x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / mips / cavium-octeon / setup.c
blobb212ae12e5ac7dc8ca35dfb24324ba638353f85e
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2004-2007 Cavium Networks
7 * Copyright (C) 2008, 2009 Wind River Systems
8 * written by Ralf Baechle <ralf@linux-mips.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h> /* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-mio-defs.h>
45 extern struct plat_smp_ops octeon_smp_ops;
47 #ifdef CONFIG_PCI
48 extern void pci_console_init(const char *arg);
49 #endif
51 static unsigned long long MAX_MEMORY = 512ull << 20;
53 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
55 struct cvmx_bootinfo *octeon_bootinfo;
56 EXPORT_SYMBOL(octeon_bootinfo);
58 static unsigned long long RESERVE_LOW_MEM = 0ull;
59 #ifdef CONFIG_KEXEC
60 #ifdef CONFIG_SMP
62 * Wait for relocation code is prepared and send
63 * secondary CPUs to spin until kernel is relocated.
65 static void octeon_kexec_smp_down(void *ignored)
67 int cpu = smp_processor_id();
69 local_irq_disable();
70 set_cpu_online(cpu, false);
71 while (!atomic_read(&kexec_ready_to_reboot))
72 cpu_relax();
74 asm volatile (
75 " sync \n"
76 " synci ($0) \n");
78 relocated_kexec_smp_wait(NULL);
80 #endif
82 #define OCTEON_DDR0_BASE (0x0ULL)
83 #define OCTEON_DDR0_SIZE (0x010000000ULL)
84 #define OCTEON_DDR1_BASE (0x410000000ULL)
85 #define OCTEON_DDR1_SIZE (0x010000000ULL)
86 #define OCTEON_DDR2_BASE (0x020000000ULL)
87 #define OCTEON_DDR2_SIZE (0x3e0000000ULL)
88 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
90 static struct kimage *kimage_ptr;
92 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
94 int64_t addr;
95 struct cvmx_bootmem_desc *bootmem_desc;
97 bootmem_desc = cvmx_bootmem_get_desc();
99 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
100 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
101 pr_err("Error: requested memory too large,"
102 "truncating to maximum size\n");
105 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
106 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
108 addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
109 bootmem_desc->head_addr = 0;
111 if (mem_size <= OCTEON_DDR0_SIZE) {
112 __cvmx_bootmem_phy_free(addr,
113 mem_size - RESERVE_LOW_MEM -
114 low_reserved_bytes, 0);
115 return;
118 __cvmx_bootmem_phy_free(addr,
119 OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
120 low_reserved_bytes, 0);
122 mem_size -= OCTEON_DDR0_SIZE;
124 if (mem_size > OCTEON_DDR1_SIZE) {
125 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
126 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
127 mem_size - OCTEON_DDR1_SIZE, 0);
128 } else
129 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
132 static int octeon_kexec_prepare(struct kimage *image)
134 int i;
135 char *bootloader = "kexec";
137 octeon_boot_desc_ptr->argc = 0;
138 for (i = 0; i < image->nr_segments; i++) {
139 if (!strncmp(bootloader, (char *)image->segment[i].buf,
140 strlen(bootloader))) {
142 * convert command line string to array
143 * of parameters (as bootloader does).
145 int argc = 0, offt;
146 char *str = (char *)image->segment[i].buf;
147 char *ptr = strchr(str, ' ');
148 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
149 *ptr = '\0';
150 if (ptr[1] != ' ') {
151 offt = (int)(ptr - str + 1);
152 octeon_boot_desc_ptr->argv[argc] =
153 image->segment[i].mem + offt;
154 argc++;
156 ptr = strchr(ptr + 1, ' ');
158 octeon_boot_desc_ptr->argc = argc;
159 break;
164 * Information about segments will be needed during pre-boot memory
165 * initialization.
