2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
40 #include <asm/virtext.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
56 static const struct x86_cpu_id vmx_cpu_id
[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX
),
60 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
62 static bool __read_mostly enable_vpid
= 1;
63 module_param_named(vpid
, enable_vpid
, bool, 0444);
65 static bool __read_mostly flexpriority_enabled
= 1;
66 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
68 static bool __read_mostly enable_ept
= 1;
69 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
71 static bool __read_mostly enable_unrestricted_guest
= 1;
72 module_param_named(unrestricted_guest
,
73 enable_unrestricted_guest
, bool, S_IRUGO
);
75 static bool __read_mostly enable_ept_ad_bits
= 1;
76 module_param_named(eptad
, enable_ept_ad_bits
, bool, S_IRUGO
);
78 static bool __read_mostly emulate_invalid_guest_state
= true;
79 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
81 static bool __read_mostly vmm_exclusive
= 1;
82 module_param(vmm_exclusive
, bool, S_IRUGO
);
84 static bool __read_mostly fasteoi
= 1;
85 module_param(fasteoi
, bool, S_IRUGO
);
87 static bool __read_mostly enable_apicv
= 1;
88 module_param(enable_apicv
, bool, S_IRUGO
);
90 static bool __read_mostly enable_shadow_vmcs
= 1;
91 module_param_named(enable_shadow_vmcs
, enable_shadow_vmcs
, bool, S_IRUGO
);
93 * If nested=1, nested virtualization is supported, i.e., guests may use
94 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95 * use VMX instructions.
97 static bool __read_mostly nested
= 0;
98 module_param(nested
, bool, S_IRUGO
);
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON \
103 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS \
105 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
106 | X86_CR4_OSXMMEXCPT)
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115 * ple_gap: upper bound on the amount of time between two successive
116 * executions of PAUSE in a loop. Also indicate if ple enabled.
117 * According to test, this time is usually smaller than 128 cycles.
118 * ple_window: upper bound on the amount of time a guest is allowed to execute
119 * in a PAUSE loop. Tests indicate that most spinlocks are held for
120 * less than 2^12 cycles
121 * Time is measured based on a counter that runs at the same rate as the TSC,
122 * refer SDM volume 3b section 21.6.13 & 22.1.3.
124 #define KVM_VMX_DEFAULT_PLE_GAP 128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
127 module_param(ple_gap
, int, S_IRUGO
);
129 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
130 module_param(ple_window
, int, S_IRUGO
);
132 extern const ulong vmx_return
;
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
144 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146 * loaded on this CPU (so we can clear them if the CPU goes down).
152 struct list_head loaded_vmcss_on_cpu_link
;
155 struct shared_msr_entry
{
162 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167 * More than one of these structures may exist, if L1 runs multiple L2 guests.
168 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169 * underlying hardware which will be used to run L2.
170 * This structure is packed to ensure that its layout is identical across
171 * machines (necessary for live migration).
172 * If there are changes in this struct, VMCS12_REVISION must be changed.
174 typedef u64 natural_width
;
175 struct __packed vmcs12
{
176 /* According to the Intel spec, a VMCS region must start with the
177 * following two fields. Then follow implementation-specific data.
182 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183 u32 padding
[7]; /* room for future expansion */
188 u64 vm_exit_msr_store_addr
;
189 u64 vm_exit_msr_load_addr
;
190 u64 vm_entry_msr_load_addr
;
192 u64 virtual_apic_page_addr
;
193 u64 apic_access_addr
;
195 u64 guest_physical_address
;
196 u64 vmcs_link_pointer
;
197 u64 guest_ia32_debugctl
;
200 u64 guest_ia32_perf_global_ctrl
;
207 u64 host_ia32_perf_global_ctrl
;
208 u64 padding64
[8]; /* room for future expansion */
210 * To allow migration of L1 (complete with its L2 guests) between
211 * machines of different natural widths (32 or 64 bit), we cannot have
212 * unsigned long fields with no explict size. We use u64 (aliased
213 * natural_width) instead. Luckily, x86 is little-endian.
215 natural_width cr0_guest_host_mask
;
216 natural_width cr4_guest_host_mask
;
217 natural_width cr0_read_shadow
;
218 natural_width cr4_read_shadow
;
219 natural_width cr3_target_value0
;
220 natural_width cr3_target_value1
;
221 natural_width cr3_target_value2
;
222 natural_width cr3_target_value3
;
223 natural_width exit_qualification
;
224 natural_width guest_linear_address
;
225 natural_width guest_cr0
;
226 natural_width guest_cr3
;
227 natural_width guest_cr4
;
228 natural_width guest_es_base
;
229 natural_width guest_cs_base
;
230 natural_width guest_ss_base
;
231 natural_width guest_ds_base
;
232 natural_width guest_fs_base
;
233 natural_width guest_gs_base
;
234 natural_width guest_ldtr_base
;
235 natural_width guest_tr_base
;
236 natural_width guest_gdtr_base
;
237 natural_width guest_idtr_base
;
238 natural_width guest_dr7
;
239 natural_width guest_rsp
;
240 natural_width guest_rip
;
241 natural_width guest_rflags
;
242 natural_width guest_pending_dbg_exceptions
;
243 natural_width guest_sysenter_esp
;
244 natural_width guest_sysenter_eip
;
245 natural_width host_cr0
;
246 natural_width host_cr3
;
247 natural_width host_cr4
;
248 natural_width host_fs_base
;
249 natural_width host_gs_base
;
250 natural_width host_tr_base
;
251 natural_width host_gdtr_base
;
