2 * This file contains ioremap and related functions for 64-bit machines.
4 * Derived from arch/ppc64/mm/init.c
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 * Copyright (C) 1996 Paul Mackerras
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * Dave Engebretsen <engebret@us.ibm.com>
15 * Rework for PPC64 port.
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/init.h>
37 #include <linux/bootmem.h>
38 #include <linux/memblock.h>
39 #include <linux/slab.h>
41 #include <asm/pgalloc.h>
45 #include <asm/mmu_context.h>
46 #include <asm/pgtable.h>
49 #include <asm/machdep.h>
51 #include <asm/processor.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/firmware.h>
58 /* Some sanity checking */
59 #if TASK_SIZE_USER64 > PGTABLE_RANGE
60 #error TASK_SIZE_USER64 exceeds pagetable range
63 #ifdef CONFIG_PPC_STD_MMU_64
64 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
65 #error TASK_SIZE_USER64 exceeds user VSID range
69 unsigned long ioremap_bot
= IOREMAP_BASE
;
71 #ifdef CONFIG_PPC_MMU_NOHASH
72 static void *early_alloc_pgtable(unsigned long size
)
76 if (init_bootmem_done
)
77 pt
= __alloc_bootmem(size
, size
, __pa(MAX_DMA_ADDRESS
));
79 pt
= __va(memblock_alloc_base(size
, size
,
80 __pa(MAX_DMA_ADDRESS
)));
85 #endif /* CONFIG_PPC_MMU_NOHASH */
88 * map_kernel_page currently only called by __ioremap
89 * map_kernel_page adds an entry to the ioremap page table
90 * and adds an entry to the HPT, possibly bolting it
92 int map_kernel_page(unsigned long ea
, unsigned long pa
, int flags
)
99 if (slab_is_available()) {
100 pgdp
= pgd_offset_k(ea
);
101 pudp
= pud_alloc(&init_mm
, pgdp
, ea
);
104 pmdp
= pmd_alloc(&init_mm
, pudp
, ea
);
107 ptep
= pte_alloc_kernel(pmdp
, ea
);
110 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pa
>> PAGE_SHIFT
,
113 #ifdef CONFIG_PPC_MMU_NOHASH
114 /* Warning ! This will blow up if bootmem is not initialized
115 * which our ppc64 code is keen to do that, we'll need to
116 * fix it and/or be more careful
118 pgdp
= pgd_offset_k(ea
);
119 #ifdef PUD_TABLE_SIZE
120 if (pgd_none(*pgdp
)) {
121 pudp
= early_alloc_pgtable(PUD_TABLE_SIZE
);
122 BUG_ON(pudp
== NULL
);
123 pgd_populate(&init_mm
, pgdp
, pudp
);
125 #endif /* PUD_TABLE_SIZE */
126 pudp
= pud_offset(pgdp
, ea
);
127 if (pud_none(*pudp
)) {
128 pmdp
= early_alloc_pgtable(PMD_TABLE_SIZE
);
129 BUG_ON(pmdp
== NULL
);
130 pud_populate(&init_mm
, pudp
, pmdp
);
132 pmdp
= pmd_offset(pudp
, ea
);
133 if (!pmd_present(*pmdp
)) {
134 ptep
= early_alloc_pgtable(PAGE_SIZE
);
135 BUG_ON(ptep
== NULL
);
136 pmd_populate_kernel(&init_mm
, pmdp
, ptep
);
138 ptep
= pte_offset_kernel(pmdp
, ea
);
139 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pa
>> PAGE_SHIFT
,
141 #else /* CONFIG_PPC_MMU_NOHASH */
143 * If the mm subsystem is not fully up, we cannot create a
144 * linux page table entry for this mapping. Simply bolt an
145 * entry in the hardware page table.
