x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / powerpc / kernel / signal_32.c
blob50606e4261a1625267b98190acedca5e21a7dfd2
1 /*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
10 * Derived from "arch/i386/kernel/signal.c"
11 * Copyright (C) 1991, 1992 Linus Torvalds
12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
55 #include "signal.h"
57 #undef DEBUG_SIG
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn compat_sys_rt_sigreturn
61 #define sys_swapcontext compat_sys_swapcontext
62 #define sys_sigreturn compat_sys_sigreturn
64 #define old_sigaction old_sigaction32
65 #define sigcontext sigcontext32
66 #define mcontext mcontext32
67 #define ucontext ucontext32
69 #define __save_altstack __compat_save_altstack
72 * Userspace code may pass a ucontext which doesn't include VSX added
73 * at the end. We need to check for this case.
75 #define UCONTEXTSIZEWITHOUTVSX \
76 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
79 * Returning 0 means we return to userspace via
80 * ret_from_except and thus restore all user
81 * registers from *regs. This is what we need
82 * to do when a signal has been delivered.
85 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG ELF_NVRREG32
92 * Functions for flipping sigsets (thanks to brain dead generic
93 * implementation that makes things simple for little endian only)
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
97 compat_sigset_t cset;
99 switch (_NSIG_WORDS) {
100 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101 cset.sig[7] = set->sig[3] >> 32;
102 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103 cset.sig[5] = set->sig[2] >> 32;
104 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105 cset.sig[3] = set->sig[1] >> 32;
106 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107 cset.sig[1] = set->sig[0] >> 32;
109 return copy_to_user(uset, &cset, sizeof(*uset));
112 static inline int get_sigset_t(sigset_t *set,
113 const compat_sigset_t __user *uset)
115 compat_sigset_t s32;
117 if (copy_from_user(&s32, uset, sizeof(*uset)))
118 return -EFAULT;
121 * Swap the 2 words of the 64-bit sigset_t (they are stored
122 * in the "wrong" endian in 32-bit user storage).
124 switch (_NSIG_WORDS) {
125 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
130 return 0;
133 #define to_user_ptr(p) ptr_to_compat(p)
134 #define from_user_ptr(p) compat_ptr(p)
136 static inline int save_general_regs(struct pt_regs *regs,
137 struct mcontext __user *frame)
139 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140 int i;
142 WARN_ON(!FULL_REGS(regs));
144 for (i = 0; i <= PT_RESULT; i ++) {
145 if (i == 14 && !FULL_REGS(regs))
146 i = 32;
147 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148 return -EFAULT;
150 return 0;
153 static inline int restore_general_regs(struct pt_regs *regs,
154 struct mcontext __user *sr)
156 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157 int i;
159 for (i = 0; i <= PT_RESULT; i++) {
160 if ((i == PT_MSR) || (i == PT_SOFTE))
161 continue;
162 if (__get_user(gregs[i], &sr->mc_gregs[i]))
163 return -EFAULT;
165 return 0;
168 #else /* CONFIG_PPC64 */
170 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
174 return copy_to_user(uset, set, sizeof(*uset));
177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
179 return copy_from_user(set, uset, sizeof(*uset));
182 #define to_user_ptr(p) ((unsigned long)(p))
183 #define from_user_ptr(p) ((void __user *)(p))
185 static inline int save_general_regs(struct pt_regs *regs,
186 struct mcontext __user *frame)
188 WARN_ON(!FULL_REGS(regs));
189 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
192 static inline int restore_general_regs(struct pt_regs *regs,
193 struct mcontext __user *sr)
195 /* copy up to but not including MSR */
196 if (__copy_from_user(regs, &sr->mc_gregs,
197 PT_MSR * sizeof(elf_greg_t)))
198 return -EFAULT;
199 /* copy from orig_r3 (the word after the MSR) up to the end */
200 if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202 return -EFAULT;
203 return 0;
205 #endif
208 * When we have signals to deliver, we set up on the
209 * user stack, going down from the original stack pointer:
210 * an ABI gap of 56 words
211 * an mcontext struct
212 * a sigcontext struct
213 * a gap of __SIGNAL_FRAMESIZE bytes
215 * Each of these things must be a multiple of 16 bytes in size. The following
216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
219 struct sigframe {
220 struct sigcontext sctx; /* the sigcontext */
221 struct mcontext mctx; /* all the register values */
222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223 struct sigcontext sctx_transact;
224 struct mcontext mctx_transact;
225 #endif
227 * Programs using the rs6000/xcoff abi can save up to 19 gp
228 * regs and 18 fp regs below sp before decrementing it.
230 int abigap[56];
233 /* We use the mc_pad field for the signal return trampoline. */
234 #define tramp mc_pad
237 * When we have rt signals to deliver, we set up on the
238 * user stack, going down from the original stack pointer:
239 * one rt_sigframe struct (siginfo + ucontext + ABI gap)
240 * a gap of __SIGNAL_FRAMESIZE+16 bytes
241 * (the +16 is to get the siginfo and ucontext in the same
242 * positions as in older kernels).
244 * Each of these things must be a multiple of 16 bytes in size.
247 struct rt_sigframe {
248 #ifdef CONFIG_PPC64
249 compat_siginfo_t info;
250 #else
251 struct siginfo info;
252 #endif
253 struct ucontext uc;
254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255 struct ucontext uc_transact;
256 #endif
258 * Programs using the rs6000/xcoff abi can save up to 19 gp
259 * regs and 18 fp regs below sp before decrementing it.
