2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
41 #include <asm/mmu_context.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
47 #include <asm/tlbflush.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
62 #define DBG(fmt...) udbg_printf(fmt)
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
70 #define DBG_LOW(fmt...)
78 * Note: pte --> Linux PTE
79 * HPTE --> PowerPC Hashed Page Table Entry
82 * htab_initialize is called with the MMU off (of course), but
83 * the kernel has been copied down to zero so it can directly
84 * reference global data. At this point it is very difficult
85 * to print debug info.
90 extern unsigned long dart_tablebase
;
91 #endif /* CONFIG_U3_DART */
93 static unsigned long _SDR1
;
94 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
96 struct hash_pte
*htab_address
;
97 unsigned long htab_size_bytes
;
98 unsigned long htab_hash_mask
;
99 EXPORT_SYMBOL_GPL(htab_hash_mask
);
100 int mmu_linear_psize
= MMU_PAGE_4K
;
101 int mmu_virtual_psize
= MMU_PAGE_4K
;
102 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
103 #ifdef CONFIG_SPARSEMEM_VMEMMAP
104 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
106 int mmu_io_psize
= MMU_PAGE_4K
;
107 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
108 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
109 u16 mmu_slb_size
= 64;
110 EXPORT_SYMBOL_GPL(mmu_slb_size
);
111 #ifdef CONFIG_PPC_64K_PAGES
112 int mmu_ci_restrictions
;
114 #ifdef CONFIG_DEBUG_PAGEALLOC
115 static u8
*linear_map_hash_slots
;
116 static unsigned long linear_map_hash_count
;
117 static DEFINE_SPINLOCK(linear_map_hash_lock
);
118 #endif /* CONFIG_DEBUG_PAGEALLOC */
120 /* There are definitions of page sizes arrays to be used when none
121 * is provided by the firmware.
124 /* Pre-POWER4 CPUs (4k pages only)
126 static struct mmu_psize_def mmu_psize_defaults_old
[] = {
130 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
136 /* POWER4, GPUL, POWER5
138 * Support for 16Mb large pages
140 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
144 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
151 .penc
= {[0 ... MMU_PAGE_16M
- 1] = -1, [MMU_PAGE_16M
] = 0,
152 [MMU_PAGE_16M
+ 1 ... MMU_PAGE_COUNT
- 1] = -1 },
158 static unsigned long htab_convert_pte_flags(unsigned long pteflags
)
160 unsigned long rflags
= pteflags
& 0x1fa;
162 /* _PAGE_EXEC -> NOEXEC */
163 if ((pteflags
& _PAGE_EXEC
) == 0)
166 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
167 * need to add in 0x1 if it's a read-only user page
169 if ((pteflags
& _PAGE_USER
) && !((pteflags
& _PAGE_RW
) &&
170 (pteflags
& _PAGE_DIRTY
)))
174 return rflags
| HPTE_R_C
;
177 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
178 unsigned long pstart
, unsigned long prot
,
179 int psize
, int ssize
)
181 unsigned long vaddr
, paddr
;
182 unsigned int step
, shift
;
185 shift
= mmu_psize_defs
[psize
].shift
;
188 prot
= htab_convert_pte_flags(prot
);
190 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
191 vstart
, vend
, pstart
, prot
, psize
, ssize
);
193 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
194 vaddr
+= step
, paddr
+= step
) {
195 unsigned long hash
, hpteg
;
196 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
197 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, ssize
);
198 unsigned long tprot
= prot
;
201 * If we hit a bad address return error.
