x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / mips / mm / tlbex.c
blob9bb3a9363b0618df3e19a43fafc68eb91dff18ba
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
21 * (Condolences to Napoleon XIV)
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu-type.h>
34 #include <asm/pgtable.h>
35 #include <asm/war.h>
36 #include <asm/uasm.h>
37 #include <asm/setup.h>
40 * TLB load/store/modify handlers.
42 * Only the fastpath gets synthesized at runtime, the slowpath for
43 * do_page_fault remains normal asm.
45 extern void tlb_do_page_fault_0(void);
46 extern void tlb_do_page_fault_1(void);
48 struct work_registers {
49 int r1;
50 int r2;
51 int r3;
54 struct tlb_reg_save {
55 unsigned long a;
56 unsigned long b;
57 } ____cacheline_aligned_in_smp;
59 static struct tlb_reg_save handler_reg_save[NR_CPUS];
61 static inline int r45k_bvahwbug(void)
63 /* XXX: We should probe for the presence of this bug, but we don't. */
64 return 0;
67 static inline int r4k_250MHZhwbug(void)
69 /* XXX: We should probe for the presence of this bug, but we don't. */
70 return 0;
73 static inline int __maybe_unused bcm1250_m3_war(void)
75 return BCM1250_M3_WAR;
78 static inline int __maybe_unused r10000_llsc_war(void)
80 return R10000_LLSC_WAR;
83 static int use_bbit_insns(void)
85 switch (current_cpu_type()) {
86 case CPU_CAVIUM_OCTEON:
87 case CPU_CAVIUM_OCTEON_PLUS:
88 case CPU_CAVIUM_OCTEON2:
89 case CPU_CAVIUM_OCTEON3:
90 return 1;
91 default:
92 return 0;
96 static int use_lwx_insns(void)
98 switch (current_cpu_type()) {
99 case CPU_CAVIUM_OCTEON2:
100 case CPU_CAVIUM_OCTEON3:
101 return 1;
102 default:
103 return 0;
106 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
107 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
108 static bool scratchpad_available(void)
110 return true;
112 static int scratchpad_offset(int i)
115 * CVMSEG starts at address -32768 and extends for
116 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
118 i += 1; /* Kernel use starts at the top and works down. */
119 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
121 #else
122 static bool scratchpad_available(void)
124 return false;
126 static int scratchpad_offset(int i)
128 BUG();
129 /* Really unreachable, but evidently some GCC want this. */
130 return 0;
132 #endif
134 * Found by experiment: At least some revisions of the 4kc throw under
135 * some circumstances a machine check exception, triggered by invalid
136 * values in the index register. Delaying the tlbp instruction until
137 * after the next branch, plus adding an additional nop in front of
138 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
139 * why; it's not an issue caused by the core RTL.
142 static int m4kc_tlbp_war(void)
144 return (current_cpu_data.processor_id & 0xffff00) ==
145 (PRID_COMP_MIPS | PRID_IMP_4KC);
148 /* Handle labels (which must be positive integers). */
149 enum label_id {
150 label_second_part = 1,
151 label_leave,
152 label_vmalloc,
153 label_vmalloc_done,
154 label_tlbw_hazard_0,
155 label_split = label_tlbw_hazard_0 + 8,
156 label_tlbl_goaround1,
157 label_tlbl_goaround2,
158 label_nopage_tlbl,
159 label_nopage_tlbs,
160 label_nopage_tlbm,
161 label_smp_pgtable_change,
162 label_r3000_write_probe_fail,
163 label_large_segbits_fault,
164 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
165 label_tlb_huge_update,
166 #endif
169 UASM_L_LA(_second_part)
170 UASM_L_LA(_leave)
171 UASM_L_LA(_vmalloc)
172 UASM_L_LA(_vmalloc_done)
173 /* _tlbw_hazard_x is handled differently. */
174 UASM_L_LA(_split)
175 UASM_L_LA(_tlbl_goaround1)
176 UASM_L_LA(_tlbl_goaround2)
177 UASM_L_LA(_nopage_tlbl)
178 UASM_L_LA(_nopage_tlbs)
179 UASM_L_LA(_nopage_tlbm)
180 UASM_L_LA(_smp_pgtable_change)
181 UASM_L_LA(_r3000_write_probe_fail)
182 UASM_L_LA(_large_segbits_fault)
183 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
184 UASM_L_LA(_tlb_huge_update)
185 #endif
187 static int hazard_instance;
189 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
191 switch (instance) {
192 case 0 ... 7:
193 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
194 return;
195 default:
196 BUG();
200 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
202 switch (instance) {
203 case 0 ... 7:
204 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
205 break;
206 default:
207 BUG();
212 * pgtable bits are assigned dynamically depending on processor feature
213 * and statically based on kernel configuration. This spits out the actual
214 * values the kernel is using. Required to make sense from disassembled
215 * TLB exception handlers.
217 static void output_pgtable_bits_defines(void)
219 #define pr_define(fmt, ...) \
220 pr_debug("#define " fmt, ##__VA_ARGS__)
222 pr_debug("#include <asm/asm.h>\n");
223 pr_debug("#include <asm/regdef.h>\n");
224 pr_debug("\n");
226 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
227 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
228 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
229 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
230 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
231 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
232 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
233 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
234 #endif
235 if (cpu_has_rixi) {
236 #ifdef _PAGE_NO_EXEC_SHIFT
237 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
238 #endif
239 #ifdef _PAGE_NO_READ_SHIFT
240 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
241 #endif
243 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
244 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
245 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
246 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
247 pr_debug("\n");
250 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
252 int i;
254 pr_debug("LEAF(%s)\n", symbol);
256 pr_debug("\t.set push\n");
257 pr_debug("\t.set noreorder\n");
259 for (i = 0; i < count; i++)
260 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
262 pr_debug("\t.set\tpop\n");
264 pr_debug("\tEND(%s)\n", symbol);
267 /* The only general purpose registers allowed in TLB handlers. */
268 #define K0 26
269 #define K1 27
271 /* Some CP0 registers */
272 #define C0_INDEX 0, 0
273 #define C0_ENTRYLO0 2, 0
274 #define C0_TCBIND 2, 2
275 #define C0_ENTRYLO1 3, 0
276 #define C0_CONTEXT 4, 0
277 #define C0_PAGEMASK 5, 0
278 #define C0_BADVADDR 8, 0
279 #define C0_ENTRYHI 10, 0
280 #define C0_EPC 14, 0
281 #define C0_XCONTEXT 20, 0
283 #ifdef CONFIG_64BIT
284 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
285 #else
286 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
287 #endif
289 /* The worst case length of the handler is around 18 instructions for
290 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
291 * Maximum space available is 32 instructions for R3000 and 64
292 * instructions for R4000.
294 * We deliberately chose a buffer size of 128, so we won't scribble
295 * over anything important on overflow before we panic.
