x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / mips / powertv / memory.c
blobbc2f3ca22b413a27ed8f245495d5c8a38374d8d2
1 /*
2 * Carsten Langgaard, carstenl@mips.com
3 * Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved.
4 * Portions copyright (C) 2009 Cisco Systems, Inc.
6 * This program is free software; you can distribute it and/or modify it
7 * under the terms of the GNU General Public License (Version 2) as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
19 * Apparently originally from arch/mips/malta-memory.c. Modified to work
20 * with the PowerTV bootloader.
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/bootmem.h>
25 #include <linux/pfn.h>
26 #include <linux/string.h>
28 #include <asm/bootinfo.h>
29 #include <asm/page.h>
30 #include <asm/sections.h>
32 #include <asm/mach-powertv/asic.h>
33 #include <asm/mach-powertv/ioremap.h>
35 #include "init.h"
37 /* Memory constants */
38 #define KIBIBYTE(n) ((n) * 1024) /* Number of kibibytes */
39 #define MEBIBYTE(n) ((n) * KIBIBYTE(1024)) /* Number of mebibytes */
40 #define DEFAULT_MEMSIZE MEBIBYTE(128) /* If no memsize provided */
42 #define BLDR_SIZE KIBIBYTE(256) /* Memory reserved for bldr */
43 #define RV_SIZE MEBIBYTE(4) /* Size of reset vector */
45 #define LOW_MEM_END 0x20000000 /* Highest low memory address */
46 #define BLDR_ALIAS 0x10000000 /* Bootloader address */
47 #define RV_PHYS 0x1fc00000 /* Reset vector address */
48 #define LOW_RAM_END RV_PHYS /* End of real RAM in low mem */
51 * Very low-level conversion from processor physical address to device
52 * DMA address for the first bank of memory.
54 #define PHYS_TO_DMA(paddr) ((paddr) + (CONFIG_LOW_RAM_DMA - LOW_RAM_ALIAS))
56 unsigned long ptv_memsize;
59 * struct low_mem_reserved - Items in low memory that are reserved
60 * @start: Physical address of item
61 * @size: Size, in bytes, of this item
62 * @is_aliased: True if this is RAM aliased from another location. If false,
63 * it is something other than aliased RAM and the RAM in the
64 * unaliased address is still visible outside of low memory.
66 struct low_mem_reserved {
67 phys_addr_t start;
68 phys_addr_t size;
69 bool is_aliased;
73 * Must be in ascending address order
75 struct low_mem_reserved low_mem_reserved[] = {
76 {BLDR_ALIAS, BLDR_SIZE, true}, /* Bootloader RAM */
77 {RV_PHYS, RV_SIZE, false}, /* Reset vector */
81 * struct mem_layout - layout of a piece of the system RAM
82 * @phys: Physical address of the start of this piece of RAM. This is the
83 * address at which both the processor and I/O devices see the
84 * RAM.
85 * @alias: Alias of this piece of memory in order to make it appear in
86 * the low memory part of the processor's address space. I/O
87 * devices don't see anything here.
88 * @size: Size, in bytes, of this piece of RAM
90 struct mem_layout {
91 phys_addr_t phys;
92 phys_addr_t alias;
93 phys_addr_t size;
97 * struct mem_layout_list - list descriptor for layouts of system RAM pieces
98 * @family: Specifies the family being described
99 * @n: Number of &struct mem_layout elements
100 * @layout: Pointer to the list of &mem_layout structures
102 struct mem_layout_list {
103 enum family_type family;
104 size_t n;
105 struct mem_layout *layout;
108 static struct mem_layout f1500_layout[] = {
109 {0x20000000, 0x10000000, MEBIBYTE(256)},
112 static struct mem_layout f4500_layout[] = {
113 {0x40000000, 0x10000000, MEBIBYTE(256)},
114 {0x20000000, 0x20000000, MEBIBYTE(32)},
117 static struct mem_layout f8500_layout[] = {
118 {0x40000000, 0x10000000, MEBIBYTE(256)},
119 {0x20000000, 0x20000000, MEBIBYTE(32)},
120 {0x30000000, 0x30000000, MEBIBYTE(32)},
123 static struct mem_layout fx600_layout[] = {
124 {0x20000000, 0x10000000, MEBIBYTE(256)},
125 {0x60000000, 0x60000000, MEBIBYTE(128)},
128 static struct mem_layout_list layout_list[] = {
129 {FAMILY_1500, ARRAY_SIZE(f1500_layout), f1500_layout},
130 {FAMILY_1500VZE, ARRAY_SIZE(f1500_layout), f1500_layout},
131 {FAMILY_1500VZF, ARRAY_SIZE(f1500_layout), f1500_layout},
132 {FAMILY_4500, ARRAY_SIZE(f4500_layout), f4500_layout},
133 {FAMILY_8500, ARRAY_SIZE(f8500_layout), f8500_layout},
134 {FAMILY_8500RNG, ARRAY_SIZE(f8500_layout), f8500_layout},
135 {FAMILY_4600, ARRAY_SIZE(fx600_layout), fx600_layout},
136 {FAMILY_4600VZA, ARRAY_SIZE(fx600_layout), fx600_layout},
137 {FAMILY_8600, ARRAY_SIZE(fx600_layout), fx600_layout},
138 {FAMILY_8600VZB, ARRAY_SIZE(fx600_layout), fx600_layout},
141 /* If we can't determine the layout, use this */
142 static struct mem_layout default_layout[] = {
143 {0x20000000, 0x10000000, MEBIBYTE(128)},
147 * register_non_ram - register low memory not available for RAM usage
149 static __init void register_non_ram(void)
151 int i;
153 for (i = 0; i < ARRAY_SIZE(low_mem_reserved); i++)
154 add_memory_region(low_mem_reserved[i].start,
