x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / s390 / include / asm / pgtable.h
blob2204400d0bd58d4a1e45c82394ff5cbd100aa2cc
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 * Derived from "include/asm-i386/pgtable.h"
9 */
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
29 #ifndef __ASSEMBLY__
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <asm/bug.h>
34 #include <asm/page.h>
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
44 #define update_mmu_cache(vma, address, ptep) do { } while (0)
45 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
48 * ZERO_PAGE is a global shared page that is always zero; used
49 * for zero-mapped memory areas etc..
52 extern unsigned long empty_zero_page;
53 extern unsigned long zero_page_mask;
55 #define ZERO_PAGE(vaddr) \
56 (virt_to_page((void *)(empty_zero_page + \
57 (((unsigned long)(vaddr)) &zero_page_mask))))
58 #define __HAVE_COLOR_ZERO_PAGE
60 /* TODO: s390 cannot support io_remap_pfn_range... */
61 #endif /* !__ASSEMBLY__ */
64 * PMD_SHIFT determines the size of the area a second-level page
65 * table can map
66 * PGDIR_SHIFT determines what a third-level page table entry can map
68 #ifndef CONFIG_64BIT
69 # define PMD_SHIFT 20
70 # define PUD_SHIFT 20
71 # define PGDIR_SHIFT 20
72 #else /* CONFIG_64BIT */
73 # define PMD_SHIFT 20
74 # define PUD_SHIFT 31
75 # define PGDIR_SHIFT 42
76 #endif /* CONFIG_64BIT */
78 #define PMD_SIZE (1UL << PMD_SHIFT)
79 #define PMD_MASK (~(PMD_SIZE-1))
80 #define PUD_SIZE (1UL << PUD_SHIFT)
81 #define PUD_MASK (~(PUD_SIZE-1))
82 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
83 #define PGDIR_MASK (~(PGDIR_SIZE-1))
86 * entries per page directory level: the S390 is two-level, so
87 * we don't really have any PMD directory physically.
88 * for S390 segment-table entries are combined to one PGD
89 * that leads to 1024 pte per pgd
91 #define PTRS_PER_PTE 256
92 #ifndef CONFIG_64BIT
93 #define PTRS_PER_PMD 1
94 #define PTRS_PER_PUD 1
95 #else /* CONFIG_64BIT */
96 #define PTRS_PER_PMD 2048
97 #define PTRS_PER_PUD 2048
98 #endif /* CONFIG_64BIT */
99 #define PTRS_PER_PGD 2048
101 #define FIRST_USER_ADDRESS 0
103 #define pte_ERROR(e) \
104 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
105 #define pmd_ERROR(e) \
106 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
107 #define pud_ERROR(e) \
108 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
109 #define pgd_ERROR(e) \
110 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
112 #ifndef __ASSEMBLY__
114 * The vmalloc and module area will always be on the topmost area of the kernel
115 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
116 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
117 * modules will reside. That makes sure that inter module branches always
118 * happen without trampolines and in addition the placement within a 2GB frame
119 * is branch prediction unit friendly.
121 extern unsigned long VMALLOC_START;
122 extern unsigned long VMALLOC_END;
123 extern struct page *vmemmap;
125 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
127 #ifdef CONFIG_64BIT
128 extern unsigned long MODULES_VADDR;
129 extern unsigned long MODULES_END;
130 #define MODULES_VADDR MODULES_VADDR
131 #define MODULES_END MODULES_END
132 #define MODULES_LEN (1UL << 31)
133 #endif
136 * A 31 bit pagetable entry of S390 has following format:
137 * | PFRA | | OS |
138 * 0 0IP0
139 * 00000000001111111111222222222233
140 * 01234567890123456789012345678901
142 * I Page-Invalid Bit: Page is not available for address-translation
143 * P Page-Protection Bit: Store access not possible for page
145 * A 31 bit segmenttable entry of S390 has following format:
146 * | P-table origin | |PTL
147 * 0 IC
148 * 00000000001111111111222222222233
149 * 01234567890123456789012345678901
151 * I Segment-Invalid Bit: Segment is not available for address-translation
152 * C Common-Segment Bit: Segment is not private (PoP 3-30)
153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
155 * The 31 bit segmenttable origin of S390 has following format:
157 * |S-table origin | | STL |
158 * X **GPS
159 * 00000000001111111111222222222233
160 * 01234567890123456789012345678901
162 * X Space-Switch event:
163 * G Segment-Invalid Bit: *
164 * P Private-Space Bit: Segment is not private (PoP 3-30)
165 * S Storage-Alteration:
166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
168 * A 64 bit pagetable entry of S390 has following format:
169 * | PFRA |0IPC| OS |
170 * 0000000000111111111122222222223333333333444444444455555555556666
171 * 0123456789012345678901234567890123456789012345678901234567890123
173 * I Page-Invalid Bit: Page is not available for address-translation
174 * P Page-Protection Bit: Store access not possible for page
175 * C Change-bit override: HW is not required to set change bit
177 * A 64 bit segmenttable entry of S390 has following format:
178 * | P-table origin | TT
179 * 0000000000111111111122222222223333333333444444444455555555556666
180 * 0123456789012345678901234567890123456789012345678901234567890123
182 * I Segment-Invalid Bit: Segment is not available for address-translation
183 * C Common-Segment Bit: Segment is not private (PoP 3-30)
184 * P Page-Protection Bit: Store access not possible for page
185 * TT Type 00
187 * A 64 bit region table entry of S390 has following format:
188 * | S-table origin | TF TTTL
189 * 0000000000111111111122222222223333333333444444444455555555556666
190 * 0123456789012345678901234567890123456789012345678901234567890123
192 * I Segment-Invalid Bit: Segment is not available for address-translation
193 * TT Type 01
194 * TF
195 * TL Table length
197 * The 64 bit regiontable origin of S390 has following format:
198 * | region table origon | DTTL
199 * 0000000000111111111122222222223333333333444444444455555555556666
200 * 0123456789012345678901234567890123456789012345678901234567890123
202 * X Space-Switch event:
203 * G Segment-Invalid Bit:
204 * P Private-Space Bit:
205 * S Storage-Alteration:
206 * R Real space
207 * TL Table-Length:
209 * A storage key has the following format:
210 * | ACC |F|R|C|0|
211 * 0 3 4 5 6 7
212 * ACC: access key
213 * F : fetch protection bit
214 * R : referenced bit
215 * C : changed bit
218 /* Hardware bits in the page table entry */
219 #define _PAGE_CO 0x100 /* HW Change-bit override */
220 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