297 static u32 tlb_handler[128];
299 /* simply assume worst case size for labels and relocs */
300 static struct uasm_label labels[128];
301 static struct uasm_reloc relocs[128];
303 static int check_for_high_segbits;
305 static unsigned int kscratch_used_mask;
307 static inline int __maybe_unused c0_kscratch(void)
309 switch (current_cpu_type()) {
310 case CPU_XLP:
311 case CPU_XLR:
312 return 22;
313 default:
314 return 31;
318 static int allocate_kscratch(void)
320 int r;
321 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
323 r = ffs(a);
325 if (r == 0)
326 return -1;
328 r--; /* make it zero based */
330 kscratch_used_mask |= (1 << r);
332 return r;
335 static int scratch_reg;
336 static int pgd_reg;
337 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
339 static struct work_registers build_get_work_registers(u32 **p)
341 struct work_registers r;
343 int smp_processor_id_reg;
344 int smp_processor_id_sel;
345 int smp_processor_id_shift;
347 if (scratch_reg >= 0) {
348 /* Save in CPU local C0_KScratch? */
349 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
350 r.r1 = K0;
351 r.r2 = K1;
352 r.r3 = 1;
353 return r;
356 if (num_possible_cpus() > 1) {
357 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
358 smp_processor_id_shift = 51;
359 smp_processor_id_reg = 20; /* XContext */
360 smp_processor_id_sel = 0;
361 #else
362 # ifdef CONFIG_32BIT
363 smp_processor_id_shift = 25;
364 smp_processor_id_reg = 4; /* Context */
365 smp_processor_id_sel = 0;
366 # endif
367 # ifdef CONFIG_64BIT
368 smp_processor_id_shift = 26;
369 smp_processor_id_reg = 4; /* Context */
370 smp_processor_id_sel = 0;
371 # endif
372 #endif
373 /* Get smp_processor_id */
374 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
375 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
377 /* handler_reg_save index in K0 */
378 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
380 UASM_i_LA(p, K1, (long)&handler_reg_save);
381 UASM_i_ADDU(p, K0, K0, K1);
382 } else {
383 UASM_i_LA(p, K0, (long)&handler_reg_save);
385 /* K0 now points to save area, save $1 and $2 */
386 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
387 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
389 r.r1 = K1;
390 r.r2 = 1;
391 r.r3 = 2;
392 return r;
395 static void build_restore_work_registers(u32 **p)
397 if (scratch_reg >= 0) {
398 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
399 return;
401 /* K0 already points to save area, restore $1 and $2 */
402 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
403 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
406 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
409 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
410 * we cannot do r3000 under these circumstances.
412 * Declare pgd_current here instead of including mmu_context.h to avoid type
413 * conflicts for tlbmiss_handler_setup_pgd
415 extern unsigned long pgd_current[];
418 * The R3000 TLB handler is simple.
420 static void build_r3000_tlb_refill_handler(void)
422 long pgdc = (long)pgd_current;
423 u32 *p;
425 memset(tlb_handler, 0, sizeof(tlb_handler));
426 p = tlb_handler;
428 uasm_i_mfc0(&p, K0, C0_BADVADDR);
429 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
430 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
431 uasm_i_srl(&p, K0, K0, 22); /* load delay */
432 uasm_i_sll(&p, K0, K0, 2);
433 uasm_i_addu(&p, K1, K1, K0);
434 uasm_i_mfc0(&p, K0, C0_CONTEXT);
435 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
436 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
437 uasm_i_addu(&p, K1, K1, K0);
438 uasm_i_lw(&p, K0, 0, K1);
439 uasm_i_nop(&p); /* load delay */
440 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
441 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
442 uasm_i_tlbwr(&p); /* cp0 delay */
443 uasm_i_jr(&p, K1);
444 uasm_i_rfe(&p); /* branch delay */
446 if (p > tlb_handler + 32)
447 panic("TLB refill handler space exceeded");
449 pr_debug("Wrote TLB refill handler (%u instructions).\n",
450 (unsigned int)(p - tlb_handler));
452 memcpy((void *)ebase, tlb_handler, 0x80);
454 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
456 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
459 * The R4000 TLB handler is much more complicated. We have two
460 * consecutive handler areas with 32 instructions space each.
461 * Since they aren't used at the same time, we can overflow in the
462 * other one.To keep things simple, we first assume linear space,
463 * then we relocate it to the final handler layout as needed.
465 static u32 final_handler[64];
468 * Hazards
470 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
471 * 2. A timing hazard exists for the TLBP instruction.
473 * stalling_instruction
474 * TLBP
476 * The JTLB is being read for the TLBP throughout the stall generated by the
477 * previous instruction. This is not really correct as the stalling instruction
478 * can modify the address used to access the JTLB. The failure symptom is that
479 * the TLBP instruction will use an address created for the stalling instruction
480 * and not the address held in C0_ENHI and thus report the wrong results.
482 * The software work-around is to not allow the instruction preceding the TLBP
483 * to stall - make it an NOP or some other instruction guaranteed not to stall.
485 * Errata 2 will not be fixed. This errata is also on the R5000.
487 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
489 static void __maybe_unused build_tlb_probe_entry(u32 **p)
491 switch (current_cpu_type()) {
492 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
493 case CPU_R4600:
494 case CPU_R4700:
495 case CPU_R5000:
496 case CPU_NEVADA:
497 uasm_i_nop(p);
498 uasm_i_tlbp(p);
499 break;
501 default:
502 uasm_i_tlbp(p);
503 break;
508 * Write random or indexed TLB entry, and care about the hazards from
509 * the preceding mtc0 and for the following eret.
511 enum tlb_write_entry { tlb_random, tlb_indexed };
513 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
514 struct uasm_reloc **r,
515 enum tlb_write_entry wmode)
517 void(*tlbw)(u32 **) = NULL;
519 switch (wmode) {
520 case tlb_random: tlbw = uasm_i_tlbwr; break;
521 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
524 if (cpu_has_mips_r2) {
526 * The architecture spec says an ehb is required here,
527 * but a number of cores do not have the hazard and
528 * using an ehb causes an expensive pipeline stall.
530 switch (current_cpu_type()) {
531 case CPU_M14KC:
532 case CPU_74K:
533 break;
535 default:
536 uasm_i_ehb(p);
537 break;
539 tlbw(p);
540 return;
543 switch (current_cpu_type()) {
544 case CPU_R4000PC:
545 case CPU_R4000SC:
546 case CPU_R4000MC:
547 case CPU_R4400PC:
548 case CPU_R4400SC:
549 case CPU_R4400MC:
551 * This branch uses up a mtc0 hazard nop slot and saves
552 * two nops after the tlbw instruction.