205 /* Make kernel text executable */
206 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
209 hash
= hpt_hash(vpn
, shift
, ssize
);
210 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
212 BUG_ON(!ppc_md
.hpte_insert
);
213 ret
= ppc_md
.hpte_insert(hpteg
, vpn
, paddr
, tprot
,
214 HPTE_V_BOLTED
, psize
, psize
, ssize
);
218 #ifdef CONFIG_DEBUG_PAGEALLOC
219 if ((paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
220 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
221 #endif /* CONFIG_DEBUG_PAGEALLOC */
223 return ret
< 0 ? ret
: 0;
226 #ifdef CONFIG_MEMORY_HOTPLUG
227 static int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
228 int psize
, int ssize
)
231 unsigned int step
, shift
;
233 shift
= mmu_psize_defs
[psize
].shift
;
236 if (!ppc_md
.hpte_removebolted
) {
237 printk(KERN_WARNING
"Platform doesn't implement "
238 "hpte_removebolted\n");
242 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
)
243 ppc_md
.hpte_removebolted(vaddr
, psize
, ssize
);
247 #endif /* CONFIG_MEMORY_HOTPLUG */
249 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
250 const char *uname
, int depth
,
253 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
255 unsigned long size
= 0;
257 /* We are scanning "cpu" nodes only */
258 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
261 prop
= (u32
*)of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes",
265 for (; size
>= 4; size
-= 4, ++prop
) {
267 DBG("1T segment support detected\n");
268 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
272 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
276 static void __init
htab_init_seg_sizes(void)
278 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
281 static int __init
get_idx_from_shift(unsigned int shift
)
305 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
306 const char *uname
, int depth
,
309 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
311 unsigned long size
= 0;
313 /* We are scanning "cpu" nodes only */
314 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
317 prop
= (u32
*)of_get_flat_dt_prop(node
,
318 "ibm,segment-page-sizes", &size
);
320 pr_info("Page sizes from device-tree:\n");
322 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
324 unsigned int base_shift
= prop
[0];
325 unsigned int slbenc
= prop
[1];
326 unsigned int lpnum
= prop
[2];
327 struct mmu_psize_def
*def
;
330 size
-= 3; prop
+= 3;
331 base_idx
= get_idx_from_shift(base_shift
);
334 * skip the pte encoding also
336 prop
+= lpnum
* 2; size
-= lpnum
* 2;
339 def
= &mmu_psize_defs
[base_idx
];
340 if (base_idx
== MMU_PAGE_16M
)
341 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
343 def
->shift
= base_shift
;
344 if (base_shift
<= 23)
347 def
->avpnm
= (1 << (base_shift
- 23)) - 1;
350 * We don't know for sure what's up with tlbiel, so
351 * for now we only set it for 4K and 64K pages
353 if (base_idx
== MMU_PAGE_4K
|| base_idx
== MMU_PAGE_64K
)
358 while (size
> 0 && lpnum
) {
359 unsigned int shift
= prop
[0];
362 prop
+= 2; size
-= 2;
365 idx
= get_idx_from_shift(shift
);
370 pr_err("Invalid penc for base_shift=%d "
371 "shift=%d\n", base_shift
, shift
);
373 def
->penc
[idx
] = penc
;
374 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
375 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
376 base_shift
, shift
, def
->sllp
,
377 def
->avpnm
, def
->tlbiel
, def
->penc
[idx
]);
385 #ifdef CONFIG_HUGETLB_PAGE
386 /* Scan for 16G memory blocks that have been set aside for huge pages
387 * and reserve those blocks for 16G huge pages.
389 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
390 const char *uname
, int depth
,
392 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
393 unsigned long *addr_prop
;
394 u32
*page_count_prop
;
395 unsigned int expected_pages
;
396 long unsigned int phys_addr
;
397 long unsigned int block_size
;
399 /* We are scanning "memory" nodes only */
400 if (type
== NULL
|| strcmp(type
, "memory") != 0)
403 /* This property is the log base 2 of the number of virtual pages that
404 * will represent this memory block. */
405 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
406 if (page_count_prop
== NULL
)
408 expected_pages
= (1 << page_count_prop
[0]);
409 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
410 if (addr_prop
== NULL
)
412 phys_addr
= addr_prop
[0];
413 block_size
= addr_prop
[1];
414 if (block_size
!= (16 * GB
))
416 printk(KERN_INFO
"Huge page(16GB) memory: "
417 "addr = 0x%lX size = 0x%lX pages = %d\n",
418 phys_addr
, block_size
, expected_pages
);
419 if (phys_addr
+ (16 * GB
) <= memblock_end_of_DRAM()) {
420 memblock_reserve(phys_addr
, block_size
* expected_pages
);
421 add_gpage(phys_addr
, block_size
, expected_pages
);
425 #endif /* CONFIG_HUGETLB_PAGE */
427 static void mmu_psize_set_default_penc(void)
430 for (bpsize
= 0; bpsize
< MMU_PAGE_COUNT
; bpsize
++)
431 for (apsize
= 0; apsize
< MMU_PAGE_COUNT
; apsize
++)
432 mmu_psize_defs
[bpsize
].penc
[apsize
] = -1;
435 static void __init
htab_init_page_sizes(void)
439 /* se the invalid penc to -1 */
440 mmu_psize_set_default_penc();
442 /* Default to 4K pages only */
443 memcpy(mmu_psize_defs
, mmu_psize_defaults_old
,
444 sizeof(mmu_psize_defaults_old
));
447 * Try to find the available page sizes in the device-tree
449 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
450 if (rc
!= 0) /* Found */
454 * Not in the device-tree, let's fallback on known size
455 * list for 16M capable GP & GR
457 if (mmu_has_feature(MMU_FTR_16M_PAGE
))
458 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
459 sizeof(mmu_psize_defaults_gp
));
461 #ifndef CONFIG_DEBUG_PAGEALLOC
463 * Pick a size for the linear mapping. Currently, we only support
464 * 16M, 1M and 4K which is the default
466 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
467 mmu_linear_psize
= MMU_PAGE_16M
;
468 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
469 mmu_linear_psize
= MMU_PAGE_1M
;
470 #endif /* CONFIG_DEBUG_PAGEALLOC */
472 #ifdef CONFIG_PPC_64K_PAGES
474 * Pick a size for the ordinary pages. Default is 4K, we support
475 * 64K for user mappings and vmalloc if supported by the processor.
