x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / tile / kernel / single_step.c
blobde07fa7d1315e34c93bfa82d995c1393cadcf096
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * A code-rewriter that enables instruction single-stepping.
17 #include <linux/smp.h>
18 #include <linux/ptrace.h>
19 #include <linux/slab.h>
20 #include <linux/thread_info.h>
21 #include <linux/uaccess.h>
22 #include <linux/mman.h>
23 #include <linux/types.h>
24 #include <linux/err.h>
25 #include <linux/prctl.h>
26 #include <asm/cacheflush.h>
27 #include <asm/traps.h>
28 #include <asm/uaccess.h>
29 #include <asm/unaligned.h>
30 #include <arch/abi.h>
31 #include <arch/spr_def.h>
32 #include <arch/opcode.h>
35 #ifndef __tilegx__ /* Hardware support for single step unavailable. */
37 #define signExtend17(val) sign_extend((val), 17)
38 #define TILE_X1_MASK (0xffffffffULL << 31)
40 enum mem_op {
41 MEMOP_NONE,
42 MEMOP_LOAD,
43 MEMOP_STORE,
44 MEMOP_LOAD_POSTINCR,
45 MEMOP_STORE_POSTINCR
48 static inline tilepro_bundle_bits set_BrOff_X1(tilepro_bundle_bits n,
49 s32 offset)
51 tilepro_bundle_bits result;
53 /* mask out the old offset */
54 tilepro_bundle_bits mask = create_BrOff_X1(-1);
55 result = n & (~mask);
57 /* or in the new offset */
58 result |= create_BrOff_X1(offset);
60 return result;
63 static inline tilepro_bundle_bits move_X1(tilepro_bundle_bits n, int dest,
64 int src)
66 tilepro_bundle_bits result;
67 tilepro_bundle_bits op;
69 result = n & (~TILE_X1_MASK);
71 op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
72 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
73 create_Dest_X1(dest) |
74 create_SrcB_X1(TREG_ZERO) |
75 create_SrcA_X1(src) ;
77 result |= op;
78 return result;
81 static inline tilepro_bundle_bits nop_X1(tilepro_bundle_bits n)
83 return move_X1(n, TREG_ZERO, TREG_ZERO);
86 static inline tilepro_bundle_bits addi_X1(
87 tilepro_bundle_bits n, int dest, int src, int imm)
89 n &= ~TILE_X1_MASK;
91 n |= (create_SrcA_X1(src) |
92 create_Dest_X1(dest) |
93 create_Imm8_X1(imm) |
94 create_S_X1(0) |
95 create_Opcode_X1(IMM_0_OPCODE_X1) |
96 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
98 return n;
101 static tilepro_bundle_bits rewrite_load_store_unaligned(
102 struct single_step_state *state,
103 tilepro_bundle_bits bundle,
104 struct pt_regs *regs,
105 enum mem_op mem_op,
106 int size, int sign_ext)
108 unsigned char __user *addr;
109 int val_reg, addr_reg, err, val;
110 int align_ctl;
112 align_ctl = unaligned_fixup;
113 switch (task_thread_info(current)->align_ctl) {
114 case PR_UNALIGN_NOPRINT:
115 align_ctl = 1;
116 break;
117 case PR_UNALIGN_SIGBUS:
118 align_ctl = 0;
119 break;
122 /* Get address and value registers */
123 if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
124 addr_reg = get_SrcA_Y2(bundle);
125 val_reg = get_SrcBDest_Y2(bundle);
126 } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
127 addr_reg = get_SrcA_X1(bundle);
128 val_reg = get_Dest_X1(bundle);
129 } else {
130 addr_reg = get_SrcA_X1(bundle);
131 val_reg = get_SrcB_X1(bundle);
135 * If registers are not GPRs, don't try to handle it.
137 * FIXME: we could handle non-GPR loads by getting the real value
138 * from memory, writing it to the single step buffer, using a
139 * temp_reg to hold a pointer to that memory, then executing that
140 * instruction and resetting temp_reg. For non-GPR stores, it's a
141 * little trickier; we could use the single step buffer for that
142 * too, but we'd have to add some more state bits so that we could
143 * call back in here to copy that value to the real target. For
144 * now, we just handle the simple case.