554 uasm_bgezl_hazard(p, r, hazard_instance);
555 tlbw(p);
556 uasm_bgezl_label(l, p, hazard_instance);
557 hazard_instance++;
558 uasm_i_nop(p);
559 break;
561 case CPU_R4600:
562 case CPU_R4700:
563 uasm_i_nop(p);
564 tlbw(p);
565 uasm_i_nop(p);
566 break;
568 case CPU_R5000:
569 case CPU_NEVADA:
570 uasm_i_nop(p); /* QED specifies 2 nops hazard */
571 uasm_i_nop(p); /* QED specifies 2 nops hazard */
572 tlbw(p);
573 break;
575 case CPU_R4300:
576 case CPU_5KC:
577 case CPU_TX49XX:
578 case CPU_PR4450:
579 case CPU_XLR:
580 uasm_i_nop(p);
581 tlbw(p);
582 break;
584 case CPU_R10000:
585 case CPU_R12000:
586 case CPU_R14000:
587 case CPU_4KC:
588 case CPU_4KEC:
589 case CPU_M14KC:
590 case CPU_M14KEC:
591 case CPU_SB1:
592 case CPU_SB1A:
593 case CPU_4KSC:
594 case CPU_20KC:
595 case CPU_25KF:
596 case CPU_BMIPS32:
597 case CPU_BMIPS3300:
598 case CPU_BMIPS4350:
599 case CPU_BMIPS4380:
600 case CPU_BMIPS5000:
601 case CPU_LOONGSON2:
602 case CPU_R5500:
603 if (m4kc_tlbp_war())
604 uasm_i_nop(p);
605 case CPU_ALCHEMY:
606 tlbw(p);
607 break;
609 case CPU_RM7000:
610 uasm_i_nop(p);
611 uasm_i_nop(p);
612 uasm_i_nop(p);
613 uasm_i_nop(p);
614 tlbw(p);
615 break;
617 case CPU_VR4111:
618 case CPU_VR4121:
619 case CPU_VR4122:
620 case CPU_VR4181:
621 case CPU_VR4181A:
622 uasm_i_nop(p);
623 uasm_i_nop(p);
624 tlbw(p);
625 uasm_i_nop(p);
626 uasm_i_nop(p);
627 break;
629 case CPU_VR4131:
630 case CPU_VR4133:
631 case CPU_R5432:
632 uasm_i_nop(p);
633 uasm_i_nop(p);
634 tlbw(p);
635 break;
637 case CPU_JZRISC:
638 tlbw(p);
639 uasm_i_nop(p);
640 break;
642 default:
643 panic("No TLB refill handler yet (CPU type: %d)",
644 current_cpu_data.cputype);
645 break;
649 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
650 unsigned int reg)
652 if (cpu_has_rixi) {
653 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
654 } else {
655 #ifdef CONFIG_64BIT_PHYS_ADDR
656 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
657 #else
658 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
659 #endif
663 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
665 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
666 unsigned int tmp, enum label_id lid,
667 int restore_scratch)
669 if (restore_scratch) {
670 /* Reset default page size */
671 if (PM_DEFAULT_MASK >> 16) {
672 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
673 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
674 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
675 uasm_il_b(p, r, lid);
676 } else if (PM_DEFAULT_MASK) {
677 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
678 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
679 uasm_il_b(p, r, lid);
680 } else {
681 uasm_i_mtc0(p, 0, C0_PAGEMASK);
682 uasm_il_b(p, r, lid);
684 if (scratch_reg >= 0)
685 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
686 else
687 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
688 } else {
689 /* Reset default page size */
690 if (PM_DEFAULT_MASK >> 16) {
691 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
692 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
693 uasm_il_b(p, r, lid);
694 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
695 } else if (PM_DEFAULT_MASK) {
696 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
697 uasm_il_b(p, r, lid);
698 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
699 } else {
700 uasm_il_b(p, r, lid);
701 uasm_i_mtc0(p, 0, C0_PAGEMASK);
706 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
707 struct uasm_reloc **r,
708 unsigned int tmp,
709 enum tlb_write_entry wmode,
710 int restore_scratch)
712 /* Set huge page tlb entry size */
713 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
714 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
715 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
717 build_tlb_write_entry(p, l, r, wmode);
719 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
723 * Check if Huge PTE is present, if so then jump to LABEL.
725 static void
726 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
727 unsigned int pmd, int lid)
729 UASM_i_LW(p, tmp, 0, pmd);
730 if (use_bbit_insns()) {
731 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
732 } else {
733 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
734 uasm_il_bnez(p, r, tmp, lid);
738 static void build_huge_update_entries(u32 **p, unsigned int pte,
739 unsigned int tmp)
741 int small_sequence;
744 * A huge PTE describes an area the size of the
745 * configured huge page size. This is twice the
746 * of the large TLB entry size we intend to use.
747 * A TLB entry half the size of the configured
748 * huge page size is configured into entrylo0
749 * and entrylo1 to cover the contiguous huge PTE
750 * address space.
752 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
754 /* We can clobber tmp. It isn't used after this.*/
755 if (!small_sequence)
756 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
758 build_convert_pte_to_entrylo(p, pte);
759 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
760 /* convert to entrylo1 */
761 if (small_sequence)
762 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
763 else
764 UASM_i_ADDU(p, pte, pte, tmp);
766 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
769 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
770 struct uasm_label **l,
771 unsigned int pte,
772 unsigned int ptr)
774 #ifdef CONFIG_SMP
775 UASM_i_SC(p, pte, 0, ptr);
776 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
777 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
778 #else
779 UASM_i_SW(p, pte, 0, ptr);
780 #endif
781 build_huge_update_entries(p, pte, ptr);
782 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
784 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
786 #ifdef CONFIG_64BIT
788 * TMP and PTR are scratch.
789 * TMP will be clobbered, PTR will hold the pmd entry.
791 static void
792 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
793 unsigned int tmp, unsigned int ptr)
795 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
796 long pgdc = (long)pgd_current;
797 #endif
799 * The vmalloc handling is not in the hotpath.
801 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
803 if (check_for_high_segbits) {
805 * The kernel currently implicitely assumes that the
806 * MIPS SEGBITS parameter for the processor is
807 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
808 * allocate virtual addresses outside the maximum
809 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
810 * that doesn't prevent user code from accessing the
811 * higher xuseg addresses. Here, we make sure that
812 * everything but the lower xuseg addresses goes down
813 * the module_alloc/vmalloc path.
815 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
816 uasm_il_bnez(p, r, ptr, label_vmalloc);
817 } else {
818 uasm_il_bltz(p, r, tmp, label_vmalloc);
820 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
822 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
823 if (pgd_reg != -1) {
824 /* pgd is in pgd_reg */
825 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
826 } else {
828 * &pgd << 11 stored in CONTEXT [23..63].
830 UASM_i_MFC0(p, ptr, C0_CONTEXT);
832 /* Clear lower 23 bits of context. */
833 uasm_i_dins(p, ptr, 0, 0, 23);
835 /* 1 0 1 0 1 << 6 xkphys cached */
836 uasm_i_ori(p, ptr, ptr, 0x540);
837 uasm_i_drotr(p, ptr, ptr, 11);
839 #elif defined(CONFIG_SMP)
840 # ifdef CONFIG_MIPS_MT_SMTC
842 * SMTC uses TCBind value as "CPU" index
844 uasm_i_mfc0(p, ptr, C0_TCBIND);
845 uasm_i_dsrl_safe(p, ptr, ptr, 19);
846 # else
848 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
849 * stored in CONTEXT.
851 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
852 uasm_i_dsrl_safe(p, ptr, ptr, 23);
853 # endif
854 UASM_i_LA_mostly(p, tmp, pgdc);
855 uasm_i_daddu(p, ptr, ptr, tmp);
856 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
857 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
858 #else
859 UASM_i_LA_mostly(p, ptr, pgdc);
860 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
861 #endif
863 uasm_l_vmalloc_done(l, *p);
865 /* get pgd offset in bytes */
866 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
868 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
869 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
870 #ifndef __PAGETABLE_PMD_FOLDED
871 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
872 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
873 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
874 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
875 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
876 #endif
880 * BVADDR is the faulting address, PTR is scratch.
881 * PTR will hold the pgd for vmalloc.