148 if (htab_bolt_mapping(ea
, ea
+ PAGE_SIZE
, pa
, flags
,
149 mmu_io_psize
, mmu_kernel_ssize
)) {
150 printk(KERN_ERR
"Failed to do bolted mapping IO "
151 "memory at %016lx !\n", pa
);
154 #endif /* !CONFIG_PPC_MMU_NOHASH */
161 * __ioremap_at - Low level function to establish the page tables
164 void __iomem
* __ioremap_at(phys_addr_t pa
, void *ea
, unsigned long size
,
169 /* Make sure we have the base flags */
170 if ((flags
& _PAGE_PRESENT
) == 0)
171 flags
|= pgprot_val(PAGE_KERNEL
);
173 /* Non-cacheable page cannot be coherent */
174 if (flags
& _PAGE_NO_CACHE
)
175 flags
&= ~_PAGE_COHERENT
;
177 /* We don't support the 4K PFN hack with ioremap */
178 if (flags
& _PAGE_4K_PFN
)
181 WARN_ON(pa
& ~PAGE_MASK
);
182 WARN_ON(((unsigned long)ea
) & ~PAGE_MASK
);
183 WARN_ON(size
& ~PAGE_MASK
);
185 for (i
= 0; i
< size
; i
+= PAGE_SIZE
)
186 if (map_kernel_page((unsigned long)ea
+i
, pa
+i
, flags
))
189 return (void __iomem
*)ea
;
193 * __iounmap_from - Low level function to tear down the page tables
194 * for an IO mapping. This is used for mappings that
195 * are manipulated manually, like partial unmapping of
196 * PCI IOs or ISA space.
198 void __iounmap_at(void *ea
, unsigned long size
)
200 WARN_ON(((unsigned long)ea
) & ~PAGE_MASK
);
201 WARN_ON(size
& ~PAGE_MASK
);
203 unmap_kernel_range((unsigned long)ea
, size
);
206 void __iomem
* __ioremap_caller(phys_addr_t addr
, unsigned long size
,
207 unsigned long flags
, void *caller
)
209 phys_addr_t paligned
;
213 * Choose an address to map it to.
214 * Once the imalloc system is running, we use it.
215 * Before that, we map using addresses going
216 * up from ioremap_bot. imalloc will use
217 * the addresses from ioremap_bot through
221 paligned
= addr
& PAGE_MASK
;
222 size
= PAGE_ALIGN(addr
+ size
) - paligned
;
224 if ((size
== 0) || (paligned
== 0))
228 struct vm_struct
*area
;
230 area
= __get_vm_area_caller(size
, VM_IOREMAP
,
231 ioremap_bot
, IOREMAP_END
,
236 area
->phys_addr
= paligned
;
237 ret
= __ioremap_at(paligned
, area
->addr
, size
, flags
);
241 ret
= __ioremap_at(paligned
, (void *)ioremap_bot
, size
, flags
);
247 ret
+= addr
& ~PAGE_MASK
;
251 void __iomem
* __ioremap(phys_addr_t addr
, unsigned long size
,
254 return __ioremap_caller(addr
, size
, flags
, __builtin_return_address(0));
257 void __iomem
* ioremap(phys_addr_t addr
, unsigned long size
)
259 unsigned long flags
= _PAGE_NO_CACHE
| _PAGE_GUARDED
;
260 void *caller
= __builtin_return_address(0);
263 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
264 return __ioremap_caller(addr
, size
, flags
, caller
);
267 void __iomem
* ioremap_wc(phys_addr_t addr
, unsigned long size
)
269 unsigned long flags
= _PAGE_NO_CACHE
;
270 void *caller
= __builtin_return_address(0);
273 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
274 return __ioremap_caller(addr
, size
, flags
, caller
);
277 void __iomem
* ioremap_prot(phys_addr_t addr
, unsigned long size
,
280 void *caller
= __builtin_return_address(0);
282 /* writeable implies dirty for kernel addresses */
283 if (flags
& _PAGE_RW
)
284 flags
|= _PAGE_DIRTY
;
286 /* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
287 flags
&= ~(_PAGE_USER
| _PAGE_EXEC
);
290 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
291 * which means that we just cleared supervisor access... oops ;-) This
294 flags
|= _PAGE_BAP_SR
;
298 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
299 return __ioremap_caller(addr
, size
, flags
, caller
);
304 * Unmap an IO region and remove it from imalloc'd list.