146 if ((val_reg >= PTREGS_NR_GPRS &&
147 (val_reg != TREG_ZERO ||
148 mem_op == MEMOP_LOAD ||
149 mem_op == MEMOP_LOAD_POSTINCR)) ||
150 addr_reg >= PTREGS_NR_GPRS)
151 return bundle;
153 /* If it's aligned, don't handle it specially */
154 addr = (void __user *)regs->regs[addr_reg];
155 if (((unsigned long)addr % size) == 0)
156 return bundle;
159 * Return SIGBUS with the unaligned address, if requested.
160 * Note that we return SIGBUS even for completely invalid addresses
161 * as long as they are in fact unaligned; this matches what the
162 * tilepro hardware would be doing, if it could provide us with the
163 * actual bad address in an SPR, which it doesn't.
165 if (align_ctl == 0) {
166 siginfo_t info = {
167 .si_signo = SIGBUS,
168 .si_code = BUS_ADRALN,
169 .si_addr = addr
171 trace_unhandled_signal("unaligned trap", regs,
172 (unsigned long)addr, SIGBUS);
173 force_sig_info(info.si_signo, &info, current);
174 return (tilepro_bundle_bits) 0;
177 /* Handle unaligned load/store */
178 if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
179 unsigned short val_16;
180 switch (size) {
181 case 2:
182 err = copy_from_user(&val_16, addr, sizeof(val_16));
183 val = sign_ext ? ((short)val_16) : val_16;
184 break;
185 case 4:
186 err = copy_from_user(&val, addr, sizeof(val));
187 break;
188 default:
189 BUG();
191 if (err == 0) {
192 state->update_reg = val_reg;
193 state->update_value = val;
194 state->update = 1;
196 } else {
197 unsigned short val_16;
198 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
199 switch (size) {
200 case 2:
201 val_16 = val;
202 err = copy_to_user(addr, &val_16, sizeof(val_16));
203 break;
204 case 4:
205 err = copy_to_user(addr, &val, sizeof(val));
206 break;
207 default:
208 BUG();
212 if (err) {
213 siginfo_t info = {
214 .si_signo = SIGBUS,
215 .si_code = BUS_ADRALN,
216 .si_addr = addr
218 trace_unhandled_signal("bad address for unaligned fixup", regs,
219 (unsigned long)addr, SIGBUS);
220 force_sig_info(info.si_signo, &info, current);
221 return (tilepro_bundle_bits) 0;
224 if (unaligned_printk || unaligned_fixup_count == 0) {
225 pr_info("Process %d/%s: PC %#lx: Fixup of"
226 " unaligned %s at %#lx.\n",
227 current->pid, current->comm, regs->pc,
228 (mem_op == MEMOP_LOAD ||
229 mem_op == MEMOP_LOAD_POSTINCR) ?
230 "load" : "store",
231 (unsigned long)addr);
232 if (!unaligned_printk) {
233 #define P pr_info
234 P("\n");
235 P("Unaligned fixups in the kernel will slow your application considerably.\n");
236 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
237 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
238 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
239 P("access will become a SIGBUS you can debug. No further warnings will be\n");
240 P("shown so as to avoid additional slowdown, but you can track the number\n");
241 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
242 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
243 P("\n");
244 #undef P
247 ++unaligned_fixup_count;
249 if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
250 /* Convert the Y2 instruction to a prefetch. */
251 bundle &= ~(create_SrcBDest_Y2(-1) |
252 create_Opcode_Y2(-1));
253 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
254 create_Opcode_Y2(LW_OPCODE_Y2));
255 /* Replace the load postincr with an addi */
256 } else if (mem_op == MEMOP_LOAD_POSTINCR) {
257 bundle = addi_X1(bundle, addr_reg, addr_reg,
258 get_Imm8_X1(bundle));
259 /* Replace the store postincr with an addi */
260 } else if (mem_op == MEMOP_STORE_POSTINCR) {
261 bundle = addi_X1(bundle, addr_reg, addr_reg,
262 get_Dest_Imm8_X1(bundle));
263 } else {
264 /* Convert the X1 instruction to a nop. */
265 bundle &= ~(create_Opcode_X1(-1) |
266 create_UnShOpcodeExtension_X1(-1) |
267 create_UnOpcodeExtension_X1(-1));
268 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
269 create_UnShOpcodeExtension_X1(
270 UN_0_SHUN_0_OPCODE_X1) |
271 create_UnOpcodeExtension_X1(
272 NOP_UN_0_SHUN_0_OPCODE_X1));
275 return bundle;
279 * Called after execve() has started the new image. This allows us
280 * to reset the info state. Note that the the mmap'ed memory, if there
281 * was any, has already been unmapped by the exec.