261 int abigap[56];
264 #ifdef CONFIG_VSX
265 unsigned long copy_fpr_to_user(void __user *to,
266 struct task_struct *task)
268 double buf[ELF_NFPREG];
269 int i;
271 /* save FPR copy to local buffer then write to the thread_struct */
272 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273 buf[i] = task->thread.TS_FPR(i);
274 memcpy(&buf[i], &task->thread.fpscr, sizeof(double));
275 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
278 unsigned long copy_fpr_from_user(struct task_struct *task,
279 void __user *from)
281 double buf[ELF_NFPREG];
282 int i;
284 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285 return 1;
286 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287 task->thread.TS_FPR(i) = buf[i];
288 memcpy(&task->thread.fpscr, &buf[i], sizeof(double));
290 return 0;
293 unsigned long copy_vsx_to_user(void __user *to,
294 struct task_struct *task)
296 double buf[ELF_NVSRHALFREG];
297 int i;
299 /* save FPR copy to local buffer then write to the thread_struct */
300 for (i = 0; i < ELF_NVSRHALFREG; i++)
301 buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET];
302 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
305 unsigned long copy_vsx_from_user(struct task_struct *task,
306 void __user *from)
308 double buf[ELF_NVSRHALFREG];
309 int i;
311 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312 return 1;
313 for (i = 0; i < ELF_NVSRHALFREG ; i++)
314 task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315 return 0;
318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319 unsigned long copy_transact_fpr_to_user(void __user *to,
320 struct task_struct *task)
322 double buf[ELF_NFPREG];
323 int i;
325 /* save FPR copy to local buffer then write to the thread_struct */
326 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327 buf[i] = task->thread.TS_TRANS_FPR(i);
328 memcpy(&buf[i], &task->thread.transact_fpscr, sizeof(double));
329 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
332 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333 void __user *from)
335 double buf[ELF_NFPREG];
336 int i;
338 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339 return 1;
340 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341 task->thread.TS_TRANS_FPR(i) = buf[i];
342 memcpy(&task->thread.transact_fpscr, &buf[i], sizeof(double));
344 return 0;
347 unsigned long copy_transact_vsx_to_user(void __user *to,
348 struct task_struct *task)
350 double buf[ELF_NVSRHALFREG];
351 int i;
353 /* save FPR copy to local buffer then write to the thread_struct */
354 for (i = 0; i < ELF_NVSRHALFREG; i++)
355 buf[i] = task->thread.transact_fpr[i][TS_VSRLOWOFFSET];
356 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
359 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360 void __user *from)
362 double buf[ELF_NVSRHALFREG];
363 int i;
365 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366 return 1;
367 for (i = 0; i < ELF_NVSRHALFREG ; i++)
368 task->thread.transact_fpr[i][TS_VSRLOWOFFSET] = buf[i];
369 return 0;
371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372 #else
373 inline unsigned long copy_fpr_to_user(void __user *to,
374 struct task_struct *task)
376 return __copy_to_user(to, task->thread.fpr,
377 ELF_NFPREG * sizeof(double));
380 inline unsigned long copy_fpr_from_user(struct task_struct *task,
381 void __user *from)
383 return __copy_from_user(task->thread.fpr, from,
384 ELF_NFPREG * sizeof(double));
387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388 inline unsigned long copy_transact_fpr_to_user(void __user *to,
389 struct task_struct *task)
391 return __copy_to_user(to, task->thread.transact_fpr,
392 ELF_NFPREG * sizeof(double));
395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396 void __user *from)
398 return __copy_from_user(task->thread.transact_fpr, from,
399 ELF_NFPREG * sizeof(double));
401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402 #endif
405 * Save the current user registers on the user stack.
406 * We only save the altivec/spe registers if the process has used
407 * altivec/spe instructions at some point.
409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410 struct mcontext __user *tm_frame, int sigret,
411 int ctx_has_vsx_region)
413 unsigned long msr = regs->msr;
415 /* Make sure floating point registers are stored in regs */
416 flush_fp_to_thread(current);
418 /* save general registers */
419 if (save_general_regs(regs, frame))
420 return 1;
422 #ifdef CONFIG_ALTIVEC
423 /* save altivec registers */
424 if (current->thread.used_vr) {
425 flush_altivec_to_thread(current);
426 if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
427 ELF_NVRREG * sizeof(vector128)))
428 return 1;
429 /* set MSR_VEC in the saved MSR value to indicate that
430 frame->mc_vregs contains valid data */
431 msr |= MSR_VEC;
433 /* else assert((regs->msr & MSR_VEC) == 0) */
435 /* We always copy to/from vrsave, it's 0 if we don't have or don't
436 * use altivec. Since VSCR only contains 32 bits saved in the least
437 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438 * most significant bits of that same vector. --BenH
439 * Note that the current VRSAVE value is in the SPR at this point.
441 if (cpu_has_feature(CPU_FTR_ALTIVEC))
442 current->thread.vrsave = mfspr(SPRN_VRSAVE);
443 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
444 return 1;
445 #endif /* CONFIG_ALTIVEC */
446 if (copy_fpr_to_user(&frame->mc_fregs, current))
447 return 1;
450 * Clear the MSR VSX bit to indicate there is no valid state attached
451 * to this context, except in the specific case below where we set it.