883 static void
884 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
885 unsigned int bvaddr, unsigned int ptr,
886 enum vmalloc64_mode mode)
888 long swpd = (long)swapper_pg_dir;
889 int single_insn_swpd;
890 int did_vmalloc_branch = 0;
892 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
894 uasm_l_vmalloc(l, *p);
896 if (mode != not_refill && check_for_high_segbits) {
897 if (single_insn_swpd) {
898 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
899 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
900 did_vmalloc_branch = 1;
901 /* fall through */
902 } else {
903 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
906 if (!did_vmalloc_branch) {
907 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
908 uasm_il_b(p, r, label_vmalloc_done);
909 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
910 } else {
911 UASM_i_LA_mostly(p, ptr, swpd);
912 uasm_il_b(p, r, label_vmalloc_done);
913 if (uasm_in_compat_space_p(swpd))
914 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
915 else
916 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
919 if (mode != not_refill && check_for_high_segbits) {
920 uasm_l_large_segbits_fault(l, *p);
922 * We get here if we are an xsseg address, or if we are
923 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
925 * Ignoring xsseg (assume disabled so would generate
926 * (address errors?), the only remaining possibility
927 * is the upper xuseg addresses. On processors with
928 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
929 * addresses would have taken an address error. We try
930 * to mimic that here by taking a load/istream page
931 * fault.
933 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
934 uasm_i_jr(p, ptr);
936 if (mode == refill_scratch) {
937 if (scratch_reg >= 0)
938 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
939 else
940 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
941 } else {
942 uasm_i_nop(p);
947 #else /* !CONFIG_64BIT */
950 * TMP and PTR are scratch.
951 * TMP will be clobbered, PTR will hold the pgd entry.
953 static void __maybe_unused
954 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
956 long pgdc = (long)pgd_current;
958 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
959 #ifdef CONFIG_SMP
960 #ifdef CONFIG_MIPS_MT_SMTC
962 * SMTC uses TCBind value as "CPU" index
964 uasm_i_mfc0(p, ptr, C0_TCBIND);
965 UASM_i_LA_mostly(p, tmp, pgdc);
966 uasm_i_srl(p, ptr, ptr, 19);
967 #else
969 * smp_processor_id() << 2 is stored in CONTEXT.
971 uasm_i_mfc0(p, ptr, C0_CONTEXT);
972 UASM_i_LA_mostly(p, tmp, pgdc);
973 uasm_i_srl(p, ptr, ptr, 23);
974 #endif
975 uasm_i_addu(p, ptr, tmp, ptr);
976 #else
977 UASM_i_LA_mostly(p, ptr, pgdc);
978 #endif
979 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
980 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
981 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
982 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
983 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
986 #endif /* !CONFIG_64BIT */
988 static void build_adjust_context(u32 **p, unsigned int ctx)
990 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
991 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
993 switch (current_cpu_type()) {
994 case CPU_VR41XX:
995 case CPU_VR4111:
996 case CPU_VR4121:
997 case CPU_VR4122:
998 case CPU_VR4131:
999 case CPU_VR4181:
1000 case CPU_VR4181A:
1001 case CPU_VR4133:
1002 shift += 2;
1003 break;
1005 default:
1006 break;
1009 if (shift)
1010 UASM_i_SRL(p, ctx, ctx, shift);
1011 uasm_i_andi(p, ctx, ctx, mask);
1014 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1017 * Bug workaround for the Nevada. It seems as if under certain
1018 * circumstances the move from cp0_context might produce a
1019 * bogus result when the mfc0 instruction and its consumer are
1020 * in a different cacheline or a load instruction, probably any
1021 * memory reference, is between them.
1023 switch (current_cpu_type()) {
1024 case CPU_NEVADA:
1025 UASM_i_LW(p, ptr, 0, ptr);
1026 GET_CONTEXT(p, tmp); /* get context reg */
1027 break;
1029 default:
1030 GET_CONTEXT(p, tmp); /* get context reg */
1031 UASM_i_LW(p, ptr, 0, ptr);
1032 break;
1035 build_adjust_context(p, tmp);
1036 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1039 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1042 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1043 * Kernel is a special case. Only a few CPUs use it.
1045 #ifdef CONFIG_64BIT_PHYS_ADDR
1046 if (cpu_has_64bits) {
1047 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1048 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1049 if (cpu_has_rixi) {
1050 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1051 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1052 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1053 } else {
1054 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1055 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1056 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1058 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1059 } else {
1060 int pte_off_even = sizeof(pte_t) / 2;
1061 int pte_off_odd = pte_off_even + sizeof(pte_t);
1063 /* The pte entries are pre-shifted */
1064 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1065 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1066 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1067 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1069 #else
1070 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1071 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1072 if (r45k_bvahwbug())
1073 build_tlb_probe_entry(p);
1074 if (cpu_has_rixi) {
1075 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1076 if (r4k_250MHZhwbug())
1077 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1078 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1079 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1080 } else {
1081 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1082 if (r4k_250MHZhwbug())
1083 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1084 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1085 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1086 if (r45k_bvahwbug())
1087 uasm_i_mfc0(p, tmp, C0_INDEX);
1089 if (r4k_250MHZhwbug())
1090 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1091 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1092 #endif
1095 struct mips_huge_tlb_info {
1096 int huge_pte;
1097 int restore_scratch;
1100 static struct mips_huge_tlb_info
1101 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1102 struct uasm_reloc **r, unsigned int tmp,
1103 unsigned int ptr, int c0_scratch_reg)
1105 struct mips_huge_tlb_info rv;
1106 unsigned int even, odd;
1107 int vmalloc_branch_delay_filled = 0;
1108 const int scratch = 1; /* Our extra working register */
1110 rv.huge_pte = scratch;
1111 rv.restore_scratch = 0;
1113 if (check_for_high_segbits) {
1114 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1116 if (pgd_reg != -1)
1117 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1118 else
1119 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1121 if (c0_scratch_reg >= 0)
1122 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1123 else
1124 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1126 uasm_i_dsrl_safe(p, scratch, tmp,
1127 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1128 uasm_il_bnez(p, r, scratch, label_vmalloc);
1130 if (pgd_reg == -1) {
1131 vmalloc_branch_delay_filled = 1;
1132 /* Clear lower 23 bits of context. */
1133 uasm_i_dins(p, ptr, 0, 0, 23);
1135 } else {
1136 if (pgd_reg != -1)
1137 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1138 else
1139 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1141 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1143 if (c0_scratch_reg >= 0)
1144 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1145 else
1146 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1148 if (pgd_reg == -1)
1149 /* Clear lower 23 bits of context. */
1150 uasm_i_dins(p, ptr, 0, 0, 23);
1152 uasm_il_bltz(p, r, tmp, label_vmalloc);
1155 if (pgd_reg == -1) {
1156 vmalloc_branch_delay_filled = 1;
1157 /* 1 0 1 0 1 << 6 xkphys cached */
1158 uasm_i_ori(p, ptr, ptr, 0x540);
1159 uasm_i_drotr(p, ptr, ptr, 11);
1162 #ifdef __PAGETABLE_PMD_FOLDED
1163 #define LOC_PTEP scratch
1164 #else
1165 #define LOC_PTEP ptr
1166 #endif
1168 if (!vmalloc_branch_delay_filled)
1169 /* get pgd offset in bytes */
1170 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1172 uasm_l_vmalloc_done(l, *p);
1175 * tmp ptr
1176 * fall-through case = badvaddr *pgd_current
1177 * vmalloc case = badvaddr swapper_pg_dir
1180 if (vmalloc_branch_delay_filled)
1181 /* get pgd offset in bytes */
1182 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1184 #ifdef __PAGETABLE_PMD_FOLDED
1185 GET_CONTEXT(p, tmp); /* get context reg */
1186 #endif
1187 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1189 if (use_lwx_insns()) {
1190 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1191 } else {
1192 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1193 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1196 #ifndef __PAGETABLE_PMD_FOLDED
1197 /* get pmd offset in bytes */
1198 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1199 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1200 GET_CONTEXT(p, tmp); /* get context reg */
1202 if (use_lwx_insns()) {
1203 UASM_i_LWX(p, scratch, scratch, ptr);
1204 } else {
1205 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1206 UASM_i_LW(p, scratch, 0, ptr);
1208 #endif
1209 /* Adjust the context during the load latency. */
1210 build_adjust_context(p, tmp);
1212 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1213 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1215 * The in the LWX case we don't want to do the load in the
1216 * delay slot. It cannot issue in the same cycle and may be
1217 * speculative and unneeded.