252 natural_width host_idtr_base
;
253 natural_width host_ia32_sysenter_esp
;
254 natural_width host_ia32_sysenter_eip
;
255 natural_width host_rsp
;
256 natural_width host_rip
;
257 natural_width paddingl
[8]; /* room for future expansion */
258 u32 pin_based_vm_exec_control
;
259 u32 cpu_based_vm_exec_control
;
260 u32 exception_bitmap
;
261 u32 page_fault_error_code_mask
;
262 u32 page_fault_error_code_match
;
263 u32 cr3_target_count
;
264 u32 vm_exit_controls
;
265 u32 vm_exit_msr_store_count
;
266 u32 vm_exit_msr_load_count
;
267 u32 vm_entry_controls
;
268 u32 vm_entry_msr_load_count
;
269 u32 vm_entry_intr_info_field
;
270 u32 vm_entry_exception_error_code
;
271 u32 vm_entry_instruction_len
;
273 u32 secondary_vm_exec_control
;
274 u32 vm_instruction_error
;
276 u32 vm_exit_intr_info
;
277 u32 vm_exit_intr_error_code
;
278 u32 idt_vectoring_info_field
;
279 u32 idt_vectoring_error_code
;
280 u32 vm_exit_instruction_len
;
281 u32 vmx_instruction_info
;
288 u32 guest_ldtr_limit
;
290 u32 guest_gdtr_limit
;
291 u32 guest_idtr_limit
;
292 u32 guest_es_ar_bytes
;
293 u32 guest_cs_ar_bytes
;
294 u32 guest_ss_ar_bytes
;
295 u32 guest_ds_ar_bytes
;
296 u32 guest_fs_ar_bytes
;
297 u32 guest_gs_ar_bytes
;
298 u32 guest_ldtr_ar_bytes
;
299 u32 guest_tr_ar_bytes
;
300 u32 guest_interruptibility_info
;
301 u32 guest_activity_state
;
302 u32 guest_sysenter_cs
;
303 u32 host_ia32_sysenter_cs
;
304 u32 vmx_preemption_timer_value
;
305 u32 padding32
[7]; /* room for future expansion */
306 u16 virtual_processor_id
;
307 u16 guest_es_selector
;
308 u16 guest_cs_selector
;
309 u16 guest_ss_selector
;
310 u16 guest_ds_selector
;
311 u16 guest_fs_selector
;
312 u16 guest_gs_selector
;
313 u16 guest_ldtr_selector
;
314 u16 guest_tr_selector
;
315 u16 host_es_selector
;
316 u16 host_cs_selector
;
317 u16 host_ss_selector
;
318 u16 host_ds_selector
;
319 u16 host_fs_selector
;
320 u16 host_gs_selector
;
321 u16 host_tr_selector
;
325 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
329 #define VMCS12_REVISION 0x11e57ed0
332 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334 * current implementation, 4K are reserved to avoid future complications.
336 #define VMCS12_SIZE 0x1000
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
340 struct list_head list
;
342 struct loaded_vmcs vmcs02
;
346 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
350 /* Has the level1 guest done vmxon? */
353 /* The guest-physical address of the current VMCS L1 keeps for L2 */
355 /* The host-usable pointer to the above */
356 struct page
*current_vmcs12_page
;
357 struct vmcs12
*current_vmcs12
;
358 struct vmcs
*current_shadow_vmcs
;
360 * Indicates if the shadow vmcs must be updated with the
361 * data hold by vmcs12
363 bool sync_shadow_vmcs
;
365 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366 struct list_head vmcs02_pool
;
368 u64 vmcs01_tsc_offset
;
369 /* L2 must run next, and mustn't decide to exit to L1. */
370 bool nested_run_pending
;
372 * Guest pages referred to in vmcs02 with host-physical pointers, so
373 * we must keep them pinned while L2 runs.
375 struct page
*apic_access_page
;
376 u64 msr_ia32_feature_control
;
379 #define POSTED_INTR_ON 0
380 /* Posted-Interrupt Descriptor */
382 u32 pir
[8]; /* Posted interrupt requested */
383 u32 control
; /* bit 0 of control is outstanding notification bit */
387 static bool pi_test_and_set_on(struct pi_desc
*pi_desc
)
389 return test_and_set_bit(POSTED_INTR_ON
,
390 (unsigned long *)&pi_desc
->control
);
393 static bool pi_test_and_clear_on(struct pi_desc
*pi_desc
)
395 return test_and_clear_bit(POSTED_INTR_ON
,
396 (unsigned long *)&pi_desc
->control
);
399 static int pi_test_and_set_pir(int vector
, struct pi_desc
*pi_desc
)
401 return test_and_set_bit(vector
, (unsigned long *)pi_desc
->pir
);
405 struct kvm_vcpu vcpu
;
406 unsigned long host_rsp
;
409 bool nmi_known_unmasked
;
411 u32 idt_vectoring_info
;
413 struct shared_msr_entry
*guest_msrs
;
416 unsigned long host_idt_base
;
418 u64 msr_host_kernel_gs_base
;
419 u64 msr_guest_kernel_gs_base
;
422 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
423 * non-nested (L1) guest, it always points to vmcs01. For a nested
424 * guest (L2), it points to a different VMCS.
426 struct loaded_vmcs vmcs01
;
427 struct loaded_vmcs
*loaded_vmcs
;
428 bool __launched
; /* temporary, used in vmx_vcpu_run */
429 struct msr_autoload
{
431 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
432 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
436 u16 fs_sel
, gs_sel
, ldt_sel
;
440 int gs_ldt_reload_needed
;
441 int fs_reload_needed
;
446 struct kvm_segment segs
[8];
449 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
450 struct kvm_save_segment
{
458 bool emulation_required
;
460 /* Support for vnmi-less CPUs */
461 int soft_vnmi_blocked
;
463 s64 vnmi_blocked_time
;
468 /* Posted interrupt descriptor */
469 struct pi_desc pi_desc
;
471 /* Support for a guest hypervisor (nested VMX) */
472 struct nested_vmx nested
;
475 enum segment_cache_field
{
484 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
486 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
489 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
490 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
491 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
492 [number##_HIGH] = VMCS12_OFFSET(name)+4
495 static const unsigned long shadow_read_only_fields
[] = {
497 * We do NOT shadow fields that are modified when L0
498 * traps and emulates any vmx instruction (e.g. VMPTRLD,
499 * VMXON...) executed by L1.
500 * For example, VM_INSTRUCTION_ERROR is read
501 * by L1 if a vmx instruction fails (part of the error path).