167 kimage_ptr = image;
168 return 0;
171 static void octeon_generic_shutdown(void)
173 int i;
174 #ifdef CONFIG_SMP
175 int cpu;
176 #endif
177 struct cvmx_bootmem_desc *bootmem_desc;
178 void *named_block_array_ptr;
180 bootmem_desc = cvmx_bootmem_get_desc();
181 named_block_array_ptr =
182 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
184 #ifdef CONFIG_SMP
185 /* disable watchdogs */
186 for_each_online_cpu(cpu)
187 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
188 #else
189 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
190 #endif
191 if (kimage_ptr != kexec_crash_image) {
192 memset(named_block_array_ptr,
193 0x0,
194 CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
195 sizeof(struct cvmx_bootmem_named_block_desc));
197 * Mark all memory (except low 0x100000 bytes) as free.
198 * It is the same thing that bootloader does.
200 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
201 0x100000);
203 * Allocate all segments to avoid their corruption during boot.
205 for (i = 0; i < kimage_ptr->nr_segments; i++)
206 cvmx_bootmem_alloc_address(
207 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
208 kimage_ptr->segment[i].mem - PAGE_SIZE,
209 PAGE_SIZE);
210 } else {
212 * Do not mark all memory as free. Free only named sections
213 * leaving the rest of memory unchanged.
215 struct cvmx_bootmem_named_block_desc *ptr =
216 (struct cvmx_bootmem_named_block_desc *)
217 named_block_array_ptr;
219 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
220 if (ptr[i].size)
221 cvmx_bootmem_free_named(ptr[i].name);
223 kexec_args[2] = 1UL; /* running on octeon_main_processor */
224 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
225 #ifdef CONFIG_SMP
226 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
227 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
228 #endif
231 static void octeon_shutdown(void)
233 octeon_generic_shutdown();
234 #ifdef CONFIG_SMP
235 smp_call_function(octeon_kexec_smp_down, NULL, 0);
236 smp_wmb();
237 while (num_online_cpus() > 1) {
238 cpu_relax();
239 mdelay(1);
241 #endif
244 static void octeon_crash_shutdown(struct pt_regs *regs)
246 octeon_generic_shutdown();
247 default_machine_crash_shutdown(regs);
250 #endif /* CONFIG_KEXEC */
252 #ifdef CONFIG_CAVIUM_RESERVE32
253 uint64_t octeon_reserve32_memory;
254 EXPORT_SYMBOL(octeon_reserve32_memory);
255 #endif
257 #ifdef CONFIG_KEXEC
258 /* crashkernel cmdline parameter is parsed _after_ memory setup
259 * we also parse it here (workaround for EHB5200) */
260 static uint64_t crashk_size, crashk_base;
261 #endif
263 static int octeon_uart;
265 extern asmlinkage void handle_int(void);
266 extern asmlinkage void plat_irq_dispatch(void);
269 * Return non zero if we are currently running in the Octeon simulator
271 * Returns
273 int octeon_is_simulation(void)
275 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
277 EXPORT_SYMBOL(octeon_is_simulation);
280 * Return true if Octeon is in PCI Host mode. This means
281 * Linux can control the PCI bus.
283 * Returns Non zero if Octeon in host mode.
285 int octeon_is_pci_host(void)
287 #ifdef CONFIG_PCI
288 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
289 #else
290 return 0;
291 #endif
295 * Get the clock rate of Octeon
297 * Returns Clock rate in HZ
299 uint64_t octeon_get_clock_rate(void)
301 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
303 return sysinfo->cpu_clock_hz;
305 EXPORT_SYMBOL(octeon_get_clock_rate);
307 static u64 octeon_io_clock_rate;
309 u64 octeon_get_io_clock_rate(void)
311 return octeon_io_clock_rate;
313 EXPORT_SYMBOL(octeon_get_io_clock_rate);
317 * Write to the LCD display connected to the bootbus. This display
318 * exists on most Cavium evaluation boards. If it doesn't exist, then
319 * this function doesn't do anything.
321 * @s: String to write
323 void octeon_write_lcd(const char *s)
325 if (octeon_bootinfo->led_display_base_addr) {
326 void __iomem *lcd_address =
327 ioremap_nocache(octeon_bootinfo->led_display_base_addr,
329 int i;
330 for (i = 0; i < 8; i++, s++) {
331 if (*s)
332 iowrite8(*s, lcd_address + i);
333 else
334 iowrite8(' ', lcd_address + i);
336 iounmap(lcd_address);
341 * Return the console uart passed by the bootloader
343 * Returns uart (0 or 1)
345 int octeon_get_boot_uart(void)
347 int uart;
348 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
349 uart = 1;
350 #else
351 uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
352 1 : 0;
353 #endif
354 return uart;
358 * Get the coremask Linux was booted on.