221 #define _PAGE_INVALID 0x400 /* HW invalid bit */
222 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
224 /* Software bits in the page table entry */
225 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
226 #define _PAGE_TYPE 0x002 /* SW pte type bit */
227 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
228 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
229 #define _PAGE_READ 0x010 /* SW pte read bit */
230 #define _PAGE_WRITE 0x020 /* SW pte write bit */
231 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
232 #define __HAVE_ARCH_PTE_SPECIAL
234 /* Set of bits not changed in pte_modify */
235 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
236 _PAGE_DIRTY | _PAGE_YOUNG)
239 * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
240 * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
241 * is used to distinguish present from not-present ptes. It is changed only
242 * with the page table lock held.
244 * The following table gives the different possible bit combinations for
245 * the pte hardware and software bits in the last 12 bits of a pte:
247 * 842100000000
248 * 000084210000
249 * 000000008421
250 * .IR...wrdytp
251 * empty .10...000000
252 * swap .10...xxxx10
253 * file .11...xxxxx0
254 * prot-none, clean, old .11...000001
255 * prot-none, clean, young .11...000101
256 * prot-none, dirty, old .10...001001
257 * prot-none, dirty, young .10...001101
258 * read-only, clean, old .11...010001
259 * read-only, clean, young .01...010101
260 * read-only, dirty, old .11...011001
261 * read-only, dirty, young .01...011101
262 * read-write, clean, old .11...110001
263 * read-write, clean, young .01...110101
264 * read-write, dirty, old .10...111001
265 * read-write, dirty, young .00...111101
267 * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
268 * pte_none is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
269 * pte_file is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
270 * pte_swap is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
273 #ifndef CONFIG_64BIT
275 /* Bits in the segment table address-space-control-element */
276 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
277 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
278 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
279 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
280 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
282 /* Bits in the segment table entry */
283 #define _SEGMENT_ENTRY_BITS 0x7fffffffUL /* Valid segment table bits */
284 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
285 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
286 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
287 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
288 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
289 #define _SEGMENT_ENTRY_NONE _SEGMENT_ENTRY_PROTECT
291 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
292 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
295 * Segment table entry encoding (I = invalid, R = read-only bit):
296 * ..R...I.....
297 * prot-none ..1...1.....
298 * read-only ..1...0.....
299 * read-write ..0...0.....
300 * empty ..0...1.....
303 /* Page status table bits for virtualization */
304 #define PGSTE_ACC_BITS 0xf0000000UL
305 #define PGSTE_FP_BIT 0x08000000UL
306 #define PGSTE_PCL_BIT 0x00800000UL
307 #define PGSTE_HR_BIT 0x00400000UL
308 #define PGSTE_HC_BIT 0x00200000UL
309 #define PGSTE_GR_BIT 0x00040000UL
310 #define PGSTE_GC_BIT 0x00020000UL
311 #define PGSTE_IN_BIT 0x00008000UL /* IPTE notify bit */
313 #else /* CONFIG_64BIT */
315 /* Bits in the segment/region table address-space-control-element */
316 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
317 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
318 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
319 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
320 #define _ASCE_REAL_SPACE 0x20 /* real space control */
321 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
322 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
323 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
324 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
325 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
326 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
328 /* Bits in the region table entry */
329 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
330 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
331 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
332 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
333 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
334 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
335 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
336 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
338 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
339 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
340 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
341 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
342 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
343 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
345 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
346 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
347 #define _REGION3_ENTRY_CO 0x100 /* change-recording override */
349 /* Bits in the segment table entry */
350 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
351 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff1ff33UL
352 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
353 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
354 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
355 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
357 #define _SEGMENT_ENTRY (0)
358 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
360 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
361 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
362 #define _SEGMENT_ENTRY_SPLIT 0x001 /* THP splitting bit */
363 #define _SEGMENT_ENTRY_YOUNG 0x002 /* SW segment young bit */
364 #define _SEGMENT_ENTRY_NONE _SEGMENT_ENTRY_YOUNG
367 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
368 * ..R...I...y.
369 * prot-none, old ..0...1...1.
370 * prot-none, young ..1...1...1.
371 * read-only, old ..1...1...0.
372 * read-only, young ..1...0...1.