1219 if (use_lwx_insns())
1220 uasm_i_nop(p);
1221 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1224 /* build_update_entries */
1225 if (use_lwx_insns()) {
1226 even = ptr;
1227 odd = tmp;
1228 UASM_i_LWX(p, even, scratch, tmp);
1229 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1230 UASM_i_LWX(p, odd, scratch, tmp);
1231 } else {
1232 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1233 even = tmp;
1234 odd = ptr;
1235 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1236 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1238 if (cpu_has_rixi) {
1239 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1240 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1241 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1242 } else {
1243 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1244 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1245 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1247 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1249 if (c0_scratch_reg >= 0) {
1250 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1251 build_tlb_write_entry(p, l, r, tlb_random);
1252 uasm_l_leave(l, *p);
1253 rv.restore_scratch = 1;
1254 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1255 build_tlb_write_entry(p, l, r, tlb_random);
1256 uasm_l_leave(l, *p);
1257 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1258 } else {
1259 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1260 build_tlb_write_entry(p, l, r, tlb_random);
1261 uasm_l_leave(l, *p);
1262 rv.restore_scratch = 1;
1265 uasm_i_eret(p); /* return from trap */
1267 return rv;
1271 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1272 * because EXL == 0. If we wrap, we can also use the 32 instruction
1273 * slots before the XTLB refill exception handler which belong to the
1274 * unused TLB refill exception.
1276 #define MIPS64_REFILL_INSNS 32
1278 static void build_r4000_tlb_refill_handler(void)
1280 u32 *p = tlb_handler;
1281 struct uasm_label *l = labels;
1282 struct uasm_reloc *r = relocs;
1283 u32 *f;
1284 unsigned int final_len;
1285 struct mips_huge_tlb_info htlb_info __maybe_unused;
1286 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1288 memset(tlb_handler, 0, sizeof(tlb_handler));
1289 memset(labels, 0, sizeof(labels));
1290 memset(relocs, 0, sizeof(relocs));
1291 memset(final_handler, 0, sizeof(final_handler));
1293 if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1294 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1295 scratch_reg);
1296 vmalloc_mode = refill_scratch;
1297 } else {
1298 htlb_info.huge_pte = K0;
1299 htlb_info.restore_scratch = 0;
1300 vmalloc_mode = refill_noscratch;
1302 * create the plain linear handler
1304 if (bcm1250_m3_war()) {
1305 unsigned int segbits = 44;
1307 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1308 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1309 uasm_i_xor(&p, K0, K0, K1);
1310 uasm_i_dsrl_safe(&p, K1, K0, 62);
1311 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1312 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1313 uasm_i_or(&p, K0, K0, K1);
1314 uasm_il_bnez(&p, &r, K0, label_leave);
1315 /* No need for uasm_i_nop */
1318 #ifdef CONFIG_64BIT
1319 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1320 #else
1321 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1322 #endif
1324 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1325 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1326 #endif
1328 build_get_ptep(&p, K0, K1);
1329 build_update_entries(&p, K0, K1);
1330 build_tlb_write_entry(&p, &l, &r, tlb_random);
1331 uasm_l_leave(&l, p);
1332 uasm_i_eret(&p); /* return from trap */
1334 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1335 uasm_l_tlb_huge_update(&l, p);
1336 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1337 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1338 htlb_info.restore_scratch);
1339 #endif
1341 #ifdef CONFIG_64BIT
1342 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1343 #endif
1346 * Overflow check: For the 64bit handler, we need at least one
1347 * free instruction slot for the wrap-around branch. In worst
1348 * case, if the intended insertion point is a delay slot, we
1349 * need three, with the second nop'ed and the third being
1350 * unused.
1352 /* Loongson2 ebase is different than r4k, we have more space */
1353 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1354 if ((p - tlb_handler) > 64)
1355 panic("TLB refill handler space exceeded");
1356 #else
1357 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1358 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1359 && uasm_insn_has_bdelay(relocs,
1360 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1361 panic("TLB refill handler space exceeded");
1362 #endif
1365 * Now fold the handler in the TLB refill handler space.
1367 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1368 f = final_handler;
1369 /* Simplest case, just copy the handler. */
1370 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1371 final_len = p - tlb_handler;
1372 #else /* CONFIG_64BIT */
1373 f = final_handler + MIPS64_REFILL_INSNS;
1374 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1375 /* Just copy the handler. */
1376 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1377 final_len = p - tlb_handler;
1378 } else {
1379 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1380 const enum label_id ls = label_tlb_huge_update;
1381 #else
1382 const enum label_id ls = label_vmalloc;
1383 #endif
1384 u32 *split;
1385 int ov = 0;
1386 int i;
1388 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1390 BUG_ON(i == ARRAY_SIZE(labels));
1391 split = labels[i].addr;
1394 * See if we have overflown one way or the other.
1396 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1397 split < p - MIPS64_REFILL_INSNS)
1398 ov = 1;
1400 if (ov) {
1402 * Split two instructions before the end. One
1403 * for the branch and one for the instruction
1404 * in the delay slot.
1406 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1409 * If the branch would fall in a delay slot,
1410 * we must back up an additional instruction
1411 * so that it is no longer in a delay slot.
1413 if (uasm_insn_has_bdelay(relocs, split - 1))
1414 split--;
1416 /* Copy first part of the handler. */
1417 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1418 f += split - tlb_handler;
1420 if (ov) {
1421 /* Insert branch. */
1422 uasm_l_split(&l, final_handler);
1423 uasm_il_b(&f, &r, label_split);
1424 if (uasm_insn_has_bdelay(relocs, split))
1425 uasm_i_nop(&f);
1426 else {
1427 uasm_copy_handler(relocs, labels,
1428 split, split + 1, f);
1429 uasm_move_labels(labels, f, f + 1, -1);
1430 f++;
1431 split++;
1435 /* Copy the rest of the handler. */
1436 uasm_copy_handler(relocs, labels, split, p, final_handler);
1437 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1438 (p - split);
1440 #endif /* CONFIG_64BIT */
1442 uasm_resolve_relocs(relocs, labels);
1443 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1444 final_len);
1446 memcpy((void *)ebase, final_handler, 0x100);
1448 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1451 extern u32 handle_tlbl[], handle_tlbl_end[];
1452 extern u32 handle_tlbs[], handle_tlbs_end[];
1453 extern u32 handle_tlbm[], handle_tlbm_end[];
1455 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1456 extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
1458 static void build_r4000_setup_pgd(void)
1460 const int a0 = 4;
1461 const int a1 = 5;
1462 u32 *p = tlbmiss_handler_setup_pgd;
1463 const int tlbmiss_handler_setup_pgd_size =
1464 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
1465 struct uasm_label *l = labels;
1466 struct uasm_reloc *r = relocs;
1468 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1469 sizeof(tlbmiss_handler_setup_pgd[0]));
1470 memset(labels, 0, sizeof(labels));
1471 memset(relocs, 0, sizeof(relocs));
1473 pgd_reg = allocate_kscratch();
1475 if (pgd_reg == -1) {
1476 /* PGD << 11 in c0_Context */
1478 * If it is a ckseg0 address, convert to a physical
1479 * address. Shifting right by 29 and adding 4 will
1480 * result in zero for these addresses.