453 msr &= ~MSR_VSX;
454 #ifdef CONFIG_VSX
456 * Copy VSR 0-31 upper half from thread_struct to local
457 * buffer, then write that to userspace. Also set MSR_VSX in
458 * the saved MSR value to indicate that frame->mc_vregs
459 * contains valid data
461 if (current->thread.used_vsr && ctx_has_vsx_region) {
462 __giveup_vsx(current);
463 if (copy_vsx_to_user(&frame->mc_vsregs, current))
464 return 1;
465 msr |= MSR_VSX;
467 #endif /* CONFIG_VSX */
468 #ifdef CONFIG_SPE
469 /* save spe registers */
470 if (current->thread.used_spe) {
471 flush_spe_to_thread(current);
472 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
473 ELF_NEVRREG * sizeof(u32)))
474 return 1;
475 /* set MSR_SPE in the saved MSR value to indicate that
476 frame->mc_vregs contains valid data */
477 msr |= MSR_SPE;
479 /* else assert((regs->msr & MSR_SPE) == 0) */
481 /* We always copy to/from spefscr */
482 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
483 return 1;
484 #endif /* CONFIG_SPE */
486 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
487 return 1;
488 /* We need to write 0 the MSR top 32 bits in the tm frame so that we
489 * can check it on the restore to see if TM is active
491 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
492 return 1;
494 if (sigret) {
495 /* Set up the sigreturn trampoline: li r0,sigret; sc */
496 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
497 || __put_user(0x44000002UL, &frame->tramp[1]))
498 return 1;
499 flush_icache_range((unsigned long) &frame->tramp[0],
500 (unsigned long) &frame->tramp[2]);
503 return 0;
506 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
508 * Save the current user registers on the user stack.
509 * We only save the altivec/spe registers if the process has used
510 * altivec/spe instructions at some point.
511 * We also save the transactional registers to a second ucontext in the
512 * frame.
514 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
516 static int save_tm_user_regs(struct pt_regs *regs,
517 struct mcontext __user *frame,
518 struct mcontext __user *tm_frame, int sigret)
520 unsigned long msr = regs->msr;
522 /* Make sure floating point registers are stored in regs */
523 flush_fp_to_thread(current);
525 /* Save both sets of general registers */
526 if (save_general_regs(&current->thread.ckpt_regs, frame)
527 || save_general_regs(regs, tm_frame))
528 return 1;
530 /* Stash the top half of the 64bit MSR into the 32bit MSR word
531 * of the transactional mcontext. This way we have a backward-compatible
532 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
533 * also look at what type of transaction (T or S) was active at the
534 * time of the signal.
536 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
537 return 1;
539 #ifdef CONFIG_ALTIVEC
540 /* save altivec registers */
541 if (current->thread.used_vr) {
542 flush_altivec_to_thread(current);
543 if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
544 ELF_NVRREG * sizeof(vector128)))
545 return 1;
546 if (msr & MSR_VEC) {
547 if (__copy_to_user(&tm_frame->mc_vregs,
548 current->thread.transact_vr,
549 ELF_NVRREG * sizeof(vector128)))
550 return 1;
551 } else {
552 if (__copy_to_user(&tm_frame->mc_vregs,
553 current->thread.vr,
554 ELF_NVRREG * sizeof(vector128)))
555 return 1;
558 /* set MSR_VEC in the saved MSR value to indicate that
559 * frame->mc_vregs contains valid data
561 msr |= MSR_VEC;
564 /* We always copy to/from vrsave, it's 0 if we don't have or don't
565 * use altivec. Since VSCR only contains 32 bits saved in the least
566 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
567 * most significant bits of that same vector. --BenH
569 if (cpu_has_feature(CPU_FTR_ALTIVEC))
570 current->thread.vrsave = mfspr(SPRN_VRSAVE);
571 if (__put_user(current->thread.vrsave,
572 (u32 __user *)&frame->mc_vregs[32]))
573 return 1;
574 if (msr & MSR_VEC) {
575 if (__put_user(current->thread.transact_vrsave,
576 (u32 __user *)&tm_frame->mc_vregs[32]))
577 return 1;
578 } else {
579 if (__put_user(current->thread.vrsave,
580 (u32 __user *)&tm_frame->mc_vregs[32]))
581 return 1;
583 #endif /* CONFIG_ALTIVEC */
585 if (copy_fpr_to_user(&frame->mc_fregs, current))
586 return 1;
587 if (msr & MSR_FP) {
588 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
589 return 1;
590 } else {
591 if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
592 return 1;
595 #ifdef CONFIG_VSX
597 * Copy VSR 0-31 upper half from thread_struct to local
598 * buffer, then write that to userspace. Also set MSR_VSX in
599 * the saved MSR value to indicate that frame->mc_vregs
600 * contains valid data
602 if (current->thread.used_vsr) {
603 __giveup_vsx(current);
604 if (copy_vsx_to_user(&frame->mc_vsregs, current))
605 return 1;
606 if (msr & MSR_VSX) {
607 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
608 current))
609 return 1;
610 } else {
611 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
612 return 1;
615 msr |= MSR_VSX;
617 #endif /* CONFIG_VSX */
618 #ifdef CONFIG_SPE
619 /* SPE regs are not checkpointed with TM, so this section is
620 * simply the same as in save_user_regs().
622 if (current->thread.used_spe) {
623 flush_spe_to_thread(current);
624 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
625 ELF_NEVRREG * sizeof(u32)))
626 return 1;
627 /* set MSR_SPE in the saved MSR value to indicate that
628 * frame->mc_vregs contains valid data */
629 msr |= MSR_SPE;
632 /* We always copy to/from spefscr */
633 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
634 return 1;
635 #endif /* CONFIG_SPE */
637 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
638 return 1;
639 if (sigret) {
640 /* Set up the sigreturn trampoline: li r0,sigret; sc */
641 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
642 || __put_user(0x44000002UL, &frame->tramp[1]))
643 return 1;
644 flush_icache_range((unsigned long) &frame->tramp[0],
645 (unsigned long) &frame->tramp[2]);
648 return 0;
650 #endif
653 * Restore the current user register values from the user stack,
654 * (except for MSR).