373 * read-write, old ..0...1...0.
374 * read-write, young ..0...0...1.
375 * The segment table origin is used to distinguish empty (origin==0) from
376 * read-write, old segment table entries (origin!=0)
379 #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
381 /* Set of bits not changed in pmd_modify */
382 #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
383 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
385 /* Page status table bits for virtualization */
386 #define PGSTE_ACC_BITS 0xf000000000000000UL
387 #define PGSTE_FP_BIT 0x0800000000000000UL
388 #define PGSTE_PCL_BIT 0x0080000000000000UL
389 #define PGSTE_HR_BIT 0x0040000000000000UL
390 #define PGSTE_HC_BIT 0x0020000000000000UL
391 #define PGSTE_GR_BIT 0x0004000000000000UL
392 #define PGSTE_GC_BIT 0x0002000000000000UL
393 #define PGSTE_IN_BIT 0x0000800000000000UL /* IPTE notify bit */
395 #endif /* CONFIG_64BIT */
398 * A user page table pointer has the space-switch-event bit, the
399 * private-space-control bit and the storage-alteration-event-control
400 * bit set. A kernel page table pointer doesn't need them.
402 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
403 _ASCE_ALT_EVENT)
406 * Page protection definitions.
408 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
409 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
410 _PAGE_INVALID | _PAGE_PROTECT)
411 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
412 _PAGE_INVALID | _PAGE_PROTECT)
414 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY)
416 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 _PAGE_YOUNG | _PAGE_DIRTY)
418 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
419 _PAGE_PROTECT)
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
426 /*xwr*/
427 #define __P000 PAGE_NONE
428 #define __P001 PAGE_READ
429 #define __P010 PAGE_READ
430 #define __P011 PAGE_READ
431 #define __P100 PAGE_READ
432 #define __P101 PAGE_READ
433 #define __P110 PAGE_READ
434 #define __P111 PAGE_READ
436 #define __S000 PAGE_NONE
437 #define __S001 PAGE_READ
438 #define __S010 PAGE_WRITE
439 #define __S011 PAGE_WRITE
440 #define __S100 PAGE_READ
441 #define __S101 PAGE_READ
442 #define __S110 PAGE_WRITE
443 #define __S111 PAGE_WRITE
446 * Segment entry (large page) protection definitions.
448 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
449 _SEGMENT_ENTRY_NONE)
450 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_INVALID | \
451 _SEGMENT_ENTRY_PROTECT)
452 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_INVALID)
454 static inline int mm_has_pgste(struct mm_struct *mm)
456 #ifdef CONFIG_PGSTE
457 if (unlikely(mm->context.has_pgste))
458 return 1;
459 #endif
460 return 0;
463 * pgd/pmd/pte query functions
465 #ifndef CONFIG_64BIT
467 static inline int pgd_present(pgd_t pgd) { return 1; }
468 static inline int pgd_none(pgd_t pgd) { return 0; }
469 static inline int pgd_bad(pgd_t pgd) { return 0; }
471 static inline int pud_present(pud_t pud) { return 1; }
472 static inline int pud_none(pud_t pud) { return 0; }
473 static inline int pud_large(pud_t pud) { return 0; }
474 static inline int pud_bad(pud_t pud) { return 0; }
476 #else /* CONFIG_64BIT */
478 static inline int pgd_present(pgd_t pgd)
480 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
481 return 1;
482 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
485 static inline int pgd_none(pgd_t pgd)
487 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
488 return 0;
489 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
492 static inline int pgd_bad(pgd_t pgd)
495 * With dynamic page table levels the pgd can be a region table
496 * entry or a segment table entry. Check for the bit that are
497 * invalid for either table entry.
499 unsigned long mask =
500 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
501 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
502 return (pgd_val(pgd) & mask) != 0;
505 static inline int pud_present(pud_t pud)
507 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
508 return 1;
509 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
512 static inline int pud_none(pud_t pud)
514 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
515 return 0;
516 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
519 static inline int pud_large(pud_t pud)
521 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
522 return 0;
523 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
526 static inline int pud_bad(pud_t pud)
529 * With dynamic page table levels the pud can be a region table
530 * entry or a segment table entry. Check for the bit that are
531 * invalid for either table entry.