360 * Returns Core mask
362 int octeon_get_boot_coremask(void)
364 return octeon_boot_desc_ptr->core_mask;
368 * Check the hardware BIST results for a CPU
370 void octeon_check_cpu_bist(void)
372 const int coreid = cvmx_get_core_num();
373 unsigned long long mask;
374 unsigned long long bist_val;
376 /* Check BIST results for COP0 registers */
377 mask = 0x1f00000000ull;
378 bist_val = read_octeon_c0_icacheerr();
379 if (bist_val & mask)
380 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
381 coreid, bist_val);
383 bist_val = read_octeon_c0_dcacheerr();
384 if (bist_val & 1)
385 pr_err("Core%d L1 Dcache parity error: "
386 "CacheErr(dcache) = 0x%llx\n",
387 coreid, bist_val);
389 mask = 0xfc00000000000000ull;
390 bist_val = read_c0_cvmmemctl();
391 if (bist_val & mask)
392 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
393 coreid, bist_val);
395 write_octeon_c0_dcacheerr(0);
399 * Reboot Octeon
401 * @command: Command to pass to the bootloader. Currently ignored.
403 static void octeon_restart(char *command)
405 /* Disable all watchdogs before soft reset. They don't get cleared */
406 #ifdef CONFIG_SMP
407 int cpu;
408 for_each_online_cpu(cpu)
409 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
410 #else
411 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
412 #endif
414 mb();
415 while (1)
416 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
421 * Permanently stop a core.
423 * @arg: Ignored.
425 static void octeon_kill_core(void *arg)
427 if (octeon_is_simulation())
428 /* A break instruction causes the simulator stop a core */
429 asm volatile ("break" ::: "memory");
431 local_irq_disable();
432 /* Disable watchdog on this core. */
433 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
434 /* Spin in a low power mode. */
435 while (true)
436 asm volatile ("wait" ::: "memory");
441 * Halt the system
443 static void octeon_halt(void)
445 smp_call_function(octeon_kill_core, NULL, 0);
447 switch (octeon_bootinfo->board_type) {
448 case CVMX_BOARD_TYPE_NAO38:
449 /* Driving a 1 to GPIO 12 shuts off this board */
450 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
451 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
452 break;
453 default:
454 octeon_write_lcd("PowerOff");
455 break;
458 octeon_kill_core(NULL);
462 * Return a string representing the system type
464 * Returns
466 const char *octeon_board_type_string(void)
468 static char name[80];
469 sprintf(name, "%s (%s)",
470 cvmx_board_type_to_string(octeon_bootinfo->board_type),
471 octeon_model_get_string(read_c0_prid()));
472 return name;
475 const char *get_system_type(void)
476 __attribute__ ((alias("octeon_board_type_string")));
478 void octeon_user_io_init(void)
480 union octeon_cvmemctl cvmmemctl;
481 union cvmx_iob_fau_timeout fau_timeout;
482 union cvmx_pow_nw_tim nm_tim;
484 /* Get the current settings for CP0_CVMMEMCTL_REG */
485 cvmmemctl.u64 = read_c0_cvmmemctl();
486 /* R/W If set, marked write-buffer entries time out the same
487 * as as other entries; if clear, marked write-buffer entries
488 * use the maximum timeout. */
489 cvmmemctl.s.dismarkwblongto = 1;
490 /* R/W If set, a merged store does not clear the write-buffer
491 * entry timeout state. */
492 cvmmemctl.s.dismrgclrwbto = 0;
493 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
494 * word location for an IOBDMA. The other 8 bits come from the
495 * SCRADDR field of the IOBDMA. */
496 cvmmemctl.s.iobdmascrmsb = 0;
497 /* R/W If set, SYNCWS and SYNCS only order marked stores; if
498 * clear, SYNCWS and SYNCS only order unmarked
499 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
500 * set. */
501 cvmmemctl.s.syncwsmarked = 0;
502 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
503 cvmmemctl.s.dissyncws = 0;
504 /* R/W If set, no stall happens on write buffer full. */