656 static long restore_user_regs(struct pt_regs *regs,
657 struct mcontext __user *sr, int sig)
659 long err;
660 unsigned int save_r2 = 0;
661 unsigned long msr;
662 #ifdef CONFIG_VSX
663 int i;
664 #endif
667 * restore general registers but not including MSR or SOFTE. Also
668 * take care of keeping r2 (TLS) intact if not a signal
670 if (!sig)
671 save_r2 = (unsigned int)regs->gpr[2];
672 err = restore_general_regs(regs, sr);
673 regs->trap = 0;
674 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
675 if (!sig)
676 regs->gpr[2] = (unsigned long) save_r2;
677 if (err)
678 return 1;
680 /* if doing signal return, restore the previous little-endian mode */
681 if (sig)
682 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
685 * Do this before updating the thread state in
686 * current->thread.fpr/vr/evr. That way, if we get preempted
687 * and another task grabs the FPU/Altivec/SPE, it won't be
688 * tempted to save the current CPU state into the thread_struct
689 * and corrupt what we are writing there.
691 discard_lazy_cpu_state();
693 #ifdef CONFIG_ALTIVEC
695 * Force the process to reload the altivec registers from
696 * current->thread when it next does altivec instructions
698 regs->msr &= ~MSR_VEC;
699 if (msr & MSR_VEC) {
700 /* restore altivec registers from the stack */
701 if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
702 sizeof(sr->mc_vregs)))
703 return 1;
704 } else if (current->thread.used_vr)
705 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
707 /* Always get VRSAVE back */
708 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
709 return 1;
710 if (cpu_has_feature(CPU_FTR_ALTIVEC))
711 mtspr(SPRN_VRSAVE, current->thread.vrsave);
712 #endif /* CONFIG_ALTIVEC */
713 if (copy_fpr_from_user(current, &sr->mc_fregs))
714 return 1;
716 #ifdef CONFIG_VSX
718 * Force the process to reload the VSX registers from
719 * current->thread when it next does VSX instruction.
721 regs->msr &= ~MSR_VSX;
722 if (msr & MSR_VSX) {
724 * Restore altivec registers from the stack to a local
725 * buffer, then write this out to the thread_struct
727 if (copy_vsx_from_user(current, &sr->mc_vsregs))
728 return 1;
729 } else if (current->thread.used_vsr)
730 for (i = 0; i < 32 ; i++)
731 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
732 #endif /* CONFIG_VSX */
734 * force the process to reload the FP registers from
735 * current->thread when it next does FP instructions
737 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
739 #ifdef CONFIG_SPE
740 /* force the process to reload the spe registers from
741 current->thread when it next does spe instructions */
742 regs->msr &= ~MSR_SPE;
743 if (msr & MSR_SPE) {
744 /* restore spe registers from the stack */
745 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
746 ELF_NEVRREG * sizeof(u32)))
747 return 1;
748 } else if (current->thread.used_spe)
749 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
751 /* Always get SPEFSCR back */
752 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
753 return 1;
754 #endif /* CONFIG_SPE */
756 return 0;
759 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
761 * Restore the current user register values from the user stack, except for
762 * MSR, and recheckpoint the original checkpointed register state for processes
763 * in transactions.
765 static long restore_tm_user_regs(struct pt_regs *regs,
766 struct mcontext __user *sr,
767 struct mcontext __user *tm_sr)
769 long err;
770 unsigned long msr, msr_hi;
771 #ifdef CONFIG_VSX
772 int i;
773 #endif
776 * restore general registers but not including MSR or SOFTE. Also
777 * take care of keeping r2 (TLS) intact if not a signal.
778 * See comment in signal_64.c:restore_tm_sigcontexts();
779 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
780 * were set by the signal delivery.
782 err = restore_general_regs(regs, tm_sr);
783 err |= restore_general_regs(&current->thread.ckpt_regs, sr);
785 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
787 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
788 if (err)
789 return 1;
791 /* Restore the previous little-endian mode */
792 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
795 * Do this before updating the thread state in
796 * current->thread.fpr/vr/evr. That way, if we get preempted
797 * and another task grabs the FPU/Altivec/SPE, it won't be
798 * tempted to save the current CPU state into the thread_struct
799 * and corrupt what we are writing there.
801 discard_lazy_cpu_state();
803 #ifdef CONFIG_ALTIVEC
804 regs->msr &= ~MSR_VEC;
805 if (msr & MSR_VEC) {
806 /* restore altivec registers from the stack */
807 if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
808 sizeof(sr->mc_vregs)) ||
809 __copy_from_user(current->thread.transact_vr,
810 &tm_sr->mc_vregs,
811 sizeof(sr->mc_vregs)))
812 return 1;
813 } else if (current->thread.used_vr) {
814 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
815 memset(current->thread.transact_vr, 0,
816 ELF_NVRREG * sizeof(vector128));
819 /* Always get VRSAVE back */
820 if (__get_user(current->thread.vrsave,
821 (u32 __user *)&sr->mc_vregs[32]) ||
822 __get_user(current->thread.transact_vrsave,
823 (u32 __user *)&tm_sr->mc_vregs[32]))
824 return 1;
825 if (cpu_has_feature(CPU_FTR_ALTIVEC))
826 mtspr(SPRN_VRSAVE, current->thread.vrsave);
827 #endif /* CONFIG_ALTIVEC */
829 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
831 if (copy_fpr_from_user(current, &sr->mc_fregs) ||
832 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
833 return 1;
835 #ifdef CONFIG_VSX
836 regs->msr &= ~MSR_VSX;
837 if (msr & MSR_VSX) {
839 * Restore altivec registers from the stack to a local
840 * buffer, then write this out to the thread_struct
842 if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
843 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
844 return 1;
845 } else if (current->thread.used_vsr)
846 for (i = 0; i < 32 ; i++) {
847 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
848 current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0;
850 #endif /* CONFIG_VSX */
852 #ifdef CONFIG_SPE
853 /* SPE regs are not checkpointed with TM, so this section is
854 * simply the same as in restore_user_regs().