305 * Access to IO memory should be serialized by driver.
307 void __iounmap(volatile void __iomem
*token
)
314 addr
= (void *) ((unsigned long __force
)
315 PCI_FIX_ADDR(token
) & PAGE_MASK
);
316 if ((unsigned long)addr
< ioremap_bot
) {
317 printk(KERN_WARNING
"Attempt to iounmap early bolted mapping"
324 void iounmap(volatile void __iomem
*token
)
327 ppc_md
.iounmap(token
);
332 EXPORT_SYMBOL(ioremap
);
333 EXPORT_SYMBOL(ioremap_wc
);
334 EXPORT_SYMBOL(ioremap_prot
);
335 EXPORT_SYMBOL(__ioremap
);
336 EXPORT_SYMBOL(__ioremap_at
);
337 EXPORT_SYMBOL(iounmap
);
338 EXPORT_SYMBOL(__iounmap
);
339 EXPORT_SYMBOL(__iounmap_at
);
342 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
343 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
345 struct page
*pmd_page(pmd_t pmd
)
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 if (pmd_trans_huge(pmd
))
349 return pfn_to_page(pmd_pfn(pmd
));
351 return virt_to_page(pmd_page_vaddr(pmd
));
354 #ifdef CONFIG_PPC_64K_PAGES
355 static pte_t
*get_from_cache(struct mm_struct
*mm
)
357 void *pte_frag
, *ret
;
359 spin_lock(&mm
->page_table_lock
);
360 ret
= mm
->context
.pte_frag
;
362 pte_frag
= ret
+ PTE_FRAG_SIZE
;
364 * If we have taken up all the fragments mark PTE page NULL
366 if (((unsigned long)pte_frag
& ~PAGE_MASK
) == 0)
368 mm
->context
.pte_frag
= pte_frag
;
370 spin_unlock(&mm
->page_table_lock
);
374 static pte_t
*__alloc_for_cache(struct mm_struct
*mm
, int kernel
)
377 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
|
378 __GFP_REPEAT
| __GFP_ZERO
);
382 ret
= page_address(page
);
383 spin_lock(&mm
->page_table_lock
);
385 * If we find pgtable_page set, we return
386 * the allocated page with single fragement
389 if (likely(!mm
->context
.pte_frag
)) {
390 atomic_set(&page
->_count
, PTE_FRAG_NR
);
391 mm
->context
.pte_frag
= ret
+ PTE_FRAG_SIZE
;
393 spin_unlock(&mm
->page_table_lock
);
396 pgtable_page_ctor(page
);
401 pte_t
*page_table_alloc(struct mm_struct
*mm
, unsigned long vmaddr
, int kernel
)
405 pte
= get_from_cache(mm
);
409 return __alloc_for_cache(mm
, kernel
);
412 void page_table_free(struct mm_struct
*mm
, unsigned long *table
, int kernel
)
414 struct page
*page
= virt_to_page(table
);
415 if (put_page_testzero(page
)) {
417 pgtable_page_dtor(page
);
418 free_hot_cold_page(page
, 0);
423 static void page_table_free_rcu(void *table
)
425 struct page
*page
= virt_to_page(table
);
426 if (put_page_testzero(page
)) {
427 pgtable_page_dtor(page
);
428 free_hot_cold_page(page
, 0);
432 void pgtable_free_tlb(struct mmu_gather
*tlb
, void *table
, int shift
)
434 unsigned long pgf
= (unsigned long)table
;
436 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
438 tlb_remove_table(tlb
, (void *)pgf
);
441 void __tlb_remove_table(void *_table
)
443 void *table
= (void *)((unsigned long)_table
& ~MAX_PGTABLE_INDEX_SIZE
);
444 unsigned shift
= (unsigned long)_table
& MAX_PGTABLE_INDEX_SIZE
;
447 /* PTE page needs special handling */
448 page_table_free_rcu(table
);
450 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
451 kmem_cache_free(PGT_CACHE(shift
), table
);
455 void pgtable_free_tlb(struct mmu_gather
*tlb
, void *table
, int shift
)
458 /* PTE page needs special handling */
459 struct page
*page
= virt_to_page(table
);
460 if (put_page_testzero(page
)) {
461 pgtable_page_dtor(page
);
462 free_hot_cold_page(page
, 0);