502 * Note the code assumes this logic. If for some reason
503 * we start shadowing these fields then we need to
504 * force a shadow sync when L0 emulates vmx instructions
505 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
506 * by nested_vmx_failValid)
510 VM_EXIT_INSTRUCTION_LEN
,
511 IDT_VECTORING_INFO_FIELD
,
512 IDT_VECTORING_ERROR_CODE
,
513 VM_EXIT_INTR_ERROR_CODE
,
515 GUEST_LINEAR_ADDRESS
,
516 GUEST_PHYSICAL_ADDRESS
518 static const int max_shadow_read_only_fields
=
519 ARRAY_SIZE(shadow_read_only_fields
);
521 static const unsigned long shadow_read_write_fields
[] = {
527 GUEST_INTERRUPTIBILITY_INFO
,
539 CPU_BASED_VM_EXEC_CONTROL
,
540 VM_ENTRY_EXCEPTION_ERROR_CODE
,
541 VM_ENTRY_INTR_INFO_FIELD
,
542 VM_ENTRY_INSTRUCTION_LEN
,
543 VM_ENTRY_EXCEPTION_ERROR_CODE
,
549 static const int max_shadow_read_write_fields
=
550 ARRAY_SIZE(shadow_read_write_fields
);
552 static const unsigned short vmcs_field_to_offset_table
[] = {
553 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
554 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
555 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
556 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
557 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
558 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
559 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
560 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
561 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
562 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
563 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
564 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
565 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
566 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
567 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
568 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
569 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
570 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
571 FIELD64(MSR_BITMAP
, msr_bitmap
),
572 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
573 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
574 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
575 FIELD64(TSC_OFFSET
, tsc_offset
),
576 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
577 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
578 FIELD64(EPT_POINTER
, ept_pointer
),
579 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
580 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
581 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
582 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
583 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
584 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
585 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
586 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
587 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
588 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
589 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
590 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
591 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
592 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
593 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
594 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
595 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
596 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
597 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
598 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
599 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
600 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
601 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
602 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
603 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
604 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
605 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
606 FIELD(TPR_THRESHOLD
, tpr_threshold
),
607 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
608 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
609 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
610 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
611 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
612 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
613 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
614 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
615 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
616 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
617 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
618 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
619 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
620 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
621 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
622 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
623 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
624 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
625 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
626 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
627 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
628 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
629 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
630 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
631 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
632 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
633 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
634 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
635 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
636 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
637 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
638 FIELD(VMX_PREEMPTION_TIMER_VALUE
, vmx_preemption_timer_value
),
639 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
640 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
641 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
642 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
643 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
644 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
645 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
646 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
647 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
648 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
649 FIELD(GUEST_CR0
, guest_cr0
),
650 FIELD(GUEST_CR3
, guest_cr3
),
651 FIELD(GUEST_CR4
, guest_cr4
),
652 FIELD(GUEST_ES_BASE
, guest_es_base
),
653 FIELD(GUEST_CS_BASE
, guest_cs_base
),
654 FIELD(GUEST_SS_BASE
, guest_ss_base
),
655 FIELD(GUEST_DS_BASE
, guest_ds_base
),
656 FIELD(GUEST_FS_BASE
, guest_fs_base
),
657 FIELD(GUEST_GS_BASE
, guest_gs_base
),
658 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
659 FIELD(GUEST_TR_BASE
, guest_tr_base
),
660 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
661 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
662 FIELD(GUEST_DR7
, guest_dr7
),
663 FIELD(GUEST_RSP
, guest_rsp
),
664 FIELD(GUEST_RIP
, guest_rip
),
665 FIELD(GUEST_RFLAGS
, guest_rflags
),
666 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
667 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
668 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
669 FIELD(HOST_CR0
, host_cr0
),
670 FIELD(HOST_CR3
, host_cr3
),
671 FIELD(HOST_CR4
, host_cr4
),
672 FIELD(HOST_FS_BASE
, host_fs_base
),
673 FIELD(HOST_GS_BASE
, host_gs_base
),
674 FIELD(HOST_TR_BASE
, host_tr_base
),
675 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
676 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
677 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
678 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
679 FIELD(HOST_RSP
, host_rsp
),
680 FIELD(HOST_RIP
, host_rip
),
682 static const int max_vmcs_field
= ARRAY_SIZE(vmcs_field_to_offset_table
);
684 static inline short vmcs_field_to_offset(unsigned long field
)
686 if (field
>= max_vmcs_field
|| vmcs_field_to_offset_table
[field
] == 0)
688 return vmcs_field_to_offset_table
[field
];
691 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
693 return to_vmx(vcpu
)->nested
.current_vmcs12
;
696 static struct page
*nested_get_page(struct kvm_vcpu
*vcpu
, gpa_t addr
)
698 struct page
*page
= gfn_to_page(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
699 if (is_error_page(page
))
705 static void nested_release_page(struct page
*page
)
707 kvm_release_page_dirty(page
);
710 static void nested_release_page_clean(struct page
*page
)
712 kvm_release_page_clean(page
);
715 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
);
716 static u64
construct_eptp(unsigned long root_hpa
);
717 static void kvm_cpu_vmxon(u64 addr
);
718 static void kvm_cpu_vmxoff(void);
719 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
);
720 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
721 struct kvm_segment
*var
, int seg
);
722 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
723 struct kvm_segment
*var
, int seg
);
724 static bool guest_state_valid(struct kvm_vcpu
*vcpu
);
725 static u32
vmx_segment_access_rights(struct kvm_segment
*var
);
726 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu
*vcpu
);
727 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
);
728 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
);
730 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
731 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
733 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
734 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
736 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
737 static DEFINE_PER_CPU(struct desc_ptr
, host_gdt
);
739 static unsigned long *vmx_io_bitmap_a
;
740 static unsigned long *vmx_io_bitmap_b
;
741 static unsigned long *vmx_msr_bitmap_legacy
;
742 static unsigned long *vmx_msr_bitmap_longmode
;
743 static unsigned long *vmx_msr_bitmap_legacy_x2apic
;
744 static unsigned long *vmx_msr_bitmap_longmode_x2apic
;
745 static unsigned long *vmx_vmread_bitmap
;
746 static unsigned long *vmx_vmwrite_bitmap
;
748 static bool cpu_has_load_ia32_efer
;
749 static bool cpu_has_load_perf_global_ctrl
;
751 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
752 static DEFINE_SPINLOCK(vmx_vpid_lock
);
754 static struct vmcs_config
{
758 u32 pin_based_exec_ctrl
;
759 u32 cpu_based_exec_ctrl
;
760 u32 cpu_based_2nd_exec_ctrl
;
765 static struct vmx_capability
{
770 #define VMX_SEGMENT_FIELD(seg) \
771 [VCPU_SREG_##seg] = { \
772 .selector = GUEST_##seg##_SELECTOR, \
773 .base = GUEST_##seg##_BASE, \
774 .limit = GUEST_##seg##_LIMIT, \
775 .ar_bytes = GUEST_##seg##_AR_BYTES, \
778 static const struct kvm_vmx_segment_field
{
783 } kvm_vmx_segment_fields
[] = {
784 VMX_SEGMENT_FIELD(CS
),
785 VMX_SEGMENT_FIELD(DS
),
786 VMX_SEGMENT_FIELD(ES
),
787 VMX_SEGMENT_FIELD(FS
),
788 VMX_SEGMENT_FIELD(GS
),
789 VMX_SEGMENT_FIELD(SS
),
790 VMX_SEGMENT_FIELD(TR
),
791 VMX_SEGMENT_FIELD(LDTR
),
794 static u64 host_efer
;
796 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
799 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
800 * away by decrementing the array size.
