1 /* bpf_jit_comp.c: BPF JIT compiler for PPC64
3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
12 #include <linux/moduleloader.h>
13 #include <asm/cacheflush.h>
14 #include <linux/netdevice.h>
15 #include <linux/filter.h>
16 #include <linux/if_vlan.h>
21 /* There are endianness assumptions herein. */
22 #error "Little-endian PPC not supported in BPF compiler"
25 int bpf_jit_enable __read_mostly
;
28 static inline void bpf_flush_icache(void *start
, void *end
)
31 flush_icache_range((unsigned long)start
, (unsigned long)end
);
34 static void bpf_jit_build_prologue(struct sk_filter
*fp
, u32
*image
,
35 struct codegen_context
*ctx
)
38 const struct sock_filter
*filter
= fp
->insns
;
40 if (ctx
->seen
& (SEEN_MEM
| SEEN_DATAREF
)) {
42 if (ctx
->seen
& SEEN_DATAREF
) {
43 /* If we call any helpers (for loads), save LR */
44 EMIT(PPC_INST_MFLR
| __PPC_RT(R0
));
47 /* Back up non-volatile regs. */
48 PPC_STD(r_D
, 1, -(8*(32-r_D
)));
49 PPC_STD(r_HL
, 1, -(8*(32-r_HL
)));
51 if (ctx
->seen
& SEEN_MEM
) {
53 * Conditionally save regs r15-r31 as some will be used
56 for (i
= r_M
; i
< (r_M
+16); i
++) {
57 if (ctx
->seen
& (1 << (i
-r_M
)))
58 PPC_STD(i
, 1, -(8*(32-i
)));
61 EMIT(PPC_INST_STDU
| __PPC_RS(R1
) | __PPC_RA(R1
) |
62 (-BPF_PPC_STACKFRAME
& 0xfffc));
65 if (ctx
->seen
& SEEN_DATAREF
) {
67 * If this filter needs to access skb data,
68 * prepare r_D and r_HL:
69 * r_HL = skb->len - skb->data_len
72 PPC_LWZ_OFFS(r_scratch1
, r_skb
, offsetof(struct sk_buff
,
74 PPC_LWZ_OFFS(r_HL
, r_skb
, offsetof(struct sk_buff
, len
));
75 PPC_SUB(r_HL
, r_HL
, r_scratch1
);
76 PPC_LD_OFFS(r_D
, r_skb
, offsetof(struct sk_buff
, data
));
79 if (ctx
->seen
& SEEN_XREG
) {
81 * TODO: Could also detect whether first instr. sets X and
82 * avoid this (as below, with A).
87 switch (filter
[0].code
) {
90 case BPF_S_ANC_PROTOCOL
:
91 case BPF_S_ANC_IFINDEX
:
93 case BPF_S_ANC_RXHASH
:
94 case BPF_S_ANC_VLAN_TAG
:
95 case BPF_S_ANC_VLAN_TAG_PRESENT
:
101 /* first instruction sets A register (or is RET 'constant') */
104 /* make sure we dont leak kernel information to user */
109 static void bpf_jit_build_epilogue(u32
*image
, struct codegen_context
*ctx
)
113 if (ctx
->seen
& (SEEN_MEM
| SEEN_DATAREF
)) {
114 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME
);
115 if (ctx
->seen
& SEEN_DATAREF
) {
118 PPC_LD(r_D
, 1, -(8*(32-r_D
)));
119 PPC_LD(r_HL
, 1, -(8*(32-r_HL
)));
121 if (ctx
->seen
& SEEN_MEM
) {
122 /* Restore any saved non-vol registers */
123 for (i
= r_M
; i
< (r_M
+16); i
++) {
124 if (ctx
->seen
& (1 << (i
-r_M
)))
125 PPC_LD(i
, 1, -(8*(32-i
)));
129 /* The RETs have left a return value in R3. */
134 #define CHOOSE_LOAD_FUNC(K, func) \
135 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
137 /* Assemble the body code between the prologue & epilogue. */
138 static int bpf_jit_build_body(struct sk_filter
*fp
, u32
*image
,
139 struct codegen_context
*ctx
,
142 const struct sock_filter
*filter
= fp
->insns
;
145 unsigned int true_cond
;
148 /* Start of epilogue code */
149 unsigned int exit_addr
= addrs
[flen
];
151 for (i
= 0; i
< flen
; i
++) {
152 unsigned int K
= filter
[i
].k
;
155 * addrs[] maps a BPF bytecode address into a real offset from
156 * the start of the body code.
