2 * PowerPC atomic bit operations.
4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
7 * originally took it from the ppc32 code.
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
15 * The bitop functions are defined to work on unsigned longs, so for a
16 * ppc64 system the bits end up numbered:
17 * |63..............0|127............64|191...........128|255...........196|
19 * |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
21 * There are a few little-endian macros used mostly for filesystem
22 * bitmaps, these work on similar bit arrays layouts, but
24 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
27 * number field needs to be reversed compared to the big-endian bit
28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
30 * This program is free software; you can redistribute it and/or
31 * modify it under the terms of the GNU General Public License
32 * as published by the Free Software Foundation; either version
33 * 2 of the License, or (at your option) any later version.
36 #ifndef _ASM_POWERPC_BITOPS_H
37 #define _ASM_POWERPC_BITOPS_H
41 #ifndef _LINUX_BITOPS_H
42 #error only <linux/bitops.h> can be included directly
45 #include <linux/compiler.h>
46 #include <asm/asm-compat.h>
47 #include <asm/synch.h>
50 * clear_bit doesn't imply a memory barrier
52 #define smp_mb__before_clear_bit() smp_mb()
53 #define smp_mb__after_clear_bit() smp_mb()
55 /* Macro for generating the ***_bits() functions */
56 #define DEFINE_BITOP(fn, op, prefix) \
57 static __inline__ void fn(unsigned long mask, \
58 volatile unsigned long *_p) \
61 unsigned long *p = (unsigned long *)_p; \
62 __asm__ __volatile__ ( \
64 "1:" PPC_LLARX(%0,0,%3,0) "\n" \
65 stringify_in_c(op) "%0,%0,%2\n" \
67 PPC_STLCX "%0,0,%3\n" \
69 : "=&r" (old), "+m" (*p) \
70 : "r" (mask), "r" (p) \
74 DEFINE_BITOP(set_bits
, or, "")
75 DEFINE_BITOP(clear_bits
, andc
, "")
76 DEFINE_BITOP(clear_bits_unlock
, andc
, PPC_RELEASE_BARRIER
)
77 DEFINE_BITOP(change_bits
, xor, "")
79 static __inline__
void set_bit(int nr
, volatile unsigned long *addr
)
81 set_bits(BIT_MASK(nr
), addr
+ BIT_WORD(nr
));
84 static __inline__
void clear_bit(int nr
, volatile unsigned long *addr
)
86 clear_bits(BIT_MASK(nr
), addr
+ BIT_WORD(nr
));
89 static __inline__
void clear_bit_unlock(int nr
, volatile unsigned long *addr
)
91 clear_bits_unlock(BIT_MASK(nr
), addr
+ BIT_WORD(nr
));
94 static __inline__
void change_bit(int nr
, volatile unsigned long *addr
)
96 change_bits(BIT_MASK(nr
), addr
+ BIT_WORD(nr
));
99 /* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
101 #define DEFINE_TESTOP(fn, op, prefix, postfix, eh) \
102 static __inline__ unsigned long fn( \
103 unsigned long mask, \
104 volatile unsigned long *_p) \
106 unsigned long old, t; \
107 unsigned long *p = (unsigned long *)_p; \
108 __asm__ __volatile__ ( \
110 "1:" PPC_LLARX(%0,0,%3,eh) "\n" \
111 stringify_in_c(op) "%1,%0,%2\n" \
113 PPC_STLCX "%1,0,%3\n" \
116 : "=&r" (old), "=&r" (t) \
117 : "r" (mask), "r" (p) \
119 return (old & mask); \
122 DEFINE_TESTOP(test_and_set_bits
, or, PPC_ATOMIC_ENTRY_BARRIER
,
123 PPC_ATOMIC_EXIT_BARRIER
, 0)
124 DEFINE_TESTOP(test_and_set_bits_lock
, or, "",
125 PPC_ACQUIRE_BARRIER
, 1)
126 DEFINE_TESTOP(test_and_clear_bits
, andc
, PPC_ATOMIC_ENTRY_BARRIER
,
127 PPC_ATOMIC_EXIT_BARRIER
, 0)
128 DEFINE_TESTOP(test_and_change_bits
, xor, PPC_ATOMIC_ENTRY_BARRIER
,
129 PPC_ATOMIC_EXIT_BARRIER
, 0)
131 static __inline__
int test_and_set_bit(unsigned long nr
,
132 volatile unsigned long *addr
)
134 return test_and_set_bits(BIT_MASK(nr