533 unsigned long mask =
534 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
535 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
536 return (pud_val(pud) & mask) != 0;
539 #endif /* CONFIG_64BIT */
541 static inline int pmd_present(pmd_t pmd)
543 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
546 static inline int pmd_none(pmd_t pmd)
548 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
551 static inline int pmd_large(pmd_t pmd)
553 #ifdef CONFIG_64BIT
554 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
555 #else
556 return 0;
557 #endif
560 static inline int pmd_prot_none(pmd_t pmd)
562 return (pmd_val(pmd) & _SEGMENT_ENTRY_INVALID) &&
563 (pmd_val(pmd) & _SEGMENT_ENTRY_NONE);
566 static inline int pmd_bad(pmd_t pmd)
568 #ifdef CONFIG_64BIT
569 if (pmd_large(pmd))
570 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
571 #endif
572 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
575 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
576 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
577 unsigned long addr, pmd_t *pmdp);
579 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
580 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
581 unsigned long address, pmd_t *pmdp,
582 pmd_t entry, int dirty);
584 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
585 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
586 unsigned long address, pmd_t *pmdp);
588 #define __HAVE_ARCH_PMD_WRITE
589 static inline int pmd_write(pmd_t pmd)
591 if (pmd_prot_none(pmd))
592 return 0;
593 return (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) == 0;
596 static inline int pmd_young(pmd_t pmd)
598 int young = 0;
599 #ifdef CONFIG_64BIT
600 if (pmd_prot_none(pmd))
601 young = (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) != 0;
602 else
603 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
604 #endif
605 return young;
608 static inline int pte_present(pte_t pte)
610 /* Bit pattern: (pte & 0x001) == 0x001 */
611 return (pte_val(pte) & _PAGE_PRESENT) != 0;
614 static inline int pte_none(pte_t pte)
616 /* Bit pattern: pte == 0x400 */
617 return pte_val(pte) == _PAGE_INVALID;
620 static inline int pte_file(pte_t pte)
622 /* Bit pattern: (pte & 0x601) == 0x600 */
623 return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
624 == (_PAGE_INVALID | _PAGE_PROTECT);
627 static inline int pte_special(pte_t pte)
629 return (pte_val(pte) & _PAGE_SPECIAL);
632 #define __HAVE_ARCH_PTE_SAME
633 static inline int pte_same(pte_t a, pte_t b)
635 return pte_val(a) == pte_val(b);
638 static inline pgste_t pgste_get_lock(pte_t *ptep)
640 unsigned long new = 0;
641 #ifdef CONFIG_PGSTE
642 unsigned long old;
644 preempt_disable();
645 asm(
646 " lg %0,%2\n"
647 "0: lgr %1,%0\n"
648 " nihh %0,0xff7f\n" /* clear PCL bit in old */
649 " oihh %1,0x0080\n" /* set PCL bit in new */
650 " csg %0,%1,%2\n"
651 " jl 0b\n"
652 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
653 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
654 #endif
655 return __pgste(new);
658 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
660 #ifdef CONFIG_PGSTE
661 asm(
662 " nihh %1,0xff7f\n" /* clear PCL bit */
663 " stg %1,%0\n"
664 : "=Q" (ptep[PTRS_PER_PTE])
665 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
666 : "cc", "memory");
667 preempt_enable();
668 #endif
671 static inline pgste_t pgste_get(pte_t *ptep)
673 unsigned long pgste = 0;
674 #ifdef CONFIG_PGSTE
675 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
676 #endif
677 return __pgste(pgste);
680 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
682 #ifdef CONFIG_PGSTE
683 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
684 #endif
687 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
689 #ifdef CONFIG_PGSTE
690 unsigned long address, bits, skey;
692 if (pte_val(*ptep) & _PAGE_INVALID)
693 return pgste;
694 address = pte_val(*ptep) & PAGE_MASK;
695 skey = (unsigned long) page_get_storage_key(address);
696 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
697 if (!(pgste_val(pgste) & PGSTE_HC_BIT) && (bits & _PAGE_CHANGED)) {
698 /* Transfer dirty + referenced bit to host bits in pgste */
699 pgste_val(pgste) |= bits << 52;
700 page_set_storage_key(address, skey ^ bits, 0);
701 } else if (!(pgste_val(pgste) & PGSTE_HR_BIT) &&
702 (bits & _PAGE_REFERENCED)) {
703 /* Transfer referenced bit to host bit in pgste */
704 pgste_val(pgste) |= PGSTE_HR_BIT;
705 page_reset_referenced(address);
707 /* Transfer page changed & referenced bit to guest bits in pgste */
708 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
709 /* Copy page access key and fetch protection bit to pgste */
710 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
711 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
712 #endif
713 return pgste;
717 static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
719 #ifdef CONFIG_PGSTE
720 if (pte_val(*ptep) & _PAGE_INVALID)
721 return pgste;
722 /* Get referenced bit from storage key */
723 if (page_reset_referenced(pte_val(*ptep) & PAGE_MASK))
724 pgste_val(pgste) |= PGSTE_HR_BIT | PGSTE_GR_BIT;
725 #endif
726 return pgste;
729 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
731 #ifdef CONFIG_PGSTE
732 unsigned long address;
733 unsigned long nkey;
735 if (pte_val(entry) & _PAGE_INVALID)
736 return;
737 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
738 address = pte_val(entry) & PAGE_MASK;
740 * Set page access key and fetch protection bit from pgste.
741 * The guest C/R information is still in the PGSTE, set real
742 * key C/R to 0.
744 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
745 page_set_storage_key(address, nkey, 0);
746 #endif
749 static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
751 if (!MACHINE_HAS_ESOP &&
752 (pte_val(entry) & _PAGE_PRESENT) &&
753 (pte_val(entry) & _PAGE_WRITE)) {
755 * Without enhanced suppression-on-protection force
756 * the dirty bit on for all writable ptes.
