1 #ifndef _ASM_POWERPC_PGTABLE_H
2 #define _ASM_POWERPC_PGTABLE_H
6 #include <asm/processor.h> /* For TASK_SIZE */
12 #endif /* !__ASSEMBLY__ */
14 #if defined(CONFIG_PPC64)
15 # include <asm/pgtable-ppc64.h>
17 # include <asm/pgtable-ppc32.h>
21 * We save the slot number & secondary bit in the second half of the
22 * PTE page. We use the 8 bytes per each pte entry.
24 #define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8)
28 #include <asm/tlbflush.h>
30 /* Generic accessors to PTE bits */
31 static inline int pte_write(pte_t pte
) { return pte_val(pte
) & _PAGE_RW
; }
32 static inline int pte_dirty(pte_t pte
) { return pte_val(pte
) & _PAGE_DIRTY
; }
33 static inline int pte_young(pte_t pte
) { return pte_val(pte
) & _PAGE_ACCESSED
; }
34 static inline int pte_file(pte_t pte
) { return pte_val(pte
) & _PAGE_FILE
; }
35 static inline int pte_special(pte_t pte
) { return pte_val(pte
) & _PAGE_SPECIAL
; }
36 static inline int pte_present(pte_t pte
) { return pte_val(pte
) & _PAGE_PRESENT
; }
37 static inline int pte_none(pte_t pte
) { return (pte_val(pte
) & ~_PTE_NONE_MASK
) == 0; }
38 static inline pgprot_t
pte_pgprot(pte_t pte
) { return __pgprot(pte_val(pte
) & PAGE_PROT_BITS
); }
40 /* Conversion functions: convert a page and protection to a page entry,
41 * and a page entry and page directory to the page they refer to.
43 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
46 static inline pte_t
pfn_pte(unsigned long pfn
, pgprot_t pgprot
) {
47 return __pte(((pte_basic_t
)(pfn
) << PTE_RPN_SHIFT
) |
48 pgprot_val(pgprot
)); }
49 static inline unsigned long pte_pfn(pte_t pte
) {
50 return pte_val(pte
) >> PTE_RPN_SHIFT
; }
52 /* Keep these as a macros to avoid include dependency mess */
53 #define pte_page(x) pfn_to_page(pte_pfn(x))
54 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
56 /* Generic modifiers for PTE bits */
57 static inline pte_t
pte_wrprotect(pte_t pte
) {
58 pte_val(pte
) &= ~(_PAGE_RW
| _PAGE_HWWRITE
); return pte
; }
59 static inline pte_t
pte_mkclean(pte_t pte
) {
60 pte_val(pte
) &= ~(_PAGE_DIRTY
| _PAGE_HWWRITE
); return pte
; }
61 static inline pte_t
pte_mkold(pte_t pte
) {
62 pte_val(pte
) &= ~_PAGE_ACCESSED
; return pte
; }
63 static inline pte_t
pte_mkwrite(pte_t pte
) {
64 pte_val(pte
) |= _PAGE_RW
; return pte
; }
65 static inline pte_t
pte_mkdirty(pte_t pte
) {
66 pte_val(pte
) |= _PAGE_DIRTY
; return pte
; }
67 static inline pte_t
pte_mkyoung(pte_t pte
) {
68 pte_val(pte
) |= _PAGE_ACCESSED
; return pte
; }
69 static inline pte_t
pte_mkspecial(pte_t pte
) {
70 pte_val(pte
) |= _PAGE_SPECIAL
; return pte
; }
71 static inline pte_t
pte_mkhuge(pte_t pte
) {
73 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
75 pte_val(pte
) = (pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
);
80 /* Insert a PTE, top-level function is out of line. It uses an inline
81 * low level function in the respective pgtable-* files
83 extern void set_pte_at(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
,
86 /* This low level function performs the actual PTE insertion
87 * Setting the PTE depends on the MMU type and other factors. It's
88 * an horrible mess that I'm not going to try to clean up now but
89 * I'm keeping it in one place rather than spread around
91 static inline void __set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
92 pte_t
*ptep
, pte_t pte
, int percpu
)
94 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
95 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
96 * helper pte_update() which does an atomic update. We need to do that
97 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
98 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
99 * the hash bits instead (ie, same as the non-SMP case)
102 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
103 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
105 pte_update(ptep
, ~_PAGE_HASHPTE
, pte_val(pte
));
107 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
108 /* Second case is 32-bit with 64-bit PTE. In this case, we
109 * can just store as long as we do the two halves in the right order
110 * with a barrier in between. This is possible because we take care,
111 * in the hash code, to pre-invalidate if the PTE was already hashed,
112 * which synchronizes us with any concurrent invalidation.