283 void single_step_execve(void)
285 struct thread_info *ti = current_thread_info();
286 kfree(ti->step_state);
287 ti->step_state = NULL;
291 * single_step_once() - entry point when single stepping has been triggered.
292 * @regs: The machine register state
294 * When we arrive at this routine via a trampoline, the single step
295 * engine copies the executing bundle to the single step buffer.
296 * If the instruction is a condition branch, then the target is
297 * reset to one past the next instruction. If the instruction
298 * sets the lr, then that is noted. If the instruction is a jump
299 * or call, then the new target pc is preserved and the current
300 * bundle instruction set to null.
302 * The necessary post-single-step rewriting information is stored in
303 * single_step_state-> We use data segment values because the
304 * stack will be rewound when we run the rewritten single-stepped
305 * instruction.
307 void single_step_once(struct pt_regs *regs)
309 extern tilepro_bundle_bits __single_step_ill_insn;
310 extern tilepro_bundle_bits __single_step_j_insn;
311 extern tilepro_bundle_bits __single_step_addli_insn;
312 extern tilepro_bundle_bits __single_step_auli_insn;
313 struct thread_info *info = (void *)current_thread_info();
314 struct single_step_state *state = info->step_state;
315 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
316 tilepro_bundle_bits __user *buffer, *pc;
317 tilepro_bundle_bits bundle;
318 int temp_reg;
319 int target_reg = TREG_LR;
320 int err;
321 enum mem_op mem_op = MEMOP_NONE;
322 int size = 0, sign_ext = 0; /* happy compiler */
323 int align_ctl;
325 align_ctl = unaligned_fixup;
326 switch (task_thread_info(current)->align_ctl) {
327 case PR_UNALIGN_NOPRINT:
328 align_ctl = 1;
329 break;
330 case PR_UNALIGN_SIGBUS:
331 align_ctl = 0;
332 break;
335 asm(
336 " .pushsection .rodata.single_step\n"
337 " .align 8\n"
338 " .globl __single_step_ill_insn\n"
339 "__single_step_ill_insn:\n"
340 " ill\n"
341 " .globl __single_step_addli_insn\n"
342 "__single_step_addli_insn:\n"
343 " { nop; addli r0, zero, 0 }\n"
344 " .globl __single_step_auli_insn\n"
345 "__single_step_auli_insn:\n"
346 " { nop; auli r0, r0, 0 }\n"
347 " .globl __single_step_j_insn\n"
348 "__single_step_j_insn:\n"
349 " j .\n"
350 " .popsection\n"
354 * Enable interrupts here to allow touching userspace and the like.
355 * The callers expect this: do_trap() already has interrupts
356 * enabled, and do_work_pending() handles functions that enable
357 * interrupts internally.