505 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
506 cvmmemctl.s.diswbfst = 1;
507 else
508 cvmmemctl.s.diswbfst = 0;
509 /* R/W If set (and SX set), supervisor-level loads/stores can
510 * use XKPHYS addresses with <48>==0 */
511 cvmmemctl.s.xkmemenas = 0;
513 /* R/W If set (and UX set), user-level loads/stores can use
514 * XKPHYS addresses with VA<48>==0 */
515 cvmmemctl.s.xkmemenau = 0;
517 /* R/W If set (and SX set), supervisor-level loads/stores can
518 * use XKPHYS addresses with VA<48>==1 */
519 cvmmemctl.s.xkioenas = 0;
521 /* R/W If set (and UX set), user-level loads/stores can use
522 * XKPHYS addresses with VA<48>==1 */
523 cvmmemctl.s.xkioenau = 0;
525 /* R/W If set, all stores act as SYNCW (NOMERGE must be set
526 * when this is set) RW, reset to 0. */
527 cvmmemctl.s.allsyncw = 0;
529 /* R/W If set, no stores merge, and all stores reach the
530 * coherent bus in order. */
531 cvmmemctl.s.nomerge = 0;
532 /* R/W Selects the bit in the counter used for DID time-outs 0
533 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
534 * between 1x and 2x this interval. For example, with
535 * DIDTTO=3, expiration interval is between 16K and 32K. */
536 cvmmemctl.s.didtto = 0;
537 /* R/W If set, the (mem) CSR clock never turns off. */
538 cvmmemctl.s.csrckalwys = 0;
539 /* R/W If set, mclk never turns off. */
540 cvmmemctl.s.mclkalwys = 0;
541 /* R/W Selects the bit in the counter used for write buffer
542 * flush time-outs (WBFLT+11) is the bit position in an
543 * internal counter used to determine expiration. The write
544 * buffer expires between 1x and 2x this interval. For
545 * example, with WBFLT = 0, a write buffer expires between 2K
546 * and 4K cycles after the write buffer entry is allocated. */
547 cvmmemctl.s.wbfltime = 0;
548 /* R/W If set, do not put Istream in the L2 cache. */
549 cvmmemctl.s.istrnol2 = 0;
552 * R/W The write buffer threshold. As per erratum Core-14752
553 * for CN63XX, a sc/scd might fail if the write buffer is
554 * full. Lowering WBTHRESH greatly lowers the chances of the
555 * write buffer ever being full and triggering the erratum.
557 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
558 cvmmemctl.s.wbthresh = 4;
559 else
560 cvmmemctl.s.wbthresh = 10;
562 /* R/W If set, CVMSEG is available for loads/stores in
563 * kernel/debug mode. */
564 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
565 cvmmemctl.s.cvmsegenak = 1;
566 #else
567 cvmmemctl.s.cvmsegenak = 0;
568 #endif
569 /* R/W If set, CVMSEG is available for loads/stores in
570 * supervisor mode. */
571 cvmmemctl.s.cvmsegenas = 0;
572 /* R/W If set, CVMSEG is available for loads/stores in user
573 * mode. */
574 cvmmemctl.s.cvmsegenau = 0;
575 /* R/W Size of local memory in cache blocks, 54 (6912 bytes)
576 * is max legal value. */
577 cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
579 write_c0_cvmmemctl(cvmmemctl.u64);
581 if (smp_processor_id() == 0)
582 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
583 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
584 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
586 /* Set a default for the hardware timeouts */
587 fau_timeout.u64 = 0;
588 fau_timeout.s.tout_val = 0xfff;
589 /* Disable tagwait FAU timeout */
590 fau_timeout.s.tout_enb = 0;
591 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
593 nm_tim.u64 = 0;
594 /* 4096 cycles */
595 nm_tim.s.nw_tim = 3;
596 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
598 write_octeon_c0_icacheerr(0);
599 write_c0_derraddr1(0);
603 * Early entry point for arch setup
605 void __init prom_init(void)
607 struct cvmx_sysinfo *sysinfo;
608 const char *arg;
609 char *p;
610 int i;
611 int argc;
612 #ifdef CONFIG_CAVIUM_RESERVE32
613 int64_t addr = -1;
614 #endif
616 * The bootloader passes a pointer to the boot descriptor in
617 * $a3, this is available as fw_arg3.
