x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_hv_rm_mmu.c
blobea17b306723371ff84dc031ca55543fb8f6c5f79
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7 */
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/hugetlb.h>
14 #include <linux/module.h>
16 #include <asm/tlbflush.h>
17 #include <asm/kvm_ppc.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/mmu-hash64.h>
20 #include <asm/hvcall.h>
21 #include <asm/synch.h>
22 #include <asm/ppc-opcode.h>
24 /* Translate address of a vmalloc'd thing to a linear map address */
25 static void *real_vmalloc_addr(void *x)
27 unsigned long addr = (unsigned long) x;
28 pte_t *p;
30 p = find_linux_pte_or_hugepte(swapper_pg_dir, addr, NULL);
31 if (!p || !pte_present(*p))
32 return NULL;
33 /* assume we don't have huge pages in vmalloc space... */
34 addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
35 return __va(addr);
38 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
39 static int global_invalidates(struct kvm *kvm, unsigned long flags)
41 int global;
44 * If there is only one vcore, and it's currently running,
45 * we can use tlbiel as long as we mark all other physical
46 * cores as potentially having stale TLB entries for this lpid.
47 * If we're not using MMU notifiers, we never take pages away
48 * from the guest, so we can use tlbiel if requested.
49 * Otherwise, don't use tlbiel.
51 if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcore)
52 global = 0;
53 else if (kvm->arch.using_mmu_notifiers)
54 global = 1;
55 else
56 global = !(flags & H_LOCAL);
58 if (!global) {
59 /* any other core might now have stale TLB entries... */
60 smp_wmb();
61 cpumask_setall(&kvm->arch.need_tlb_flush);
62 cpumask_clear_cpu(local_paca->kvm_hstate.kvm_vcore->pcpu,
63 &kvm->arch.need_tlb_flush);
66 return global;
70 * Add this HPTE into the chain for the real page.
71 * Must be called with the chain locked; it unlocks the chain.
73 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
74 unsigned long *rmap, long pte_index, int realmode)
76 struct revmap_entry *head, *tail;
77 unsigned long i;
79 if (*rmap & KVMPPC_RMAP_PRESENT) {
80 i = *rmap & KVMPPC_RMAP_INDEX;
81 head = &kvm->arch.revmap[i];
82 if (realmode)
83 head = real_vmalloc_addr(head);
84 tail = &kvm->arch.revmap[head->back];
85 if (realmode)
86 tail = real_vmalloc_addr(tail);
87 rev->forw = i;
88 rev->back = head->back;
89 tail->forw = pte_index;
90 head->back = pte_index;
91 } else {
92 rev->forw = rev->back = pte_index;
93 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
94 pte_index | KVMPPC_RMAP_PRESENT;
96 unlock_rmap(rmap);
98 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
100 /* Remove this HPTE from the chain for a real page */
101 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
102 struct revmap_entry *rev,
103 unsigned long hpte_v, unsigned long hpte_r)
105 struct revmap_entry *next, *prev;
106 unsigned long gfn, ptel, head;
107 struct kvm_memory_slot *memslot;
108 unsigned long *rmap;
109 unsigned long rcbits;
111 rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
112 ptel = rev->guest_rpte |= rcbits;
113 gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
114 memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
115 if (!memslot)
116 return;
118 rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
119 lock_rmap(rmap);
121 head = *rmap & KVMPPC_RMAP_INDEX;
122 next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
123 prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
124 next->back = rev->back;
125 prev->forw = rev->forw;
126 if (head == pte_index) {
127 head = rev->forw;
128 if (head == pte_index)
129 *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
130 else
131 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
133 *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
134 unlock_rmap(rmap);
137 static pte_t lookup_linux_pte(pgd_t *pgdir, unsigned long hva,
138 int writing, unsigned long *pte_sizep)
140 pte_t *ptep;
141 unsigned long ps = *pte_sizep;
142 unsigned int hugepage_shift;
144 ptep = find_linux_pte_or_hugepte(pgdir, hva, &hugepage_shift);
145 if (!ptep)
146 return __pte(0);
147 if (hugepage_shift)
148 *pte_sizep = 1ul << hugepage_shift;
149 else
150 *pte_sizep = PAGE_SIZE;
151 if (ps > *pte_sizep)
152 return __pte(0);
153 return kvmppc_read_update_linux_pte(ptep, writing, hugepage_shift);
156 static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
158 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
159 hpte[0] = hpte_v;
162 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
163 long pte_index, unsigned long pteh, unsigned long ptel,
164 pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
166 unsigned long i, pa, gpa, gfn, psize;
167 unsigned long slot_fn, hva;
168 unsigned long *hpte;
169 struct revmap_entry *rev;
170 unsigned long g_ptel;
171 struct kvm_memory_slot *memslot;
172 unsigned long *physp, pte_size;
173 unsigned long is_io;
174 unsigned long *rmap;
175 pte_t pte;
176 unsigned int writing;
177 unsigned long mmu_seq;
178 unsigned long rcbits;
180 psize = hpte_page_size(pteh, ptel);
181 if (!psize)
182 return H_PARAMETER;
183 writing = hpte_is_writable(ptel);
184 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
185 ptel &= ~HPTE_GR_RESERVED;
186 g_ptel = ptel;
188 /* used later to detect if we might have been invalidated */
189 mmu_seq = kvm->mmu_notifier_seq;
190 smp_rmb();
192 /* Find the memslot (if any) for this address */
193 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
194 gfn = gpa >> PAGE_SHIFT;
195 memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
196 pa = 0;
197 is_io = ~0ul;
198 rmap = NULL;
199 if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
200 /* PPC970 can't do emulated MMIO */
201 if (!cpu_has_feature(CPU_FTR_ARCH_206))
202 return H_PARAMETER;
203 /* Emulated MMIO - mark this with key=31 */
204 pteh |= HPTE_V_ABSENT;
205 ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
206 goto do_insert;
209 /* Check if the requested page fits entirely in the memslot. */
210 if (!slot_is_aligned(memslot, psize))
211 return H_PARAMETER;
212 slot_fn = gfn - memslot->base_gfn;
213 rmap = &memslot->arch.rmap[slot_fn];
215 if (!kvm->arch.using_mmu_notifiers) {
216 physp = memslot->arch.slot_phys;
217 if (!physp)
218 return H_PARAMETER;
219 physp += slot_fn;
220 if (realmode)
221 physp = real_vmalloc_addr(physp);
222 pa = *physp;
223 if (!pa)
224 return H_TOO_HARD;
225 is_io = pa & (HPTE_R_I | HPTE_R_W);
226 pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
227 pa &= PAGE_MASK;
228 } else {
229 /* Translate to host virtual address */
230 hva = __gfn_to_hva_memslot(memslot, gfn);
232 /* Look up the Linux PTE for the backing page */
233 pte_size = psize;
234 pte = lookup_linux_pte(pgdir, hva, writing, &pte_size);
235 if (pte_present(pte)) {
236 if (writing && !pte_write(pte))
237 /* make the actual HPTE be read-only */
238 ptel = hpte_make_readonly(ptel);
239 is_io = hpte_cache_bits(pte_val(pte));
240 pa = pte_pfn(pte) << PAGE_SHIFT;
244 if (pte_size < psize)
245 return H_PARAMETER;
246 if (pa && pte_size > psize)
247 pa |= gpa & (pte_size - 1);
249 ptel &= ~(HPTE_R_PP0 - psize);
250 ptel |= pa;
252 if (pa)
253 pteh |= HPTE_V_VALID;
254 else
255 pteh |= HPTE_V_ABSENT;
257 /* Check WIMG */
258 if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
259 if (is_io)
260 return H_PARAMETER;
262 * Allow guest to map emulated device memory as
263 * uncacheable, but actually make it cacheable.