), addr
+ BIT_WORD(nr
)) != 0;
137 static __inline__
int test_and_set_bit_lock(unsigned long nr
,
138 volatile unsigned long *addr
)
140 return test_and_set_bits_lock(BIT_MASK(nr
),
141 addr
+ BIT_WORD(nr
)) != 0;
144 static __inline__
int test_and_clear_bit(unsigned long nr
,
145 volatile unsigned long *addr
)
147 return test_and_clear_bits(BIT_MASK(nr
), addr
+ BIT_WORD(nr
)) != 0;
150 static __inline__
int test_and_change_bit(unsigned long nr
,
151 volatile unsigned long *addr
)
153 return test_and_change_bits(BIT_MASK(nr
), addr
+ BIT_WORD(nr
)) != 0;
156 #include <asm-generic/bitops/non-atomic.h>
158 static __inline__
void __clear_bit_unlock(int nr
, volatile unsigned long *addr
)
160 __asm__
__volatile__(PPC_RELEASE_BARRIER
"" ::: "memory");
161 __clear_bit(nr
, addr
);
165 * Return the zero-based bit position (LE, not IBM bit numbering) of
166 * the most significant 1-bit in a double word.
168 static __inline__
__attribute__((const))
169 int __ilog2(unsigned long x
)
173 asm (PPC_CNTLZL
"%0,%1" : "=r" (lz
) : "r" (x
));
174 return BITS_PER_LONG
- 1 - lz
;
177 static inline __attribute__((const))
178 int __ilog2_u32(u32 n
)
181 asm ("cntlzw %0,%1" : "=r" (bit
) : "r" (n
));
186 static inline __attribute__((const))
187 int __ilog2_u64(u64 n
)
190 asm ("cntlzd %0,%1" : "=r" (bit
) : "r" (n
));
196 * Determines the bit position of the least significant 0 bit in the
197 * specified double word. The returned bit position will be
198 * zero-based, starting from the right side (63/31 - 0).
200 static __inline__
unsigned long ffz(unsigned long x
)
202 /* no zero exists anywhere in the 8 byte area. */
204 return BITS_PER_LONG
;
207 * Calculate the bit position of the least significant '1' bit in x
208 * (since x has been changed this will actually be the least significant
209 * '0' bit in * the original x). Note: (x & -x) gives us a mask that
210 * is the least significant * (RIGHT-most) 1-bit of the value in x.
212 return __ilog2(x
& -x
);
215 static __inline__
int __ffs(unsigned long x
)
217 return __ilog2(x
& -x
);
221 * ffs: find first bit set. This is defined the same way as
222 * the libc and compiler builtin ffs routines, therefore
223 * differs in spirit from the above ffz (man ffs).
225 static __inline__
int ffs(int x
)
227 unsigned long i
= (unsigned long)x
;
228 return __ilog2(i
& -i
) + 1;
232 * fls: find last (most-significant) bit set.
233 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
235 static __inline__
int fls(unsigned int x
)
239 asm ("cntlzw %0,%1" : "=r" (lz
) : "r" (x
));
243 static __inline__
unsigned long __fls(unsigned long x
)
249 * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
250 * instruction; for 32-bit we use the generic version, which does two
254 static __inline__
int fls64(__u64 x
)
258 asm ("cntlzd %0,%1" : "=r" (lz
) : "r" (x
));
262 #include <asm-generic/bitops/fls64.h>
263 #endif /* __powerpc64__ */
266 unsigned int __arch_hweight8(unsigned int w
);
267 unsigned int __arch_hweight16(unsigned int w
);
268 unsigned int __arch_hweight32(unsigned int w
);
269 unsigned long __arch_hweight64(__u64 w
);
270 #include <asm-generic/bitops/const_hweight.h>
272 #include <asm-generic/bitops/hweight.h>
275 #include <asm-generic/bitops/find.h>
277 /* Little-endian versions */
278 #include <asm-generic/bitops/le.h>
280 /* Bitmap functions for the ext2 filesystem */
282 #include <asm-generic/bitops/ext2-atomic-setbit.h>
284 #include <asm-generic/bitops/sched.h>
286 #endif /* __KERNEL__ */
288 #endif /* _ASM_POWERPC_BITOPS_H */