619 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
620 octeon_bootinfo =
621 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
622 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
624 sysinfo = cvmx_sysinfo_get();
625 memset(sysinfo, 0, sizeof(*sysinfo));
626 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
627 sysinfo->phy_mem_desc_ptr =
628 cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
629 sysinfo->core_mask = octeon_bootinfo->core_mask;
630 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
631 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
632 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
633 sysinfo->board_type = octeon_bootinfo->board_type;
634 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
635 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
636 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
637 sizeof(sysinfo->mac_addr_base));
638 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
639 memcpy(sysinfo->board_serial_number,
640 octeon_bootinfo->board_serial_number,
641 sizeof(sysinfo->board_serial_number));
642 sysinfo->compact_flash_common_base_addr =
643 octeon_bootinfo->compact_flash_common_base_addr;
644 sysinfo->compact_flash_attribute_base_addr =
645 octeon_bootinfo->compact_flash_attribute_base_addr;
646 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
647 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
648 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
650 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
651 /* I/O clock runs at a different rate than the CPU. */
652 union cvmx_mio_rst_boot rst_boot;
653 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
654 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
655 } else {
656 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
660 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
661 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
663 if (!octeon_is_simulation() &&
664 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
665 cvmx_write_csr(CVMX_LED_EN, 0);
666 cvmx_write_csr(CVMX_LED_PRT, 0);
667 cvmx_write_csr(CVMX_LED_DBG, 0);
668 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
669 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
670 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
671 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
672 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
673 cvmx_write_csr(CVMX_LED_EN, 1);
675 #ifdef CONFIG_CAVIUM_RESERVE32
677 * We need to temporarily allocate all memory in the reserve32
678 * region. This makes sure the kernel doesn't allocate this
679 * memory when it is getting memory from the
680 * bootloader. Later, after the memory allocations are
681 * complete, the reserve32 will be freed.
683 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
684 * is in case we later use hugetlb entries with it.
686 addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
687 0, 0, 2 << 20,
688 "CAVIUM_RESERVE32", 0);
689 if (addr < 0)
690 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
691 else
692 octeon_reserve32_memory = addr;
693 #endif
695 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
696 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
697 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
698 } else {
699 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
700 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
701 /* TLB refill */
702 cvmx_l2c_lock_mem_region(ebase, 0x100);
703 #endif
704 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
705 /* General exception */
706 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
707 #endif
708 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
709 /* Interrupt handler */
710 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
711 #endif
712 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
713 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
714 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
715 #endif
716 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
717 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
718 #endif
720 #endif
722 octeon_check_cpu_bist();
724 octeon_uart = octeon_get_boot_uart();
726 #ifdef CONFIG_SMP
727 octeon_write_lcd("LinuxSMP");
728 #else
729 octeon_write_lcd("Linux");
730 #endif
732 #ifdef CONFIG_CAVIUM_GDB
734 * When debugging the linux kernel, force the cores to enter
735 * the debug exception handler to break in.