465 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
466 kmem_cache_free(PGT_CACHE(shift
), table
);
470 #endif /* CONFIG_PPC_64K_PAGES */
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 * This is called when relaxing access to a hugepage. It's also called in the page
476 * fault path when we don't hit any of the major fault cases, ie, a minor
477 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
478 * handled those two for us, we additionally deal with missing execute
479 * permission here on some processors
481 int pmdp_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
482 pmd_t
*pmdp
, pmd_t entry
, int dirty
)
485 #ifdef CONFIG_DEBUG_VM
486 WARN_ON(!pmd_trans_huge(*pmdp
));
487 assert_spin_locked(&vma
->vm_mm
->page_table_lock
);
489 changed
= !pmd_same(*(pmdp
), entry
);
491 __ptep_set_access_flags(pmdp_ptep(pmdp
), pmd_pte(entry
));
493 * Since we are not supporting SW TLB systems, we don't
494 * have any thing similar to flush_tlb_page_nohash()
500 unsigned long pmd_hugepage_update(struct mm_struct
*mm
, unsigned long addr
,
501 pmd_t
*pmdp
, unsigned long clr
)
504 unsigned long old
, tmp
;
506 #ifdef CONFIG_DEBUG_VM
507 WARN_ON(!pmd_trans_huge(*pmdp
));
508 assert_spin_locked(&mm
->page_table_lock
);
511 #ifdef PTE_ATOMIC_UPDATES
512 __asm__
__volatile__(
519 : "=&r" (old
), "=&r" (tmp
), "=m" (*pmdp
)
520 : "r" (pmdp
), "r" (clr
), "m" (*pmdp
), "i" (_PAGE_BUSY
)
523 old
= pmd_val(*pmdp
);
524 *pmdp
= __pmd(old
& ~clr
);
526 if (old
& _PAGE_HASHPTE
)
527 hpte_do_hugepage_flush(mm
, addr
, pmdp
);
531 pmd_t
pmdp_clear_flush(struct vm_area_struct
*vma
, unsigned long address
,
536 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
537 if (pmd_trans_huge(*pmdp
)) {
538 pmd
= pmdp_get_and_clear(vma
->vm_mm
, address
, pmdp
);
541 * khugepaged calls this for normal pmd
546 * Wait for all pending hash_page to finish. This is needed
547 * in case of subpage collapse. When we collapse normal pages
548 * to hugepage, we first clear the pmd, then invalidate all
549 * the PTE entries. The assumption here is that any low level
550 * page fault will see a none pmd and take the slow path that
551 * will wait on mmap_sem. But we could very well be in a
552 * hash_page with local ptep pointer value. Such a hash page
553 * can result in adding new HPTE entries for normal subpages.
554 * That means we could be modifying the page content as we
555 * copy them to a huge page. So wait for parallel hash_page
556 * to finish before invalidating HPTE entries. We can do this
557 * by sending an IPI to all the cpus and executing a dummy
560 kick_all_cpus_sync();
562 * Now invalidate the hpte entries in the range
563 * covered by pmd. This make sure we take a
564 * fault and will find the pmd as none, which will
565 * result in a major fault which takes mmap_sem and
566 * hence wait for collapse to complete. Without this
567 * the __collapse_huge_page_copy can result in copying
570 flush_tlb_pmd_range(vma
->vm_mm
, &pmd
, address
);
575 int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
576 unsigned long address
, pmd_t
*pmdp
)
578 return __pmdp_test_and_clear_young(vma
->vm_mm
, address
, pmdp
);
582 * We currently remove entries from the hashtable regardless of whether
583 * the entry was young or dirty. The generic routines only flush if the
584 * entry was young or dirty which is not good enough.