1483 UASM_i_SRA(&p, a1, a0, 29);
1484 UASM_i_ADDIU(&p, a1, a1, 4);
1485 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1486 uasm_i_nop(&p);
1487 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1488 uasm_l_tlbl_goaround1(&l, p);
1489 UASM_i_SLL(&p, a0, a0, 11);
1490 uasm_i_jr(&p, 31);
1491 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1492 } else {
1493 /* PGD in c0_KScratch */
1494 uasm_i_jr(&p, 31);
1495 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1497 if (p >= tlbmiss_handler_setup_pgd_end)
1498 panic("tlbmiss_handler_setup_pgd space exceeded");
1500 uasm_resolve_relocs(relocs, labels);
1501 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1502 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1504 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1505 tlbmiss_handler_setup_pgd_size);
1507 #endif
1509 static void
1510 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1512 #ifdef CONFIG_SMP
1513 # ifdef CONFIG_64BIT_PHYS_ADDR
1514 if (cpu_has_64bits)
1515 uasm_i_lld(p, pte, 0, ptr);
1516 else
1517 # endif
1518 UASM_i_LL(p, pte, 0, ptr);
1519 #else
1520 # ifdef CONFIG_64BIT_PHYS_ADDR
1521 if (cpu_has_64bits)
1522 uasm_i_ld(p, pte, 0, ptr);
1523 else
1524 # endif
1525 UASM_i_LW(p, pte, 0, ptr);
1526 #endif
1529 static void
1530 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1531 unsigned int mode)
1533 #ifdef CONFIG_64BIT_PHYS_ADDR
1534 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1535 #endif
1537 uasm_i_ori(p, pte, pte, mode);
1538 #ifdef CONFIG_SMP
1539 # ifdef CONFIG_64BIT_PHYS_ADDR
1540 if (cpu_has_64bits)
1541 uasm_i_scd(p, pte, 0, ptr);
1542 else
1543 # endif
1544 UASM_i_SC(p, pte, 0, ptr);
1546 if (r10000_llsc_war())
1547 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1548 else
1549 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1551 # ifdef CONFIG_64BIT_PHYS_ADDR
1552 if (!cpu_has_64bits) {
1553 /* no uasm_i_nop needed */
1554 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1555 uasm_i_ori(p, pte, pte, hwmode);
1556 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1557 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1558 /* no uasm_i_nop needed */
1559 uasm_i_lw(p, pte, 0, ptr);
1560 } else
1561 uasm_i_nop(p);
1562 # else
1563 uasm_i_nop(p);
1564 # endif
1565 #else
1566 # ifdef CONFIG_64BIT_PHYS_ADDR
1567 if (cpu_has_64bits)
1568 uasm_i_sd(p, pte, 0, ptr);
1569 else
1570 # endif
1571 UASM_i_SW(p, pte, 0, ptr);
1573 # ifdef CONFIG_64BIT_PHYS_ADDR
1574 if (!cpu_has_64bits) {
1575 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1576 uasm_i_ori(p, pte, pte, hwmode);
1577 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1578 uasm_i_lw(p, pte, 0, ptr);
1580 # endif
1581 #endif
1585 * Check if PTE is present, if not then jump to LABEL. PTR points to
1586 * the page table where this PTE is located, PTE will be re-loaded
1587 * with it's original value.
1589 static void
1590 build_pte_present(u32 **p, struct uasm_reloc **r,
1591 int pte, int ptr, int scratch, enum label_id lid)
1593 int t = scratch >= 0 ? scratch : pte;
1595 if (cpu_has_rixi) {
1596 if (use_bbit_insns()) {
1597 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1598 uasm_i_nop(p);
1599 } else {
1600 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1601 uasm_il_beqz(p, r, t, lid);
1602 if (pte == t)
1603 /* You lose the SMP race :-(*/
1604 iPTE_LW(p, pte, ptr);
1606 } else {
1607 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1608 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1609 uasm_il_bnez(p, r, t, lid);
1610 if (pte == t)
1611 /* You lose the SMP race :-(*/
1612 iPTE_LW(p, pte, ptr);
1616 /* Make PTE valid, store result in PTR. */
1617 static void
1618 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1619 unsigned int ptr)
1621 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1623 iPTE_SW(p, r, pte, ptr, mode);
1627 * Check if PTE can be written to, if not branch to LABEL. Regardless
1628 * restore PTE with value from PTR when done.
1630 static void
1631 build_pte_writable(u32 **p, struct uasm_reloc **r,
1632 unsigned int pte, unsigned int ptr, int scratch,
1633 enum label_id lid)
1635 int t = scratch >= 0 ? scratch : pte;
1637 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1638 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1639 uasm_il_bnez(p, r, t, lid);
1640 if (pte == t)
1641 /* You lose the SMP race :-(*/
1642 iPTE_LW(p, pte, ptr);
1643 else
1644 uasm_i_nop(p);
1647 /* Make PTE writable, update software status bits as well, then store
1648 * at PTR.
1650 static void
1651 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1652 unsigned int ptr)
1654 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1655 | _PAGE_DIRTY);
1657 iPTE_SW(p, r, pte, ptr, mode);
1661 * Check if PTE can be modified, if not branch to LABEL. Regardless
1662 * restore PTE with value from PTR when done.
1664 static void
1665 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1666 unsigned int pte, unsigned int ptr, int scratch,
1667 enum label_id lid)
1669 if (use_bbit_insns()) {
1670 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1671 uasm_i_nop(p);
1672 } else {
1673 int t = scratch >= 0 ? scratch : pte;
1674 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1675 uasm_il_beqz(p, r, t, lid);
1676 if (pte == t)
1677 /* You lose the SMP race :-(*/
1678 iPTE_LW(p, pte, ptr);
1682 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1686 * R3000 style TLB load/store/modify handlers.
1690 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1691 * Then it returns.
1693 static void
1694 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1696 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1697 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1698 uasm_i_tlbwi(p);
1699 uasm_i_jr(p, tmp);
1700 uasm_i_rfe(p); /* branch delay */
1704 * This places the pte into ENTRYLO0 and writes it with tlbwi
1705 * or tlbwr as appropriate. This is because the index register
1706 * may have the probe fail bit set as a result of a trap on a
1707 * kseg2 access, i.e. without refill. Then it returns.
