x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / parisc / mm / init.c
blobb0f96c0e6316f15531afb2a5a2a0e4684d1892a8
1 /*
2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
34 extern int data_start;
36 #if PT_NLEVELS == 3
37 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
38 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
39 * guarantee that global objects will be laid out in memory in the same order
40 * as the order of declaration, so put these in different sections and use
41 * the linker script to order them. */
42 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
43 #endif
45 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
46 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
48 #ifdef CONFIG_DISCONTIGMEM
49 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
50 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
51 #endif
53 static struct resource data_resource = {
54 .name = "Kernel data",
55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
58 static struct resource code_resource = {
59 .name = "Kernel code",
60 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
63 static struct resource pdcdata_resource = {
64 .name = "PDC data (Page Zero)",
65 .start = 0,
66 .end = 0x9ff,
67 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
70 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
72 /* The following array is initialized from the firmware specific
73 * information retrieved in kernel/inventory.c.
76 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
77 int npmem_ranges __read_mostly;
79 #ifdef CONFIG_64BIT
80 #define MAX_MEM (~0UL)
81 #else /* !CONFIG_64BIT */
82 #define MAX_MEM (3584U*1024U*1024U)
83 #endif /* !CONFIG_64BIT */
85 static unsigned long mem_limit __read_mostly = MAX_MEM;
87 static void __init mem_limit_func(void)
89 char *cp, *end;
90 unsigned long limit;
92 /* We need this before __setup() functions are called */
94 limit = MAX_MEM;
95 for (cp = boot_command_line; *cp; ) {
96 if (memcmp(cp, "mem=", 4) == 0) {
97 cp += 4;
98 limit = memparse(cp, &end);
99 if (end != cp)
100 break;
101 cp = end;
102 } else {
103 while (*cp != ' ' && *cp)
104 ++cp;
105 while (*cp == ' ')
106 ++cp;
110 if (limit < mem_limit)
111 mem_limit = limit;
114 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
116 static void __init setup_bootmem(void)
118 unsigned long bootmap_size;
119 unsigned long mem_max;
120 unsigned long bootmap_pages;
121 unsigned long bootmap_start_pfn;
122 unsigned long bootmap_pfn;
123 #ifndef CONFIG_DISCONTIGMEM
124 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
125 int npmem_holes;
126 #endif
127 int i, sysram_resource_count;
129 disable_sr_hashing(); /* Turn off space register hashing */
132 * Sort the ranges. Since the number of ranges is typically
133 * small, and performance is not an issue here, just do
134 * a simple insertion sort.
137 for (i = 1; i < npmem_ranges; i++) {
138 int j;
140 for (j = i; j > 0; j--) {
141 unsigned long tmp;
143 if (pmem_ranges[j-1].start_pfn <
144 pmem_ranges[j].start_pfn) {
146 break;
148 tmp = pmem_ranges[j-1].start_pfn;
149 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
150 pmem_ranges[j].start_pfn = tmp;
151 tmp = pmem_ranges[j-1].pages;
152 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
153 pmem_ranges[j].pages = tmp;
157 #ifndef CONFIG_DISCONTIGMEM
159 * Throw out ranges that are too far apart (controlled by
160 * MAX_GAP).
163 for (i = 1; i < npmem_ranges; i++) {
164 if (pmem_ranges[i].start_pfn -
165 (pmem_ranges[i-1].start_pfn +
166 pmem_ranges[i-1].pages) > MAX_GAP) {
167 npmem_ranges = i;
168 printk("Large gap in memory detected (%ld pages). "
169 "Consider turning on CONFIG_DISCONTIGMEM\n",
170 pmem_ranges[i].start_pfn -
171 (pmem_ranges[i-1].start_pfn +
172 pmem_ranges[i-1].pages));
173 break;
176 #endif
178 if (npmem_ranges > 1) {
180 /* Print the memory ranges */
182 printk(KERN_INFO "Memory Ranges:\n");
184 for (i = 0; i < npmem_ranges; i++) {
185 unsigned long start;
186 unsigned long size;
188 size = (pmem_ranges[i].pages << PAGE_SHIFT);
189 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
190 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
191 i,start, start + (size - 1), size >> 20);
195 sysram_resource_count = npmem_ranges;
196 for (i = 0; i < sysram_resource_count; i++) {
197 struct resource *res = &sysram_resources[i];
198 res->name = "System RAM";
199 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
200 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
201 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
202 request_resource(&iomem_resource, res);
206 * For 32 bit kernels we limit the amount of memory we can
207 * support, in order to preserve enough kernel address space
208 * for other purposes. For 64 bit kernels we don't normally
209 * limit the memory, but this mechanism can be used to
210 * artificially limit the amount of memory (and it is written
211 * to work with multiple memory ranges).