856 regs->msr &= ~MSR_SPE;
857 if (msr & MSR_SPE) {
858 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
859 ELF_NEVRREG * sizeof(u32)))
860 return 1;
861 } else if (current->thread.used_spe)
862 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
864 /* Always get SPEFSCR back */
865 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
866 + ELF_NEVRREG))
867 return 1;
868 #endif /* CONFIG_SPE */
870 /* Now, recheckpoint. This loads up all of the checkpointed (older)
871 * registers, including FP and V[S]Rs. After recheckpointing, the
872 * transactional versions should be loaded.
874 tm_enable();
875 /* Make sure the transaction is marked as failed */
876 current->thread.tm_texasr |= TEXASR_FS;
877 /* This loads the checkpointed FP/VEC state, if used */
878 tm_recheckpoint(&current->thread, msr);
879 /* Get the top half of the MSR */
880 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
881 return 1;
882 /* Pull in MSR TM from user context */
883 regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
885 /* This loads the speculative FP/VEC state, if used */
886 if (msr & MSR_FP) {
887 do_load_up_transact_fpu(&current->thread);
888 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
890 #ifdef CONFIG_ALTIVEC
891 if (msr & MSR_VEC) {
892 do_load_up_transact_altivec(&current->thread);
893 regs->msr |= MSR_VEC;
895 #endif
897 return 0;
899 #endif
901 #ifdef CONFIG_PPC64
902 int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s)
904 int err;
906 if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
907 return -EFAULT;
909 /* If you change siginfo_t structure, please be sure
910 * this code is fixed accordingly.
911 * It should never copy any pad contained in the structure
912 * to avoid security leaks, but must copy the generic
913 * 3 ints plus the relevant union member.
914 * This routine must convert siginfo from 64bit to 32bit as well
915 * at the same time.
917 err = __put_user(s->si_signo, &d->si_signo);
918 err |= __put_user(s->si_errno, &d->si_errno);
919 err |= __put_user((short)s->si_code, &d->si_code);
920 if (s->si_code < 0)
921 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
922 SI_PAD_SIZE32);
923 else switch(s->si_code >> 16) {
924 case __SI_CHLD >> 16:
925 err |= __put_user(s->si_pid, &d->si_pid);
926 err |= __put_user(s->si_uid, &d->si_uid);
927 err |= __put_user(s->si_utime, &d->si_utime);
928 err |= __put_user(s->si_stime, &d->si_stime);
929 err |= __put_user(s->si_status, &d->si_status);
930 break;
931 case __SI_FAULT >> 16:
932 err |= __put_user((unsigned int)(unsigned long)s->si_addr,
933 &d->si_addr);
934 break;
935 case __SI_POLL >> 16:
936 err |= __put_user(s->si_band, &d->si_band);
937 err |= __put_user(s->si_fd, &d->si_fd);
938 break;
939 case __SI_TIMER >> 16:
940 err |= __put_user(s->si_tid, &d->si_tid);
941 err |= __put_user(s->si_overrun, &d->si_overrun);
942 err |= __put_user(s->si_int, &d->si_int);
943 break;
944 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */
945 case __SI_MESGQ >> 16:
946 err |= __put_user(s->si_int, &d->si_int);
947 /* fallthrough */
948 case __SI_KILL >> 16:
949 default:
950 err |= __put_user(s->si_pid, &d->si_pid);
951 err |= __put_user(s->si_uid, &d->si_uid);
952 break;
954 return err;
957 #define copy_siginfo_to_user copy_siginfo_to_user32
959 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
961 memset(to, 0, sizeof *to);
963 if (copy_from_user(to, from, 3*sizeof(int)) ||
964 copy_from_user(to->_sifields._pad,
965 from->_sifields._pad, SI_PAD_SIZE32))
966 return -EFAULT;
968 return 0;
970 #endif /* CONFIG_PPC64 */
973 * Set up a signal frame for a "real-time" signal handler
974 * (one which gets siginfo).