476 * We only use 64k for ioremap if the processor
477 * (and firmware) support cache-inhibited large pages.
478 * If not, we use 4k and set mmu_ci_restrictions so that
479 * hash_page knows to switch processes that use cache-inhibited
480 * mappings to 4k pages.
482 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
483 mmu_virtual_psize
= MMU_PAGE_64K
;
484 mmu_vmalloc_psize
= MMU_PAGE_64K
;
485 if (mmu_linear_psize
== MMU_PAGE_4K
)
486 mmu_linear_psize
= MMU_PAGE_64K
;
487 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
489 * Don't use 64k pages for ioremap on pSeries, since
490 * that would stop us accessing the HEA ethernet.
492 if (!machine_is(pseries
))
493 mmu_io_psize
= MMU_PAGE_64K
;
495 mmu_ci_restrictions
= 1;
497 #endif /* CONFIG_PPC_64K_PAGES */
499 #ifdef CONFIG_SPARSEMEM_VMEMMAP
500 /* We try to use 16M pages for vmemmap if that is supported
501 * and we have at least 1G of RAM at boot
503 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
504 memblock_phys_mem_size() >= 0x40000000)
505 mmu_vmemmap_psize
= MMU_PAGE_16M
;
506 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
507 mmu_vmemmap_psize
= MMU_PAGE_64K
;
509 mmu_vmemmap_psize
= MMU_PAGE_4K
;
510 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
512 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
513 "virtual = %d, io = %d"
514 #ifdef CONFIG_SPARSEMEM_VMEMMAP
518 mmu_psize_defs
[mmu_linear_psize
].shift
,
519 mmu_psize_defs
[mmu_virtual_psize
].shift
,
520 mmu_psize_defs
[mmu_io_psize
].shift
521 #ifdef CONFIG_SPARSEMEM_VMEMMAP
522 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
526 #ifdef CONFIG_HUGETLB_PAGE
527 /* Reserve 16G huge page memory sections for huge pages */
528 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
529 #endif /* CONFIG_HUGETLB_PAGE */
532 static int __init
htab_dt_scan_pftsize(unsigned long node
,
533 const char *uname
, int depth
,
536 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
539 /* We are scanning "cpu" nodes only */
540 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
543 prop
= (u32
*)of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
545 /* pft_size[0] is the NUMA CEC cookie */
546 ppc64_pft_size
= prop
[1];
552 static unsigned long __init
htab_get_table_size(void)
554 unsigned long mem_size
, rnd_mem_size
, pteg_count
, psize
;
556 /* If hash size isn't already provided by the platform, we try to
557 * retrieve it from the device-tree. If it's not there neither, we
558 * calculate it now based on the total RAM size
560 if (ppc64_pft_size
== 0)
561 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
563 return 1UL << ppc64_pft_size
;
565 /* round mem_size up to next power of 2 */
566 mem_size
= memblock_phys_mem_size();
567 rnd_mem_size
= 1UL << __ilog2(mem_size
);
568 if (rnd_mem_size
< mem_size
)
572 psize
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
573 pteg_count
= max(rnd_mem_size
>> (psize
+ 1), 1UL << 11);
575 return pteg_count
<< 7;
578 #ifdef CONFIG_MEMORY_HOTPLUG
579 int create_section_mapping(unsigned long start
, unsigned long end
)
581 return htab_bolt_mapping(start
, end
, __pa(start
),
582 pgprot_val(PAGE_KERNEL
), mmu_linear_psize
,
586 int remove_section_mapping(unsigned long start
, unsigned long end
)
588 return htab_remove_mapping(start
, end
, mmu_linear_psize
,
591 #endif /* CONFIG_MEMORY_HOTPLUG */
593 #define FUNCTION_TEXT(A) ((*(unsigned long *)(A)))
595 static void __init
htab_finish_init(void)
597 extern unsigned int *htab_call_hpte_insert1
;
598 extern unsigned int *htab_call_hpte_insert2
;
599 extern unsigned int *htab_call_hpte_remove
;
600 extern unsigned int *htab_call_hpte_updatepp
;
602 #ifdef CONFIG_PPC_HAS_HASH_64K
603 extern unsigned int *ht64_call_hpte_insert1