265 ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
266 ptel |= HPTE_R_M;
269 /* Find and lock the HPTEG slot to use */
270 do_insert:
271 if (pte_index >= kvm->arch.hpt_npte)
272 return H_PARAMETER;
273 if (likely((flags & H_EXACT) == 0)) {
274 pte_index &= ~7UL;
275 hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
276 for (i = 0; i < 8; ++i) {
277 if ((*hpte & HPTE_V_VALID) == 0 &&
278 try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
279 HPTE_V_ABSENT))
280 break;
281 hpte += 2;
283 if (i == 8) {
285 * Since try_lock_hpte doesn't retry (not even stdcx.
286 * failures), it could be that there is a free slot
287 * but we transiently failed to lock it. Try again,
288 * actually locking each slot and checking it.
290 hpte -= 16;
291 for (i = 0; i < 8; ++i) {
292 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
293 cpu_relax();
294 if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
295 break;
296 *hpte &= ~HPTE_V_HVLOCK;
297 hpte += 2;
299 if (i == 8)
300 return H_PTEG_FULL;
302 pte_index += i;
303 } else {
304 hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
305 if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
306 HPTE_V_ABSENT)) {
307 /* Lock the slot and check again */
308 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
309 cpu_relax();
310 if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
311 *hpte &= ~HPTE_V_HVLOCK;
312 return H_PTEG_FULL;
317 /* Save away the guest's idea of the second HPTE dword */
318 rev = &kvm->arch.revmap[pte_index];
319 if (realmode)
320 rev = real_vmalloc_addr(rev);
321 if (rev) {
322 rev->guest_rpte = g_ptel;
323 note_hpte_modification(kvm, rev);
326 /* Link HPTE into reverse-map chain */
327 if (pteh & HPTE_V_VALID) {
328 if (realmode)
329 rmap = real_vmalloc_addr(rmap);
330 lock_rmap(rmap);
331 /* Check for pending invalidations under the rmap chain lock */
332 if (kvm->arch.using_mmu_notifiers &&
333 mmu_notifier_retry(kvm, mmu_seq)) {
334 /* inval in progress, write a non-present HPTE */
335 pteh |= HPTE_V_ABSENT;
336 pteh &= ~HPTE_V_VALID;
337 unlock_rmap(rmap);
338 } else {
339 kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
340 realmode);
341 /* Only set R/C in real HPTE if already set in *rmap */
342 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
343 ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
347 hpte[1] = ptel;
349 /* Write the first HPTE dword, unlocking the HPTE and making it valid */
350 eieio();
351 hpte[0] = pteh;
352 asm volatile("ptesync" : : : "memory");
354 *pte_idx_ret = pte_index;
355 return H_SUCCESS;
357 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
359 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
360 long pte_index, unsigned long pteh, unsigned long ptel)
362 return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
363 vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
366 #ifdef __BIG_ENDIAN__
367 #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
368 #else
369 #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
370 #endif
372 static inline int try_lock_tlbie(unsigned int *lock)
374 unsigned int tmp, old;
375 unsigned int token = LOCK_TOKEN;
377 asm volatile("1:lwarx %1,0,%2\n"
378 " cmpwi cr0,%1,0\n"
379 " bne 2f\n"
380 " stwcx. %3,0,%2\n"
381 " bne- 1b\n"
382 " isync\n"
383 "2:"
384 : "=&r" (tmp), "=&r" (old)
385 : "r" (lock), "r" (token)
386 : "cc", "memory");
387 return old == 0;
391 * tlbie/tlbiel is a bit different on the PPC970 compared to later
392 * processors such as POWER7; the large page bit is in the instruction
393 * not RB, and the top 16 bits and the bottom 12 bits of the VA
394 * in RB must be 0.