802 static const u32 vmx_msr_index
[] = {
804 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
806 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
808 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
810 static inline bool is_page_fault(u32 intr_info
)
812 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
813 INTR_INFO_VALID_MASK
)) ==
814 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
817 static inline bool is_no_device(u32 intr_info
)
819 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
820 INTR_INFO_VALID_MASK
)) ==
821 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
824 static inline bool is_invalid_opcode(u32 intr_info
)
826 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
827 INTR_INFO_VALID_MASK
)) ==
828 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
831 static inline bool is_external_interrupt(u32 intr_info
)
833 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
834 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
837 static inline bool is_machine_check(u32 intr_info
)
839 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
840 INTR_INFO_VALID_MASK
)) ==
841 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
844 static inline bool cpu_has_vmx_msr_bitmap(void)
846 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
849 static inline bool cpu_has_vmx_tpr_shadow(void)
851 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
854 static inline bool vm_need_tpr_shadow(struct kvm
*kvm
)
856 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
859 static inline bool cpu_has_secondary_exec_ctrls(void)
861 return vmcs_config
.cpu_based_exec_ctrl
&
862 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
865 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
867 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
868 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
871 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
873 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
874 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
877 static inline bool cpu_has_vmx_apic_register_virt(void)
879 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
880 SECONDARY_EXEC_APIC_REGISTER_VIRT
;
883 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
885 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
886 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
;
889 static inline bool cpu_has_vmx_posted_intr(void)
891 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
;
894 static inline bool cpu_has_vmx_apicv(void)
896 return cpu_has_vmx_apic_register_virt() &&
897 cpu_has_vmx_virtual_intr_delivery() &&
898 cpu_has_vmx_posted_intr();
901 static inline bool cpu_has_vmx_flexpriority(void)
903 return cpu_has_vmx_tpr_shadow() &&
904 cpu_has_vmx_virtualize_apic_accesses();
907 static inline bool cpu_has_vmx_ept_execute_only(void)
909 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
912 static inline bool cpu_has_vmx_eptp_uncacheable(void)
914 return vmx_capability
.ept
& VMX_EPTP_UC_BIT
;
917 static inline bool cpu_has_vmx_eptp_writeback(void)
919 return vmx_capability
.ept
& VMX_EPTP_WB_BIT
;
922 static inline bool cpu_has_vmx_ept_2m_page(void)
924 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
927 static inline bool cpu_has_vmx_ept_1g_page(void)
929 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
932 static inline bool cpu_has_vmx_ept_4levels(void)
934 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
937 static inline bool cpu_has_vmx_ept_ad_bits(void)
939 return vmx_capability
.ept
& VMX_EPT_AD_BIT
;
942 static inline bool cpu_has_vmx_invept_context(void)
944 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
947 static inline bool cpu_has_vmx_invept_global(void)
949 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
952 static inline bool cpu_has_vmx_invvpid_single(void)
954 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
957 static inline bool cpu_has_vmx_invvpid_global(void)
959 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
962 static inline bool cpu_has_vmx_ept(void)
964 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
965 SECONDARY_EXEC_ENABLE_EPT
;
968 static inline bool cpu_has_vmx_unrestricted_guest(void)
970 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
971 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
974 static inline bool cpu_has_vmx_ple(void)
976 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
977 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
980 static inline bool vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
982 return flexpriority_enabled
&& irqchip_in_kernel(kvm
);
985 static inline bool cpu_has_vmx_vpid(void)
987 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
988 SECONDARY_EXEC_ENABLE_VPID
;
991 static inline bool cpu_has_vmx_rdtscp(void)
993 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
994 SECONDARY_EXEC_RDTSCP
;
997 static inline bool cpu_has_vmx_invpcid(void)
999 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1000 SECONDARY_EXEC_ENABLE_INVPCID
;
1003 static inline bool cpu_has_virtual_nmis(void)
1005 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
1008 static inline bool cpu_has_vmx_wbinvd_exit(void)
1010 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1011 SECONDARY_EXEC_WBINVD_EXITING
;
1014 static inline bool cpu_has_vmx_shadow_vmcs(void)
1017 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
1018 /* check if the cpu supports writing r/o exit information fields */
1019 if (!(vmx_msr
& MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
))
1022 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1023 SECONDARY_EXEC_SHADOW_VMCS
;
1026 static inline bool report_flexpriority(void)
1028 return flexpriority_enabled
;
1031 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
1033 return vmcs12
->cpu_based_vm_exec_control
& bit
;
1036 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
1038 return (vmcs12
->cpu_based_vm_exec_control
&
1039 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
1040 (vmcs12
->secondary_vm_exec_control
& bit
);
1043 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12
*vmcs12
)
1045 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VIRTUAL_NMIS
;
1048 static inline int nested_cpu_has_ept(struct vmcs12
*vmcs12
)
1050 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_EPT
);
1053 static inline bool is_exception(u32 intr_info
)
1055 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1056 == (INTR_TYPE_HARD_EXCEPTION
| INTR_INFO_VALID_MASK
);
1059 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
);
1060 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
1061 struct vmcs12
*vmcs12
,
1062 u32 reason
, unsigned long qualification
);
1064 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
1068 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
1069 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
1074 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
1080 } operand
= { vpid
, 0, gva
};
1082 asm volatile (__ex(ASM_VMX_INVVPID
)
1083 /* CF==1 or ZF==1 --> rc = -1 */
1084 "; ja 1f ; ud2 ; 1:"
1085 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
1088 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
1092 } operand
= {eptp
, gpa
};
1094 asm volatile (__ex(ASM_VMX_INVEPT
)
1095 /* CF==1 or ZF==1 --> rc = -1 */
1096 "; ja 1f ; ud2 ; 1:\n"