158 addrs
[i
] = ctx
->idx
* 4;
160 switch (filter
[i
].code
) {
162 case BPF_S_ALU_ADD_X
: /* A += X; */
163 ctx
->seen
|= SEEN_XREG
;
164 PPC_ADD(r_A
, r_A
, r_X
);
166 case BPF_S_ALU_ADD_K
: /* A += K; */
169 PPC_ADDI(r_A
, r_A
, IMM_L(K
));
171 PPC_ADDIS(r_A
, r_A
, IMM_HA(K
));
173 case BPF_S_ALU_SUB_X
: /* A -= X; */
174 ctx
->seen
|= SEEN_XREG
;
175 PPC_SUB(r_A
, r_A
, r_X
);
177 case BPF_S_ALU_SUB_K
: /* A -= K */
180 PPC_ADDI(r_A
, r_A
, IMM_L(-K
));
182 PPC_ADDIS(r_A
, r_A
, IMM_HA(-K
));
184 case BPF_S_ALU_MUL_X
: /* A *= X; */
185 ctx
->seen
|= SEEN_XREG
;
186 PPC_MUL(r_A
, r_A
, r_X
);
188 case BPF_S_ALU_MUL_K
: /* A *= K */
190 PPC_MULI(r_A
, r_A
, K
);
192 PPC_LI32(r_scratch1
, K
);
193 PPC_MUL(r_A
, r_A
, r_scratch1
);
196 case BPF_S_ALU_DIV_X
: /* A /= X; */
197 ctx
->seen
|= SEEN_XREG
;
199 if (ctx
->pc_ret0
!= -1) {
200 PPC_BCC(COND_EQ
, addrs
[ctx
->pc_ret0
]);
203 * Exit, returning 0; first pass hits here
204 * (longer worst-case code size).
206 PPC_BCC_SHORT(COND_NE
, (ctx
->idx
*4)+12);
210 PPC_DIVWU(r_A
, r_A
, r_X
);
212 case BPF_S_ALU_DIV_K
: /* A /= K */
215 PPC_LI32(r_scratch1
, K
);
216 PPC_DIVWU(r_A
, r_A
, r_scratch1
);
218 case BPF_S_ALU_AND_X
:
219 ctx
->seen
|= SEEN_XREG
;
220 PPC_AND(r_A
, r_A
, r_X
);
222 case BPF_S_ALU_AND_K
:
224 PPC_ANDI(r_A
, r_A
, K
);
226 PPC_LI32(r_scratch1
, K
);
227 PPC_AND(r_A
, r_A
, r_scratch1
);
231 ctx
->seen
|= SEEN_XREG
;
232 PPC_OR(r_A
, r_A
, r_X
);
236 PPC_ORI(r_A
, r_A
, IMM_L(K
));
238 PPC_ORIS(r_A
, r_A
, IMM_H(K
));
240 case BPF_S_ANC_ALU_XOR_X
:
241 case BPF_S_ALU_XOR_X
: /* A ^= X */
242 ctx
->seen
|= SEEN_XREG
;
243 PPC_XOR(r_A
, r_A
, r_X
);
245 case BPF_S_ALU_XOR_K
: /* A ^= K */
247 PPC_XORI(r_A
, r_A
, IMM_L(K
));
249 PPC_XORIS(r_A
, r_A
, IMM_H(K
));
251 case BPF_S_ALU_LSH_X
: /* A <<= X; */
252 ctx
->seen
|= SEEN_XREG
;
253 PPC_SLW(r_A
, r_A
, r_X
);
255 case BPF_S_ALU_LSH_K
:
259 PPC_SLWI(r_A
, r_A
, K
);
261 case BPF_S_ALU_RSH_X
: /* A >>= X; */
262 ctx
->seen
|= SEEN_XREG
;
263 PPC_SRW(r_A
, r_A
, r_X
);
265 case BPF_S_ALU_RSH_K
: /* A >>= K; */
269 PPC_SRWI(r_A
, r_A
, K
);
277 if (ctx
->pc_ret0
== -1)
281 * If this isn't the very last instruction, branch to
282 * the epilogue if we've stuff to clean up. Otherwise,
283 * if there's nothing to tidy, just return. If we /are/
284 * the last instruction, we're about to fall through to
285 * the epilogue to return.