976 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
977 siginfo_t *info, sigset_t *oldset,
978 struct pt_regs *regs)
980 struct rt_sigframe __user *rt_sf;
981 struct mcontext __user *frame;
982 struct mcontext __user *tm_frame = NULL;
983 void __user *addr;
984 unsigned long newsp = 0;
985 int sigret;
986 unsigned long tramp;
988 /* Set up Signal Frame */
989 /* Put a Real Time Context onto stack */
990 rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
991 addr = rt_sf;
992 if (unlikely(rt_sf == NULL))
993 goto badframe;
995 /* Put the siginfo & fill in most of the ucontext */
996 if (copy_siginfo_to_user(&rt_sf->info, info)
997 || __put_user(0, &rt_sf->uc.uc_flags)
998 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
999 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1000 &rt_sf->uc.uc_regs)
1001 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1002 goto badframe;
1004 /* Save user registers on the stack */
1005 frame = &rt_sf->uc.uc_mcontext;
1006 addr = frame;
1007 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1008 sigret = 0;
1009 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1010 } else {
1011 sigret = __NR_rt_sigreturn;
1012 tramp = (unsigned long) frame->tramp;
1015 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1016 tm_frame = &rt_sf->uc_transact.uc_mcontext;
1017 if (MSR_TM_ACTIVE(regs->msr)) {
1018 if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1019 goto badframe;
1021 else
1022 #endif
1024 if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1025 goto badframe;
1027 regs->link = tramp;
1029 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1030 if (MSR_TM_ACTIVE(regs->msr)) {
1031 if (__put_user((unsigned long)&rt_sf->uc_transact,
1032 &rt_sf->uc.uc_link)
1033 || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs))
1034 goto badframe;
1036 else
1037 #endif
1038 if (__put_user(0, &rt_sf->uc.uc_link))
1039 goto badframe;
1041 current->thread.fpscr.val = 0; /* turn off all fp exceptions */
1043 /* create a stack frame for the caller of the handler */
1044 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1045 addr = (void __user *)regs->gpr[1];
1046 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1047 goto badframe;
1049 /* Fill registers for signal handler */
1050 regs->gpr[1] = newsp;
1051 regs->gpr[3] = sig;
1052 regs->gpr[4] = (unsigned long) &rt_sf->info;
1053 regs->gpr[5] = (unsigned long) &rt_sf->uc;
1054 regs->gpr[6] = (unsigned long) rt_sf;
1055 regs->nip = (unsigned long) ka->sa.sa_handler;
1056 /* enter the signal handler in big-endian mode */
1057 regs->msr &= ~MSR_LE;
1058 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1059 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
1060 * just indicates to userland that we were doing a transaction, but we
1061 * don't want to return in transactional state:
1063 regs->msr &= ~MSR_TS_MASK;
1064 #endif
1065 return 1;
1067 badframe:
1068 #ifdef DEBUG_SIG
1069 printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1070 regs, frame, newsp);
1071 #endif
1072 if (show_unhandled_signals)
1073 printk_ratelimited(KERN_INFO
1074 "%s[%d]: bad frame in handle_rt_signal32: "
1075 "%p nip %08lx lr %08lx\n",
1076 current->comm, current->pid,
1077 addr, regs->nip, regs->link);
1079 force_sigsegv(sig, current);
1080 return 0;
1083 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1085 sigset_t set;
1086 struct mcontext __user *mcp;
1088 if (get_sigset_t(&set, &ucp->uc_sigmask))
1089 return -EFAULT;
1090 #ifdef CONFIG_PPC64
1092 u32 cmcp;
1094 if (__get_user(cmcp, &ucp->uc_regs))
1095 return -EFAULT;
1096 mcp = (struct mcontext __user *)(u64)cmcp;
1097 /* no need to check access_ok(mcp), since mcp < 4GB */
1099 #else
1100 if (__get_user(mcp, &ucp->uc_regs))
1101 return -EFAULT;
1102 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1103 return -EFAULT;
1104 #endif
1105 set_current_blocked(&set);
1106 if (restore_user_regs(regs, mcp, sig))
1107 return -EFAULT;
1109 return 0;
1112 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1113 static int do_setcontext_tm(struct ucontext __user *ucp,
1114 struct ucontext __user *tm_ucp,
1115 struct pt_regs *regs)
1117 sigset_t set;
1118 struct mcontext __user *mcp;
1119 struct mcontext __user *tm_mcp;
1120 u32 cmcp;
1121 u32 tm_cmcp;
1123 if (get_sigset_t(&set, &ucp->uc_sigmask))
1124 return -EFAULT;
1126 if (__get_user(cmcp, &ucp->uc_regs) ||
1127 __get_user(tm_cmcp, &tm_ucp->uc_regs))
1128 return -EFAULT;
1129 mcp = (struct mcontext __user *)(u64)cmcp;
1130 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1131 /* no need to check access_ok(mcp), since mcp < 4GB */
1133 set_current_blocked(&set);
1134 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1135 return -EFAULT;
1137 return 0;
1139 #endif
1141 long sys_swapcontext(struct ucontext __user *old_ctx,
1142 struct ucontext __user *new_ctx,
1143 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1145 unsigned char tmp;
1146 int ctx_has_vsx_region = 0;
1148 #ifdef CONFIG_PPC64
1149 unsigned long new_msr = 0;
1151 if (new_ctx) {
1152 struct mcontext __user *mcp;
1153 u32 cmcp;
1156 * Get pointer to the real mcontext. No need for
1157 * access_ok since we are dealing with compat
1158 * pointers.
1160 if (__get_user(cmcp, &new_ctx->uc_regs))
1161 return -EFAULT;
1162 mcp = (struct mcontext __user *)(u64)cmcp;
1163 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1164 return -EFAULT;
1167 * Check that the context is not smaller than the original
1168 * size (with VMX but without VSX)
1170 if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1171 return -EINVAL;
1173 * If the new context state sets the MSR VSX bits but
1174 * it doesn't provide VSX state.
1176 if ((ctx_size < sizeof(struct ucontext)) &&
1177 (new_msr & MSR_VSX))
1178 return -EINVAL;
1179 /* Does the context have enough room to store VSX data? */
1180 if (ctx_size >= sizeof(struct ucontext))
1181 ctx_has_vsx_region = 1;
1182 #else
1183 /* Context size is for future use. Right now, we only make sure
1184 * we are passed something we understand
1186 if (ctx_size < sizeof(struct ucontext))
1187 return -EINVAL;
1188 #endif
1189 if (old_ctx != NULL) {
1190 struct mcontext __user *mctx;
1193 * old_ctx might not be 16-byte aligned, in which
1194 * case old_ctx->uc_mcontext won't be either.