359 local_irq_enable();
361 if (state == NULL) {
362 /* allocate a page of writable, executable memory */
363 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
364 if (state == NULL) {
365 pr_err("Out of kernel memory trying to single-step\n");
366 return;
369 /* allocate a cache line of writable, executable memory */
370 buffer = (void __user *) vm_mmap(NULL, 0, 64,
371 PROT_EXEC | PROT_READ | PROT_WRITE,
372 MAP_PRIVATE | MAP_ANONYMOUS,
375 if (IS_ERR((void __force *)buffer)) {
376 kfree(state);
377 pr_err("Out of kernel pages trying to single-step\n");
378 return;
381 state->buffer = buffer;
382 state->is_enabled = 0;
384 info->step_state = state;
386 /* Validate our stored instruction patterns */
387 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
388 ADDLI_OPCODE_X1);
389 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
390 AULI_OPCODE_X1);
391 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
392 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
393 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
397 * If we are returning from a syscall, we still haven't hit the
398 * "ill" for the swint1 instruction. So back the PC up to be
399 * pointing at the swint1, but we'll actually return directly
400 * back to the "ill" so we come back in via SIGILL as if we
401 * had "executed" the swint1 without ever being in kernel space.
403 if (regs->faultnum == INT_SWINT_1)
404 regs->pc -= 8;
406 pc = (tilepro_bundle_bits __user *)(regs->pc);
407 if (get_user(bundle, pc) != 0) {
408 pr_err("Couldn't read instruction at %p trying to step\n", pc);
409 return;
412 /* We'll follow the instruction with 2 ill op bundles */
413 state->orig_pc = (unsigned long)pc;
414 state->next_pc = (unsigned long)(pc + 1);
415 state->branch_next_pc = 0;
416 state->update = 0;
418 if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
419 /* two wide, check for control flow */
420 int opcode = get_Opcode_X1(bundle);
422 switch (opcode) {
423 /* branches */
424 case BRANCH_OPCODE_X1:
426 s32 offset = signExtend17(get_BrOff_X1(bundle));
429 * For branches, we use a rewriting trick to let the
430 * hardware evaluate whether the branch is taken or
431 * untaken. We record the target offset and then
432 * rewrite the branch instruction to target 1 insn
433 * ahead if the branch is taken. We then follow the
434 * rewritten branch with two bundles, each containing
435 * an "ill" instruction. The supervisor examines the
436 * pc after the single step code is executed, and if
437 * the pc is the first ill instruction, then the
438 * branch (if any) was not taken. If the pc is the
439 * second ill instruction, then the branch was
440 * taken. The new pc is computed for these cases, and
441 * inserted into the registers for the thread. If
442 * the pc is the start of the single step code, then
443 * an exception or interrupt was taken before the
444 * code started processing, and the same "original"
445 * pc is restored. This change, different from the
446 * original implementation, has the advantage of
447 * executing a single user instruction.
449 state->branch_next_pc = (unsigned long)(pc + offset);
451 /* rewrite branch offset to go forward one bundle */
452 bundle = set_BrOff_X1(bundle, 2);
454 break;
456 /* jumps */
457 case JALB_OPCODE_X1:
458 case JALF_OPCODE_X1:
459 state->update = 1;
460 state->next_pc =
461 (unsigned long) (pc + get_JOffLong_X1(bundle));
462 break;
464 case JB_OPCODE_X1:
465 case JF_OPCODE_X1:
466 state->next_pc =
467 (unsigned long) (pc + get_JOffLong_X1(bundle));