214 mem_limit_func(); /* check for "mem=" argument */
216 mem_max = 0;
217 for (i = 0; i < npmem_ranges; i++) {
218 unsigned long rsize;
220 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
221 if ((mem_max + rsize) > mem_limit) {
222 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
223 if (mem_max == mem_limit)
224 npmem_ranges = i;
225 else {
226 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
227 - (mem_max >> PAGE_SHIFT);
228 npmem_ranges = i + 1;
229 mem_max = mem_limit;
231 break;
233 mem_max += rsize;
236 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
238 #ifndef CONFIG_DISCONTIGMEM
239 /* Merge the ranges, keeping track of the holes */
242 unsigned long end_pfn;
243 unsigned long hole_pages;
245 npmem_holes = 0;
246 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
247 for (i = 1; i < npmem_ranges; i++) {
249 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
250 if (hole_pages) {
251 pmem_holes[npmem_holes].start_pfn = end_pfn;
252 pmem_holes[npmem_holes++].pages = hole_pages;
253 end_pfn += hole_pages;
255 end_pfn += pmem_ranges[i].pages;
258 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
259 npmem_ranges = 1;
261 #endif
263 bootmap_pages = 0;
264 for (i = 0; i < npmem_ranges; i++)
265 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
267 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
269 #ifdef CONFIG_DISCONTIGMEM
270 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
271 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
272 NODE_DATA(i)->bdata = &bootmem_node_data[i];
274 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
276 for (i = 0; i < npmem_ranges; i++) {
277 node_set_state(i, N_NORMAL_MEMORY);
278 node_set_online(i);
280 #endif
283 * Initialize and free the full range of memory in each range.
284 * Note that the only writing these routines do are to the bootmap,
285 * and we've made sure to locate the bootmap properly so that they
286 * won't be writing over anything important.
289 bootmap_pfn = bootmap_start_pfn;
290 max_pfn = 0;
291 for (i = 0; i < npmem_ranges; i++) {
292 unsigned long start_pfn;
293 unsigned long npages;
295 start_pfn = pmem_ranges[i].start_pfn;
296 npages = pmem_ranges[i].pages;
298 bootmap_size = init_bootmem_node(NODE_DATA(i),
299 bootmap_pfn,
300 start_pfn,
301 (start_pfn + npages) );
302 free_bootmem_node(NODE_DATA(i),
303 (start_pfn << PAGE_SHIFT),
304 (npages << PAGE_SHIFT) );
305 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
306 if ((start_pfn + npages) > max_pfn)
307 max_pfn = start_pfn + npages;
310 /* IOMMU is always used to access "high mem" on those boxes
311 * that can support enough mem that a PCI device couldn't
312 * directly DMA to any physical addresses.
313 * ISA DMA support will need to revisit this.
315 max_low_pfn = max_pfn;
317 /* bootmap sizing messed up? */
318 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
320 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
322 #define PDC_CONSOLE_IO_IODC_SIZE 32768
324 reserve_bootmem_node(NODE_DATA(0), 0UL,
325 (unsigned long)(PAGE0->mem_free +
326 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
327 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
328 (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
329 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
330 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
331 BOOTMEM_DEFAULT);
333 #ifndef CONFIG_DISCONTIGMEM
335 /* reserve the holes */
337 for (i = 0; i < npmem_holes; i++) {
338 reserve_bootmem_node(NODE_DATA(0),
339 (pmem_holes[i].start_pfn << PAGE_SHIFT),
340 (pmem_holes[i].pages << PAGE_SHIFT),
341 BOOTMEM_DEFAULT);
343 #endif
345 #ifdef CONFIG_BLK_DEV_INITRD
346 if (initrd_start) {
347 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
348 if (__pa(initrd_start) < mem_max) {
349 unsigned long initrd_reserve;
351 if (__pa(initrd_end) > mem_max) {
352 initrd_reserve = mem_max - __pa(initrd_start);
353 } else {
354 initrd_reserve = initrd_end - initrd_start;
356 initrd_below_start_ok = 1;
357 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
359 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
360 initrd_reserve, BOOTMEM_DEFAULT);
363 #endif
365 data_resource.start = virt_to_phys(&data_start);
366 data_resource.end = virt_to_phys(_end) - 1;
367 code_resource.start = virt_to_phys(_text);
368 code_resource.end = virt_to_phys(&data_start)-1;
370 /* We don't know which region the kernel will be in, so try
371 * all of them.