737 if (octeon_get_boot_debug_flag()) {
738 cvmx_write_csr(CVMX_CIU_DINT, 1 << cvmx_get_core_num());
739 cvmx_read_csr(CVMX_CIU_DINT);
741 #endif
743 octeon_setup_delays();
746 * BIST should always be enabled when doing a soft reset. L2
747 * Cache locking for instance is not cleared unless BIST is
748 * enabled. Unfortunately due to a chip errata G-200 for
749 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
751 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
752 OCTEON_IS_MODEL(OCTEON_CN31XX))
753 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
754 else
755 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
757 /* Default to 64MB in the simulator to speed things up */
758 if (octeon_is_simulation())
759 MAX_MEMORY = 64ull << 20;
761 arg = strstr(arcs_cmdline, "mem=");
762 if (arg) {
763 MAX_MEMORY = memparse(arg + 4, &p);
764 if (MAX_MEMORY == 0)
765 MAX_MEMORY = 32ull << 30;
766 if (*p == '@')
767 RESERVE_LOW_MEM = memparse(p + 1, &p);
770 arcs_cmdline[0] = 0;
771 argc = octeon_boot_desc_ptr->argc;
772 for (i = 0; i < argc; i++) {
773 const char *arg =
774 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
775 if ((strncmp(arg, "MEM=", 4) == 0) ||
776 (strncmp(arg, "mem=", 4) == 0)) {
777 MAX_MEMORY = memparse(arg + 4, &p);
778 if (MAX_MEMORY == 0)
779 MAX_MEMORY = 32ull << 30;
780 if (*p == '@')
781 RESERVE_LOW_MEM = memparse(p + 1, &p);
782 } else if (strcmp(arg, "ecc_verbose") == 0) {
783 #ifdef CONFIG_CAVIUM_REPORT_SINGLE_BIT_ECC
784 __cvmx_interrupt_ecc_report_single_bit_errors = 1;
785 pr_notice("Reporting of single bit ECC errors is "
786 "turned on\n");
787 #endif
788 #ifdef CONFIG_KEXEC
789 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
790 crashk_size = memparse(arg+12, &p);
791 if (*p == '@')
792 crashk_base = memparse(p+1, &p);
793 strcat(arcs_cmdline, " ");
794 strcat(arcs_cmdline, arg);
796 * To do: switch parsing to new style, something like:
797 * parse_crashkernel(arg, sysinfo->system_dram_size,
798 * &crashk_size, &crashk_base);
800 #endif
801 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
802 sizeof(arcs_cmdline) - 1) {
803 strcat(arcs_cmdline, " ");
804 strcat(arcs_cmdline, arg);
808 if (strstr(arcs_cmdline, "console=") == NULL) {
809 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
810 strcat(arcs_cmdline, " console=ttyS0,115200");
811 #else
812 if (octeon_uart == 1)
813 strcat(arcs_cmdline, " console=ttyS1,115200");
814 else
815 strcat(arcs_cmdline, " console=ttyS0,115200");
816 #endif
819 if (octeon_is_simulation()) {
821 * The simulator uses a mtdram device pre filled with
822 * the filesystem. Also specify the calibration delay
823 * to avoid calculating it every time.
825 strcat(arcs_cmdline, " rw root=1f00 slram=root,0x40000000,+1073741824");
828 mips_hpt_frequency = octeon_get_clock_rate();
830 octeon_init_cvmcount();
832 _machine_restart = octeon_restart;
833 _machine_halt = octeon_halt;
835 #ifdef CONFIG_KEXEC
836 _machine_kexec_shutdown = octeon_shutdown;
837 _machine_crash_shutdown = octeon_crash_shutdown;
838 _machine_kexec_prepare = octeon_kexec_prepare;
839 #endif
841 octeon_user_io_init();
842 register_smp_ops(&octeon_smp_ops);
845 /* Exclude a single page from the regions obtained in plat_mem_setup. */
846 #ifndef CONFIG_CRASH_DUMP
847 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
849 if (addr > *mem && addr < *mem + *size) {
850 u64 inc = addr - *mem;
851 add_memory_region(*mem, inc, BOOT_MEM_RAM);
852 *mem += inc;
853 *size -= inc;
856 if (addr == *mem && *size > PAGE_SIZE) {
857 *mem += PAGE_SIZE;
858 *size -= PAGE_SIZE;
861 #endif /* CONFIG_CRASH_DUMP */
863 void __init plat_mem_setup(void)
865 uint64_t mem_alloc_size;
866 uint64_t total;
867 uint64_t crashk_end;
868 #ifndef CONFIG_CRASH_DUMP
869 int64_t memory;
870 uint64_t kernel_start;
871 uint64_t kernel_size;
872 #endif
874 total = 0;
875 crashk_end = 0;
878 * The Mips memory init uses the first memory location for
879 * some memory vectors. When SPARSEMEM is in use, it doesn't
880 * verify that the size is big enough for the final
881 * vectors. Making the smallest chuck 4MB seems to be enough
882 * to consistently work.