468 bundle = nop_X1(bundle);
469 break;
471 case SPECIAL_0_OPCODE_X1:
472 switch (get_RRROpcodeExtension_X1(bundle)) {
473 /* jump-register */
474 case JALRP_SPECIAL_0_OPCODE_X1:
475 case JALR_SPECIAL_0_OPCODE_X1:
476 state->update = 1;
477 state->next_pc =
478 regs->regs[get_SrcA_X1(bundle)];
479 break;
481 case JRP_SPECIAL_0_OPCODE_X1:
482 case JR_SPECIAL_0_OPCODE_X1:
483 state->next_pc =
484 regs->regs[get_SrcA_X1(bundle)];
485 bundle = nop_X1(bundle);
486 break;
488 case LNK_SPECIAL_0_OPCODE_X1:
489 state->update = 1;
490 target_reg = get_Dest_X1(bundle);
491 break;
493 /* stores */
494 case SH_SPECIAL_0_OPCODE_X1:
495 mem_op = MEMOP_STORE;
496 size = 2;
497 break;
499 case SW_SPECIAL_0_OPCODE_X1:
500 mem_op = MEMOP_STORE;
501 size = 4;
502 break;
504 break;
506 /* loads and iret */
507 case SHUN_0_OPCODE_X1:
508 if (get_UnShOpcodeExtension_X1(bundle) ==
509 UN_0_SHUN_0_OPCODE_X1) {
510 switch (get_UnOpcodeExtension_X1(bundle)) {
511 case LH_UN_0_SHUN_0_OPCODE_X1:
512 mem_op = MEMOP_LOAD;
513 size = 2;
514 sign_ext = 1;
515 break;
517 case LH_U_UN_0_SHUN_0_OPCODE_X1:
518 mem_op = MEMOP_LOAD;
519 size = 2;
520 sign_ext = 0;
521 break;
523 case LW_UN_0_SHUN_0_OPCODE_X1:
524 mem_op = MEMOP_LOAD;
525 size = 4;
526 break;
528 case IRET_UN_0_SHUN_0_OPCODE_X1:
530 unsigned long ex0_0 = __insn_mfspr(
531 SPR_EX_CONTEXT_0_0);
532 unsigned long ex0_1 = __insn_mfspr(
533 SPR_EX_CONTEXT_0_1);
535 * Special-case it if we're iret'ing
536 * to PL0 again. Otherwise just let
537 * it run and it will generate SIGILL.
539 if (EX1_PL(ex0_1) == USER_PL) {
540 state->next_pc = ex0_0;
541 regs->ex1 = ex0_1;
542 bundle = nop_X1(bundle);
547 break;
549 /* postincrement operations */
550 case IMM_0_OPCODE_X1:
551 switch (get_ImmOpcodeExtension_X1(bundle)) {
552 case LWADD_IMM_0_OPCODE_X1:
553 mem_op = MEMOP_LOAD_POSTINCR;
554 size = 4;
555 break;
557 case LHADD_IMM_0_OPCODE_X1:
558 mem_op = MEMOP_LOAD_POSTINCR;
559 size = 2;
560 sign_ext = 1;
561 break;
563 case LHADD_U_IMM_0_OPCODE_X1:
564 mem_op = MEMOP_LOAD_POSTINCR;
565 size = 2;
566 sign_ext = 0;
567 break;
569 case SWADD_IMM_0_OPCODE_X1:
570 mem_op = MEMOP_STORE_POSTINCR;
571 size = 4;
572 break;
574 case SHADD_IMM_0_OPCODE_X1:
575 mem_op = MEMOP_STORE_POSTINCR;
576 size = 2;
577 break;
579 default:
580 break;
582 break;
585 if (state->update) {
587 * Get an available register. We start with a
588 * bitmask with 1's for available registers.
589 * We truncate to the low 32 registers since
590 * we are guaranteed to have set bits in the
591 * low 32 bits, then use ctz to pick the first.
593 u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
594 (1ULL << get_SrcA_X0(bundle)) |
595 (1ULL << get_SrcB_X0(bundle)) |
596 (1ULL << target_reg));
597 temp_reg = __builtin_ctz(mask);
598 state->update_reg = temp_reg;
599 state->update_value = regs->regs[temp_reg];
600 regs->regs[temp_reg] = (unsigned long) (pc+1);
601 regs->flags |= PT_FLAGS_RESTORE_REGS;
602 bundle = move_X1(bundle, target_reg, temp_reg);
604 } else {
605 int opcode = get_Opcode_Y2(bundle);
607 switch (opcode) {
608 /* loads */
609 case LH_OPCODE_Y2:
610 mem_op = MEMOP_LOAD;
611 size = 2;
612 sign_ext = 1;
613 break;
615 case LH_U_OPCODE_Y2:
616 mem_op = MEMOP_LOAD;
617 size = 2;
618 sign_ext = 0;
619 break;
621 case LW_OPCODE_Y2:
622 mem_op = MEMOP_LOAD;
623 size = 4;
624 break;
626 /* stores */
627 case SH_OPCODE_Y2:
628 mem_op = MEMOP_STORE;
629 size = 2;
630 break;
632 case SW_OPCODE_Y2:
633 mem_op = MEMOP_STORE;
634 size = 4;
635 break;
640 * Check if we need to rewrite an unaligned load/store.
