printk(KERN_INFO "IRQ occurred at %lX\n", get_irq_regs()->erp);
400 if (watch->cb)
401 watch->cb();
403 return IRQ_HANDLED;