373 for (i = 0; i < sysram_resource_count; i++) {
374 struct resource *res = &sysram_resources[i];
375 request_resource(res, &code_resource);
376 request_resource(res, &data_resource);
378 request_resource(&sysram_resources[0], &pdcdata_resource);
381 static void __init map_pages(unsigned long start_vaddr,
382 unsigned long start_paddr, unsigned long size,
383 pgprot_t pgprot, int force)
385 pgd_t *pg_dir;
386 pmd_t *pmd;
387 pte_t *pg_table;
388 unsigned long end_paddr;
389 unsigned long start_pmd;
390 unsigned long start_pte;
391 unsigned long tmp1;
392 unsigned long tmp2;
393 unsigned long address;
394 unsigned long vaddr;
395 unsigned long ro_start;
396 unsigned long ro_end;
397 unsigned long fv_addr;
398 unsigned long gw_addr;
399 extern const unsigned long fault_vector_20;
400 extern void * const linux_gateway_page;
402 ro_start = __pa((unsigned long)_text);
403 ro_end = __pa((unsigned long)&data_start);
404 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
405 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
407 end_paddr = start_paddr + size;
409 pg_dir = pgd_offset_k(start_vaddr);
411 #if PTRS_PER_PMD == 1
412 start_pmd = 0;
413 #else
414 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
415 #endif
416 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
418 address = start_paddr;
419 vaddr = start_vaddr;
420 while (address < end_paddr) {
421 #if PTRS_PER_PMD == 1
422 pmd = (pmd_t *)__pa(pg_dir);
423 #else
424 pmd = (pmd_t *)pgd_address(*pg_dir);
427 * pmd is physical at this point
430 if (!pmd) {
431 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
432 pmd = (pmd_t *) __pa(pmd);
435 pgd_populate(NULL, pg_dir, __va(pmd));
436 #endif
437 pg_dir++;
439 /* now change pmd to kernel virtual addresses */
441 pmd = (pmd_t *)__va(pmd) + start_pmd;
442 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
445 * pg_table is physical at this point
448 pg_table = (pte_t *)pmd_address(*pmd);
449 if (!pg_table) {
450 pg_table = (pte_t *)
451 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
452 pg_table = (pte_t *) __pa(pg_table);
455 pmd_populate_kernel(NULL, pmd, __va(pg_table));
457 /* now change pg_table to kernel virtual addresses */
459 pg_table = (pte_t *) __va(pg_table) + start_pte;
460 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
461 pte_t pte;
464 * Map the fault vector writable so we can
465 * write the HPMC checksum.
467 if (force)
468 pte = __mk_pte(address, pgprot);
469 else if (core_kernel_text(vaddr) &&
470 address != fv_addr)
471 pte = __mk_pte(address, PAGE_KERNEL_EXEC);
472 else
473 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
474 if (address >= ro_start && address < ro_end
475 && address != fv_addr
476 && address != gw_addr)
477 pte = __mk_pte(address, PAGE_KERNEL_RO);
478 else
479 #endif
480 pte = __mk_pte(address, pgprot);
482 if (address >= end_paddr) {
483 if (force)
484 break;
485 else
486 pte_val(pte) = 0;
489 set_pte(pg_table, pte);
491 address += PAGE_SIZE;
492 vaddr += PAGE_SIZE;
494 start_pte = 0;
496 if (address >= end_paddr)
497 break;
499 start_pmd = 0;
503 void free_initmem(void)
505 unsigned long init_begin = (unsigned long)__init_begin;
506 unsigned long init_end = (unsigned long)__init_end;
508 /* The init text pages are marked R-X. We have to
509 * flush the icache and mark them RW-
511 * This is tricky, because map_pages is in the init section.
512 * Do a dummy remap of the data section first (the data
513 * section is already PAGE_KERNEL) to pull in the TLB entries
514 * for map_kernel */
515 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
516 PAGE_KERNEL_RWX, 1);
517 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
518 * map_pages */
519 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
520 PAGE_KERNEL, 1);
522 /* force the kernel to see the new TLB entries */
523 __flush_tlb_range(0, init_begin, init_end);
524 /* Attempt to catch anyone trying to execute code here
525 * by filling the page with BRK insns.