1195 * Because we have the old_ctx->uc_pad2 field
1196 * before old_ctx->uc_mcontext, we need to round down
1197 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1199 mctx = (struct mcontext __user *)
1200 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1201 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1202 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1203 || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1204 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1205 return -EFAULT;
1207 if (new_ctx == NULL)
1208 return 0;
1209 if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1210 || __get_user(tmp, (u8 __user *) new_ctx)
1211 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1212 return -EFAULT;
1215 * If we get a fault copying the context into the kernel's
1216 * image of the user's registers, we can't just return -EFAULT
1217 * because the user's registers will be corrupted. For instance
1218 * the NIP value may have been updated but not some of the
1219 * other registers. Given that we have done the access_ok
1220 * and successfully read the first and last bytes of the region
1221 * above, this should only happen in an out-of-memory situation
1222 * or if another thread unmaps the region containing the context.
1223 * We kill the task with a SIGSEGV in this situation.
1225 if (do_setcontext(new_ctx, regs, 0))
1226 do_exit(SIGSEGV);
1228 set_thread_flag(TIF_RESTOREALL);
1229 return 0;
1232 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1233 struct pt_regs *regs)
1235 struct rt_sigframe __user *rt_sf;
1236 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1237 struct ucontext __user *uc_transact;
1238 unsigned long msr_hi;
1239 unsigned long tmp;
1240 int tm_restore = 0;
1241 #endif
1242 /* Always make any pending restarted system calls return -EINTR */
1243 current_thread_info()->restart_block.fn = do_no_restart_syscall;
1245 rt_sf = (struct rt_sigframe __user *)
1246 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1247 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1248 goto bad;
1249 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1250 if (__get_user(tmp, &rt_sf->uc.uc_link))
1251 goto bad;
1252 uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1253 if (uc_transact) {
1254 u32 cmcp;
1255 struct mcontext __user *mcp;
1257 if (__get_user(cmcp, &uc_transact->uc_regs))
1258 return -EFAULT;
1259 mcp = (struct mcontext __user *)(u64)cmcp;
1260 /* The top 32 bits of the MSR are stashed in the transactional
1261 * ucontext. */
1262 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1263 goto bad;
1265 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1266 /* We only recheckpoint on return if we're
1267 * transaction.
1269 tm_restore = 1;
1270 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1271 goto bad;
1274 if (!tm_restore)
1275 /* Fall through, for non-TM restore */
1276 #endif
1277 if (do_setcontext(&rt_sf->uc, regs, 1))
1278 goto bad;
1281 * It's not clear whether or why it is desirable to save the
1282 * sigaltstack setting on signal delivery and restore it on
1283 * signal return. But other architectures do this and we have
1284 * always done it up until now so it is probably better not to
1285 * change it. -- paulus
1287 #ifdef CONFIG_PPC64
1288 if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1289 goto bad;
1290 #else
1291 if (restore_altstack(&rt_sf->uc.uc_stack))
1292 goto bad;
1293 #endif
1294 set_thread_flag(TIF_RESTOREALL);
1295 return 0;
1297 bad:
1298 if (show_unhandled_signals)
1299 printk_ratelimited(KERN_INFO
1300 "%s[%d]: bad frame in sys_rt_sigreturn: "
1301 "%p nip %08lx lr %08lx\n",
1302 current->comm, current->pid,
1303 rt_sf, regs->nip, regs->link);
1305 force_sig(SIGSEGV, current);
1306 return 0;
1309 #ifdef CONFIG_PPC32
1310 int sys_debug_setcontext(struct ucontext __user *ctx,
1311 int ndbg, struct sig_dbg_op __user *dbg,
1312 int r6, int r7, int r8,
1313 struct pt_regs *regs)
1315 struct sig_dbg_op op;
1316 int i;
1317 unsigned char tmp;
1318 unsigned long new_msr = regs->msr;
1319 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1320 unsigned long new_dbcr0 = current->thread.dbcr0;
1321 #endif
1323 for (i=0; i<ndbg; i++) {
1324 if (copy_from_user(&op, dbg + i, sizeof(op)))
1325 return -EFAULT;
1326 switch (op.dbg_type) {
1327 case SIG_DBG_SINGLE_STEPPING:
1328 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1329 if (op.dbg_value) {
1330 new_msr |= MSR_DE;
1331 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1332 } else {
1333 new_dbcr0 &= ~DBCR0_IC;
1334 if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1335 current->thread.dbcr1)) {
1336 new_msr &= ~MSR_DE;
1337 new_dbcr0 &= ~DBCR0_IDM;
1340 #else
1341 if (op.dbg_value)
1342 new_msr |= MSR_SE;
1343 else
1344 new_msr &= ~MSR_SE;
1345 #endif
1346 break;
1347 case SIG_DBG_BRANCH_TRACING:
1348 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1349 return -EINVAL;
1350 #else
1351 if (op.dbg_value)
1352 new_msr |= MSR_BE;
1353 else
1354 new_msr &= ~MSR_BE;
1355 #endif
1356 break;
1358 default:
1359 return -EINVAL;
1363 /* We wait until here to actually install the values in the
1364 registers so if we fail in the above loop, it will not
1365 affect the contents of these registers. After this point,
1366 failure is a problem, anyway, and it's very unlikely unless
1367 the user is really doing something wrong. */
1368 regs->msr = new_msr;
1369 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1370 current->thread.dbcr0 = new_dbcr0;
1371 #endif
1373 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1374 || __get_user(tmp, (u8 __user *) ctx)
1375 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1376 return -EFAULT;
1379 * If we get a fault copying the context into the kernel's
1380 * image of the user's registers, we can't just return -EFAULT
1381 * because the user's registers will be corrupted. For instance
1382 * the NIP value may have been updated but not some of the
1383 * other registers. Given that we have done the access_ok
1384 * and successfully read the first and last bytes of the region
1385 * above, this should only happen in an out-of-memory situation
1386 * or if another thread unmaps the region containing the context.