;
604 extern unsigned int *ht64_call_hpte_insert2
;
605 extern unsigned int *ht64_call_hpte_remove
;
606 extern unsigned int *ht64_call_hpte_updatepp
;
608 patch_branch(ht64_call_hpte_insert1
,
609 FUNCTION_TEXT(ppc_md
.hpte_insert
),
611 patch_branch(ht64_call_hpte_insert2
,
612 FUNCTION_TEXT(ppc_md
.hpte_insert
),
614 patch_branch(ht64_call_hpte_remove
,
615 FUNCTION_TEXT(ppc_md
.hpte_remove
),
617 patch_branch(ht64_call_hpte_updatepp
,
618 FUNCTION_TEXT(ppc_md
.hpte_updatepp
),
621 #endif /* CONFIG_PPC_HAS_HASH_64K */
623 patch_branch(htab_call_hpte_insert1
,
624 FUNCTION_TEXT(ppc_md
.hpte_insert
),
626 patch_branch(htab_call_hpte_insert2
,
627 FUNCTION_TEXT(ppc_md
.hpte_insert
),
629 patch_branch(htab_call_hpte_remove
,
630 FUNCTION_TEXT(ppc_md
.hpte_remove
),
632 patch_branch(htab_call_hpte_updatepp
,
633 FUNCTION_TEXT(ppc_md
.hpte_updatepp
),
637 static void __init
htab_initialize(void)
640 unsigned long pteg_count
;
642 unsigned long base
= 0, size
= 0, limit
;
643 struct memblock_region
*reg
;
645 DBG(" -> htab_initialize()\n");
647 /* Initialize segment sizes */
648 htab_init_seg_sizes();
650 /* Initialize page sizes */
651 htab_init_page_sizes();
653 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
654 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
655 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
656 printk(KERN_INFO
"Using 1TB segments\n");
660 * Calculate the required size of the htab. We want the number of
661 * PTEGs to equal one half the number of real pages.
663 htab_size_bytes
= htab_get_table_size();
664 pteg_count
= htab_size_bytes
>> 7;
666 htab_hash_mask
= pteg_count
- 1;
668 if (firmware_has_feature(FW_FEATURE_LPAR
)) {
669 /* Using a hypervisor which owns the htab */
672 #ifdef CONFIG_FA_DUMP
674 * If firmware assisted dump is active firmware preserves
675 * the contents of htab along with entire partition memory.
676 * Clear the htab if firmware assisted dump is active so
677 * that we dont end up using old mappings.
679 if (is_fadump_active() && ppc_md
.hpte_clear_all
)
680 ppc_md
.hpte_clear_all();
683 /* Find storage for the HPT. Must be contiguous in
684 * the absolute address space. On cell we want it to be
685 * in the first 2 Gig so we can use it for IOMMU hacks.
687 if (machine_is(cell
))
690 limit
= MEMBLOCK_ALLOC_ANYWHERE
;
692 table
= memblock_alloc_base(htab_size_bytes
, htab_size_bytes
, limit
);
694 DBG("Hash table allocated at %lx, size: %lx\n", table
,
697 htab_address
= __va(table
);
699 /* htab absolute addr + encoded htabsize */
700 _SDR1
= table
+ __ilog2(pteg_count
) - 11;
702 /* Initialize the HPT with no entries */
703 memset((void *)table
, 0, htab_size_bytes
);
706 mtspr(SPRN_SDR1
, _SDR1
);
709 prot
= pgprot_val(PAGE_KERNEL
);
711 #ifdef CONFIG_DEBUG_PAGEALLOC
712 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
713 linear_map_hash_slots
= __va(memblock_alloc_base(linear_map_hash_count
,
715 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
716 #endif /* CONFIG_DEBUG_PAGEALLOC */
718 /* On U3 based machines, we need to reserve the DART area and
719 * _NOT_ map it to avoid cache paradoxes as it's remapped non
723 /* create bolted the linear mapping in the hash table */
724 for_each_memblock(memory
, reg
) {
725 base
= (unsigned long)__va(reg
->base
);
728 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
731 #ifdef CONFIG_U3_DART
732 /* Do not map the DART space. Fortunately, it will be aligned
733 * in such a way that it will not cross two memblock regions and
734 * will fit within a single 16Mb page.
735 * The DART space is assumed to be a full 16Mb region even if
736 * we only use 2Mb of that space. We will use more of it later
737 * for AGP GART. We have to use a full 16Mb large page.