586 * We should be more intelligent about this but for the moment we override
587 * these functions and force a tlb flush unconditionally
589 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
590 unsigned long address
, pmd_t
*pmdp
)
592 return __pmdp_test_and_clear_young(vma
->vm_mm
, address
, pmdp
);
596 * We mark the pmd splitting and invalidate all the hpte
597 * entries for this hugepage.
599 void pmdp_splitting_flush(struct vm_area_struct
*vma
,
600 unsigned long address
, pmd_t
*pmdp
)
602 unsigned long old
, tmp
;
604 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
606 #ifdef CONFIG_DEBUG_VM
607 WARN_ON(!pmd_trans_huge(*pmdp
));
608 assert_spin_locked(&vma
->vm_mm
->page_table_lock
);
611 #ifdef PTE_ATOMIC_UPDATES
613 __asm__
__volatile__(
620 : "=&r" (old
), "=&r" (tmp
), "=m" (*pmdp
)
621 : "r" (pmdp
), "i" (_PAGE_SPLITTING
), "m" (*pmdp
), "i" (_PAGE_BUSY
)
624 old
= pmd_val(*pmdp
);
625 *pmdp
= __pmd(old
| _PAGE_SPLITTING
);
628 * If we didn't had the splitting flag set, go and flush the
631 if (!(old
& _PAGE_SPLITTING
)) {
632 /* We need to flush the hpte */
633 if (old
& _PAGE_HASHPTE
)
634 hpte_do_hugepage_flush(vma
->vm_mm
, address
, pmdp
);
639 * We want to put the pgtable in pmd and use pgtable for tracking
640 * the base page size hptes
642 void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
645 pgtable_t
*pgtable_slot
;
646 assert_spin_locked(&mm
->page_table_lock
);
648 * we store the pgtable in the second half of PMD
650 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
651 *pgtable_slot
= pgtable
;
653 * expose the deposited pgtable to other cpus.
654 * before we set the hugepage PTE at pmd level
655 * hash fault code looks at the deposted pgtable
656 * to store hash index values.
661 pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
)
664 pgtable_t
*pgtable_slot
;
666 assert_spin_locked(&mm
->page_table_lock
);
667 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
668 pgtable
= *pgtable_slot
;
670 * Once we withdraw, mark the entry NULL.
672 *pgtable_slot
= NULL
;
674 * We store HPTE information in the deposited PTE fragment.
675 * zero out the content on withdraw.
677 memset(pgtable
, 0, PTE_FRAG_SIZE
);
682 * set a new huge pmd. We should not be called for updating
683 * an existing pmd entry. That should go via pmd_hugepage_update.
685 void set_pmd_at(struct mm_struct
*mm
, unsigned long addr
,
686 pmd_t
*pmdp
, pmd_t pmd
)
688 #ifdef CONFIG_DEBUG_VM
689 WARN_ON(!pmd_none(*pmdp
));
690 assert_spin_locked(&mm
->page_table_lock
);
691 WARN_ON(!pmd_trans_huge(pmd
));
693 return set_pte_at(mm
, addr
, pmdp_ptep(pmdp
), pmd_pte(pmd
));
696 void pmdp_invalidate(struct vm_area_struct
*vma
, unsigned long address
,
699 pmd_hugepage_update(vma
->vm_mm
, address
, pmdp
, _PAGE_PRESENT
);
703 * A linux hugepage PMD was changed and the corresponding hash table entries
704 * neesd to be flushed.
706 void hpte_do_hugepage_flush(struct mm_struct
*mm
, unsigned long addr
,
710 unsigned long s_addr
;
712 unsigned int psize
, valid
;
713 unsigned char *hpte_slot_array
;
714 unsigned long hidx
, vpn
, vsid
, hash
, shift
, slot
;
717 * Flush all the hptes mapping this hugepage
719 s_addr
= addr
& HPAGE_PMD_MASK
;
720 hpte_slot_array
= get_hpte_slot_array(pmdp
);
722 * IF we try to do a HUGE PTE update after a withdraw is done.