758 pte_val(entry) |= _PAGE_DIRTY;
759 pte_val(entry) &= ~_PAGE_PROTECT;
761 *ptep = entry;
765 * struct gmap_struct - guest address space
766 * @mm: pointer to the parent mm_struct
767 * @table: pointer to the page directory
768 * @asce: address space control element for gmap page table
769 * @crst_list: list of all crst tables used in the guest address space
771 struct gmap {
772 struct list_head list;
773 struct mm_struct *mm;
774 unsigned long *table;
775 unsigned long asce;
776 void *private;
777 struct list_head crst_list;
781 * struct gmap_rmap - reverse mapping for segment table entries
782 * @gmap: pointer to the gmap_struct
783 * @entry: pointer to a segment table entry
784 * @vmaddr: virtual address in the guest address space
786 struct gmap_rmap {
787 struct list_head list;
788 struct gmap *gmap;
789 unsigned long *entry;
790 unsigned long vmaddr;
794 * struct gmap_pgtable - gmap information attached to a page table
795 * @vmaddr: address of the 1MB segment in the process virtual memory
796 * @mapper: list of segment table entries mapping a page table
798 struct gmap_pgtable {
799 unsigned long vmaddr;
800 struct list_head mapper;
804 * struct gmap_notifier - notify function block for page invalidation
805 * @notifier_call: address of callback function
807 struct gmap_notifier {
808 struct list_head list;
809 void (*notifier_call)(struct gmap *gmap, unsigned long address);
812 struct gmap *gmap_alloc(struct mm_struct *mm);
813 void gmap_free(struct gmap *gmap);
814 void gmap_enable(struct gmap *gmap);
815 void gmap_disable(struct gmap *gmap);
816 int gmap_map_segment(struct gmap *gmap, unsigned long from,
817 unsigned long to, unsigned long len);
818 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
819 unsigned long __gmap_translate(unsigned long address, struct gmap *);
820 unsigned long gmap_translate(unsigned long address, struct gmap *);
821 unsigned long __gmap_fault(unsigned long address, struct gmap *);
822 unsigned long gmap_fault(unsigned long address, struct gmap *);
823 void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
825 void gmap_register_ipte_notifier(struct gmap_notifier *);
826 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
827 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
828 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
830 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
831 unsigned long addr,
832 pte_t *ptep, pgste_t pgste)
834 #ifdef CONFIG_PGSTE
835 if (pgste_val(pgste) & PGSTE_IN_BIT) {
836 pgste_val(pgste) &= ~PGSTE_IN_BIT;
837 gmap_do_ipte_notify(mm, addr, ptep);
839 #endif
840 return pgste;
844 * Certain architectures need to do special things when PTEs
845 * within a page table are directly modified. Thus, the following
846 * hook is made available.
848 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
849 pte_t *ptep, pte_t entry)
851 pgste_t pgste;
853 if (mm_has_pgste(mm)) {
854 pgste = pgste_get_lock(ptep);
855 pgste_set_key(ptep, pgste, entry);
856 pgste_set_pte(ptep, entry);
857 pgste_set_unlock(ptep, pgste);
858 } else {
859 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
860 pte_val(entry) |= _PAGE_CO;
861 *ptep = entry;
866 * query functions pte_write/pte_dirty/pte_young only work if
867 * pte_present() is true. Undefined behaviour if not..
869 static inline int pte_write(pte_t pte)
871 return (pte_val(pte) & _PAGE_WRITE) != 0;
874 static inline int pte_dirty(pte_t pte)
876 return (pte_val(pte) & _PAGE_DIRTY) != 0;
879 static inline int pte_young(pte_t pte)
881 return (pte_val(pte) & _PAGE_YOUNG) != 0;
885 * pgd/pmd/pte modification functions
888 static inline void pgd_clear(pgd_t *pgd)
890 #ifdef CONFIG_64BIT
891 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
892 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
893 #endif
896 static inline void pud_clear(pud_t *pud)
898 #ifdef CONFIG_64BIT
899 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
900 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
901 #endif
904 static inline void pmd_clear(pmd_t *pmdp)
906 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
909 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
911 pte_val(*ptep) = _PAGE_INVALID;
915 * The following pte modification functions only work if
916 * pte_present() is true. Undefined behaviour if not..
918 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
920 pte_val(pte) &= _PAGE_CHG_MASK;
921 pte_val(pte) |= pgprot_val(newprot);
923 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
924 * invalid bit set, clear it again for readable, young pages
926 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
927 pte_val(pte) &= ~_PAGE_INVALID;
929 * newprot for PAGE_READ and PAGE_WRITE has the page protection
930 * bit set, clear it again for writable, dirty pages
932 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
933 pte_val(pte) &= ~_PAGE_PROTECT;
934 return pte;
937 static inline pte_t pte_wrprotect(pte_t pte)
939 pte_val(pte) &= ~_PAGE_WRITE;
940 pte_val(pte) |= _PAGE_PROTECT;
941 return pte;
944 static inline pte_t pte_mkwrite(pte_t pte)
946 pte_val(pte) |= _PAGE_WRITE;
947 if (pte_val(pte) & _PAGE_DIRTY)
948 pte_val(pte) &= ~_PAGE_PROTECT;
949 return pte;
952 static inline pte_t pte_mkclean(pte_t pte)
954 pte_val(pte) &= ~_PAGE_DIRTY;
955 pte_val(pte) |= _PAGE_PROTECT;
956 return pte;
959 static inline pte_t pte_mkdirty(pte_t pte)
961 pte_val(pte) |= _PAGE_DIRTY;
962 if (pte_val(pte) & _PAGE_WRITE)
963 pte_val(pte) &= ~_PAGE_PROTECT;
964 return pte;
967 static inline pte_t pte_mkold(pte_t pte)
969 pte_val(pte) &= ~_PAGE_YOUNG;
970 pte_val(pte) |= _PAGE_INVALID;
971 return pte;
974 static inline pte_t pte_mkyoung(pte_t pte)
976 pte_val(pte) |= _PAGE_YOUNG;
977 if (pte_val(pte) & _PAGE_READ)
978 pte_val(pte) &= ~_PAGE_INVALID;
979 return pte;
982 static inline pte_t pte_mkspecial(pte_t pte)
984 pte_val(pte) |= _PAGE_SPECIAL;
985 return pte;
988 #ifdef CONFIG_HUGETLB_PAGE
989 static inline pte_t pte_mkhuge(pte_t pte)
991 pte_val(pte) |= _PAGE_LARGE;
992 return pte;
994 #endif
997 * Get (and clear) the user dirty bit for a pte.