739 DBG("DART base: %lx\n", dart_tablebase
);
741 if (dart_tablebase
!= 0 && dart_tablebase
>= base
742 && dart_tablebase
< (base
+ size
)) {
743 unsigned long dart_table_end
= dart_tablebase
+ 16 * MB
;
744 if (base
!= dart_tablebase
)
745 BUG_ON(htab_bolt_mapping(base
, dart_tablebase
,
749 if ((base
+ size
) > dart_table_end
)
750 BUG_ON(htab_bolt_mapping(dart_tablebase
+16*MB
,
752 __pa(dart_table_end
),
758 #endif /* CONFIG_U3_DART */
759 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
760 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
762 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
765 * If we have a memory_limit and we've allocated TCEs then we need to
766 * explicitly map the TCE area at the top of RAM. We also cope with the
767 * case that the TCEs start below memory_limit.
768 * tce_alloc_start/end are 16MB aligned so the mapping should work
769 * for either 4K or 16MB pages.
771 if (tce_alloc_start
) {
772 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
773 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
775 if (base
+ size
>= tce_alloc_start
)
776 tce_alloc_start
= base
+ size
+ 1;
778 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
779 __pa(tce_alloc_start
), prot
,
780 mmu_linear_psize
, mmu_kernel_ssize
));
785 DBG(" <- htab_initialize()\n");
790 void __init
early_init_mmu(void)
792 /* Setup initial STAB address in the PACA */
793 get_paca()->stab_real
= __pa((u64
)&initial_stab
);
794 get_paca()->stab_addr
= (u64
)&initial_stab
;
796 /* Initialize the MMU Hash table and create the linear mapping
797 * of memory. Has to be done before stab/slb initialization as
798 * this is currently where the page size encoding is obtained
802 /* Initialize stab / SLB management */
803 if (mmu_has_feature(MMU_FTR_SLB
))
806 stab_initialize(get_paca()->stab_real
);
810 void early_init_mmu_secondary(void)
812 /* Initialize hash table for that CPU */
813 if (!firmware_has_feature(FW_FEATURE_LPAR
))
814 mtspr(SPRN_SDR1
, _SDR1
);
816 /* Initialize STAB/SLB. We use a virtual address as it works
817 * in real mode on pSeries.
819 if (mmu_has_feature(MMU_FTR_SLB
))
822 stab_initialize(get_paca()->stab_addr
);
824 #endif /* CONFIG_SMP */
827 * Called by asm hashtable.S for doing lazy icache flush
829 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
833 if (!pfn_valid(pte_pfn(pte
)))
836 page
= pte_page(pte
);
839 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
841 flush_dcache_icache_page(page
);
842 set_bit(PG_arch_1
, &page
->flags
);
849 #ifdef CONFIG_PPC_MM_SLICES
850 unsigned int get_paca_psize(unsigned long addr
)
853 unsigned char *hpsizes
;
854 unsigned long index
, mask_index
;
856 if (addr
< SLICE_LOW_TOP
) {
857 lpsizes
= get_paca()->context
.low_slices_psize
;
858 index
= GET_LOW_SLICE_INDEX(addr
);
859 return (lpsizes
>> (index
* 4)) & 0xF;
861 hpsizes
= get_paca()->context
.high_slices_psize
;
862 index
= GET_HIGH_SLICE_INDEX(addr
);
863 mask_index
= index
& 0x1;
864 return (hpsizes
[index
>> 1] >> (mask_index
* 4)) & 0xF;
868 unsigned int get_paca_psize(unsigned long addr
)
870 return get_paca()->context
.user_psize
;
875 * Demote a segment to using 4k pages.
876 * For now this makes the whole process use 4k pages.
878 #ifdef CONFIG_PPC_64K_PAGES
879 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
881 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
883 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
884 #ifdef CONFIG_SPU_BASE
885 spu_flush_all_slbs(mm
);
887 if (get_paca_psize(addr
) != MMU_PAGE_4K
) {
888 get_paca()->context
= mm
->context
;
889 slb_flush_and_rebolt();
892 #endif /* CONFIG_PPC_64K_PAGES */
894 #ifdef CONFIG_PPC_SUBPAGE_PROT
896 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
897 * Userspace sets the subpage permissions using the subpage_prot system call.