527 memset((void *)init_begin, 0x00, init_end - init_begin);
528 /* finally dump all the instructions which were cached, since the
529 * pages are no-longer executable */
530 flush_icache_range(init_begin, init_end);
532 free_initmem_default(-1);
534 /* set up a new led state on systems shipped LED State panel */
535 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
539 #ifdef CONFIG_DEBUG_RODATA
540 void mark_rodata_ro(void)
542 /* rodata memory was already mapped with KERNEL_RO access rights by
543 pagetable_init() and map_pages(). No need to do additional stuff here */
544 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
545 (unsigned long)(__end_rodata - __start_rodata) >> 10);
547 #endif
551 * Just an arbitrary offset to serve as a "hole" between mapping areas
552 * (between top of physical memory and a potential pcxl dma mapping
553 * area, and below the vmalloc mapping area).
555 * The current 32K value just means that there will be a 32K "hole"
556 * between mapping areas. That means that any out-of-bounds memory
557 * accesses will hopefully be caught. The vmalloc() routines leaves
558 * a hole of 4kB between each vmalloced area for the same reason.
561 /* Leave room for gateway page expansion */
562 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
563 #error KERNEL_MAP_START is in gateway reserved region
564 #endif
565 #define MAP_START (KERNEL_MAP_START)
567 #define VM_MAP_OFFSET (32*1024)
568 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
569 & ~(VM_MAP_OFFSET-1)))
571 void *parisc_vmalloc_start __read_mostly;
572 EXPORT_SYMBOL(parisc_vmalloc_start);
574 #ifdef CONFIG_PA11
575 unsigned long pcxl_dma_start __read_mostly;
576 #endif
578 void __init mem_init(void)
580 /* Do sanity checks on page table constants */
581 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
582 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
583 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
584 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
585 > BITS_PER_LONG);
587 high_memory = __va((max_pfn << PAGE_SHIFT));
588 set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
589 free_all_bootmem();
591 #ifdef CONFIG_PA11
592 if (hppa_dma_ops == &pcxl_dma_ops) {
593 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
594 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
595 + PCXL_DMA_MAP_SIZE);
596 } else {
597 pcxl_dma_start = 0;
598 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
600 #else
601 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
602 #endif
604 mem_init_print_info(NULL);
605 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
606 printk("virtual kernel memory layout:\n"
607 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
608 " memory : 0x%p - 0x%p (%4ld MB)\n"
609 " .init : 0x%p - 0x%p (%4ld kB)\n"
610 " .data : 0x%p - 0x%p (%4ld kB)\n"
611 " .text : 0x%p - 0x%p (%4ld kB)\n",
613 (void*)VMALLOC_START, (void*)VMALLOC_END,
614 (VMALLOC_END - VMALLOC_START) >> 20,
616 __va(0), high_memory,
617 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
619 __init_begin, __init_end,
620 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
622 _etext, _edata,
623 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
625 _text, _etext,
626 ((unsigned long)_etext - (unsigned long)_text) >> 10);
627 #endif
630 unsigned long *empty_zero_page __read_mostly;
631 EXPORT_SYMBOL(empty_zero_page);
633 void show_mem(unsigned int filter)
635 int i,free = 0,total = 0,reserved = 0;
636 int shared = 0, cached = 0;
638 printk(KERN_INFO "Mem-info:\n");
639 show_free_areas(filter);
640 if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
641 return;
642 #ifndef CONFIG_DISCONTIGMEM
643 i = max_mapnr;
644 while (i-- > 0) {
645 total++;
646 if (PageReserved(mem_map+i))
647 reserved++;
648 else if (PageSwapCache(mem_map+i))
649 cached++;
650 else if (!page_count(&mem_map[i]))
651 free++;
652 else
653 shared += page_count(&mem_map[i]) - 1;
655 #else
656 for (i = 0; i < npmem_ranges; i++) {
657 int j;
659 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
660 struct page *p;
661 unsigned long flags;
663 pgdat_resize_lock(NODE_DATA(i), &flags);
664 p = nid_page_nr(i, j) - node_start_pfn(i);
666 total++;
667 if (PageReserved(p))
668 reserved++;
669 else if (PageSwapCache(p))
670 cached++;
671 else if (!page_count(p))
672 free++;
673 else
674 shared += page_count(p) - 1;
675 pgdat_resize_unlock(NODE_DATA(i), &flags);
678 #endif
679 printk(KERN_INFO "%d pages of RAM\n", total);
680 printk(KERN_INFO "%d reserved pages\n", reserved);
681 printk(KERN_INFO "%d pages shared\n", shared);
682 printk(KERN_INFO "%d pages swap cached\n", cached);
685 #ifdef CONFIG_DISCONTIGMEM
687 struct zonelist *zl;
688 int i, j;
690 for (i = 0; i < npmem_ranges; i++) {
691 zl = node_zonelist(i, 0);
692 for (j = 0; j < MAX_NR_ZONES; j++) {
693 struct zoneref *z;
694 struct zone *zone;
696 printk("Zone list for zone %d on node %d: ", j, i);
697 for_each_zone_zonelist(zone, z, zl, j)
698 printk("[%d/%s] ", zone_to_nid(zone),
699 zone->name);
700 printk("\n");
704 #endif
708 * pagetable_init() sets up the page tables
710 * Note that gateway_init() places the Linux gateway page at page 0.