289 * Note: 'seen' is properly valid only on pass
290 * #2. Both parts of this conditional are the
291 * same instruction size though, meaning the
292 * first pass will still correctly determine the
293 * code size/addresses.
310 case BPF_S_MISC_TAX
: /* X = A */
313 case BPF_S_MISC_TXA
: /* A = X */
314 ctx
->seen
|= SEEN_XREG
;
318 /*** Constant loads/M[] access ***/
319 case BPF_S_LD_IMM
: /* A = K */
322 case BPF_S_LDX_IMM
: /* X = K */
325 case BPF_S_LD_MEM
: /* A = mem[K] */
326 PPC_MR(r_A
, r_M
+ (K
& 0xf));
327 ctx
->seen
|= SEEN_MEM
| (1<<(K
& 0xf));
329 case BPF_S_LDX_MEM
: /* X = mem[K] */
330 PPC_MR(r_X
, r_M
+ (K
& 0xf));
331 ctx
->seen
|= SEEN_MEM
| (1<<(K
& 0xf));
333 case BPF_S_ST
: /* mem[K] = A */
334 PPC_MR(r_M
+ (K
& 0xf), r_A
);
335 ctx
->seen
|= SEEN_MEM
| (1<<(K
& 0xf));
337 case BPF_S_STX
: /* mem[K] = X */
338 PPC_MR(r_M
+ (K
& 0xf), r_X
);
339 ctx
->seen
|= SEEN_XREG
| SEEN_MEM
| (1<<(K
& 0xf));
341 case BPF_S_LD_W_LEN
: /* A = skb->len; */
342 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
, len
) != 4);
343 PPC_LWZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
, len
));
345 case BPF_S_LDX_W_LEN
: /* X = skb->len; */
346 PPC_LWZ_OFFS(r_X
, r_skb
, offsetof(struct sk_buff
, len
));
349 /*** Ancillary info loads ***/
351 /* None of the BPF_S_ANC* codes appear to be passed by
352 * sk_chk_filter(). The interpreter and the x86 BPF
353 * compiler implement them so we do too -- they may be
356 case BPF_S_ANC_PROTOCOL
: /* A = ntohs(skb->protocol); */
357 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
,
359 PPC_LHZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
,
361 /* ntohs is a NOP with BE loads. */
363 case BPF_S_ANC_IFINDEX
:
364 PPC_LD_OFFS(r_scratch1
, r_skb
, offsetof(struct sk_buff
,
366 PPC_CMPDI(r_scratch1
, 0);
367 if (ctx
->pc_ret0
!= -1) {
368 PPC_BCC(COND_EQ
, addrs
[ctx
->pc_ret0
]);
370 /* Exit, returning 0; first pass hits here. */
371 PPC_BCC_SHORT(COND_NE
, (ctx
->idx
*4)+12);
375 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device
,
377 PPC_LWZ_OFFS(r_A
, r_scratch1
,
378 offsetof(struct net_device
, ifindex
));
381 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
, mark
) != 4);
382 PPC_LWZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
,
385 case BPF_S_ANC_RXHASH
:
386 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
, rxhash
) != 4);
387 PPC_LWZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
,
390 case BPF_S_ANC_VLAN_TAG
:
391 case BPF_S_ANC_VLAN_TAG_PRESENT
:
392 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
, vlan_tci
) != 2);
393 PPC_LHZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
,
395 if (filter
[i
].code
== BPF_S_ANC_VLAN_TAG
)
396 PPC_ANDI(r_A
, r_A
, VLAN_VID_MASK
);
398 PPC_ANDI(r_A
, r_A
, VLAN_TAG_PRESENT
);
400 case BPF_S_ANC_QUEUE
:
401 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff
,
402 queue_mapping
) != 2);
403 PPC_LHZ_OFFS(r_A
, r_skb
, offsetof(struct sk_buff
,
410 * raw_smp_processor_id() = local_paca->paca_index
412 BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct
,
414 PPC_LHZ_OFFS(r_A
, 13,
415 offsetof(struct paca_struct
, paca_index
));
421 /*** Absolute loads from packet header/data ***/
423 func
= CHOOSE_LOAD_FUNC(K
, sk_load_word
);
426 func
= CHOOSE_LOAD_FUNC(K
, sk_load_half
);
429 func
= CHOOSE_LOAD_FUNC(K
, sk_load_byte
);
432 ctx
->seen
|= SEEN_DATAREF
;
433 PPC_LI64(r_scratch1
, func
);
434 PPC_MTLR(r_scratch1
);
438 * Helper returns 'lt' condition on error, and an
439 * appropriate return value in r3
441 PPC_BCC(COND_LT
, exit_addr
);
444 /*** Indirect loads from packet header/data ***/
447 goto common_load_ind
;
450 goto common_load_ind
;
455 * Load from [X + K]. Negative offsets are tested for
456 * in the helper functions.