1097 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
1100 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
1104 i
= __find_msr_index(vmx
, msr
);
1106 return &vmx
->guest_msrs
[i
];
1110 static void vmcs_clear(struct vmcs
*vmcs
)
1112 u64 phys_addr
= __pa(vmcs
);
1115 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
1116 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1119 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
1123 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
1125 vmcs_clear(loaded_vmcs
->vmcs
);
1126 loaded_vmcs
->cpu
= -1;
1127 loaded_vmcs
->launched
= 0;
1130 static void vmcs_load(struct vmcs
*vmcs
)
1132 u64 phys_addr
= __pa(vmcs
);
1135 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
1136 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1139 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
1145 * This bitmap is used to indicate whether the vmclear
1146 * operation is enabled on all cpus. All disabled by
1149 static cpumask_t crash_vmclear_enabled_bitmap
= CPU_MASK_NONE
;
1151 static inline void crash_enable_local_vmclear(int cpu
)
1153 cpumask_set_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1156 static inline void crash_disable_local_vmclear(int cpu
)
1158 cpumask_clear_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1161 static inline int crash_local_vmclear_enabled(int cpu
)
1163 return cpumask_test_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1166 static void crash_vmclear_local_loaded_vmcss(void)
1168 int cpu
= raw_smp_processor_id();
1169 struct loaded_vmcs
*v
;
1171 if (!crash_local_vmclear_enabled(cpu
))
1174 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
1175 loaded_vmcss_on_cpu_link
)
1176 vmcs_clear(v
->vmcs
);
1179 static inline void crash_enable_local_vmclear(int cpu
) { }
1180 static inline void crash_disable_local_vmclear(int cpu
) { }
1181 #endif /* CONFIG_KEXEC */
1183 static void __loaded_vmcs_clear(void *arg
)
1185 struct loaded_vmcs
*loaded_vmcs
= arg
;
1186 int cpu
= raw_smp_processor_id();
1188 if (loaded_vmcs
->cpu
!= cpu
)
1189 return; /* vcpu migration can race with cpu offline */
1190 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
1191 per_cpu(current_vmcs
, cpu
) = NULL
;
1192 crash_disable_local_vmclear(cpu
);
1193 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
1196 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1197 * is before setting loaded_vmcs->vcpu to -1 which is done in
1198 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1199 * then adds the vmcs into percpu list before it is deleted.
1203 loaded_vmcs_init(loaded_vmcs
);
1204 crash_enable_local_vmclear(cpu
);
1207 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
1209 int cpu
= loaded_vmcs
->cpu
;
1212 smp_call_function_single(cpu
,
1213 __loaded_vmcs_clear
, loaded_vmcs
, 1);
1216 static inline void vpid_sync_vcpu_single(struct vcpu_vmx
*vmx
)
1221 if (cpu_has_vmx_invvpid_single())
1222 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
1225 static inline void vpid_sync_vcpu_global(void)
1227 if (cpu_has_vmx_invvpid_global())
1228 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
1231 static inline void vpid_sync_context(struct vcpu_vmx
*vmx
)
1233 if (cpu_has_vmx_invvpid_single())
1234 vpid_sync_vcpu_single(vmx
);
1236 vpid_sync_vcpu_global();
1239 static inline void ept_sync_global(void)
1241 if (cpu_has_vmx_invept_global())
1242 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
1245 static inline void ept_sync_context(u64 eptp
)
1248 if (cpu_has_vmx_invept_context())
1249 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
1255 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
1257 unsigned long value
;
1259 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
1260 : "=a"(value
) : "d"(field
) : "cc");
1264 static __always_inline u16
vmcs_read16(unsigned long field
)
1266 return vmcs_readl(field
);
1269 static __always_inline u32
vmcs_read32(unsigned long field
)
1271 return vmcs_readl(field
);
1274 static __always_inline u64
vmcs_read64(unsigned long field
)
1276 #ifdef CONFIG_X86_64
1277 return vmcs_readl(field
);
1279 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
1283 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
1285 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
1286 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
1290 static void vmcs_writel(unsigned long field
, unsigned long value
)
1294 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
1295 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
1296 if (unlikely(error
))
1297 vmwrite_error(field
, value
);
1300 static void vmcs_write16(unsigned long field
, u16 value
)
1302 vmcs_writel(field
, value
);
1305 static void vmcs_write32(unsigned long field
, u32 value
)
1307 vmcs_writel(field
, value
);
1310 static void vmcs_write64(unsigned long field
, u64 value
)
1312 vmcs_writel(field
, value
);
1313 #ifndef CONFIG_X86_64
1315 vmcs_writel(field
+1, value
>> 32);
1319 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
1321 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
1324 static void vmcs_set_bits(unsigned long field
, u32 mask
)
1326 vmcs_writel(field
, vmcs_readl(field
) | mask
);
1329 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
1331 vmx
->segment_cache
.bitmask
= 0;
1334 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
1338 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
1340 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
1341 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
1342 vmx
->segment_cache
.bitmask
= 0;
1344 ret
= vmx
->segment_cache
.bitmask
& mask
;
1345 vmx
->segment_cache
.bitmask
|= mask
;
1349 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
1351 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
1353 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
1354 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
1358 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
1360 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
1362 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
1363 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
1367 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
1369 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
1371 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
1372 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
1376 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
1378 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
1380 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
1381 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
1385 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
1389 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
1390 (1u << NM_VECTOR
) | (1u << DB_VECTOR
);
1391 if ((vcpu
->guest_debug
&
1392 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
1393 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
1394 eb
|= 1u << BP_VECTOR
;
1395 if (to_vmx(vcpu
)->rmode
.vm86_active
)
1398 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
1399 if (vcpu
->fpu_active
)
1400 eb
&= ~(1u << NM_VECTOR
);
1402 /* When we are running a nested L2 guest and L1 specified for it a
1403 * certain exception bitmap, we must trap the same exceptions and pass
1404 * them to L1. When running L2, we will only handle the exceptions
1405 * specified above if L1 did not want them.