711 * Since gateway pages cannot be dereferenced this has the desirable
712 * side effect of trapping those pesky NULL-reference errors in the
713 * kernel.
715 static void __init pagetable_init(void)
717 int range;
719 /* Map each physical memory range to its kernel vaddr */
721 for (range = 0; range < npmem_ranges; range++) {
722 unsigned long start_paddr;
723 unsigned long end_paddr;
724 unsigned long size;
726 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
727 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
728 size = pmem_ranges[range].pages << PAGE_SHIFT;
730 map_pages((unsigned long)__va(start_paddr), start_paddr,
731 size, PAGE_KERNEL, 0);
734 #ifdef CONFIG_BLK_DEV_INITRD
735 if (initrd_end && initrd_end > mem_limit) {
736 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
737 map_pages(initrd_start, __pa(initrd_start),
738 initrd_end - initrd_start, PAGE_KERNEL, 0);
740 #endif
742 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
743 memset(empty_zero_page, 0, PAGE_SIZE);
746 static void __init gateway_init(void)
748 unsigned long linux_gateway_page_addr;
749 /* FIXME: This is 'const' in order to trick the compiler
750 into not treating it as DP-relative data. */
751 extern void * const linux_gateway_page;
753 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
756 * Setup Linux Gateway page.
758 * The Linux gateway page will reside in kernel space (on virtual
759 * page 0), so it doesn't need to be aliased into user space.
762 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
763 PAGE_SIZE, PAGE_GATEWAY, 1);
766 #ifdef CONFIG_HPUX
767 void
768 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
770 pgd_t *pg_dir;
771 pmd_t *pmd;
772 pte_t *pg_table;
773 unsigned long start_pmd;
774 unsigned long start_pte;
775 unsigned long address;
776 unsigned long hpux_gw_page_addr;
777 /* FIXME: This is 'const' in order to trick the compiler
778 into not treating it as DP-relative data. */
779 extern void * const hpux_gateway_page;
781 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
784 * Setup HP-UX Gateway page.
786 * The HP-UX gateway page resides in the user address space,
787 * so it needs to be aliased into each process.
790 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
792 #if PTRS_PER_PMD == 1
793 start_pmd = 0;
794 #else
795 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
796 #endif
797 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
799 address = __pa(&hpux_gateway_page);
800 #if PTRS_PER_PMD == 1
801 pmd = (pmd_t *)__pa(pg_dir);
802 #else
803 pmd = (pmd_t *) pgd_address(*pg_dir);
806 * pmd is physical at this point
809 if (!pmd) {
810 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
811 pmd = (pmd_t *) __pa(pmd);
814 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
815 #endif
816 /* now change pmd to kernel virtual addresses */
818 pmd = (pmd_t *)__va(pmd) + start_pmd;
821 * pg_table is physical at this point
824 pg_table = (pte_t *) pmd_address(*pmd);
825 if (!pg_table)
826 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
828 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
830 /* now change pg_table to kernel virtual addresses */
832 pg_table = (pte_t *) __va(pg_table) + start_pte;
833 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
835 EXPORT_SYMBOL(map_hpux_gateway_page);
836 #endif
838 void __init paging_init(void)
840 int i;
842 setup_bootmem();
843 pagetable_init();
844 gateway_init();
845 flush_cache_all_local(); /* start with known state */
846 flush_tlb_all_local(NULL);
848 for (i = 0; i < npmem_ranges; i++) {
849 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
851 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
853 #ifdef CONFIG_DISCONTIGMEM
854 /* Need to initialize the pfnnid_map before we can initialize
855 the zone */
857 int j;
858 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
859 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
860 j++) {
861 pfnnid_map[j] = i;
864 #endif
866 free_area_init_node(i, zones_size,
867 pmem_ranges[i].start_pfn, NULL);
871 #ifdef CONFIG_PA20
874 * Currently, all PA20 chips have 18 bit protection IDs, which is the
875 * limiting factor (space ids are 32 bits).