396 static void do_tlbies_970(struct kvm *kvm, unsigned long *rbvalues,
397 long npages, int global, bool need_sync)
399 long i;
401 if (global) {
402 while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
403 cpu_relax();
404 if (need_sync)
405 asm volatile("ptesync" : : : "memory");
406 for (i = 0; i < npages; ++i) {
407 unsigned long rb = rbvalues[i];
409 if (rb & 1) /* large page */
410 asm volatile("tlbie %0,1" : :
411 "r" (rb & 0x0000fffffffff000ul));
412 else
413 asm volatile("tlbie %0,0" : :
414 "r" (rb & 0x0000fffffffff000ul));
416 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
417 kvm->arch.tlbie_lock = 0;
418 } else {
419 if (need_sync)
420 asm volatile("ptesync" : : : "memory");
421 for (i = 0; i < npages; ++i) {
422 unsigned long rb = rbvalues[i];
424 if (rb & 1) /* large page */
425 asm volatile("tlbiel %0,1" : :
426 "r" (rb & 0x0000fffffffff000ul));
427 else
428 asm volatile("tlbiel %0,0" : :
429 "r" (rb & 0x0000fffffffff000ul));
431 asm volatile("ptesync" : : : "memory");
435 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
436 long npages, int global, bool need_sync)
438 long i;
440 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
441 /* PPC970 tlbie instruction is a bit different */
442 do_tlbies_970(kvm, rbvalues, npages, global, need_sync);
443 return;
445 if (global) {
446 while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
447 cpu_relax();
448 if (need_sync)
449 asm volatile("ptesync" : : : "memory");
450 for (i = 0; i < npages; ++i)
451 asm volatile(PPC_TLBIE(%1,%0) : :
452 "r" (rbvalues[i]), "r" (kvm->arch.lpid));
453 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
454 kvm->arch.tlbie_lock = 0;
455 } else {
456 if (need_sync)
457 asm volatile("ptesync" : : : "memory");
458 for (i = 0; i < npages; ++i)
459 asm volatile("tlbiel %0" : : "r" (rbvalues[i]));
460 asm volatile("ptesync" : : : "memory");
464 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
465 unsigned long pte_index, unsigned long avpn,
466 unsigned long *hpret)
468 unsigned long *hpte;
469 unsigned long v, r, rb;
470 struct revmap_entry *rev;
472 if (pte_index >= kvm->arch.hpt_npte)
473 return H_PARAMETER;
474 hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
475 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
476 cpu_relax();
477 if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
478 ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
479 ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
480 hpte[0] &= ~HPTE_V_HVLOCK;
481 return H_NOT_FOUND;
484 rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
485 v = hpte[0] & ~HPTE_V_HVLOCK;
486 if (v & HPTE_V_VALID) {
487 hpte[0] &= ~HPTE_V_VALID;
488 rb = compute_tlbie_rb(v, hpte[1], pte_index);
489 do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
490 /* Read PTE low word after tlbie to get final R/C values */
491 remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
493 r = rev->guest_rpte & ~HPTE_GR_RESERVED;
494 note_hpte_modification(kvm, rev);
495 unlock_hpte(hpte, 0);
497 hpret[0] = v;
498 hpret[1] = r;
499 return H_SUCCESS;
501 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
503 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
504 unsigned long pte_index, unsigned long avpn)
506 return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
507 &vcpu->arch.gpr[4]);
510 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
512 struct kvm *kvm = vcpu->kvm;
513 unsigned long *args = &vcpu->arch.gpr[4];
514 unsigned long *hp, *hptes[4], tlbrb[4];
515 long int i, j, k, n, found, indexes[4];
516 unsigned long flags, req, pte_index, rcbits;
517 int global;
518 long int ret = H_SUCCESS;
519 struct revmap_entry *rev, *revs[4];
521 global = global_invalidates(kvm, 0);