1407 if (is_guest_mode(vcpu
))
1408 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
1410 vmcs_write32(EXCEPTION_BITMAP
, eb
);
1413 static void clear_atomic_switch_msr_special(unsigned long entry
,
1416 vmcs_clear_bits(VM_ENTRY_CONTROLS
, entry
);
1417 vmcs_clear_bits(VM_EXIT_CONTROLS
, exit
);
1420 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
1423 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1427 if (cpu_has_load_ia32_efer
) {
1428 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER
,
1429 VM_EXIT_LOAD_IA32_EFER
);
1433 case MSR_CORE_PERF_GLOBAL_CTRL
:
1434 if (cpu_has_load_perf_global_ctrl
) {
1435 clear_atomic_switch_msr_special(
1436 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1437 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1443 for (i
= 0; i
< m
->nr
; ++i
)
1444 if (m
->guest
[i
].index
== msr
)
1450 m
->guest
[i
] = m
->guest
[m
->nr
];
1451 m
->host
[i
] = m
->host
[m
->nr
];
1452 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1453 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1456 static void add_atomic_switch_msr_special(unsigned long entry
,
1457 unsigned long exit
, unsigned long guest_val_vmcs
,
1458 unsigned long host_val_vmcs
, u64 guest_val
, u64 host_val
)
1460 vmcs_write64(guest_val_vmcs
, guest_val
);
1461 vmcs_write64(host_val_vmcs
, host_val
);
1462 vmcs_set_bits(VM_ENTRY_CONTROLS
, entry
);
1463 vmcs_set_bits(VM_EXIT_CONTROLS
, exit
);
1466 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1467 u64 guest_val
, u64 host_val
)
1470 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1474 if (cpu_has_load_ia32_efer
) {
1475 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER
,
1476 VM_EXIT_LOAD_IA32_EFER
,
1479 guest_val
, host_val
);
1483 case MSR_CORE_PERF_GLOBAL_CTRL
:
1484 if (cpu_has_load_perf_global_ctrl
) {
1485 add_atomic_switch_msr_special(
1486 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1487 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
1488 GUEST_IA32_PERF_GLOBAL_CTRL
,
1489 HOST_IA32_PERF_GLOBAL_CTRL
,
1490 guest_val
, host_val
);
1496 for (i
= 0; i
< m
->nr
; ++i
)
1497 if (m
->guest
[i
].index
== msr
)
1500 if (i
== NR_AUTOLOAD_MSRS
) {
1501 printk_once(KERN_WARNING
"Not enough mst switch entries. "
1502 "Can't add msr %x\n", msr
);
1504 } else if (i
== m
->nr
) {
1506 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1507 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1510 m
->guest
[i
].index
= msr
;
1511 m
->guest
[i
].value
= guest_val
;
1512 m
->host
[i
].index
= msr
;
1513 m
->host
[i
].value
= host_val
;
1516 static void reload_tss(void)
1519 * VT restores TR but not its size. Useless.
1521 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1522 struct desc_struct
*descs
;
1524 descs
= (void *)gdt
->address
;
1525 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
1529 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
1534 guest_efer
= vmx
->vcpu
.arch
.efer
;
1537 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1540 ignore_bits
= EFER_NX
| EFER_SCE
;
1541 #ifdef CONFIG_X86_64
1542 ignore_bits
|= EFER_LMA
| EFER_LME
;
1543 /* SCE is meaningful only in long mode on Intel */
1544 if (guest_efer
& EFER_LMA
)
1545 ignore_bits
&= ~(u64
)EFER_SCE
;
1547 guest_efer
&= ~ignore_bits
;
1548 guest_efer
|= host_efer
& ignore_bits
;
1549 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
1550 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
1552 clear_atomic_switch_msr(vmx
, MSR_EFER
);
1553 /* On ept, can't emulate nx, and must switch nx atomically */
1554 if (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
)) {
1555 guest_efer
= vmx
->vcpu
.arch
.efer
;
1556 if (!(guest_efer
& EFER_LMA
))
1557 guest_efer
&= ~EFER_LME
;
1558 add_atomic_switch_msr(vmx
, MSR_EFER
, guest_efer
, host_efer
);
1565 static unsigned long segment_base(u16 selector
)
1567 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1568 struct desc_struct
*d
;
1569 unsigned long table_base
;
1572 if (!(selector
& ~3))
1575 table_base
= gdt
->address
;
1577 if (selector
& 4) { /* from ldt */
1578 u16 ldt_selector
= kvm_read_ldt();
1580 if (!(ldt_selector
& ~3))
1583 table_base
= segment_base(ldt_selector
);
1585 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
1586 v
= get_desc_base(d
);
1587 #ifdef CONFIG_X86_64
1588 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
1589 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
1594 static inline unsigned long kvm_read_tr_base(void)
1597 asm("str %0" : "=g"(tr
));
1598 return segment_base(tr
);
1601 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
1603 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1606 if (vmx
->host_state
.loaded
)
1609 vmx
->host_state
.loaded
= 1;
1611 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1612 * allow segment selectors with cpl > 0 or ti == 1.