878 #define NR_SPACE_IDS 262144
880 #else
883 * Currently we have a one-to-one relationship between space IDs and
884 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
885 * support 15 bit protection IDs, so that is the limiting factor.
886 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
887 * probably not worth the effort for a special case here.
890 #define NR_SPACE_IDS 32768
892 #endif /* !CONFIG_PA20 */
894 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
895 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
897 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
898 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
899 static unsigned long space_id_index;
900 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
901 static unsigned long dirty_space_ids = 0;
903 static DEFINE_SPINLOCK(sid_lock);
905 unsigned long alloc_sid(void)
907 unsigned long index;
909 spin_lock(&sid_lock);
911 if (free_space_ids == 0) {
912 if (dirty_space_ids != 0) {
913 spin_unlock(&sid_lock);
914 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
915 spin_lock(&sid_lock);
917 BUG_ON(free_space_ids == 0);
920 free_space_ids--;
922 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
923 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
924 space_id_index = index;
926 spin_unlock(&sid_lock);
928 return index << SPACEID_SHIFT;
931 void free_sid(unsigned long spaceid)
933 unsigned long index = spaceid >> SPACEID_SHIFT;
934 unsigned long *dirty_space_offset;
936 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
937 index &= (BITS_PER_LONG - 1);
939 spin_lock(&sid_lock);
941 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
943 *dirty_space_offset |= (1L << index);
944 dirty_space_ids++;
946 spin_unlock(&sid_lock);
950 #ifdef CONFIG_SMP
951 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
953 int i;
955 /* NOTE: sid_lock must be held upon entry */
957 *ndirtyptr = dirty_space_ids;
958 if (dirty_space_ids != 0) {
959 for (i = 0; i < SID_ARRAY_SIZE; i++) {
960 dirty_array[i] = dirty_space_id[i];
961 dirty_space_id[i] = 0;
963 dirty_space_ids = 0;
966 return;
969 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
971 int i;
973 /* NOTE: sid_lock must be held upon entry */
975 if (ndirty != 0) {
976 for (i = 0; i < SID_ARRAY_SIZE; i++) {
977 space_id[i] ^= dirty_array[i];
980 free_space_ids += ndirty;
981 space_id_index = 0;
985 #else /* CONFIG_SMP */
987 static void recycle_sids(void)
989 int i;
991 /* NOTE: sid_lock must be held upon entry */
993 if (dirty_space_ids != 0) {
994 for (i = 0; i < SID_ARRAY_SIZE; i++) {
995 space_id[i] ^= dirty_space_id[i];
996 dirty_space_id[i] = 0;
999 free_space_ids += dirty_space_ids;
1000 dirty_space_ids = 0;
1001 space_id_index = 0;
1004 #endif
1007 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1008 * purged, we can safely reuse the space ids that were released but
1009 * not flushed from the tlb.
1012 #ifdef CONFIG_SMP
1014 static unsigned long recycle_ndirty;
1015 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1016 static unsigned int recycle_inuse;
1018 void flush_tlb_all(void)
1020 int do_recycle;
1022 __inc_irq_stat(irq_tlb_count);
1023 do_recycle = 0;
1024 spin_lock(&sid_lock);
1025 if (dirty_space_ids > RECYCLE_THRESHOLD) {
1026 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
1027 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1028 recycle_inuse++;
1029 do_recycle++;
1031 spin_unlock(&sid_lock);
1032 on_each_cpu(flush_tlb_all_local, NULL, 1);
1033 if (do_recycle) {
1034 spin_lock(&sid_lock);
1035 recycle_sids(recycle_ndirty,recycle_dirty_array);
1036 recycle_inuse = 0;
1037 spin_unlock(&sid_lock);
1040 #else
1041 void flush_tlb_all(void)
1043 __inc_irq_stat(irq_tlb_count);
1044 spin_lock(&sid_lock);
1045 flush_tlb_all_local(NULL);
1046 recycle_sids();
1047 spin_unlock(&sid_lock);
1049 #endif
1051 #ifdef CONFIG_BLK_DEV_INITRD
1052 void free_initrd_mem(unsigned long start, unsigned long end)
1054 free_reserved_area((void *)start, (void *)end, -1, "initrd");
1056 #endif