113 * In the percpu case, we also fallback to the simple update preserving
117 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
118 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
121 #if _PAGE_HASHPTE != 0
122 if (pte_val(*ptep
) & _PAGE_HASHPTE
)
123 flush_hash_entry(mm
, ptep
, addr
);
125 __asm__
__volatile__("\
129 : "=m" (*ptep
), "=m" (*((unsigned char *)ptep
+4))
130 : "r" (pte
) : "memory");
132 #elif defined(CONFIG_PPC_STD_MMU_32)
133 /* Third case is 32-bit hash table in UP mode, we need to preserve
134 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
135 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
136 * and see we need to keep track that this PTE needs invalidating
138 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
139 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
142 /* Anything else just stores the PTE normally. That covers all 64-bit
143 * cases, and 32-bit non-hash with 32-bit PTEs.
150 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
151 extern int ptep_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
152 pte_t
*ptep
, pte_t entry
, int dirty
);
155 * Macro to mark a page protection value as "uncacheable".
158 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
161 #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
162 _PAGE_NO_CACHE | _PAGE_GUARDED))
164 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
167 #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
170 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
171 _PAGE_COHERENT | _PAGE_WRITETHRU))
173 #define pgprot_cached_noncoherent(prot) \
174 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
176 #define pgprot_writecombine pgprot_noncached_wc
179 extern pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
180 unsigned long size
, pgprot_t vma_prot
);
181 #define __HAVE_PHYS_MEM_ACCESS_PROT
184 * ZERO_PAGE is a global shared page that is always zero: used
185 * for zero-mapped memory areas etc..
187 extern unsigned long empty_zero_page
[];
188 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
190 extern pgd_t swapper_pg_dir
[];
192 extern void paging_init(void);
195 * kern_addr_valid is intended to indicate whether an address is a valid
196 * kernel address. Most 32-bit archs define it as always true (like this)
197 * but most 64-bit archs actually perform a test. What should we do here?
199 #define kern_addr_valid(addr) (1)
201 #include <asm-generic/pgtable.h>
205 * This gets called at the end of handling a page fault, when
206 * the kernel has put a new PTE into the page table for the process.
207 * We use it to ensure coherency between the i-cache and d-cache
208 * for the page which has just been mapped in.
209 * On machines which use an MMU hash table, we use this to put a
210 * corresponding HPTE into the hash table ahead of time, instead of
211 * waiting for the inevitable extra hash-table miss exception.
213 extern void update_mmu_cache(struct vm_area_struct
*, unsigned long, pte_t
*);
215 extern int gup_hugepd(hugepd_t
*hugepd
, unsigned pdshift
, unsigned long addr
,
216 unsigned long end
, int write
, struct page
**pages
, int *nr
);
218 extern int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
219 unsigned long end
, int write
, struct page
**pages
, int *nr
);
220 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
221 #define pmd_large(pmd) 0
222 #define has_transparent_hugepage() 0
224 pte_t
*find_linux_pte_or_hugepte(pgd_t
*pgdir
, unsigned long ea
,
226 #endif /* __ASSEMBLY__ */
228 #endif /* __KERNEL__ */
229 #endif /* _ASM_POWERPC_PGTABLE_H */