1614 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
1615 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
1616 savesegment(fs
, vmx
->host_state
.fs_sel
);
1617 if (!(vmx
->host_state
.fs_sel
& 7)) {
1618 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
1619 vmx
->host_state
.fs_reload_needed
= 0;
1621 vmcs_write16(HOST_FS_SELECTOR
, 0);
1622 vmx
->host_state
.fs_reload_needed
= 1;
1624 savesegment(gs
, vmx
->host_state
.gs_sel
);
1625 if (!(vmx
->host_state
.gs_sel
& 7))
1626 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
1628 vmcs_write16(HOST_GS_SELECTOR
, 0);
1629 vmx
->host_state
.gs_ldt_reload_needed
= 1;
1632 #ifdef CONFIG_X86_64
1633 savesegment(ds
, vmx
->host_state
.ds_sel
);
1634 savesegment(es
, vmx
->host_state
.es_sel
);
1637 #ifdef CONFIG_X86_64
1638 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
1639 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
1641 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
1642 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
1645 #ifdef CONFIG_X86_64
1646 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1647 if (is_long_mode(&vmx
->vcpu
))
1648 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1650 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
1651 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
1652 vmx
->guest_msrs
[i
].data
,
1653 vmx
->guest_msrs
[i
].mask
);
1656 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
1658 if (!vmx
->host_state
.loaded
)
1661 ++vmx
->vcpu
.stat
.host_state_reload
;
1662 vmx
->host_state
.loaded
= 0;
1663 #ifdef CONFIG_X86_64
1664 if (is_long_mode(&vmx
->vcpu
))
1665 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1667 if (vmx
->host_state
.gs_ldt_reload_needed
) {
1668 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
1669 #ifdef CONFIG_X86_64
1670 load_gs_index(vmx
->host_state
.gs_sel
);
1672 loadsegment(gs
, vmx
->host_state
.gs_sel
);
1675 if (vmx
->host_state
.fs_reload_needed
)
1676 loadsegment(fs
, vmx
->host_state
.fs_sel
);
1677 #ifdef CONFIG_X86_64
1678 if (unlikely(vmx
->host_state
.ds_sel
| vmx
->host_state
.es_sel
)) {
1679 loadsegment(ds
, vmx
->host_state
.ds_sel
);
1680 loadsegment(es
, vmx
->host_state
.es_sel
);
1684 #ifdef CONFIG_X86_64
1685 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1688 * If the FPU is not active (through the host task or
1689 * the guest vcpu), then restore the cr0.TS bit.
1691 if (!user_has_fpu() && !vmx
->vcpu
.guest_fpu_loaded
)
1693 load_gdt(&__get_cpu_var(host_gdt
));
1696 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
1699 __vmx_load_host_state(vmx
);
1704 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1705 * vcpu mutex is already taken.
1707 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1709 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1710 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1713 kvm_cpu_vmxon(phys_addr
);
1714 else if (vmx
->loaded_vmcs
->cpu
!= cpu
)
1715 loaded_vmcs_clear(vmx
->loaded_vmcs
);
1717 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
1718 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
1719 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
1722 if (vmx
->loaded_vmcs
->cpu
!= cpu
) {
1723 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1724 unsigned long sysenter_esp
;
1726 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1727 local_irq_disable();
1728 crash_disable_local_vmclear(cpu
);
1731 * Read loaded_vmcs->cpu should be before fetching
1732 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1733 * See the comments in __loaded_vmcs_clear().
1737 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
1738 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
1739 crash_enable_local_vmclear(cpu
);
1743 * Linux uses per-cpu TSS and GDT, so set these when switching
1746 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
1747 vmcs_writel(HOST_GDTR_BASE
, gdt
->address
); /* 22.2.4 */
1749 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
1750 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
1751 vmx
->loaded_vmcs
->cpu
= cpu
;
1755 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
1757 __vmx_load_host_state(to_vmx(vcpu
));
1758 if (!vmm_exclusive
) {
1759 __loaded_vmcs_clear(to_vmx(vcpu
)->loaded_vmcs
);
1765 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
1769 if (vcpu
->fpu_active
)
1771 vcpu
->fpu_active
= 1;
1772 cr0
= vmcs_readl(GUEST_CR0
);
1773 cr0
&= ~(X86_CR0_TS
| X86_CR0_MP
);
1774 cr0
|= kvm_read_cr0_bits(vcpu
, X86_CR0_TS
| X86_CR0_MP
);
1775 vmcs_writel(GUEST_CR0
, cr0
);
1776 update_exception_bitmap(vcpu
);
1777 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
1778 if (is_guest_mode(vcpu
))
1779 vcpu
->arch
.cr0_guest_owned_bits
&=
1780 ~get_vmcs12(vcpu
)->cr0_guest_host_mask
;
1781 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
1784 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
1787 * Return the cr0 value that a nested guest would read. This is a combination
1788 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1789 * its hypervisor (cr0_read_shadow).
1791 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
1793 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
1794 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
1796 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
1798 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
1799 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
1802 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
1804 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1805 * set this *before* calling this function.
1807 vmx_decache_cr0_guest_bits(vcpu
);
1808 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
| X86_CR0_MP
);
1809 update_exception_bitmap(vcpu
);
1810 vcpu
->arch
.cr0_guest_owned_bits
= 0;
1811 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
1812 if (is_guest_mode(vcpu
)) {
1814 * L1's specified read shadow might not contain the TS bit,
1815 * so now that we turned on shadowing of this bit, we need to
1816 * set this bit of the shadow. Like in nested_vmx_run we need
1817 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1818 * up-to-date here because we just decached cr0.TS (and we'll
1819 * only update vmcs12->guest_cr0 on nested exit).