999 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1000 pte_t *ptep)
1002 pgste_t pgste;
1003 int dirty = 0;
1005 if (mm_has_pgste(mm)) {
1006 pgste = pgste_get_lock(ptep);
1007 pgste = pgste_update_all(ptep, pgste);
1008 dirty = !!(pgste_val(pgste) & PGSTE_HC_BIT);
1009 pgste_val(pgste) &= ~PGSTE_HC_BIT;
1010 pgste_set_unlock(ptep, pgste);
1011 return dirty;
1013 return dirty;
1017 * Get (and clear) the user referenced bit for a pte.
1019 static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
1020 pte_t *ptep)
1022 pgste_t pgste;
1023 int young = 0;
1025 if (mm_has_pgste(mm)) {
1026 pgste = pgste_get_lock(ptep);
1027 pgste = pgste_update_young(ptep, pgste);
1028 young = !!(pgste_val(pgste) & PGSTE_HR_BIT);
1029 pgste_val(pgste) &= ~PGSTE_HR_BIT;
1030 pgste_set_unlock(ptep, pgste);
1032 return young;
1035 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1037 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1038 #ifndef CONFIG_64BIT
1039 /* pto must point to the start of the segment table */
1040 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
1041 #else
1042 /* ipte in zarch mode can do the math */
1043 pte_t *pto = ptep;
1044 #endif
1045 asm volatile(
1046 " ipte %2,%3"
1047 : "=m" (*ptep) : "m" (*ptep),
1048 "a" (pto), "a" (address));
1052 static inline void ptep_flush_lazy(struct mm_struct *mm,
1053 unsigned long address, pte_t *ptep)
1055 int active = (mm == current->active_mm) ? 1 : 0;
1057 if (atomic_read(&mm->context.attach_count) > active)
1058 __ptep_ipte(address, ptep);
1059 else
1060 mm->context.flush_mm = 1;
1063 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1064 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1065 unsigned long addr, pte_t *ptep)
1067 pgste_t pgste;
1068 pte_t pte;
1069 int young;
1071 if (mm_has_pgste(vma->vm_mm)) {
1072 pgste = pgste_get_lock(ptep);
1073 pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1076 pte = *ptep;
1077 __ptep_ipte(addr, ptep);
1078 young = pte_young(pte);
1079 pte = pte_mkold(pte);
1081 if (mm_has_pgste(vma->vm_mm)) {
1082 pgste_set_pte(ptep, pte);
1083 pgste_set_unlock(ptep, pgste);
1084 } else
1085 *ptep = pte;
1087 return young;
1090 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1091 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1092 unsigned long address, pte_t *ptep)
1094 return ptep_test_and_clear_young(vma, address, ptep);
1098 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1099 * both clear the TLB for the unmapped pte. The reason is that
1100 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1101 * to modify an active pte. The sequence is
1102 * 1) ptep_get_and_clear
1103 * 2) set_pte_at
1104 * 3) flush_tlb_range
1105 * On s390 the tlb needs to get flushed with the modification of the pte
1106 * if the pte is active. The only way how this can be implemented is to
1107 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1108 * is a nop.
1110 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1111 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1112 unsigned long address, pte_t *ptep)
1114 pgste_t pgste;
1115 pte_t pte;
1117 if (mm_has_pgste(mm)) {
1118 pgste = pgste_get_lock(ptep);
1119 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1122 pte = *ptep;
1123 ptep_flush_lazy(mm, address, ptep);
1124 pte_val(*ptep) = _PAGE_INVALID;
1126 if (mm_has_pgste(mm)) {
1127 pgste = pgste_update_all(&pte, pgste);
1128 pgste_set_unlock(ptep, pgste);
1130 return pte;
1133 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1134 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1135 unsigned long address,
1136 pte_t *ptep)
1138 pgste_t pgste;
1139 pte_t pte;
1141 if (mm_has_pgste(mm)) {
1142 pgste = pgste_get_lock(ptep);
1143 pgste_ipte_notify(mm, address, ptep, pgste);
1146 pte = *ptep;
1147 ptep_flush_lazy(mm, address, ptep);
1148 pte_val(*ptep) |= _PAGE_INVALID;
1150 if (mm_has_pgste(mm)) {
1151 pgste = pgste_update_all(&pte, pgste);
1152 pgste_set(ptep, pgste);
1154 return pte;
1157 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1158 unsigned long address,
1159 pte_t *ptep, pte_t pte)
1161 pgste_t pgste;
1163 if (mm_has_pgste(mm)) {
1164 pgste = pgste_get(ptep);
1165 pgste_set_key(ptep, pgste, pte);
1166 pgste_set_pte(ptep, pte);
1167 pgste_set_unlock(ptep, pgste);
1168 } else
1169 *ptep = pte;
1172 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1173 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1174 unsigned long address, pte_t *ptep)
1176 pgste_t pgste;
1177 pte_t pte;
1179 if (mm_has_pgste(vma->vm_mm)) {
1180 pgste = pgste_get_lock(ptep);
1181 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1184 pte = *ptep;
1185 __ptep_ipte(address, ptep);
1186 pte_val(*ptep) = _PAGE_INVALID;
1188 if (mm_has_pgste(vma->vm_mm)) {
1189 pgste = pgste_update_all(&pte, pgste);
1190 pgste_set_unlock(ptep, pgste);
1192 return pte;
1196 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1197 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1198 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1199 * cannot be accessed while the batched unmap is running. In this case
1200 * full==1 and a simple pte_clear is enough. See tlb.h.