884 mem_alloc_size = 4 << 20;
885 if (mem_alloc_size > MAX_MEMORY)
886 mem_alloc_size = MAX_MEMORY;
888 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
889 #ifdef CONFIG_CRASH_DUMP
890 add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
891 total += MAX_MEMORY;
892 #else
893 #ifdef CONFIG_KEXEC
894 if (crashk_size > 0) {
895 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
896 crashk_end = crashk_base + crashk_size;
898 #endif
900 * When allocating memory, we want incrementing addresses from
901 * bootmem_alloc so the code in add_memory_region can merge
902 * regions next to each other.
904 cvmx_bootmem_lock();
905 while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
906 && (total < MAX_MEMORY)) {
907 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
908 __pa_symbol(&__init_end), -1,
909 0x100000,
910 CVMX_BOOTMEM_FLAG_NO_LOCKING);
911 if (memory >= 0) {
912 u64 size = mem_alloc_size;
913 #ifdef CONFIG_KEXEC
914 uint64_t end;
915 #endif
918 * exclude a page at the beginning and end of
919 * the 256MB PCIe 'hole' so the kernel will not
920 * try to allocate multi-page buffers that
921 * span the discontinuity.
923 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
924 &memory, &size);
925 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
926 CVMX_PCIE_BAR1_PHYS_SIZE,
927 &memory, &size);
928 #ifdef CONFIG_KEXEC
929 end = memory + mem_alloc_size;
932 * This function automatically merges address regions
933 * next to each other if they are received in
934 * incrementing order
936 if (memory < crashk_base && end > crashk_end) {
937 /* region is fully in */
938 add_memory_region(memory,
939 crashk_base - memory,
940 BOOT_MEM_RAM);
941 total += crashk_base - memory;
942 add_memory_region(crashk_end,
943 end - crashk_end,
944 BOOT_MEM_RAM);
945 total += end - crashk_end;
946 continue;
949 if (memory >= crashk_base && end <= crashk_end)
951 * Entire memory region is within the new
952 * kernel's memory, ignore it.
954 continue;
956 if (memory > crashk_base && memory < crashk_end &&
957 end > crashk_end) {
959 * Overlap with the beginning of the region,
960 * reserve the beginning.
962 mem_alloc_size -= crashk_end - memory;
963 memory = crashk_end;
964 } else if (memory < crashk_base && end > crashk_base &&
965 end < crashk_end)
967 * Overlap with the beginning of the region,
968 * chop of end.
970 mem_alloc_size -= end - crashk_base;
971 #endif
972 add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
973 total += mem_alloc_size;
974 /* Recovering mem_alloc_size */
975 mem_alloc_size = 4 << 20;
976 } else {
977 break;
980 cvmx_bootmem_unlock();
981 /* Add the memory region for the kernel. */
982 kernel_start = (unsigned long) _text;
983 kernel_size = _end - _text;
985 /* Adjust for physical offset. */
986 kernel_start &= ~0xffffffff80000000ULL;
987 add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
988 #endif /* CONFIG_CRASH_DUMP */
990 #ifdef CONFIG_CAVIUM_RESERVE32
992 * Now that we've allocated the kernel memory it is safe to
993 * free the reserved region. We free it here so that builtin
994 * drivers can use the memory.
996 if (octeon_reserve32_memory)
997 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
998 #endif /* CONFIG_CAVIUM_RESERVE32 */
1000 if (total == 0)
1001 panic("Unable to allocate memory from "
1002 "cvmx_bootmem_phy_alloc\n");
1006 * Emit one character to the boot UART. Exported for use by the
1007 * watchdog timer.