1709 static void
1710 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1711 struct uasm_reloc **r, unsigned int pte,
1712 unsigned int tmp)
1714 uasm_i_mfc0(p, tmp, C0_INDEX);
1715 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1716 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1717 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1718 uasm_i_tlbwi(p); /* cp0 delay */
1719 uasm_i_jr(p, tmp);
1720 uasm_i_rfe(p); /* branch delay */
1721 uasm_l_r3000_write_probe_fail(l, *p);
1722 uasm_i_tlbwr(p); /* cp0 delay */
1723 uasm_i_jr(p, tmp);
1724 uasm_i_rfe(p); /* branch delay */
1727 static void
1728 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1729 unsigned int ptr)
1731 long pgdc = (long)pgd_current;
1733 uasm_i_mfc0(p, pte, C0_BADVADDR);
1734 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1735 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1736 uasm_i_srl(p, pte, pte, 22); /* load delay */
1737 uasm_i_sll(p, pte, pte, 2);
1738 uasm_i_addu(p, ptr, ptr, pte);
1739 uasm_i_mfc0(p, pte, C0_CONTEXT);
1740 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1741 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1742 uasm_i_addu(p, ptr, ptr, pte);
1743 uasm_i_lw(p, pte, 0, ptr);
1744 uasm_i_tlbp(p); /* load delay */
1747 static void build_r3000_tlb_load_handler(void)
1749 u32 *p = handle_tlbl;
1750 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1751 struct uasm_label *l = labels;
1752 struct uasm_reloc *r = relocs;
1754 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1755 memset(labels, 0, sizeof(labels));
1756 memset(relocs, 0, sizeof(relocs));
1758 build_r3000_tlbchange_handler_head(&p, K0, K1);
1759 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1760 uasm_i_nop(&p); /* load delay */
1761 build_make_valid(&p, &r, K0, K1);
1762 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1764 uasm_l_nopage_tlbl(&l, p);
1765 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1766 uasm_i_nop(&p);
1768 if (p >= handle_tlbl_end)
1769 panic("TLB load handler fastpath space exceeded");
1771 uasm_resolve_relocs(relocs, labels);
1772 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1773 (unsigned int)(p - handle_tlbl));
1775 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1778 static void build_r3000_tlb_store_handler(void)
1780 u32 *p = handle_tlbs;
1781 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1782 struct uasm_label *l = labels;
1783 struct uasm_reloc *r = relocs;
1785 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1786 memset(labels, 0, sizeof(labels));
1787 memset(relocs, 0, sizeof(relocs));
1789 build_r3000_tlbchange_handler_head(&p, K0, K1);
1790 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1791 uasm_i_nop(&p); /* load delay */
1792 build_make_write(&p, &r, K0, K1);
1793 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1795 uasm_l_nopage_tlbs(&l, p);
1796 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1797 uasm_i_nop(&p);
1799 if (p >= handle_tlbs_end)
1800 panic("TLB store handler fastpath space exceeded");
1802 uasm_resolve_relocs(relocs, labels);
1803 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1804 (unsigned int)(p - handle_tlbs));
1806 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1809 static void build_r3000_tlb_modify_handler(void)
1811 u32 *p = handle_tlbm;
1812 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1813 struct uasm_label *l = labels;
1814 struct uasm_reloc *r = relocs;
1816 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1817 memset(labels, 0, sizeof(labels));
1818 memset(relocs, 0, sizeof(relocs));
1820 build_r3000_tlbchange_handler_head(&p, K0, K1);
1821 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1822 uasm_i_nop(&p); /* load delay */
1823 build_make_write(&p, &r, K0, K1);
1824 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1826 uasm_l_nopage_tlbm(&l, p);
1827 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1828 uasm_i_nop(&p);
1830 if (p >= handle_tlbm_end)
1831 panic("TLB modify handler fastpath space exceeded");
1833 uasm_resolve_relocs(relocs, labels);
1834 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1835 (unsigned int)(p - handle_tlbm));
1837 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1839 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1842 * R4000 style TLB load/store/modify handlers.
1844 static struct work_registers
1845 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1846 struct uasm_reloc **r)
1848 struct work_registers wr = build_get_work_registers(p);
1850 #ifdef CONFIG_64BIT
1851 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1852 #else
1853 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1854 #endif
1856 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1858 * For huge tlb entries, pmd doesn't contain an address but
1859 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1860 * see if we need to jump to huge tlb processing.
1862 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1863 #endif
1865 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1866 UASM_i_LW(p, wr.r2, 0, wr.r2);
1867 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1868 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1869 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1871 #ifdef CONFIG_SMP
1872 uasm_l_smp_pgtable_change(l, *p);
1873 #endif
1874 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1875 if (!m4kc_tlbp_war())
1876 build_tlb_probe_entry(p);
1877 return wr;
1880 static void
1881 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1882 struct uasm_reloc **r, unsigned int tmp,
1883 unsigned int ptr)
1885 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1886 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1887 build_update_entries(p, tmp, ptr);
1888 build_tlb_write_entry(p, l, r, tlb_indexed);
1889 uasm_l_leave(l, *p);
1890 build_restore_work_registers(p);
1891 uasm_i_eret(p); /* return from trap */
1893 #ifdef CONFIG_64BIT
1894 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1895 #endif
1898 static void build_r4000_tlb_load_handler(void)
1900 u32 *p = handle_tlbl;
1901 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1902 struct uasm_label *l = labels;
1903 struct uasm_reloc *r = relocs;
1904 struct work_registers wr;
1906 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1907 memset(labels, 0, sizeof(labels));
1908 memset(relocs, 0, sizeof(relocs));
1910 if (bcm1250_m3_war()) {
1911 unsigned int segbits = 44;
1913 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1914 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1915 uasm_i_xor(&p, K0, K0, K1);
1916 uasm_i_dsrl_safe(&p, K1, K0, 62);
1917 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1918 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1919 uasm_i_or(&p, K0, K0, K1);
1920 uasm_il_bnez(&p, &r, K0, label_leave);
1921 /* No need for uasm_i_nop */
1924 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1925 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1926 if (m4kc_tlbp_war())
1927 build_tlb_probe_entry(&p);
1929 if (cpu_has_rixi) {
1931 * If the page is not _PAGE_VALID, RI or XI could not
1932 * have triggered it. Skip the expensive test..
1934 if (use_bbit_insns()) {
1935 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1936 label_tlbl_goaround1);
1937 } else {
1938 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1939 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1941 uasm_i_nop(&p);
1943 uasm_i_tlbr(&p);
1945 switch (current_cpu_type()) {
1946 default:
1947 if (cpu_has_mips_r2) {
1948 uasm_i_ehb(&p);
1950 case CPU_CAVIUM_OCTEON:
1951 case CPU_CAVIUM_OCTEON_PLUS:
1952 case CPU_CAVIUM_OCTEON2:
1953 break;
1957 /* Examine entrylo 0 or 1 based on ptr. */
1958 if (use_bbit_insns()) {
1959 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1960 } else {
1961 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1962 uasm_i_beqz(&p, wr.r3, 8);
1964 /* load it in the delay slot*/
1965 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1966 /* load it if ptr is odd */
1967 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1969 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1970 * XI must have triggered it.
1972 if (use_bbit_insns()) {
1973 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1974 uasm_i_nop(&p);
1975 uasm_l_tlbl_goaround1(&l, p);
1976 } else {
1977 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1978 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1979 uasm_i_nop(&p);
1981 uasm_l_tlbl_goaround1(&l, p);
1983 build_make_valid(&p, &r, wr.r1, wr.r2);
1984 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1986 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1988 * This is the entry point when build_r4000_tlbchange_handler_head
1989 * spots a huge page.
1991 uasm_l_tlb_huge_update(&l, p);
1992 iPTE_LW(&p, wr.r1, wr.r2);
1993 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1994 build_tlb_probe_entry(&p);
1996 if (cpu_has_rixi) {
1998 * If the page is not _PAGE_VALID, RI or XI could not
1999 * have triggered it. Skip the expensive test..