522 for (i = 0; i < 4 && ret == H_SUCCESS; ) {
523 n = 0;
524 for (; i < 4; ++i) {
525 j = i * 2;
526 pte_index = args[j];
527 flags = pte_index >> 56;
528 pte_index &= ((1ul << 56) - 1);
529 req = flags >> 6;
530 flags &= 3;
531 if (req == 3) { /* no more requests */
532 i = 4;
533 break;
535 if (req != 1 || flags == 3 ||
536 pte_index >= kvm->arch.hpt_npte) {
537 /* parameter error */
538 args[j] = ((0xa0 | flags) << 56) + pte_index;
539 ret = H_PARAMETER;
540 break;
542 hp = (unsigned long *)
543 (kvm->arch.hpt_virt + (pte_index << 4));
544 /* to avoid deadlock, don't spin except for first */
545 if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
546 if (n)
547 break;
548 while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
549 cpu_relax();
551 found = 0;
552 if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
553 switch (flags & 3) {
554 case 0: /* absolute */
555 found = 1;
556 break;
557 case 1: /* andcond */
558 if (!(hp[0] & args[j + 1]))
559 found = 1;
560 break;
561 case 2: /* AVPN */
562 if ((hp[0] & ~0x7fUL) == args[j + 1])
563 found = 1;
564 break;
567 if (!found) {
568 hp[0] &= ~HPTE_V_HVLOCK;
569 args[j] = ((0x90 | flags) << 56) + pte_index;
570 continue;
573 args[j] = ((0x80 | flags) << 56) + pte_index;
574 rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
575 note_hpte_modification(kvm, rev);
577 if (!(hp[0] & HPTE_V_VALID)) {
578 /* insert R and C bits from PTE */
579 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
580 args[j] |= rcbits << (56 - 5);
581 hp[0] = 0;
582 continue;
585 hp[0] &= ~HPTE_V_VALID; /* leave it locked */
586 tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
587 indexes[n] = j;
588 hptes[n] = hp;
589 revs[n] = rev;
590 ++n;
593 if (!n)
594 break;
596 /* Now that we've collected a batch, do the tlbies */
597 do_tlbies(kvm, tlbrb, n, global, true);
599 /* Read PTE low words after tlbie to get final R/C values */
600 for (k = 0; k < n; ++k) {
601 j = indexes[k];
602 pte_index = args[j] & ((1ul << 56) - 1);
603 hp = hptes[k];
604 rev = revs[k];
605 remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
606 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
607 args[j] |= rcbits << (56 - 5);
608 hp[0] = 0;
612 return ret;
615 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
616 unsigned long pte_index, unsigned long avpn,
617 unsigned long va)
619 struct kvm *kvm = vcpu->kvm;
620 unsigned long *hpte;
621 struct revmap_entry *rev;
622 unsigned long v, r, rb, mask, bits;
624 if (pte_index >= kvm->arch.hpt_npte)
625 return H_PARAMETER;
627 hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
628 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
629 cpu_relax();
630 if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
631 ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
632 hpte[0] &= ~HPTE_V_HVLOCK;
633 return H_NOT_FOUND;
636 v = hpte[0];
637 bits = (flags << 55) & HPTE_R_PP0;
638 bits |= (flags << 48) & HPTE_R_KEY_HI;
639 bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
641 /* Update guest view of 2nd HPTE dword */
642 mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
643 HPTE_R_KEY_HI | HPTE_R_KEY_LO;
644 rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
645 if (rev) {
646 r = (rev->guest_rpte & ~mask) | bits;
647 rev->guest_rpte = r;
648 note_hpte_modification(kvm, rev);
650 r = (hpte[1] & ~mask) | bits;
652 /* Update HPTE */
653 if (v & HPTE_V_VALID) {
654 rb = compute_tlbie_rb(v, r, pte_index);
655 hpte[0] = v & ~HPTE_V_VALID;
656 do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
658 * If the host has this page as readonly but the guest
659 * wants to make it read/write, reduce the permissions.
660 * Checking the host permissions involves finding the
661 * memslot and then the Linux PTE for the page.