155 low_mem_reserved[i].size, BOOT_MEM_RESERVED);
159 * get_memsize - get the size of memory as a single bank
161 static phys_addr_t get_memsize(void)
163 static char cmdline[COMMAND_LINE_SIZE] __initdata;
164 phys_addr_t memsize = 0;
165 char *memsize_str;
166 char *ptr;
168 /* Check the command line first for a memsize directive */
169 strcpy(cmdline, arcs_cmdline);
170 ptr = strstr(cmdline, "memsize=");
171 if (ptr && (ptr != cmdline) && (*(ptr - 1) != ' '))
172 ptr = strstr(ptr, " memsize=");
174 if (ptr) {
175 memsize = memparse(ptr + 8, &ptr);
176 } else {
177 /* otherwise look in the environment */
178 memsize_str = prom_getenv("memsize");
180 if (memsize_str != NULL) {
181 pr_info("prom memsize = %s\n", memsize_str);
182 memsize = simple_strtol(memsize_str, NULL, 0);
185 if (memsize == 0) {
186 if (_prom_memsize != 0) {
187 memsize = _prom_memsize;
188 pr_info("_prom_memsize = 0x%x\n", memsize);
189 /* add in memory that the bootloader doesn't
190 * report */
191 memsize += BLDR_SIZE;
192 } else {
193 memsize = DEFAULT_MEMSIZE;
194 pr_info("Memsize not passed by bootloader, "
195 "defaulting to 0x%x\n", memsize);
200 return memsize;
204 * register_low_ram - register an aliased section of RAM
205 * @p: Alias address of memory
206 * @n: Number of bytes in this section of memory
208 * Returns the number of bytes registered
211 static __init phys_addr_t register_low_ram(phys_addr_t p, phys_addr_t n)
213 phys_addr_t s;
214 int i;
215 phys_addr_t orig_n;
217 orig_n = n;
219 BUG_ON(p + n > RV_PHYS);
221 for (i = 0; n != 0 && i < ARRAY_SIZE(low_mem_reserved); i++) {
222 phys_addr_t start;
223 phys_addr_t size;
225 start = low_mem_reserved[i].start;
226 size = low_mem_reserved[i].size;
228 /* Handle memory before this low memory section */
229 if (p < start) {
230 phys_addr_t s;
231 s = min(n, start - p);
232 add_memory_region(p, s, BOOT_MEM_RAM);
233 p += s;
234 n -= s;
237 /* Handle the low memory section itself. If it's aliased,
238 * we reduce the number of byes left, but if not, the RAM
239 * is available elsewhere and we don't reduce the number of
240 * bytes remaining. */
241 if (p == start) {
242 if (low_mem_reserved[i].is_aliased) {
243 s = min(n, size);
244 n -= s;
245 p += s;
246 } else
247 p += n;
251 return orig_n - n;
255 * register_ram - register real RAM
256 * @p: Address of memory as seen by devices
257 * @alias: If the memory is seen at an additional address by the processor,
258 * this will be the address, otherwise it is the same as @p.
259 * @n: Number of bytes in this section of memory
261 static __init void register_ram(phys_addr_t p, phys_addr_t alias,
262 phys_addr_t n)
265 * If some or all of this memory has an alias, break it into the
266 * aliased and non-aliased portion.
268 if (p != alias) {
269 phys_addr_t alias_size;
270 phys_addr_t registered;
272 alias_size = min(n, LOW_RAM_END - alias);
273 registered = register_low_ram(alias, alias_size);
274 ioremap_add_map(alias, p, n);
275 n -= registered;
276 p += registered;
279 #ifdef CONFIG_HIGHMEM
280 if (n != 0) {
281 add_memory_region(p, n, BOOT_MEM_RAM);
282 ioremap_add_map(p, p, n);
284 #endif
288 * register_address_space - register things in the address space
289 * @memsize: Number of bytes of RAM installed
291 * Takes the given number of bytes of RAM and registers as many of the regions,
292 * or partial regions, as it can. So, the default configuration might have
293 * two regions with 256 MiB each. If the memsize passed in on the command line
294 * is 384 MiB, it will register the first region with 256 MiB and the second
295 * with 128 MiB.
297 static __init void register_address_space(phys_addr_t memsize)
299 int i;
300 phys_addr_t size;
301 size_t n;
302 struct mem_layout *layout;
303 enum family_type family;
306 * Register all of the things that aren't available to the kernel as
307 * memory.
309 register_non_ram();
311 /* Find the appropriate memory description */
312 family = platform_get_family();
314 for (i = 0; i < ARRAY_SIZE(layout_list); i++) {
315 if (layout_list[i].family == family)
316 break;
319 if (i == ARRAY_SIZE(layout_list)) {
320 n = ARRAY_SIZE(default_layout);
321 layout = default_layout;
322 } else {
323 n = layout_list[i].n;
324 layout = layout_list[i].layout;
327 for (i = 0; memsize != 0 && i < n; i++) {
328 size = min(memsize, layout[i].size);
329 register_ram(layout[i].phys, layout[i].alias, size);
330 memsize -= size;
334 void __init prom_meminit(void)
336 ptv_memsize = get_memsize();
337 register_address_space(ptv_memsize);
340 void __init prom_free_prom_memory(void)
342 unsigned long addr;
343 int i;
345 for (i = 0; i < boot_mem_map.nr_map; i++) {
346 if (boot_mem_map.map[i].type != BOOT_MEM_ROM_DATA)
347 continue;
349 addr = boot_mem_map.map[i].addr;
350 free_init_pages("prom memory",
351 addr, addr + boot_mem_map.map[i].size);