899 * Result is 0: full permissions, _PAGE_RW: read-only,
900 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
902 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
904 struct subpage_prot_table
*spt
= &mm
->context
.spt
;
908 if (ea
>= spt
->maxaddr
)
910 if (ea
< 0x100000000UL
) {
911 /* addresses below 4GB use spt->low_prot */
912 sbpm
= spt
->low_prot
;
914 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
918 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
921 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
923 /* extract 2-bit bitfield for this 4k subpage */
924 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
926 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
927 spp
= ((spp
& 2) ? _PAGE_USER
: 0) | ((spp
& 1) ? _PAGE_RW
: 0);
931 #else /* CONFIG_PPC_SUBPAGE_PROT */
932 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
938 void hash_failure_debug(unsigned long ea
, unsigned long access
,
939 unsigned long vsid
, unsigned long trap
,
940 int ssize
, int psize
, int lpsize
, unsigned long pte
)
942 if (!printk_ratelimit())
944 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
945 ea
, access
, current
->comm
);
946 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
947 trap
, vsid
, ssize
, psize
, lpsize
, pte
);
950 static void check_paca_psize(unsigned long ea
, struct mm_struct
*mm
,
951 int psize
, bool user_region
)
954 if (psize
!= get_paca_psize(ea
)) {
955 get_paca()->context
= mm
->context
;
956 slb_flush_and_rebolt();
958 } else if (get_paca()->vmalloc_sllp
!=
959 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
960 get_paca()->vmalloc_sllp
=
961 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
962 slb_vmalloc_update();
968 * 1 - normal page fault
969 * -1 - critical hash insertion error
970 * -2 - access not permitted by subpage protection mechanism
972 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
)
974 enum ctx_state prev_state
= exception_enter();
977 struct mm_struct
*mm
;
980 const struct cpumask
*tmp
;
981 int rc
, user_region
= 0, local
= 0;
984 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
987 /* Get region & vsid */
988 switch (REGION_ID(ea
)) {
993 DBG_LOW(" user region with no mm !\n");
997 psize
= get_slice_psize(mm
, ea
);
998 ssize
= user_segment_size(ea
);
999 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1001 case VMALLOC_REGION_ID
:
1003 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
1004 if (ea
< VMALLOC_END
)
1005 psize
= mmu_vmalloc_psize
;
1007 psize
= mmu_io_psize
;
1008 ssize
= mmu_kernel_ssize
;
1011 /* Not a valid range
1012 * Send the problem up to do_page_fault
1017 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
1021 DBG_LOW("Bad address!\n");
1027 if (pgdir
== NULL
) {
1032 /* Check CPU locality */
1033 tmp
= cpumask_of(smp_processor_id());
1034 if (user_region
&& cpumask_equal(mm_cpumask(mm
), tmp
))
1037 #ifndef CONFIG_PPC_64K_PAGES
1038 /* If we use 4K pages and our psize is not 4K, then we might
1039 * be hitting a special driver mapping, and need to align the
1040 * address before we fetch the PTE.
1042 * It could also be a hugepage mapping, in which case this is
1043 * not necessary, but it's not harmful, either.
1045 if (psize
!= MMU_PAGE_4K
)
1046 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
1047 #endif /* CONFIG_PPC_64K_PAGES */
1049 /* Get PTE and page size from page tables */
1050 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, &hugeshift
);
1051 if (ptep
== NULL
|| !pte_present(*ptep
)) {
1052 DBG_LOW(" no PTE !\n");
1057 /* Add _PAGE_PRESENT to the required access perm */
1058 access
|= _PAGE_PRESENT
;
1060 /* Pre-check access permissions (will be re-checked atomically
1061 * in __hash_page_XX but this pre-check is a fast path
1063 if (access
& ~pte_val(*ptep
)) {
1064 DBG_LOW(" no access !\n");
1070 if (pmd_trans_huge(*(pmd_t
*)ptep
))
1071 rc
= __hash_page_thp(ea
, access
, vsid
, (pmd_t
*)ptep
,
1072 trap
, local
, ssize
, psize
);
1073 #ifdef CONFIG_HUGETLB_PAGE
1075 rc
= __hash_page_huge(ea
, access
, vsid
, ptep
, trap
,
1076 local
, ssize
, hugeshift
, psize
);
1080 * if we have hugeshift, and is not transhuge with
1081 * hugetlb disabled, something is really wrong.