723 * we will find the below NULL. This happens when we do
724 * split_huge_page_pmd
726 if (!hpte_slot_array
)
729 /* get the base page size */
730 psize
= get_slice_psize(mm
, s_addr
);
732 if (ppc_md
.hugepage_invalidate
)
733 return ppc_md
.hugepage_invalidate(mm
, hpte_slot_array
,
736 * No bluk hpte removal support, invalidate each entry
738 shift
= mmu_psize_defs
[psize
].shift
;
739 max_hpte_count
= HPAGE_PMD_SIZE
>> shift
;
740 for (i
= 0; i
< max_hpte_count
; i
++) {
742 * 8 bits per each hpte entries
743 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
745 valid
= hpte_valid(hpte_slot_array
, i
);
748 hidx
= hpte_hash_index(hpte_slot_array
, i
);
751 addr
= s_addr
+ (i
* (1ul << shift
));
752 if (!is_kernel_addr(addr
)) {
753 ssize
= user_segment_size(addr
);
754 vsid
= get_vsid(mm
->context
.id
, addr
, ssize
);
757 vsid
= get_kernel_vsid(addr
, mmu_kernel_ssize
);
758 ssize
= mmu_kernel_ssize
;
761 vpn
= hpt_vpn(addr
, vsid
, ssize
);
762 hash
= hpt_hash(vpn
, shift
, ssize
);
763 if (hidx
& _PTEIDX_SECONDARY
)
766 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
767 slot
+= hidx
& _PTEIDX_GROUP_IX
;
768 ppc_md
.hpte_invalidate(slot
, vpn
, psize
,
769 MMU_PAGE_16M
, ssize
, 0);
773 static pmd_t
pmd_set_protbits(pmd_t pmd
, pgprot_t pgprot
)
775 pmd_val(pmd
) |= pgprot_val(pgprot
);
779 pmd_t
pfn_pmd(unsigned long pfn
, pgprot_t pgprot
)
783 * For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
784 * set. We use this to check THP page at pmd level.
785 * leaf pte for huge page, bottom two bits != 00
787 pmd_val(pmd
) = pfn
<< PTE_RPN_SHIFT
;
788 pmd_val(pmd
) |= _PAGE_THP_HUGE
;
789 pmd
= pmd_set_protbits(pmd
, pgprot
);
793 pmd_t
mk_pmd(struct page
*page
, pgprot_t pgprot
)
795 return pfn_pmd(page_to_pfn(page
), pgprot
);
798 pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
801 pmd_val(pmd
) &= _HPAGE_CHG_MASK
;
802 pmd
= pmd_set_protbits(pmd
, newprot
);
807 * This is called at the end of handling a user page fault, when the
808 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
809 * We use it to preload an HPTE into the hash table corresponding to
810 * the updated linux HUGE PMD entry.
812 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
818 pmd_t
pmdp_get_and_clear(struct mm_struct
*mm
,
819 unsigned long addr
, pmd_t
*pmdp
)
824 pgtable_t
*pgtable_slot
;
826 old
= pmd_hugepage_update(mm
, addr
, pmdp
, ~0UL);
827 old_pmd
= __pmd(old
);
829 * We have pmd == none and we are holding page_table_lock.
830 * So we can safely go and clear the pgtable hash
833 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
834 pgtable
= *pgtable_slot
;
836 * Let's zero out old valid and hash index details
837 * hash fault look at them.
839 memset(pgtable
, 0, PTE_FRAG_SIZE
);
843 int has_transparent_hugepage(void)
845 if (!mmu_has_feature(MMU_FTR_16M_PAGE
))
848 * We support THP only if PMD_SIZE is 16MB.
850 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
!= PMD_SHIFT
)
853 * We need to make sure that we support 16MB hugepage in a segement
854 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
858 * If we have 64K HPTE, we will be using that by default
860 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
&&
861 (mmu_psize_defs
[MMU_PAGE_64K
].penc
[MMU_PAGE_16M
] == -1))
864 * Ok we only have 4K HPTE
866 if (mmu_psize_defs
[MMU_PAGE_4K
].penc
[MMU_PAGE_16M
] == -1)
871 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */