x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / sparc / kernel / smp_64.c
blob643bf38ed619cc1175664cf0ebae47fcc9503ba3
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
54 #include "cpumap.h"
56 int sparc64_multi_core __read_mostly;
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
65 static cpumask_t smp_commenced_mask;
67 void smp_info(struct seq_file *m)
69 int i;
71 seq_printf(m, "State:\n");
72 for_each_online_cpu(i)
73 seq_printf(m, "CPU%d:\t\tonline\n", i);
76 void smp_bogo(struct seq_file *m)
78 int i;
80 for_each_online_cpu(i)
81 seq_printf(m,
82 "Cpu%dClkTck\t: %016lx\n",
83 i, cpu_data(i).clock_tick);
86 extern void setup_sparc64_timer(void);
88 static volatile unsigned long callin_flag = 0;
90 void smp_callin(void)
92 int cpuid = hard_smp_processor_id();
94 __local_per_cpu_offset = __per_cpu_offset(cpuid);
96 if (tlb_type == hypervisor)
97 sun4v_ktsb_register();
99 __flush_tlb_all();
101 setup_sparc64_timer();
103 if (cheetah_pcache_forced_on)
104 cheetah_enable_pcache();
106 callin_flag = 1;
107 __asm__ __volatile__("membar #Sync\n\t"
108 "flush %%g6" : : : "memory");
110 /* Clear this or we will die instantly when we
111 * schedule back to this idler...
113 current_thread_info()->new_child = 0;
115 /* Attach to the address space of init_task. */
116 atomic_inc(&init_mm.mm_count);
117 current->active_mm = &init_mm;
119 /* inform the notifiers about the new cpu */
120 notify_cpu_starting(cpuid);
122 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123 rmb();
125 set_cpu_online(cpuid, true);
126 local_irq_enable();
128 /* idle thread is expected to have preempt disabled */
129 preempt_disable();
131 cpu_startup_entry(CPUHP_ONLINE);
134 void cpu_panic(void)
136 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
137 panic("SMP bolixed\n");
140 /* This tick register synchronization scheme is taken entirely from
141 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
143 * The only change I've made is to rework it so that the master
144 * initiates the synchonization instead of the slave. -DaveM
147 #define MASTER 0
148 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
150 #define NUM_ROUNDS 64 /* magic value */
151 #define NUM_ITERS 5 /* likewise */
153 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
154 static unsigned long go[SLAVE + 1];
156 #define DEBUG_TICK_SYNC 0
158 static inline long get_delta (long *rt, long *master)
160 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
161 unsigned long tcenter, t0, t1, tm;
162 unsigned long i;
164 for (i = 0; i < NUM_ITERS; i++) {
165 t0 = tick_ops->get_tick();
166 go[MASTER] = 1;
167 membar_safe("#StoreLoad");
168 while (!(tm = go[SLAVE]))
169 rmb();
170 go[SLAVE] = 0;
171 wmb();
172 t1 = tick_ops->get_tick();
174 if (t1 - t0 < best_t1 - best_t0)
175 best_t0 = t0, best_t1 = t1, best_tm = tm;
178 *rt = best_t1 - best_t0;
179 *master = best_tm - best_t0;
181 /* average best_t0 and best_t1 without overflow: */
182 tcenter = (best_t0/2 + best_t1/2);
183 if (best_t0 % 2 + best_t1 % 2 == 2)
184 tcenter++;
185 return tcenter - best_tm;
188 void smp_synchronize_tick_client(void)
190 long i, delta, adj, adjust_latency = 0, done = 0;
191 unsigned long flags, rt, master_time_stamp;
192 #if DEBUG_TICK_SYNC
193 struct {
194 long rt; /* roundtrip time */
195 long master; /* master's timestamp */
196 long diff; /* difference between midpoint and master's timestamp */
197 long lat; /* estimate of itc adjustment latency */
198 } t[NUM_ROUNDS];
199 #endif
201 go[MASTER] = 1;
203 while (go[MASTER])
204 rmb();
206 local_irq_save(flags);
208 for (i = 0; i < NUM_ROUNDS; i++) {
209 delta = get_delta(&rt, &master_time_stamp);
210 if (delta == 0)
211 done = 1; /* let's lock on to this... */
213 if (!done) {
214 if (i > 0) {
215 adjust_latency += -delta;
216 adj = -delta + adjust_latency/4;
217 } else
218 adj = -delta;
220 tick_ops->add_tick(adj);
222 #if DEBUG_TICK_SYNC
223 t[i].rt = rt;
224 t[i].master = master_time_stamp;
225 t[i].diff = delta;
226 t[i].lat = adjust_latency/4;
227 #endif
230 local_irq_restore(flags);
232 #if DEBUG_TICK_SYNC
233 for (i = 0; i < NUM_ROUNDS; i++)
234 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
235 t[i].rt, t[i].master, t[i].diff, t[i].lat);
236 #endif
238 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
239 "(last diff %ld cycles, maxerr %lu cycles)\n",
240 smp_processor_id(), delta, rt);
243 static void smp_start_sync_tick_client(int cpu);
245 static void smp_synchronize_one_tick(int cpu)
247 unsigned long flags, i;
249 go[MASTER] = 0;
251 smp_start_sync_tick_client(cpu);
253 /* wait for client to be ready */
254 while (!go[MASTER])
255 rmb();
257 /* now let the client proceed into his loop */
258 go[MASTER] = 0;
259 membar_safe("#StoreLoad");
261 raw_spin_lock_irqsave(&itc_sync_lock, flags);
263 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
264 while (!go[MASTER])
265 rmb();
266 go[MASTER] = 0;
267 wmb();
268 go[SLAVE] = tick_ops->get_tick();
269 membar_safe("#StoreLoad");
272 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
275 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
276 /* XXX Put this in some common place. XXX */
277 static unsigned long kimage_addr_to_ra(void *p)
279 unsigned long val = (unsigned long) p;
281 return kern_base + (val - KERNBASE);
284 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
285 void **descrp)
287 extern unsigned long sparc64_ttable_tl0;
288 extern unsigned long kern_locked_tte_data;
289 struct hvtramp_descr *hdesc;
290 unsigned long trampoline_ra;
291 struct trap_per_cpu *tb;
292 u64 tte_vaddr, tte_data;
293 unsigned long hv_err;
294 int i;
296 hdesc = kzalloc(sizeof(*hdesc) +
297 (sizeof(struct hvtramp_mapping) *
298 num_kernel_image_mappings - 1),
299 GFP_KERNEL);
300 if (!hdesc) {
301 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
302 "hvtramp_descr.\n");
303 return;
305 *descrp = hdesc;
307 hdesc->cpu = cpu;
308 hdesc->num_mappings = num_kernel_image_mappings;
310 tb = &trap_block[cpu];
312 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
313 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
315 hdesc->thread_reg = thread_reg;
317 tte_vaddr = (unsigned long) KERNBASE;
318 tte_data = kern_locked_tte_data;
320 for (i = 0; i < hdesc->num_mappings; i++) {
321 hdesc->maps[i].vaddr = tte_vaddr;
322 hdesc->maps[i].tte = tte_data;
323 tte_vaddr += 0x400000;
324 tte_data += 0x400000;
327 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
329 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
330 kimage_addr_to_ra(&sparc64_ttable_tl0),
331 __pa(hdesc));
332 if (hv_err)
333 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
334 "gives error %lu\n", hv_err);
336 #endif
338 extern unsigned long sparc64_cpu_startup;
340 /* The OBP cpu startup callback truncates the 3rd arg cookie to
341 * 32-bits (I think) so to be safe we have it read the pointer
342 * contained here so we work on >4GB machines. -DaveM
344 static struct thread_info *cpu_new_thread = NULL;
346 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
348 unsigned long entry =
349 (unsigned long)(&sparc64_cpu_startup);
350 unsigned long cookie =
351 (unsigned long)(&cpu_new_thread);
352 void *descr = NULL;
353 int timeout, ret;
355 callin_flag = 0;
356 cpu_new_thread = task_thread_info(idle);
358 if (tlb_type == hypervisor) {
359 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
360 if (ldom_domaining_enabled)
361 ldom_startcpu_cpuid(cpu,
362 (unsigned long) cpu_new_thread,
363 &descr);
364 else
365 #endif
366 prom_startcpu_cpuid(cpu, entry, cookie);
367 } else {
368 struct device_node *dp = of_find_node_by_cpuid(cpu);
370 prom_startcpu(dp->phandle, entry, cookie);
373 for (timeout = 0; timeout < 50000; timeout++) {
374 if (callin_flag)
375 break;
376 udelay(100);
379 if (callin_flag) {
380 ret = 0;
381 } else {
382 printk("Processor %d is stuck.\n", cpu);
383 ret = -ENODEV;
385 cpu_new_thread = NULL;
387 kfree(descr);
389 return ret;
392 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
394 u64 result, target;
395 int stuck, tmp;
397 if (this_is_starfire) {
398 /* map to real upaid */
399 cpu = (((cpu & 0x3c) << 1) |
400 ((cpu & 0x40) >> 4) |
401 (cpu & 0x3));
404 target = (cpu << 14) | 0x70;
405 again:
406 /* Ok, this is the real Spitfire Errata #54.
407 * One must read back from a UDB internal register
408 * after writes to the UDB interrupt dispatch, but
409 * before the membar Sync for that write.
410 * So we use the high UDB control register (ASI 0x7f,
411 * ADDR 0x20) for the dummy read. -DaveM
413 tmp = 0x40;
414 __asm__ __volatile__(
415 "wrpr %1, %2, %%pstate\n\t"
416 "stxa %4, [%0] %3\n\t"
417 "stxa %5, [%0+%8] %3\n\t"
418 "add %0, %8, %0\n\t"
419 "stxa %6, [%0+%8] %3\n\t"
420 "membar #Sync\n\t"
421 "stxa %%g0, [%7] %3\n\t"
422 "membar #Sync\n\t"
423 "mov 0x20, %%g1\n\t"
424 "ldxa [%%g1] 0x7f, %%g0\n\t"
425 "membar #Sync"
426 : "=r" (tmp)
427 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
428 "r" (data0), "r" (data1), "r" (data2), "r" (target),
429 "r" (0x10), "0" (tmp)
430 : "g1");
432 /* NOTE: PSTATE_IE is still clear. */
433 stuck = 100000;
434 do {
435 __asm__ __volatile__("ldxa [%%g0] %1, %0"
436 : "=r" (result)
437 : "i" (ASI_INTR_DISPATCH_STAT));
438 if (result == 0) {
439 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
440 : : "r" (pstate));
441 return;
443 stuck -= 1;
444 if (stuck == 0)
445 break;
446 } while (result & 0x1);
447 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
448 : : "r" (pstate));
449 if (stuck == 0) {
450 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
451 smp_processor_id(), result);
452 } else {
453 udelay(2);
454 goto again;
458 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
460 u64 *mondo, data0, data1, data2;
461 u16 *cpu_list;
462 u64 pstate;
463 int i;
465 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
466 cpu_list = __va(tb->cpu_list_pa);
467 mondo = __va(tb->cpu_mondo_block_pa);
468 data0 = mondo[0];
469 data1 = mondo[1];
470 data2 = mondo[2];
471 for (i = 0; i < cnt; i++)
472 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
475 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
476 * packet, but we have no use for that. However we do take advantage of
477 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
479 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
481 int nack_busy_id, is_jbus, need_more;
482 u64 *mondo, pstate, ver, busy_mask;
483 u16 *cpu_list;
485 cpu_list = __va(tb->cpu_list_pa);
486 mondo = __va(tb->cpu_mondo_block_pa);
488 /* Unfortunately, someone at Sun had the brilliant idea to make the
489 * busy/nack fields hard-coded by ITID number for this Ultra-III
490 * derivative processor.
492 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
493 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
494 (ver >> 32) == __SERRANO_ID);
496 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
498 retry:
499 need_more = 0;
500 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
501 : : "r" (pstate), "i" (PSTATE_IE));
503 /* Setup the dispatch data registers. */
504 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
505 "stxa %1, [%4] %6\n\t"
506 "stxa %2, [%5] %6\n\t"
507 "membar #Sync\n\t"
508 : /* no outputs */
509 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
510 "r" (0x40), "r" (0x50), "r" (0x60),
511 "i" (ASI_INTR_W));
513 nack_busy_id = 0;
514 busy_mask = 0;
516 int i;
518 for (i = 0; i < cnt; i++) {
519 u64 target, nr;
521 nr = cpu_list[i];
522 if (nr == 0xffff)
523 continue;
525 target = (nr << 14) | 0x70;
526 if (is_jbus) {
527 busy_mask |= (0x1UL << (nr * 2));
528 } else {
529 target |= (nack_busy_id << 24);
530 busy_mask |= (0x1UL <<
531 (nack_busy_id * 2));
533 __asm__ __volatile__(
534 "stxa %%g0, [%0] %1\n\t"
535 "membar #Sync\n\t"
536 : /* no outputs */
537 : "r" (target), "i" (ASI_INTR_W));
538 nack_busy_id++;
539 if (nack_busy_id == 32) {
540 need_more = 1;
541 break;
546 /* Now, poll for completion. */
548 u64 dispatch_stat, nack_mask;
549 long stuck;
551 stuck = 100000 * nack_busy_id;
552 nack_mask = busy_mask << 1;
553 do {
554 __asm__ __volatile__("ldxa [%%g0] %1, %0"
555 : "=r" (dispatch_stat)
556 : "i" (ASI_INTR_DISPATCH_STAT));
557 if (!(dispatch_stat & (busy_mask | nack_mask))) {
558 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
559 : : "r" (pstate));
560 if (unlikely(need_more)) {
561 int i, this_cnt = 0;
562 for (i = 0; i < cnt; i++) {
563 if (cpu_list[i] == 0xffff)
564 continue;
565 cpu_list[i] = 0xffff;
566 this_cnt++;
567 if (this_cnt == 32)
568 break;
570 goto retry;
572 return;
574 if (!--stuck)
575 break;
576 } while (dispatch_stat & busy_mask);
578 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
579 : : "r" (pstate));
581 if (dispatch_stat & busy_mask) {
582 /* Busy bits will not clear, continue instead
583 * of freezing up on this cpu.
585 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
586 smp_processor_id(), dispatch_stat);
587 } else {
588 int i, this_busy_nack = 0;
590 /* Delay some random time with interrupts enabled
591 * to prevent deadlock.
593 udelay(2 * nack_busy_id);
595 /* Clear out the mask bits for cpus which did not
596 * NACK us.
598 for (i = 0; i < cnt; i++) {
599 u64 check_mask, nr;
601 nr = cpu_list[i];
602 if (nr == 0xffff)
603 continue;
605 if (is_jbus)
606 check_mask = (0x2UL << (2*nr));
607 else
608 check_mask = (0x2UL <<
609 this_busy_nack);
610 if ((dispatch_stat & check_mask) == 0)
611 cpu_list[i] = 0xffff;
612 this_busy_nack += 2;
613 if (this_busy_nack == 64)
614 break;
617 goto retry;
622 /* Multi-cpu list version. */
623 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
625 int retries, this_cpu, prev_sent, i, saw_cpu_error;
626 unsigned long status;
627 u16 *cpu_list;
629 this_cpu = smp_processor_id();
631 cpu_list = __va(tb->cpu_list_pa);
633 saw_cpu_error = 0;
634 retries = 0;
635 prev_sent = 0;
636 do {
637 int forward_progress, n_sent;
639 status = sun4v_cpu_mondo_send(cnt,
640 tb->cpu_list_pa,
641 tb->cpu_mondo_block_pa);
643 /* HV_EOK means all cpus received the xcall, we're done. */
644 if (likely(status == HV_EOK))
645 break;
647 /* First, see if we made any forward progress.
649 * The hypervisor indicates successful sends by setting
650 * cpu list entries to the value 0xffff.
652 n_sent = 0;
653 for (i = 0; i < cnt; i++) {
654 if (likely(cpu_list[i] == 0xffff))
655 n_sent++;
658 forward_progress = 0;
659 if (n_sent > prev_sent)
660 forward_progress = 1;
662 prev_sent = n_sent;
664 /* If we get a HV_ECPUERROR, then one or more of the cpus
665 * in the list are in error state. Use the cpu_state()
666 * hypervisor call to find out which cpus are in error state.
668 if (unlikely(status == HV_ECPUERROR)) {
669 for (i = 0; i < cnt; i++) {
670 long err;
671 u16 cpu;
673 cpu = cpu_list[i];
674 if (cpu == 0xffff)
675 continue;
677 err = sun4v_cpu_state(cpu);
678 if (err == HV_CPU_STATE_ERROR) {
679 saw_cpu_error = (cpu + 1);
680 cpu_list[i] = 0xffff;
683 } else if (unlikely(status != HV_EWOULDBLOCK))
684 goto fatal_mondo_error;
686 /* Don't bother rewriting the CPU list, just leave the
687 * 0xffff and non-0xffff entries in there and the
688 * hypervisor will do the right thing.
690 * Only advance timeout state if we didn't make any
691 * forward progress.
693 if (unlikely(!forward_progress)) {
694 if (unlikely(++retries > 10000))
695 goto fatal_mondo_timeout;
697 /* Delay a little bit to let other cpus catch up
698 * on their cpu mondo queue work.
700 udelay(2 * cnt);
702 } while (1);
704 if (unlikely(saw_cpu_error))
705 goto fatal_mondo_cpu_error;
707 return;
709 fatal_mondo_cpu_error:
710 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
711 "(including %d) were in error state\n",
712 this_cpu, saw_cpu_error - 1);
713 return;
715 fatal_mondo_timeout:
716 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
717 " progress after %d retries.\n",
718 this_cpu, retries);
719 goto dump_cpu_list_and_out;
721 fatal_mondo_error:
722 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
723 this_cpu, status);
724 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
725 "mondo_block_pa(%lx)\n",
726 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
728 dump_cpu_list_and_out:
729 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
730 for (i = 0; i < cnt; i++)
731 printk("%u ", cpu_list[i]);
732 printk("]\n");
735 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
737 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
739 struct trap_per_cpu *tb;
740 int this_cpu, i, cnt;
741 unsigned long flags;
742 u16 *cpu_list;
743 u64 *mondo;
745 /* We have to do this whole thing with interrupts fully disabled.
746 * Otherwise if we send an xcall from interrupt context it will
747 * corrupt both our mondo block and cpu list state.
749 * One consequence of this is that we cannot use timeout mechanisms
750 * that depend upon interrupts being delivered locally. So, for
751 * example, we cannot sample jiffies and expect it to advance.
753 * Fortunately, udelay() uses %stick/%tick so we can use that.
755 local_irq_save(flags);
757 this_cpu = smp_processor_id();
758 tb = &trap_block[this_cpu];
760 mondo = __va(tb->cpu_mondo_block_pa);
761 mondo[0] = data0;
762 mondo[1] = data1;
763 mondo[2] = data2;
764 wmb();
766 cpu_list = __va(tb->cpu_list_pa);
768 /* Setup the initial cpu list. */
769 cnt = 0;
770 for_each_cpu(i, mask) {
771 if (i == this_cpu || !cpu_online(i))
772 continue;
773 cpu_list[cnt++] = i;
776 if (cnt)
777 xcall_deliver_impl(tb, cnt);
779 local_irq_restore(flags);
782 /* Send cross call to all processors mentioned in MASK_P
783 * except self. Really, there are only two cases currently,
784 * "cpu_online_mask" and "mm_cpumask(mm)".
786 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
788 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
790 xcall_deliver(data0, data1, data2, mask);
793 /* Send cross call to all processors except self. */
794 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
796 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
799 extern unsigned long xcall_sync_tick;
801 static void smp_start_sync_tick_client(int cpu)
803 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
804 cpumask_of(cpu));
807 extern unsigned long xcall_call_function;
809 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
811 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
814 extern unsigned long xcall_call_function_single;
816 void arch_send_call_function_single_ipi(int cpu)
818 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
819 cpumask_of(cpu));
822 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
824 clear_softint(1 << irq);
825 generic_smp_call_function_interrupt();
828 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
830 clear_softint(1 << irq);
831 generic_smp_call_function_single_interrupt();
834 static void tsb_sync(void *info)
836 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
837 struct mm_struct *mm = info;
839 /* It is not valid to test "current->active_mm == mm" here.
841 * The value of "current" is not changed atomically with
842 * switch_mm(). But that's OK, we just need to check the
843 * current cpu's trap block PGD physical address.
845 if (tp->pgd_paddr == __pa(mm->pgd))
846 tsb_context_switch(mm);
849 void smp_tsb_sync(struct mm_struct *mm)
851 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
854 extern unsigned long xcall_flush_tlb_mm;
855 extern unsigned long xcall_flush_tlb_page;
856 extern unsigned long xcall_flush_tlb_kernel_range;
857 extern unsigned long xcall_fetch_glob_regs;
858 extern unsigned long xcall_fetch_glob_pmu;
859 extern unsigned long xcall_fetch_glob_pmu_n4;
860 extern unsigned long xcall_receive_signal;
861 extern unsigned long xcall_new_mmu_context_version;
862 #ifdef CONFIG_KGDB
863 extern unsigned long xcall_kgdb_capture;
864 #endif
866 #ifdef DCACHE_ALIASING_POSSIBLE
867 extern unsigned long xcall_flush_dcache_page_cheetah;
868 #endif
869 extern unsigned long xcall_flush_dcache_page_spitfire;
871 #ifdef CONFIG_DEBUG_DCFLUSH
872 extern atomic_t dcpage_flushes;
873 extern atomic_t dcpage_flushes_xcall;
874 #endif
876 static inline void __local_flush_dcache_page(struct page *page)
878 #ifdef DCACHE_ALIASING_POSSIBLE
879 __flush_dcache_page(page_address(page),
880 ((tlb_type == spitfire) &&
881 page_mapping(page) != NULL));
882 #else
883 if (page_mapping(page) != NULL &&
884 tlb_type == spitfire)
885 __flush_icache_page(__pa(page_address(page)));
886 #endif
889 void smp_flush_dcache_page_impl(struct page *page, int cpu)
891 int this_cpu;
893 if (tlb_type == hypervisor)
894 return;
896 #ifdef CONFIG_DEBUG_DCFLUSH
897 atomic_inc(&dcpage_flushes);
898 #endif
900 this_cpu = get_cpu();
902 if (cpu == this_cpu) {
903 __local_flush_dcache_page(page);
904 } else if (cpu_online(cpu)) {
905 void *pg_addr = page_address(page);
906 u64 data0 = 0;
908 if (tlb_type == spitfire) {
909 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
910 if (page_mapping(page) != NULL)
911 data0 |= ((u64)1 << 32);
912 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
913 #ifdef DCACHE_ALIASING_POSSIBLE
914 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
915 #endif
917 if (data0) {
918 xcall_deliver(data0, __pa(pg_addr),
919 (u64) pg_addr, cpumask_of(cpu));
920 #ifdef CONFIG_DEBUG_DCFLUSH
921 atomic_inc(&dcpage_flushes_xcall);
922 #endif
926 put_cpu();
929 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
931 void *pg_addr;
932 u64 data0;
934 if (tlb_type == hypervisor)
935 return;
937 preempt_disable();
939 #ifdef CONFIG_DEBUG_DCFLUSH
940 atomic_inc(&dcpage_flushes);
941 #endif
942 data0 = 0;
943 pg_addr = page_address(page);
944 if (tlb_type == spitfire) {
945 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
946 if (page_mapping(page) != NULL)
947 data0 |= ((u64)1 << 32);
948 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
949 #ifdef DCACHE_ALIASING_POSSIBLE
950 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
951 #endif
953 if (data0) {
954 xcall_deliver(data0, __pa(pg_addr),
955 (u64) pg_addr, cpu_online_mask);
956 #ifdef CONFIG_DEBUG_DCFLUSH
957 atomic_inc(&dcpage_flushes_xcall);
958 #endif
960 __local_flush_dcache_page(page);
962 preempt_enable();
965 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
967 struct mm_struct *mm;
968 unsigned long flags;
970 clear_softint(1 << irq);
972 /* See if we need to allocate a new TLB context because
973 * the version of the one we are using is now out of date.
975 mm = current->active_mm;
976 if (unlikely(!mm || (mm == &init_mm)))
977 return;
979 spin_lock_irqsave(&mm->context.lock, flags);
981 if (unlikely(!CTX_VALID(mm->context)))
982 get_new_mmu_context(mm);
984 spin_unlock_irqrestore(&mm->context.lock, flags);
986 load_secondary_context(mm);
987 __flush_tlb_mm(CTX_HWBITS(mm->context),
988 SECONDARY_CONTEXT);
991 void smp_new_mmu_context_version(void)
993 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
996 #ifdef CONFIG_KGDB
997 void kgdb_roundup_cpus(unsigned long flags)
999 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001 #endif
1003 void smp_fetch_global_regs(void)
1005 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1008 void smp_fetch_global_pmu(void)
1010 if (tlb_type == hypervisor &&
1011 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1012 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1013 else
1014 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1017 /* We know that the window frames of the user have been flushed
1018 * to the stack before we get here because all callers of us
1019 * are flush_tlb_*() routines, and these run after flush_cache_*()
1020 * which performs the flushw.
1022 * The SMP TLB coherency scheme we use works as follows:
1024 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1025 * space has (potentially) executed on, this is the heuristic
1026 * we use to avoid doing cross calls.
1028 * Also, for flushing from kswapd and also for clones, we
1029 * use cpu_vm_mask as the list of cpus to make run the TLB.
1031 * 2) TLB context numbers are shared globally across all processors
1032 * in the system, this allows us to play several games to avoid
1033 * cross calls.
1035 * One invariant is that when a cpu switches to a process, and
1036 * that processes tsk->active_mm->cpu_vm_mask does not have the
1037 * current cpu's bit set, that tlb context is flushed locally.
1039 * If the address space is non-shared (ie. mm->count == 1) we avoid
1040 * cross calls when we want to flush the currently running process's
1041 * tlb state. This is done by clearing all cpu bits except the current
1042 * processor's in current->mm->cpu_vm_mask and performing the
1043 * flush locally only. This will force any subsequent cpus which run
1044 * this task to flush the context from the local tlb if the process
1045 * migrates to another cpu (again).
1047 * 3) For shared address spaces (threads) and swapping we bite the
1048 * bullet for most cases and perform the cross call (but only to
1049 * the cpus listed in cpu_vm_mask).
1051 * The performance gain from "optimizing" away the cross call for threads is
1052 * questionable (in theory the big win for threads is the massive sharing of
1053 * address space state across processors).
1056 /* This currently is only used by the hugetlb arch pre-fault
1057 * hook on UltraSPARC-III+ and later when changing the pagesize
1058 * bits of the context register for an address space.
1060 void smp_flush_tlb_mm(struct mm_struct *mm)
1062 u32 ctx = CTX_HWBITS(mm->context);
1063 int cpu = get_cpu();
1065 if (atomic_read(&mm->mm_users) == 1) {
1066 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1067 goto local_flush_and_out;
1070 smp_cross_call_masked(&xcall_flush_tlb_mm,
1071 ctx, 0, 0,
1072 mm_cpumask(mm));
1074 local_flush_and_out:
1075 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1077 put_cpu();
1080 struct tlb_pending_info {
1081 unsigned long ctx;
1082 unsigned long nr;
1083 unsigned long *vaddrs;
1086 static void tlb_pending_func(void *info)
1088 struct tlb_pending_info *t = info;
1090 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1093 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095 u32 ctx = CTX_HWBITS(mm->context);
1096 struct tlb_pending_info info;
1097 int cpu = get_cpu();
1099 info.ctx = ctx;
1100 info.nr = nr;
1101 info.vaddrs = vaddrs;
1103 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1104 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1105 else
1106 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1107 &info, 1);
1109 __flush_tlb_pending(ctx, nr, vaddrs);
1111 put_cpu();
1114 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1116 unsigned long context = CTX_HWBITS(mm->context);
1117 int cpu = get_cpu();
1119 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1120 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1121 else
1122 smp_cross_call_masked(&xcall_flush_tlb_page,
1123 context, vaddr, 0,
1124 mm_cpumask(mm));
1125 __flush_tlb_page(context, vaddr);
1127 put_cpu();
1130 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1132 start &= PAGE_MASK;
1133 end = PAGE_ALIGN(end);
1134 if (start != end) {
1135 smp_cross_call(&xcall_flush_tlb_kernel_range,
1136 0, start, end);
1138 __flush_tlb_kernel_range(start, end);
1142 /* CPU capture. */
1143 /* #define CAPTURE_DEBUG */
1144 extern unsigned long xcall_capture;
1146 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1147 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1148 static unsigned long penguins_are_doing_time;
1150 void smp_capture(void)
1152 int result = atomic_add_ret(1, &smp_capture_depth);
1154 if (result == 1) {
1155 int ncpus = num_online_cpus();
1157 #ifdef CAPTURE_DEBUG
1158 printk("CPU[%d]: Sending penguins to jail...",
1159 smp_processor_id());
1160 #endif
1161 penguins_are_doing_time = 1;
1162 atomic_inc(&smp_capture_registry);
1163 smp_cross_call(&xcall_capture, 0, 0, 0);
1164 while (atomic_read(&smp_capture_registry) != ncpus)
1165 rmb();
1166 #ifdef CAPTURE_DEBUG
1167 printk("done\n");
1168 #endif
1172 void smp_release(void)
1174 if (atomic_dec_and_test(&smp_capture_depth)) {
1175 #ifdef CAPTURE_DEBUG
1176 printk("CPU[%d]: Giving pardon to "
1177 "imprisoned penguins\n",
1178 smp_processor_id());
1179 #endif
1180 penguins_are_doing_time = 0;
1181 membar_safe("#StoreLoad");
1182 atomic_dec(&smp_capture_registry);
1186 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1187 * set, so they can service tlb flush xcalls...
1189 extern void prom_world(int);
1191 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1193 clear_softint(1 << irq);
1195 preempt_disable();
1197 __asm__ __volatile__("flushw");
1198 prom_world(1);
1199 atomic_inc(&smp_capture_registry);
1200 membar_safe("#StoreLoad");
1201 while (penguins_are_doing_time)
1202 rmb();
1203 atomic_dec(&smp_capture_registry);
1204 prom_world(0);
1206 preempt_enable();
1209 /* /proc/profile writes can call this, don't __init it please. */
1210 int setup_profiling_timer(unsigned int multiplier)
1212 return -EINVAL;
1215 void __init smp_prepare_cpus(unsigned int max_cpus)
1219 void smp_prepare_boot_cpu(void)
1223 void __init smp_setup_processor_id(void)
1225 if (tlb_type == spitfire)
1226 xcall_deliver_impl = spitfire_xcall_deliver;
1227 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1228 xcall_deliver_impl = cheetah_xcall_deliver;
1229 else
1230 xcall_deliver_impl = hypervisor_xcall_deliver;
1233 void smp_fill_in_sib_core_maps(void)
1235 unsigned int i;
1237 for_each_present_cpu(i) {
1238 unsigned int j;
1240 cpumask_clear(&cpu_core_map[i]);
1241 if (cpu_data(i).core_id == 0) {
1242 cpumask_set_cpu(i, &cpu_core_map[i]);
1243 continue;
1246 for_each_present_cpu(j) {
1247 if (cpu_data(i).core_id ==
1248 cpu_data(j).core_id)
1249 cpumask_set_cpu(j, &cpu_core_map[i]);
1253 for_each_present_cpu(i) {
1254 unsigned int j;
1256 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1257 if (cpu_data(i).proc_id == -1) {
1258 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1259 continue;
1262 for_each_present_cpu(j) {
1263 if (cpu_data(i).proc_id ==
1264 cpu_data(j).proc_id)
1265 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1270 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1272 int ret = smp_boot_one_cpu(cpu, tidle);
1274 if (!ret) {
1275 cpumask_set_cpu(cpu, &smp_commenced_mask);
1276 while (!cpu_online(cpu))
1277 mb();
1278 if (!cpu_online(cpu)) {
1279 ret = -ENODEV;
1280 } else {
1281 /* On SUN4V, writes to %tick and %stick are
1282 * not allowed.
1284 if (tlb_type != hypervisor)
1285 smp_synchronize_one_tick(cpu);
1288 return ret;
1291 #ifdef CONFIG_HOTPLUG_CPU
1292 void cpu_play_dead(void)
1294 int cpu = smp_processor_id();
1295 unsigned long pstate;
1297 idle_task_exit();
1299 if (tlb_type == hypervisor) {
1300 struct trap_per_cpu *tb = &trap_block[cpu];
1302 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1303 tb->cpu_mondo_pa, 0);
1304 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1305 tb->dev_mondo_pa, 0);
1306 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1307 tb->resum_mondo_pa, 0);
1308 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1309 tb->nonresum_mondo_pa, 0);
1312 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1313 membar_safe("#Sync");
1315 local_irq_disable();
1317 __asm__ __volatile__(
1318 "rdpr %%pstate, %0\n\t"
1319 "wrpr %0, %1, %%pstate"
1320 : "=r" (pstate)
1321 : "i" (PSTATE_IE));
1323 while (1)
1324 barrier();
1327 int __cpu_disable(void)
1329 int cpu = smp_processor_id();
1330 cpuinfo_sparc *c;
1331 int i;
1333 for_each_cpu(i, &cpu_core_map[cpu])
1334 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1335 cpumask_clear(&cpu_core_map[cpu]);
1337 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1338 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1339 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1341 c = &cpu_data(cpu);
1343 c->core_id = 0;
1344 c->proc_id = -1;
1346 smp_wmb();
1348 /* Make sure no interrupts point to this cpu. */
1349 fixup_irqs();
1351 local_irq_enable();
1352 mdelay(1);
1353 local_irq_disable();
1355 set_cpu_online(cpu, false);
1357 cpu_map_rebuild();
1359 return 0;
1362 void __cpu_die(unsigned int cpu)
1364 int i;
1366 for (i = 0; i < 100; i++) {
1367 smp_rmb();
1368 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1369 break;
1370 msleep(100);
1372 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1373 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1374 } else {
1375 #if defined(CONFIG_SUN_LDOMS)
1376 unsigned long hv_err;
1377 int limit = 100;
1379 do {
1380 hv_err = sun4v_cpu_stop(cpu);
1381 if (hv_err == HV_EOK) {
1382 set_cpu_present(cpu, false);
1383 break;
1385 } while (--limit > 0);
1386 if (limit <= 0) {
1387 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1388 hv_err);
1390 #endif
1393 #endif
1395 void __init smp_cpus_done(unsigned int max_cpus)
1397 pcr_arch_init();
1400 void smp_send_reschedule(int cpu)
1402 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1403 cpumask_of(cpu));
1406 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1408 clear_softint(1 << irq);
1409 scheduler_ipi();
1412 /* This is a nop because we capture all other cpus
1413 * anyways when making the PROM active.
1415 void smp_send_stop(void)
1420 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1421 * @cpu: cpu to allocate for
1422 * @size: size allocation in bytes
1423 * @align: alignment
1425 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1426 * does the right thing for NUMA regardless of the current
1427 * configuration.
1429 * RETURNS:
1430 * Pointer to the allocated area on success, NULL on failure.
1432 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1433 size_t align)
1435 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1436 #ifdef CONFIG_NEED_MULTIPLE_NODES
1437 int node = cpu_to_node(cpu);
1438 void *ptr;
1440 if (!node_online(node) || !NODE_DATA(node)) {
1441 ptr = __alloc_bootmem(size, align, goal);
1442 pr_info("cpu %d has no node %d or node-local memory\n",
1443 cpu, node);
1444 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1445 cpu, size, __pa(ptr));
1446 } else {
1447 ptr = __alloc_bootmem_node(NODE_DATA(node),
1448 size, align, goal);
1449 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1450 "%016lx\n", cpu, size, node, __pa(ptr));
1452 return ptr;
1453 #else
1454 return __alloc_bootmem(size, align, goal);
1455 #endif
1458 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1460 free_bootmem(__pa(ptr), size);
1463 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1465 if (cpu_to_node(from) == cpu_to_node(to))
1466 return LOCAL_DISTANCE;
1467 else
1468 return REMOTE_DISTANCE;
1471 static void __init pcpu_populate_pte(unsigned long addr)
1473 pgd_t *pgd = pgd_offset_k(addr);
1474 pud_t *pud;
1475 pmd_t *pmd;
1477 pud = pud_offset(pgd, addr);
1478 if (pud_none(*pud)) {
1479 pmd_t *new;
1481 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1482 pud_populate(&init_mm, pud, new);
1485 pmd = pmd_offset(pud, addr);
1486 if (!pmd_present(*pmd)) {
1487 pte_t *new;
1489 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1490 pmd_populate_kernel(&init_mm, pmd, new);
1494 void __init setup_per_cpu_areas(void)
1496 unsigned long delta;
1497 unsigned int cpu;
1498 int rc = -EINVAL;
1500 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1501 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1502 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1503 pcpu_cpu_distance,
1504 pcpu_alloc_bootmem,
1505 pcpu_free_bootmem);
1506 if (rc)
1507 pr_warning("PERCPU: %s allocator failed (%d), "
1508 "falling back to page size\n",
1509 pcpu_fc_names[pcpu_chosen_fc], rc);
1511 if (rc < 0)
1512 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1513 pcpu_alloc_bootmem,
1514 pcpu_free_bootmem,
1515 pcpu_populate_pte);
1516 if (rc < 0)
1517 panic("cannot initialize percpu area (err=%d)", rc);
1519 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1520 for_each_possible_cpu(cpu)
1521 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1523 /* Setup %g5 for the boot cpu. */
1524 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1526 of_fill_in_cpu_data();
1527 if (tlb_type == hypervisor)
1528 mdesc_fill_in_cpu_data(cpu_all_mask);