1087 check_paca_psize(ea
, mm
, psize
, user_region
);
1092 #ifndef CONFIG_PPC_64K_PAGES
1093 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1095 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1096 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1098 /* Do actual hashing */
1099 #ifdef CONFIG_PPC_64K_PAGES
1100 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1101 if ((pte_val(*ptep
) & _PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1102 demote_segment_4k(mm
, ea
);
1103 psize
= MMU_PAGE_4K
;
1106 /* If this PTE is non-cacheable and we have restrictions on
1107 * using non cacheable large pages, then we switch to 4k
1109 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&&
1110 (pte_val(*ptep
) & _PAGE_NO_CACHE
)) {
1112 demote_segment_4k(mm
, ea
);
1113 psize
= MMU_PAGE_4K
;
1114 } else if (ea
< VMALLOC_END
) {
1116 * some driver did a non-cacheable mapping
1117 * in vmalloc space, so switch vmalloc
1120 printk(KERN_ALERT
"Reducing vmalloc segment "
1121 "to 4kB pages because of "
1122 "non-cacheable mapping\n");
1123 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1124 #ifdef CONFIG_SPU_BASE
1125 spu_flush_all_slbs(mm
);
1130 check_paca_psize(ea
, mm
, psize
, user_region
);
1131 #endif /* CONFIG_PPC_64K_PAGES */
1133 #ifdef CONFIG_PPC_HAS_HASH_64K
1134 if (psize
== MMU_PAGE_64K
)
1135 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1137 #endif /* CONFIG_PPC_HAS_HASH_64K */
1139 int spp
= subpage_protection(mm
, ea
);
1143 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1147 /* Dump some info in case of hash insertion failure, they should
1148 * never happen so it is really useful to know if/when they do
1151 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1152 psize
, pte_val(*ptep
));
1153 #ifndef CONFIG_PPC_64K_PAGES
1154 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1156 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1157 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1159 DBG_LOW(" -> rc=%d\n", rc
);
1162 exception_exit(prev_state
);
1165 EXPORT_SYMBOL_GPL(hash_page
);
1167 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
1168 unsigned long access
, unsigned long trap
)
1174 unsigned long flags
;
1175 int rc
, ssize
, local
= 0;
1177 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
1179 #ifdef CONFIG_PPC_MM_SLICES
1180 /* We only prefault standard pages for now */
1181 if (unlikely(get_slice_psize(mm
, ea
) != mm
->context
.user_psize
))
1185 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1186 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1188 /* Get Linux PTE if available */
1194 ssize
= user_segment_size(ea
);
1195 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1199 * Hash doesn't like irqs. Walking linux page table with irq disabled
1200 * saves us from holding multiple locks.
1202 local_irq_save(flags
);
1205 * THP pages use update_mmu_cache_pmd. We don't do
1206 * hash preload there. Hence can ignore THP here
1208 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, &hugepage_shift
);
1212 WARN_ON(hugepage_shift
);
1213 #ifdef CONFIG_PPC_64K_PAGES
1214 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1215 * a 64K kernel), then we don't preload, hash_page() will take
1216 * care of it once we actually try to access the page.
1217 * That way we don't have to duplicate all of the logic for segment
1218 * page size demotion here
1220 if (pte_val(*ptep
) & (_PAGE_4K_PFN
| _PAGE_NO_CACHE
))
1222 #endif /* CONFIG_PPC_64K_PAGES */
1224 /* Is that local to this CPU ? */
1225 if (cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1229 #ifdef CONFIG_PPC_HAS_HASH_64K
1230 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
1231 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1233 #endif /* CONFIG_PPC_HAS_HASH_64K */
1234 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
,
1235 subpage_protection(mm
, ea
));
1237 /* Dump some info in case of hash insertion failure, they should
1238 * never happen so it is really useful to know if/when they do
1241 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1242 mm
->context
.user_psize
,
1243 mm
->context
.user_psize
,
1246 local_irq_restore(flags
);
1249 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1250 * do not forget to update the assembly call site !
1252 void flush_hash_page(unsigned long vpn
, real_pte_t pte
, int psize
, int ssize
,
1255 unsigned long hash
, index
, shift
, hidx
, slot
;
1257 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn
);
1258 pte_iterate_hashed_subpages(pte
, psize
, vpn
, index
, shift
) {
1259 hash
= hpt_hash(vpn
, shift
, ssize
);
1260 hidx
= __rpte_to_hidx(pte
, index
);
1261 if (hidx
& _PTEIDX_SECONDARY
)
1263 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1264 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1265 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index
, slot
, hidx
);
1267 * We use same base page size and actual psize, because we don't
1268 * use these functions for hugepage
1270 ppc_md
.hpte_invalidate(slot
, vpn
, psize
, psize
, ssize
, local
);
1271 } pte_iterate_hashed_end();
1273 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1274 /* Transactions are not aborted by tlbiel, only tlbie.
1275 * Without, syncing a page back to a block device w/ PIO could pick up
1276 * transactional data (bad!) so we force an abort here. Before the
1277 * sync the page will be made read-only, which will flush_hash_page.
1278 * BIG ISSUE here: if the kernel uses a page from userspace without
1279 * unmapping it first, it may see the speculated version.