1009 int prom_putchar(char c)
1011 uint64_t lsrval;
1013 /* Spin until there is room */
1014 do {
1015 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1016 } while ((lsrval & 0x20) == 0);
1018 /* Write the byte */
1019 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1020 return 1;
1022 EXPORT_SYMBOL(prom_putchar);
1024 void prom_free_prom_memory(void)
1026 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) {
1027 /* Check for presence of Core-14449 fix. */
1028 u32 insn;
1029 u32 *foo;
1031 foo = &insn;
1033 asm volatile("# before" : : : "memory");
1034 prefetch(foo);
1035 asm volatile(
1036 ".set push\n\t"
1037 ".set noreorder\n\t"
1038 "bal 1f\n\t"
1039 "nop\n"
1040 "1:\tlw %0,-12($31)\n\t"
1041 ".set pop\n\t"
1042 : "=r" (insn) : : "$31", "memory");
1044 if ((insn >> 26) != 0x33)
1045 panic("No PREF instruction at Core-14449 probe point.");
1047 if (((insn >> 16) & 0x1f) != 28)
1048 panic("Core-14449 WAR not in place (%04x).\n"
1049 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn);
1053 int octeon_prune_device_tree(void);
1055 extern const char __dtb_octeon_3xxx_begin;
1056 extern const char __dtb_octeon_3xxx_end;
1057 extern const char __dtb_octeon_68xx_begin;
1058 extern const char __dtb_octeon_68xx_end;
1059 void __init device_tree_init(void)
1061 int dt_size;
1062 struct boot_param_header *fdt;
1063 bool do_prune;
1065 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1066 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1067 if (fdt_check_header(fdt))
1068 panic("Corrupt Device Tree passed to kernel.");
1069 dt_size = be32_to_cpu(fdt->totalsize);
1070 do_prune = false;
1071 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1072 fdt = (struct boot_param_header *)&__dtb_octeon_68xx_begin;
1073 dt_size = &__dtb_octeon_68xx_end - &__dtb_octeon_68xx_begin;
1074 do_prune = true;
1075 } else {
1076 fdt = (struct boot_param_header *)&__dtb_octeon_3xxx_begin;
1077 dt_size = &__dtb_octeon_3xxx_end - &__dtb_octeon_3xxx_begin;
1078 do_prune = true;
1081 /* Copy the default tree from init memory. */
1082 initial_boot_params = early_init_dt_alloc_memory_arch(dt_size, 8);
1083 if (initial_boot_params == NULL)
1084 panic("Could not allocate initial_boot_params\n");
1085 memcpy(initial_boot_params, fdt, dt_size);
1087 if (do_prune) {
1088 octeon_prune_device_tree();
1089 pr_info("Using internal Device Tree.\n");
1090 } else {
1091 pr_info("Using passed Device Tree.\n");
1093 unflatten_device_tree();
1096 static int __initdata disable_octeon_edac_p;
1098 static int __init disable_octeon_edac(char *str)
1100 disable_octeon_edac_p = 1;
1101 return 0;
1103 early_param("disable_octeon_edac", disable_octeon_edac);
1105 static char *edac_device_names[] = {
1106 "octeon_l2c_edac",
1107 "octeon_pc_edac",
1110 static int __init edac_devinit(void)
1112 struct platform_device *dev;
1113 int i, err = 0;
1114 int num_lmc;
1115 char *name;
1117 if (disable_octeon_edac_p)
1118 return 0;
1120 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1121 name = edac_device_names[i];
1122 dev = platform_device_register_simple(name, -1, NULL, 0);
1123 if (IS_ERR(dev)) {
1124 pr_err("Registation of %s failed!\n", name);
1125 err = PTR_ERR(dev);
1129 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1130 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1131 for (i = 0; i < num_lmc; i++) {
1132 dev = platform_device_register_simple("octeon_lmc_edac",
1133 i, NULL, 0);
1134 if (IS_ERR(dev)) {
1135 pr_err("Registation of octeon_lmc_edac %d failed!\n", i);
1136 err = PTR_ERR(dev);
1140 return err;
1142 device_initcall(edac_devinit);
1144 static void __initdata *octeon_dummy_iospace;
1146 static int __init octeon_no_pci_init(void)
1149 * Initially assume there is no PCI. The PCI/PCIe platform code will
1150 * later re-initialize these to correct values if they are present.
1152 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1153 set_io_port_base((unsigned long)octeon_dummy_iospace);
1154 ioport_resource.start = MAX_RESOURCE;
1155 ioport_resource.end = 0;
1156 return 0;
1158 core_initcall(octeon_no_pci_init);
1160 static int __init octeon_no_pci_release(void)
1163 * Release the allocated memory if a real IO space is there.
1165 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1166 vfree(octeon_dummy_iospace);
1167 return 0;
1169 late_initcall(octeon_no_pci_release);