641 * Returning zero is a special value meaning we generated a signal.
643 if (mem_op != MEMOP_NONE && align_ctl >= 0) {
644 bundle = rewrite_load_store_unaligned(state, bundle, regs,
645 mem_op, size, sign_ext);
646 if (bundle == 0)
647 return;
650 /* write the bundle to our execution area */
651 buffer = state->buffer;
652 err = __put_user(bundle, buffer++);
655 * If we're really single-stepping, we take an INT_ILL after.
656 * If we're just handling an unaligned access, we can just
657 * jump directly back to where we were in user code.
659 if (is_single_step) {
660 err |= __put_user(__single_step_ill_insn, buffer++);
661 err |= __put_user(__single_step_ill_insn, buffer++);
662 } else {
663 long delta;
665 if (state->update) {
666 /* We have some state to update; do it inline */
667 int ha16;
668 bundle = __single_step_addli_insn;
669 bundle |= create_Dest_X1(state->update_reg);
670 bundle |= create_Imm16_X1(state->update_value);
671 err |= __put_user(bundle, buffer++);
672 bundle = __single_step_auli_insn;
673 bundle |= create_Dest_X1(state->update_reg);
674 bundle |= create_SrcA_X1(state->update_reg);
675 ha16 = (state->update_value + 0x8000) >> 16;
676 bundle |= create_Imm16_X1(ha16);
677 err |= __put_user(bundle, buffer++);
678 state->update = 0;
681 /* End with a jump back to the next instruction */
682 delta = ((regs->pc + TILEPRO_BUNDLE_SIZE_IN_BYTES) -
683 (unsigned long)buffer) >>
684 TILEPRO_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
685 bundle = __single_step_j_insn;
686 bundle |= create_JOffLong_X1(delta);
687 err |= __put_user(bundle, buffer++);
690 if (err) {
691 pr_err("Fault when writing to single-step buffer\n");
692 return;
696 * Flush the buffer.
697 * We do a local flush only, since this is a thread-specific buffer.
699 __flush_icache_range((unsigned long)state->buffer,
700 (unsigned long)buffer);
702 /* Indicate enabled */
703 state->is_enabled = is_single_step;
704 regs->pc = (unsigned long)state->buffer;
706 /* Fault immediately if we are coming back from a syscall. */
707 if (regs->faultnum == INT_SWINT_1)
708 regs->pc += 8;
711 #else
713 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
717 * Called directly on the occasion of an interrupt.
719 * If the process doesn't have single step set, then we use this as an
720 * opportunity to turn single step off.
722 * It has been mentioned that we could conditionally turn off single stepping
723 * on each entry into the kernel and rely on single_step_once to turn it
724 * on for the processes that matter (as we already do), but this
725 * implementation is somewhat more efficient in that we muck with registers
726 * once on a bum interrupt rather than on every entry into the kernel.
728 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
729 * so we have to run through this process again before we can say that an
730 * instruction has executed.
732 * swint will set CANCELED, but it's a legitimate instruction. Fortunately
733 * it changes the PC. If it hasn't changed, then we know that the interrupt
734 * wasn't generated by swint and we'll need to run this process again before
735 * we can say an instruction has executed.
737 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
738 * on with our lives.
741 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
743 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
744 struct thread_info *info = (void *)current_thread_info();
745 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
746 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
748 if (is_single_step == 0) {
749 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
751 } else if ((*ss_pc != regs->pc) ||
752 (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
754 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
755 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
756 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
757 send_sigtrap(current, regs);
763 * Called from need_singlestep. Set up the control registers and the enable
764 * register, then return back.
767 void single_step_once(struct pt_regs *regs)
769 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
770 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
772 *ss_pc = regs->pc;
773 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
774 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
775 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
776 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
779 void single_step_execve(void)
781 /* Nothing */
784 #endif /* !__tilegx__ */