1281 if (local
&& cpu_has_feature(CPU_FTR_TM
) &&
1282 current
->thread
.regs
&&
1283 MSR_TM_ACTIVE(current
->thread
.regs
->msr
)) {
1285 tm_abort(TM_CAUSE_TLBI
);
1290 void flush_hash_range(unsigned long number
, int local
)
1292 if (ppc_md
.flush_hash_range
)
1293 ppc_md
.flush_hash_range(number
, local
);
1296 struct ppc64_tlb_batch
*batch
=
1297 &__get_cpu_var(ppc64_tlb_batch
);
1299 for (i
= 0; i
< number
; i
++)
1300 flush_hash_page(batch
->vpn
[i
], batch
->pte
[i
],
1301 batch
->psize
, batch
->ssize
, local
);
1306 * low_hash_fault is called when we the low level hash code failed
1307 * to instert a PTE due to an hypervisor error
1309 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1311 enum ctx_state prev_state
= exception_enter();
1313 if (user_mode(regs
)) {
1314 #ifdef CONFIG_PPC_SUBPAGE_PROT
1316 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1319 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1321 bad_page_fault(regs
, address
, SIGBUS
);
1323 exception_exit(prev_state
);
1326 long hpte_insert_repeating(unsigned long hash
, unsigned long vpn
,
1327 unsigned long pa
, unsigned long rflags
,
1328 unsigned long vflags
, int psize
, int ssize
)
1330 unsigned long hpte_group
;
1334 hpte_group
= ((hash
& htab_hash_mask
) *
1335 HPTES_PER_GROUP
) & ~0x7UL
;
1337 /* Insert into the hash table, primary slot */
1338 slot
= ppc_md
.hpte_insert(hpte_group
, vpn
, pa
, rflags
, vflags
,
1339 psize
, psize
, ssize
);
1341 /* Primary is full, try the secondary */
1342 if (unlikely(slot
== -1)) {
1343 hpte_group
= ((~hash
& htab_hash_mask
) *
1344 HPTES_PER_GROUP
) & ~0x7UL
;
1345 slot
= ppc_md
.hpte_insert(hpte_group
, vpn
, pa
, rflags
,
1346 vflags
| HPTE_V_SECONDARY
,
1347 psize
, psize
, ssize
);
1350 hpte_group
= ((hash
& htab_hash_mask
) *
1351 HPTES_PER_GROUP
)&~0x7UL
;
1353 ppc_md
.hpte_remove(hpte_group
);
1361 #ifdef CONFIG_DEBUG_PAGEALLOC
1362 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1365 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1366 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1367 unsigned long mode
= htab_convert_pte_flags(PAGE_KERNEL
);
1370 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1372 /* Don't create HPTE entries for bad address */
1376 ret
= hpte_insert_repeating(hash
, vpn
, __pa(vaddr
), mode
,
1378 mmu_linear_psize
, mmu_kernel_ssize
);
1381 spin_lock(&linear_map_hash_lock
);
1382 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1383 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1384 spin_unlock(&linear_map_hash_lock
);
1387 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1389 unsigned long hash
, hidx
, slot
;
1390 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1391 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1393 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1394 spin_lock(&linear_map_hash_lock
);
1395 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1396 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1397 linear_map_hash_slots
[lmi
] = 0;
1398 spin_unlock(&linear_map_hash_lock
);
1399 if (hidx
& _PTEIDX_SECONDARY
)
1401 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1402 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1403 ppc_md
.hpte_invalidate(slot
, vpn
, mmu_linear_psize
, mmu_linear_psize
,
1404 mmu_kernel_ssize
, 0);
1407 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1409 unsigned long flags
, vaddr
, lmi
;
1412 local_irq_save(flags
);
1413 for (i
= 0; i
< numpages
; i
++, page
++) {
1414 vaddr
= (unsigned long)page_address(page
);
1415 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1416 if (lmi
>= linear_map_hash_count
)
1419 kernel_map_linear_page(vaddr
, lmi
);
1421 kernel_unmap_linear_page(vaddr
, lmi
);
1423 local_irq_restore(flags
);
1425 #endif /* CONFIG_DEBUG_PAGEALLOC */
1427 void setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1428 phys_addr_t first_memblock_size
)
1430 /* We don't currently support the first MEMBLOCK not mapping 0
1431 * physical on those processors
1433 BUG_ON(first_memblock_base
!= 0);
1435 /* On LPAR systems, the first entry is our RMA region,
1436 * non-LPAR 64-bit hash MMU systems don't have a limitation
1437 * on real mode access, but using the first entry works well
1438 * enough. We also clamp it to 1G to avoid some funky things
1439 * such as RTAS bugs etc...
1441 ppc64_rma_size
= min_t(u64
, first_memblock_size
, 0x40000000);
1443 /* Finally limit subsequent allocations */
1444 memblock_set_current_limit(ppc64_rma_size
);