1202 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1203 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1204 unsigned long address,
1205 pte_t *ptep, int full)
1207 pgste_t pgste;
1208 pte_t pte;
1210 if (!full && mm_has_pgste(mm)) {
1211 pgste = pgste_get_lock(ptep);
1212 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1215 pte = *ptep;
1216 if (!full)
1217 ptep_flush_lazy(mm, address, ptep);
1218 pte_val(*ptep) = _PAGE_INVALID;
1220 if (!full && mm_has_pgste(mm)) {
1221 pgste = pgste_update_all(&pte, pgste);
1222 pgste_set_unlock(ptep, pgste);
1224 return pte;
1227 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1228 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1229 unsigned long address, pte_t *ptep)
1231 pgste_t pgste;
1232 pte_t pte = *ptep;
1234 if (pte_write(pte)) {
1235 if (mm_has_pgste(mm)) {
1236 pgste = pgste_get_lock(ptep);
1237 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1240 ptep_flush_lazy(mm, address, ptep);
1241 pte = pte_wrprotect(pte);
1243 if (mm_has_pgste(mm)) {
1244 pgste_set_pte(ptep, pte);
1245 pgste_set_unlock(ptep, pgste);
1246 } else
1247 *ptep = pte;
1249 return pte;
1252 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1253 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1254 unsigned long address, pte_t *ptep,
1255 pte_t entry, int dirty)
1257 pgste_t pgste;
1259 if (pte_same(*ptep, entry))
1260 return 0;
1261 if (mm_has_pgste(vma->vm_mm)) {
1262 pgste = pgste_get_lock(ptep);
1263 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1266 __ptep_ipte(address, ptep);
1268 if (mm_has_pgste(vma->vm_mm)) {
1269 pgste_set_pte(ptep, entry);
1270 pgste_set_unlock(ptep, pgste);
1271 } else
1272 *ptep = entry;
1273 return 1;
1277 * Conversion functions: convert a page and protection to a page entry,
1278 * and a page entry and page directory to the page they refer to.
1280 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1282 pte_t __pte;
1283 pte_val(__pte) = physpage + pgprot_val(pgprot);
1284 return pte_mkyoung(__pte);
1287 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1289 unsigned long physpage = page_to_phys(page);
1290 pte_t __pte = mk_pte_phys(physpage, pgprot);
1292 if (pte_write(__pte) && PageDirty(page))
1293 __pte = pte_mkdirty(__pte);
1294 return __pte;
1297 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1298 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1299 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1300 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1302 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1303 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1305 #ifndef CONFIG_64BIT
1307 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1308 #define pud_deref(pmd) ({ BUG(); 0UL; })
1309 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1311 #define pud_offset(pgd, address) ((pud_t *) pgd)
1312 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1314 #else /* CONFIG_64BIT */
1316 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1317 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1318 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1320 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1322 pud_t *pud = (pud_t *) pgd;
1323 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1324 pud = (pud_t *) pgd_deref(*pgd);
1325 return pud + pud_index(address);
1328 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1330 pmd_t *pmd = (pmd_t *) pud;
1331 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1332 pmd = (pmd_t *) pud_deref(*pud);
1333 return pmd + pmd_index(address);
1336 #endif /* CONFIG_64BIT */
1338 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1339 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1340 #define pte_page(x) pfn_to_page(pte_pfn(x))
1342 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1344 /* Find an entry in the lowest level page table.. */
1345 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1346 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1347 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1348 #define pte_unmap(pte) do { } while (0)
1350 static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
1352 unsigned long sto = (unsigned long) pmdp -
1353 pmd_index(address) * sizeof(pmd_t);
1355 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)) {
1356 asm volatile(
1357 " .insn rrf,0xb98e0000,%2,%3,0,0"
1358 : "=m" (*pmdp)
1359 : "m" (*pmdp), "a" (sto),
1360 "a" ((address & HPAGE_MASK))
1361 : "cc"
1366 static inline void __pmd_csp(pmd_t *pmdp)
1368 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1369 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1370 _SEGMENT_ENTRY_INVALID;
1371 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1373 asm volatile(
1374 " csp %1,%3"
1375 : "=m" (*pmdp)
1376 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1379 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1380 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1383 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1384 * Convert to segment table entry format.