458 ctx
->seen
|= SEEN_DATAREF
| SEEN_XREG
;
459 PPC_LI64(r_scratch1
, func
);
460 PPC_MTLR(r_scratch1
);
461 PPC_ADDI(r_addr
, r_X
, IMM_L(K
));
463 PPC_ADDIS(r_addr
, r_addr
, IMM_HA(K
));
465 /* If error, cr0.LT set */
466 PPC_BCC(COND_LT
, exit_addr
);
469 case BPF_S_LDX_B_MSH
:
470 func
= CHOOSE_LOAD_FUNC(K
, sk_load_byte_msh
);
474 /*** Jump and branches ***/
477 PPC_JMP(addrs
[i
+ 1 + K
]);
480 case BPF_S_JMP_JGT_K
:
481 case BPF_S_JMP_JGT_X
:
484 case BPF_S_JMP_JGE_K
:
485 case BPF_S_JMP_JGE_X
:
488 case BPF_S_JMP_JEQ_K
:
489 case BPF_S_JMP_JEQ_X
:
492 case BPF_S_JMP_JSET_K
:
493 case BPF_S_JMP_JSET_X
:
497 /* same targets, can avoid doing the test :) */
498 if (filter
[i
].jt
== filter
[i
].jf
) {
499 if (filter
[i
].jt
> 0)
500 PPC_JMP(addrs
[i
+ 1 + filter
[i
].jt
]);
504 switch (filter
[i
].code
) {
505 case BPF_S_JMP_JGT_X
:
506 case BPF_S_JMP_JGE_X
:
507 case BPF_S_JMP_JEQ_X
:
508 ctx
->seen
|= SEEN_XREG
;
511 case BPF_S_JMP_JSET_X
:
512 ctx
->seen
|= SEEN_XREG
;
513 PPC_AND_DOT(r_scratch1
, r_A
, r_X
);
515 case BPF_S_JMP_JEQ_K
:
516 case BPF_S_JMP_JGT_K
:
517 case BPF_S_JMP_JGE_K
:
521 PPC_LI32(r_scratch1
, K
);
522 PPC_CMPLW(r_A
, r_scratch1
);
525 case BPF_S_JMP_JSET_K
:
527 /* PPC_ANDI is /only/ dot-form */
528 PPC_ANDI(r_scratch1
, r_A
, K
);
530 PPC_LI32(r_scratch1
, K
);
531 PPC_AND_DOT(r_scratch1
, r_A
,
536 /* Sometimes branches are constructed "backward", with
537 * the false path being the branch and true path being
538 * a fallthrough to the next instruction.
540 if (filter
[i
].jt
== 0)
541 /* Swap the sense of the branch */
542 PPC_BCC(true_cond
^ COND_CMP_TRUE
,
543 addrs
[i
+ 1 + filter
[i
].jf
]);
545 PPC_BCC(true_cond
, addrs
[i
+ 1 + filter
[i
].jt
]);
546 if (filter
[i
].jf
!= 0)
547 PPC_JMP(addrs
[i
+ 1 + filter
[i
].jf
]);
551 /* The filter contains something cruel & unusual.
552 * We don't handle it, but also there shouldn't be
553 * anything missing from our list.