1387 * We kill the task with a SIGSEGV in this situation.
1389 if (do_setcontext(ctx, regs, 1)) {
1390 if (show_unhandled_signals)
1391 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1392 "sys_debug_setcontext: %p nip %08lx "
1393 "lr %08lx\n",
1394 current->comm, current->pid,
1395 ctx, regs->nip, regs->link);
1397 force_sig(SIGSEGV, current);
1398 goto out;
1402 * It's not clear whether or why it is desirable to save the
1403 * sigaltstack setting on signal delivery and restore it on
1404 * signal return. But other architectures do this and we have
1405 * always done it up until now so it is probably better not to
1406 * change it. -- paulus
1408 restore_altstack(&ctx->uc_stack);
1410 set_thread_flag(TIF_RESTOREALL);
1411 out:
1412 return 0;
1414 #endif
1417 * OK, we're invoking a handler
1419 int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1420 siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1422 struct sigcontext __user *sc;
1423 struct sigframe __user *frame;
1424 struct mcontext __user *tm_mctx = NULL;
1425 unsigned long newsp = 0;
1426 int sigret;
1427 unsigned long tramp;
1429 /* Set up Signal Frame */
1430 frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1431 if (unlikely(frame == NULL))
1432 goto badframe;
1433 sc = (struct sigcontext __user *) &frame->sctx;
1435 #if _NSIG != 64
1436 #error "Please adjust handle_signal()"
1437 #endif
1438 if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1439 || __put_user(oldset->sig[0], &sc->oldmask)
1440 #ifdef CONFIG_PPC64
1441 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1442 #else
1443 || __put_user(oldset->sig[1], &sc->_unused[3])
1444 #endif
1445 || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1446 || __put_user(sig, &sc->signal))
1447 goto badframe;
1449 if (vdso32_sigtramp && current->mm->context.vdso_base) {
1450 sigret = 0;
1451 tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1452 } else {
1453 sigret = __NR_sigreturn;
1454 tramp = (unsigned long) frame->mctx.tramp;
1457 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1458 tm_mctx = &frame->mctx_transact;
1459 if (MSR_TM_ACTIVE(regs->msr)) {
1460 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1461 sigret))
1462 goto badframe;
1464 else
1465 #endif
1467 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1468 goto badframe;
1471 regs->link = tramp;
1473 current->thread.fpscr.val = 0; /* turn off all fp exceptions */
1475 /* create a stack frame for the caller of the handler */
1476 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1477 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1478 goto badframe;
1480 regs->gpr[1] = newsp;
1481 regs->gpr[3] = sig;
1482 regs->gpr[4] = (unsigned long) sc;
1483 regs->nip = (unsigned long) ka->sa.sa_handler;
1484 /* enter the signal handler in big-endian mode */
1485 regs->msr &= ~MSR_LE;
1486 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1487 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
1488 * just indicates to userland that we were doing a transaction, but we
1489 * don't want to return in transactional state:
1491 regs->msr &= ~MSR_TS_MASK;
1492 #endif
1493 return 1;
1495 badframe:
1496 #ifdef DEBUG_SIG
1497 printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1498 regs, frame, newsp);
1499 #endif
1500 if (show_unhandled_signals)
1501 printk_ratelimited(KERN_INFO
1502 "%s[%d]: bad frame in handle_signal32: "
1503 "%p nip %08lx lr %08lx\n",
1504 current->comm, current->pid,
1505 frame, regs->nip, regs->link);
1507 force_sigsegv(sig, current);
1508 return 0;
1512 * Do a signal return; undo the signal stack.
1514 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1515 struct pt_regs *regs)
1517 struct sigframe __user *sf;
1518 struct sigcontext __user *sc;
1519 struct sigcontext sigctx;
1520 struct mcontext __user *sr;
1521 void __user *addr;
1522 sigset_t set;
1523 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1524 struct mcontext __user *mcp, *tm_mcp;
1525 unsigned long msr_hi;
1526 #endif
1528 /* Always make any pending restarted system calls return -EINTR */
1529 current_thread_info()->restart_block.fn = do_no_restart_syscall;
1531 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1532 sc = &sf->sctx;
1533 addr = sc;
1534 if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1535 goto badframe;
1537 #ifdef CONFIG_PPC64
1539 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1540 * unused part of the signal stackframe
1542 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1543 #else
1544 set.sig[0] = sigctx.oldmask;
1545 set.sig[1] = sigctx._unused[3];
1546 #endif
1547 set_current_blocked(&set);
1549 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1550 mcp = (struct mcontext __user *)&sf->mctx;
1551 tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1552 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1553 goto badframe;
1554 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1555 if (!cpu_has_feature(CPU_FTR_TM))
1556 goto badframe;
1557 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1558 goto badframe;
1559 } else
1560 #endif
1562 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1563 addr = sr;
1564 if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1565 || restore_user_regs(regs, sr, 1))
1566 goto badframe;
1569 set_thread_flag(TIF_RESTOREALL);
1570 return 0;
1572 badframe:
1573 if (show_unhandled_signals)
1574 printk_ratelimited(KERN_INFO
1575 "%s[%d]: bad frame in sys_sigreturn: "
1576 "%p nip %08lx lr %08lx\n",
1577 current->comm, current->pid,
1578 addr, regs->nip, regs->link);
1580 force_sig(SIGSEGV, current);
1581 return 0;