663 if (hpte_is_writable(r) && kvm->arch.using_mmu_notifiers) {
664 unsigned long psize, gfn, hva;
665 struct kvm_memory_slot *memslot;
666 pgd_t *pgdir = vcpu->arch.pgdir;
667 pte_t pte;
669 psize = hpte_page_size(v, r);
670 gfn = ((r & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
671 memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
672 if (memslot) {
673 hva = __gfn_to_hva_memslot(memslot, gfn);
674 pte = lookup_linux_pte(pgdir, hva, 1, &psize);
675 if (pte_present(pte) && !pte_write(pte))
676 r = hpte_make_readonly(r);
680 hpte[1] = r;
681 eieio();
682 hpte[0] = v & ~HPTE_V_HVLOCK;
683 asm volatile("ptesync" : : : "memory");
684 return H_SUCCESS;
687 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
688 unsigned long pte_index)
690 struct kvm *kvm = vcpu->kvm;
691 unsigned long *hpte, v, r;
692 int i, n = 1;
693 struct revmap_entry *rev = NULL;
695 if (pte_index >= kvm->arch.hpt_npte)
696 return H_PARAMETER;
697 if (flags & H_READ_4) {
698 pte_index &= ~3;
699 n = 4;
701 rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
702 for (i = 0; i < n; ++i, ++pte_index) {
703 hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
704 v = hpte[0] & ~HPTE_V_HVLOCK;
705 r = hpte[1];
706 if (v & HPTE_V_ABSENT) {
707 v &= ~HPTE_V_ABSENT;
708 v |= HPTE_V_VALID;
710 if (v & HPTE_V_VALID) {
711 r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
712 r &= ~HPTE_GR_RESERVED;
714 vcpu->arch.gpr[4 + i * 2] = v;
715 vcpu->arch.gpr[5 + i * 2] = r;
717 return H_SUCCESS;
720 void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
721 unsigned long pte_index)
723 unsigned long rb;
725 hptep[0] &= ~HPTE_V_VALID;
726 rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
727 do_tlbies(kvm, &rb, 1, 1, true);
729 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
731 void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
732 unsigned long pte_index)
734 unsigned long rb;
735 unsigned char rbyte;
737 rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
738 rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
739 /* modify only the second-last byte, which contains the ref bit */
740 *((char *)hptep + 14) = rbyte;
741 do_tlbies(kvm, &rb, 1, 1, false);
743 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
745 static int slb_base_page_shift[4] = {
746 24, /* 16M */
747 16, /* 64k */
748 34, /* 16G */
749 20, /* 1M, unsupported */
752 /* When called from virtmode, this func should be protected by
753 * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
754 * can trigger deadlock issue.
756 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
757 unsigned long valid)
759 unsigned int i;
760 unsigned int pshift;
761 unsigned long somask;
762 unsigned long vsid, hash;
763 unsigned long avpn;
764 unsigned long *hpte;
765 unsigned long mask, val;
766 unsigned long v, r;
768 /* Get page shift, work out hash and AVPN etc. */
769 mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
770 val = 0;
771 pshift = 12;
772 if (slb_v & SLB_VSID_L) {
773 mask |= HPTE_V_LARGE;
774 val |= HPTE_V_LARGE;
775 pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
777 if (slb_v & SLB_VSID_B_1T) {
778 somask = (1UL << 40) - 1;
779 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
780 vsid ^= vsid << 25;
781 } else {
782 somask = (1UL << 28) - 1;
783 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
785 hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
786 avpn = slb_v & ~(somask >> 16); /* also includes B */
787 avpn |= (eaddr & somask) >> 16;
789 if (pshift >= 24)
790 avpn &= ~((1UL << (pshift - 16)) - 1);
791 else
792 avpn &= ~0x7fUL;
793 val |= avpn;
795 for (;;) {
796 hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
798 for (i = 0; i < 16; i += 2) {
799 /* Read the PTE racily */
800 v = hpte[i] & ~HPTE_V_HVLOCK;
802 /* Check valid/absent, hash, segment size and AVPN */
803 if (!(v & valid) || (v & mask) != val)
804 continue;
806 /* Lock the PTE and read it under the lock */
807 while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
808 cpu_relax();
809 v = hpte[i] & ~HPTE_V_HVLOCK;
810 r = hpte[i+1];
813 * Check the HPTE again, including large page size
814 * Since we don't currently allow any MPSS (mixed
815 * page-size segment) page sizes, it is sufficient
816 * to check against the actual page size.
818 if ((v & valid) && (v & mask) == val &&
819 hpte_page_size(v, r) == (1ul << pshift))
820 /* Return with the HPTE still locked */
821 return (hash << 3) + (i >> 1);
823 /* Unlock and move on */
824 hpte[i] = v;
827 if (val & HPTE_V_SECONDARY)
828 break;
829 val |= HPTE_V_SECONDARY;
830 hash = hash ^ kvm->arch.hpt_mask;
832 return -1;
834 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
837 * Called in real mode to check whether an HPTE not found fault
838 * is due to accessing a paged-out page or an emulated MMIO page,
839 * or if a protection fault is due to accessing a page that the
840 * guest wanted read/write access to but which we made read-only.
841 * Returns a possibly modified status (DSISR) value if not
842 * (i.e. pass the interrupt to the guest),
843 * -1 to pass the fault up to host kernel mode code, -2 to do that
844 * and also load the instruction word (for MMIO emulation),
845 * or 0 if we should make the guest retry the access.
847 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
848 unsigned long slb_v, unsigned int status, bool data)
850 struct kvm *kvm = vcpu->kvm;
851 long int index;
852 unsigned long v, r, gr;
853 unsigned long *hpte;
854 unsigned long valid;
855 struct revmap_entry *rev;
856 unsigned long pp, key;
858 /* For protection fault, expect to find a valid HPTE */
859 valid = HPTE_V_VALID;
860 if (status & DSISR_NOHPTE)
861 valid |= HPTE_V_ABSENT;
863 index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
864 if (index < 0) {
865 if (status & DSISR_NOHPTE)
866 return status; /* there really was no HPTE */
867 return 0; /* for prot fault, HPTE disappeared */
869 hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
870 v = hpte[0] & ~HPTE_V_HVLOCK;
871 r = hpte[1];
872 rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
873 gr = rev->guest_rpte;
875 unlock_hpte(hpte, v);
877 /* For not found, if the HPTE is valid by now, retry the instruction */
878 if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
879 return 0;
881 /* Check access permissions to the page */
882 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
883 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
884 status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
885 if (!data) {
886 if (gr & (HPTE_R_N | HPTE_R_G))
887 return status | SRR1_ISI_N_OR_G;
888 if (!hpte_read_permission(pp, slb_v & key))
889 return status | SRR1_ISI_PROT;
890 } else if (status & DSISR_ISSTORE) {
891 /* check write permission */
892 if (!hpte_write_permission(pp, slb_v & key))
893 return status | DSISR_PROTFAULT;
894 } else {
895 if (!hpte_read_permission(pp, slb_v & key))
896 return status | DSISR_PROTFAULT;
899 /* Check storage key, if applicable */
900 if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
901 unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
902 if (status & DSISR_ISSTORE)
903 perm >>= 1;
904 if (perm & 1)
905 return status | DSISR_KEYFAULT;
908 /* Save HPTE info for virtual-mode handler */
909 vcpu->arch.pgfault_addr = addr;
910 vcpu->arch.pgfault_index = index;
911 vcpu->arch.pgfault_hpte[0] = v;
912 vcpu->arch.pgfault_hpte[1] = r;
914 /* Check the storage key to see if it is possibly emulated MMIO */
915 if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
916 (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
917 (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
918 return -2; /* MMIO emulation - load instr word */
920 return -1; /* send fault up to host kernel mode */