555 if (printk_ratelimit())
556 pr_err("BPF filter opcode %04x (@%d) unsupported\n",
562 /* Set end-of-body-code address for exit. */
563 addrs
[i
] = ctx
->idx
* 4;
568 void bpf_jit_compile(struct sk_filter
*fp
)
570 unsigned int proglen
;
571 unsigned int alloclen
;
575 struct codegen_context cgctx
;
582 addrs
= kzalloc((flen
+1) * sizeof(*addrs
), GFP_KERNEL
);
587 * There are multiple assembly passes as the generated code will change
588 * size as it settles down, figuring out the max branch offsets/exit
591 * The range of standard conditional branches is +/- 32Kbytes. Since
592 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
593 * finish with 8 bytes/instruction. Not feasible, so long jumps are
594 * used, distinct from short branches.
598 * For now, both branch types assemble to 2 words (short branches padded
599 * with a NOP); this is less efficient, but assembly will always complete
600 * after exactly 3 passes:
602 * First pass: No code buffer; Program is "faux-generated" -- no code
603 * emitted but maximum size of output determined (and addrs[] filled
604 * in). Also, we note whether we use M[], whether we use skb data, etc.
605 * All generation choices assumed to be 'worst-case', e.g. branches all
606 * far (2 instructions), return path code reduction not available, etc.
608 * Second pass: Code buffer allocated with size determined previously.
609 * Prologue generated to support features we have seen used. Exit paths
610 * determined and addrs[] is filled in again, as code may be slightly
611 * smaller as a result.
613 * Third pass: Code generated 'for real', and branch destinations
614 * determined from now-accurate addrs[] map.
618 * If we optimise this, near branches will be shorter. On the
619 * first assembly pass, we should err on the side of caution and
620 * generate the biggest code. On subsequent passes, branches will be
621 * generated short or long and code size will reduce. With smaller
622 * code, more branches may fall into the short category, and code will
625 * Finally, if we see one pass generate code the same size as the
626 * previous pass we have converged and should now generate code for
627 * real. Allocating at the end will also save the memory that would
628 * otherwise be wasted by the (small) current code shrinkage.
629 * Preferably, we should do a small number of passes (e.g. 5) and if we
630 * haven't converged by then, get impatient and force code to generate
631 * as-is, even if the odd branch would be left long. The chances of a
632 * long jump are tiny with all but the most enormous of BPF filter
633 * inputs, so we should usually converge on the third pass.
639 /* Scouting faux-generate pass 0 */
640 if (bpf_jit_build_body(fp
, 0, &cgctx
, addrs
))
641 /* We hit something illegal or unsupported. */
645 * Pretend to build prologue, given the features we've seen. This will
646 * update ctgtx.idx as it pretends to output instructions, then we can
647 * calculate total size from idx.
649 bpf_jit_build_prologue(fp
, 0, &cgctx
);
650 bpf_jit_build_epilogue(0, &cgctx
);
652 proglen
= cgctx
.idx
* 4;
653 alloclen
= proglen
+ FUNCTION_DESCR_SIZE
;
654 image
= module_alloc(alloclen
);
658 code_base
= image
+ (FUNCTION_DESCR_SIZE
/4);
660 /* Code generation passes 1-2 */
661 for (pass
= 1; pass
< 3; pass
++) {
662 /* Now build the prologue, body code & epilogue for real. */
664 bpf_jit_build_prologue(fp
, code_base
, &cgctx
);
665 bpf_jit_build_body(fp
, code_base
, &cgctx
, addrs
);
666 bpf_jit_build_epilogue(code_base
, &cgctx
);
668 if (bpf_jit_enable
> 1)
669 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass
,
670 proglen
- (cgctx
.idx
* 4), cgctx
.seen
);
673 if (bpf_jit_enable
> 1)
674 /* Note that we output the base address of the code_base
675 * rather than image, since opcodes are in code_base.
677 bpf_jit_dump(flen
, proglen
, pass
, code_base
);
680 bpf_flush_icache(code_base
, code_base
+ (proglen
/4));
681 /* Function descriptor nastiness: Address + TOC */
682 ((u64
*)image
)[0] = (u64
)code_base
;
683 ((u64
*)image
)[1] = local_paca
->kernel_toc
;
684 fp
->bpf_func
= (void *)image
;
691 void bpf_jit_free(struct sk_filter
*fp
)
693 if (fp
->bpf_func
!= sk_run_filter
)
694 module_free(NULL
, fp
->bpf_func
);