1386 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1387 return pgprot_val(SEGMENT_NONE);
1388 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1389 return pgprot_val(SEGMENT_READ);
1390 return pgprot_val(SEGMENT_WRITE);
1393 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1395 #ifdef CONFIG_64BIT
1396 if (pmd_prot_none(pmd)) {
1397 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1398 } else {
1399 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1400 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1402 #endif
1403 return pmd;
1406 static inline pmd_t pmd_mkold(pmd_t pmd)
1408 #ifdef CONFIG_64BIT
1409 if (pmd_prot_none(pmd)) {
1410 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1411 } else {
1412 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1413 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1415 #endif
1416 return pmd;
1419 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1421 int young;
1423 young = pmd_young(pmd);
1424 pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1425 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1426 if (young)
1427 pmd = pmd_mkyoung(pmd);
1428 return pmd;
1431 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1433 pmd_t __pmd;
1434 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1435 return pmd_mkyoung(__pmd);
1438 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1440 /* Do not clobber PROT_NONE segments! */
1441 if (!pmd_prot_none(pmd))
1442 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1443 return pmd;
1445 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1447 static inline void pmdp_flush_lazy(struct mm_struct *mm,
1448 unsigned long address, pmd_t *pmdp)
1450 int active = (mm == current->active_mm) ? 1 : 0;
1452 if ((atomic_read(&mm->context.attach_count) & 0xffff) > active)
1453 __pmd_idte(address, pmdp);
1454 else
1455 mm->context.flush_mm = 1;
1458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1460 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1461 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1462 pgtable_t pgtable);
1464 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1465 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1467 static inline int pmd_trans_splitting(pmd_t pmd)
1469 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1472 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1473 pmd_t *pmdp, pmd_t entry)
1475 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INVALID) && MACHINE_HAS_EDAT1)
1476 pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1477 *pmdp = entry;
1480 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1482 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1483 return pmd;
1486 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1488 /* Do not clobber PROT_NONE segments! */
1489 if (!pmd_prot_none(pmd))
1490 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1491 return pmd;
1494 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1496 /* No dirty bit in the segment table entry. */
1497 return pmd;
1500 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1501 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1502 unsigned long address, pmd_t *pmdp)
1504 pmd_t pmd;
1506 pmd = *pmdp;
1507 __pmd_idte(address, pmdp);
1508 *pmdp = pmd_mkold(pmd);
1509 return pmd_young(pmd);
1512 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1513 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1514 unsigned long address, pmd_t *pmdp)
1516 pmd_t pmd = *pmdp;
1518 __pmd_idte(address, pmdp);
1519 pmd_clear(pmdp);
1520 return pmd;
1523 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1524 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1525 unsigned long address, pmd_t *pmdp)
1527 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1530 #define __HAVE_ARCH_PMDP_INVALIDATE
1531 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1532 unsigned long address, pmd_t *pmdp)
1534 __pmd_idte(address, pmdp);
1537 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1538 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1539 unsigned long address, pmd_t *pmdp)
1541 pmd_t pmd = *pmdp;
1543 if (pmd_write(pmd)) {
1544 __pmd_idte(address, pmdp);
1545 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1549 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1550 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1552 static inline int pmd_trans_huge(pmd_t pmd)
1554 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1557 static inline int has_transparent_hugepage(void)
1559 return MACHINE_HAS_HPAGE ? 1 : 0;
1562 static inline unsigned long pmd_pfn(pmd_t pmd)
1564 return pmd_val(pmd) >> PAGE_SHIFT;
1566 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1569 * 31 bit swap entry format:
1570 * A page-table entry has some bits we have to treat in a special way.
1571 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1572 * exception will occur instead of a page translation exception. The
1573 * specifiation exception has the bad habit not to store necessary
1574 * information in the lowcore.
1575 * Bits 21, 22, 30 and 31 are used to indicate the page type.
1576 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1577 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1578 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1579 * plus 24 for the offset.
1580 * 0| offset |0110|o|type |00|
1581 * 0 0000000001111111111 2222 2 22222 33
1582 * 0 1234567890123456789 0123 4 56789 01
1584 * 64 bit swap entry format:
1585 * A page-table entry has some bits we have to treat in a special way.
1586 * Bits 52 and bit 55 have to be zero, otherwise an specification
1587 * exception will occur instead of a page translation exception. The
1588 * specifiation exception has the bad habit not to store necessary
1589 * information in the lowcore.
1590 * Bits 53, 54, 62 and 63 are used to indicate the page type.
1591 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1592 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1593 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1594 * plus 56 for the offset.
1595 * | offset |0110|o|type |00|
1596 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1597 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1599 #ifndef CONFIG_64BIT
1600 #define __SWP_OFFSET_MASK (~0UL >> 12)
1601 #else
1602 #define __SWP_OFFSET_MASK (~0UL >> 11)
1603 #endif
1604 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1606 pte_t pte;
1607 offset &= __SWP_OFFSET_MASK;
1608 pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1609 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1610 return pte;
1613 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1614 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1615 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1617 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1618 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1620 #ifndef CONFIG_64BIT
1621 # define PTE_FILE_MAX_BITS 26
1622 #else /* CONFIG_64BIT */
1623 # define PTE_FILE_MAX_BITS 59
1624 #endif /* CONFIG_64BIT */
1626 #define pte_to_pgoff(__pte) \
1627 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1629 #define pgoff_to_pte(__off) \
1630 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1631 | _PAGE_INVALID | _PAGE_PROTECT })
1633 #endif /* !__ASSEMBLY__ */
1635 #define kern_addr_valid(addr) (1)
1637 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1638 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1639 extern int s390_enable_sie(void);
1642 * No page table caches to initialise
1644 static inline void pgtable_cache_init(void) { }
1645 static inline void check_pgt_cache(void) { }
1647 #include <asm-generic/pgtable.h>
1649 #endif /* _S390_PAGE_H */