2001 if (use_bbit_insns()) {
2002 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2003 label_tlbl_goaround2);
2004 } else {
2005 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2006 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2008 uasm_i_nop(&p);
2010 uasm_i_tlbr(&p);
2012 switch (current_cpu_type()) {
2013 default:
2014 if (cpu_has_mips_r2) {
2015 uasm_i_ehb(&p);
2017 case CPU_CAVIUM_OCTEON:
2018 case CPU_CAVIUM_OCTEON_PLUS:
2019 case CPU_CAVIUM_OCTEON2:
2020 break;
2024 /* Examine entrylo 0 or 1 based on ptr. */
2025 if (use_bbit_insns()) {
2026 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2027 } else {
2028 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2029 uasm_i_beqz(&p, wr.r3, 8);
2031 /* load it in the delay slot*/
2032 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2033 /* load it if ptr is odd */
2034 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2036 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2037 * XI must have triggered it.
2039 if (use_bbit_insns()) {
2040 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2041 } else {
2042 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2043 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2045 if (PM_DEFAULT_MASK == 0)
2046 uasm_i_nop(&p);
2048 * We clobbered C0_PAGEMASK, restore it. On the other branch
2049 * it is restored in build_huge_tlb_write_entry.
2051 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2053 uasm_l_tlbl_goaround2(&l, p);
2055 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2056 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2057 #endif
2059 uasm_l_nopage_tlbl(&l, p);
2060 build_restore_work_registers(&p);
2061 #ifdef CONFIG_CPU_MICROMIPS
2062 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2063 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2064 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2065 uasm_i_jr(&p, K0);
2066 } else
2067 #endif
2068 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2069 uasm_i_nop(&p);
2071 if (p >= handle_tlbl_end)
2072 panic("TLB load handler fastpath space exceeded");
2074 uasm_resolve_relocs(relocs, labels);
2075 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2076 (unsigned int)(p - handle_tlbl));
2078 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2081 static void build_r4000_tlb_store_handler(void)
2083 u32 *p = handle_tlbs;
2084 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2085 struct uasm_label *l = labels;
2086 struct uasm_reloc *r = relocs;
2087 struct work_registers wr;
2089 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2090 memset(labels, 0, sizeof(labels));
2091 memset(relocs, 0, sizeof(relocs));
2093 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2094 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2095 if (m4kc_tlbp_war())
2096 build_tlb_probe_entry(&p);
2097 build_make_write(&p, &r, wr.r1, wr.r2);
2098 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2100 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2102 * This is the entry point when
2103 * build_r4000_tlbchange_handler_head spots a huge page.
2105 uasm_l_tlb_huge_update(&l, p);
2106 iPTE_LW(&p, wr.r1, wr.r2);
2107 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2108 build_tlb_probe_entry(&p);
2109 uasm_i_ori(&p, wr.r1, wr.r1,
2110 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2111 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2112 #endif
2114 uasm_l_nopage_tlbs(&l, p);
2115 build_restore_work_registers(&p);
2116 #ifdef CONFIG_CPU_MICROMIPS
2117 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2118 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2119 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2120 uasm_i_jr(&p, K0);
2121 } else
2122 #endif
2123 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2124 uasm_i_nop(&p);
2126 if (p >= handle_tlbs_end)
2127 panic("TLB store handler fastpath space exceeded");
2129 uasm_resolve_relocs(relocs, labels);
2130 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2131 (unsigned int)(p - handle_tlbs));
2133 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2136 static void build_r4000_tlb_modify_handler(void)
2138 u32 *p = handle_tlbm;
2139 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2140 struct uasm_label *l = labels;
2141 struct uasm_reloc *r = relocs;
2142 struct work_registers wr;
2144 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2145 memset(labels, 0, sizeof(labels));
2146 memset(relocs, 0, sizeof(relocs));
2148 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2149 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2150 if (m4kc_tlbp_war())
2151 build_tlb_probe_entry(&p);
2152 /* Present and writable bits set, set accessed and dirty bits. */
2153 build_make_write(&p, &r, wr.r1, wr.r2);
2154 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2156 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2158 * This is the entry point when
2159 * build_r4000_tlbchange_handler_head spots a huge page.
2161 uasm_l_tlb_huge_update(&l, p);
2162 iPTE_LW(&p, wr.r1, wr.r2);
2163 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2164 build_tlb_probe_entry(&p);
2165 uasm_i_ori(&p, wr.r1, wr.r1,
2166 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2167 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2168 #endif
2170 uasm_l_nopage_tlbm(&l, p);
2171 build_restore_work_registers(&p);
2172 #ifdef CONFIG_CPU_MICROMIPS
2173 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2174 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2175 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2176 uasm_i_jr(&p, K0);
2177 } else
2178 #endif
2179 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2180 uasm_i_nop(&p);
2182 if (p >= handle_tlbm_end)
2183 panic("TLB modify handler fastpath space exceeded");
2185 uasm_resolve_relocs(relocs, labels);
2186 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2187 (unsigned int)(p - handle_tlbm));
2189 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2192 static void flush_tlb_handlers(void)
2194 local_flush_icache_range((unsigned long)handle_tlbl,
2195 (unsigned long)handle_tlbl_end);
2196 local_flush_icache_range((unsigned long)handle_tlbs,
2197 (unsigned long)handle_tlbs_end);
2198 local_flush_icache_range((unsigned long)handle_tlbm,
2199 (unsigned long)handle_tlbm_end);
2200 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2201 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2202 (unsigned long)tlbmiss_handler_setup_pgd_end);
2203 #endif
2206 void build_tlb_refill_handler(void)
2209 * The refill handler is generated per-CPU, multi-node systems
2210 * may have local storage for it. The other handlers are only
2211 * needed once.
2213 static int run_once = 0;
2215 output_pgtable_bits_defines();
2217 #ifdef CONFIG_64BIT
2218 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2219 #endif
2221 switch (current_cpu_type()) {
2222 case CPU_R2000:
2223 case CPU_R3000:
2224 case CPU_R3000A:
2225 case CPU_R3081E:
2226 case CPU_TX3912:
2227 case CPU_TX3922:
2228 case CPU_TX3927:
2229 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2230 if (cpu_has_local_ebase)
2231 build_r3000_tlb_refill_handler();
2232 if (!run_once) {
2233 if (!cpu_has_local_ebase)
2234 build_r3000_tlb_refill_handler();
2235 build_r3000_tlb_load_handler();
2236 build_r3000_tlb_store_handler();
2237 build_r3000_tlb_modify_handler();
2238 flush_tlb_handlers();
2239 run_once++;
2241 #else
2242 panic("No R3000 TLB refill handler");
2243 #endif
2244 break;
2246 case CPU_R6000:
2247 case CPU_R6000A:
2248 panic("No R6000 TLB refill handler yet");
2249 break;
2251 case CPU_R8000:
2252 panic("No R8000 TLB refill handler yet");
2253 break;
2255 default:
2256 if (!run_once) {
2257 scratch_reg = allocate_kscratch();
2258 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2259 build_r4000_setup_pgd();
2260 #endif
2261 build_r4000_tlb_load_handler();
2262 build_r4000_tlb_store_handler();
2263 build_r4000_tlb_modify_handler();
2264 if (!cpu_has_local_ebase)
2265 build_r4000_tlb_refill_handler();
2266 flush_tlb_handlers();
2267 run_once++;
2269 if (cpu_has_local_ebase)
2270 build_r4000_tlb_refill_handler();