1821 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1822 vmcs12
->guest_cr0
= (vmcs12
->guest_cr0
& ~X86_CR0_TS
) |
1823 (vcpu
->arch
.cr0
& X86_CR0_TS
);
1824 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
1826 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
1829 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
1831 unsigned long rflags
, save_rflags
;
1833 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
1834 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
1835 rflags
= vmcs_readl(GUEST_RFLAGS
);
1836 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
1837 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
1838 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
1839 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
1841 to_vmx(vcpu
)->rflags
= rflags
;
1843 return to_vmx(vcpu
)->rflags
;
1846 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1848 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
1849 to_vmx(vcpu
)->rflags
= rflags
;
1850 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
1851 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
1852 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1854 vmcs_writel(GUEST_RFLAGS
, rflags
);
1857 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
1859 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1862 if (interruptibility
& GUEST_INTR_STATE_STI
)
1863 ret
|= KVM_X86_SHADOW_INT_STI
;
1864 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
1865 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
1870 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
1872 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1873 u32 interruptibility
= interruptibility_old
;
1875 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
1877 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
1878 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
1879 else if (mask
& KVM_X86_SHADOW_INT_STI
)
1880 interruptibility
|= GUEST_INTR_STATE_STI
;
1882 if ((interruptibility
!= interruptibility_old
))
1883 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
1886 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
1890 rip
= kvm_rip_read(vcpu
);
1891 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
1892 kvm_rip_write(vcpu
, rip
);
1894 /* skipping an emulated instruction also counts */
1895 vmx_set_interrupt_shadow(vcpu
, 0);
1899 * KVM wants to inject page-faults which it got to the guest. This function
1900 * checks whether in a nested guest, we need to inject them to L1 or L2.
1901 * This function assumes it is called with the exit reason in vmcs02 being
1902 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1905 static int nested_pf_handled(struct kvm_vcpu
*vcpu
)
1907 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1909 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1910 if (!(vmcs12
->exception_bitmap
& (1u << PF_VECTOR
)))
1913 nested_vmx_vmexit(vcpu
);
1917 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
1918 bool has_error_code
, u32 error_code
,
1921 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1922 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
1924 if (nr
== PF_VECTOR
&& is_guest_mode(vcpu
) &&
1925 !vmx
->nested
.nested_run_pending
&& nested_pf_handled(vcpu
))
1928 if (has_error_code
) {
1929 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
1930 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
1933 if (vmx
->rmode
.vm86_active
) {
1935 if (kvm_exception_is_soft(nr
))
1936 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
1937 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
1938 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
1942 if (kvm_exception_is_soft(nr
)) {
1943 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
1944 vmx
->vcpu
.arch
.event_exit_inst_len
);
1945 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
1947 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
1949 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
1952 static bool vmx_rdtscp_supported(void)
1954 return cpu_has_vmx_rdtscp();
1957 static bool vmx_invpcid_supported(void)
1959 return cpu_has_vmx_invpcid() && enable_ept
;
1963 * Swap MSR entry in host/guest MSR entry array.
1965 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
1967 struct shared_msr_entry tmp
;
1969 tmp
= vmx
->guest_msrs
[to
];
1970 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
1971 vmx
->guest_msrs
[from
] = tmp
;
1974 static void vmx_set_msr_bitmap(struct kvm_vcpu
*vcpu
)
1976 unsigned long *msr_bitmap
;
1978 if (irqchip_in_kernel(vcpu
->kvm
) && apic_x2apic_mode(vcpu
->arch
.apic
)) {
1979 if (is_long_mode(vcpu
))
1980 msr_bitmap
= vmx_msr_bitmap_longmode_x2apic
;
1982 msr_bitmap
= vmx_msr_bitmap_legacy_x2apic
;
1984 if (is_long_mode(vcpu
))
1985 msr_bitmap
= vmx_msr_bitmap_longmode
;
1987 msr_bitmap
= vmx_msr_bitmap_legacy
;
1990 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
1994 * Set up the vmcs to automatically save and restore system
1995 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1996 * mode, as fiddling with msrs is very expensive.
1998 static void setup_msrs(struct vcpu_vmx
*vmx
)
2000 int save_nmsrs
, index
;
2003 #ifdef CONFIG_X86_64
2004 if (is_long_mode(&vmx
->vcpu
)) {
2005 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
2007 move_msr_up(vmx
, index
, save_nmsrs
++);
2008 index
= __find_msr_index(vmx
, MSR_LSTAR
);
2010 move_msr_up(vmx
, index
, save_nmsrs
++);
2011 index
= __find_msr_index(vmx
, MSR_CSTAR
);
2013 move_msr_up(vmx
, index
, save_nmsrs
++);
2014 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
2015 if (index
>= 0 && vmx
->rdtscp_enabled
)
2016 move_msr_up(vmx
, index
, save_nmsrs
++);
2018 * MSR_STAR is only needed on long mode guests, and only
2019 * if efer.sce is enabled.
2021 index
= __find_msr_index(vmx
, MSR_STAR
);
2022 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
2023 move_msr_up(vmx
, index
, save_nmsrs
++);
2026 index
= __find_msr_index(vmx
, MSR_EFER
);
2027 if (index
>= 0 && update_transition_efer(vmx
, index
))
2028 move_msr_up(vmx
, index
, save_nmsrs
++);
2030 vmx
->save_nmsrs
= save_nmsrs
;
2032 if (cpu_has_vmx_msr_bitmap())
2033 vmx_set_msr_bitmap(&vmx
->vcpu
);
2037 * reads and returns guest's timestamp counter "register"
2038 * guest_tsc = host_tsc + tsc_offset -- 21.3
2040 static u64
guest_read_tsc(void)
2042 u64 host_tsc
, tsc_offset
;
2045 tsc_offset
= vmcs_read64(TSC_OFFSET
);
2046 return host_tsc
+ tsc_offset
;
2050 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2051 * counter, even if a nested guest (L2) is currently running.
2053 u64
vmx_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
2057 tsc_offset
= is_guest_mode(vcpu
) ?
2058 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
:
2059 vmcs_read64(TSC_OFFSET
);
2060 return host_tsc
+ tsc_offset
;
2064 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2065 * software catchup for faster rates on slower CPUs.
2067 static void vmx_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
2072 if (user_tsc_khz
> tsc_khz
) {
2073 vcpu
->arch
.tsc_catchup
= 1;
2074 vcpu
->arch
.tsc_always_catchup
= 1;
2076 WARN(1, "user requested TSC rate below hardware speed\n");
2079 static u64
vmx_read_tsc_offset(struct kvm_vcpu
*vcpu
)
2081 return vmcs_read64(TSC_OFFSET
);
2085 * writes 'offset' into guest's timestamp counter offset register
2087 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
2089 if (is_guest_mode(vcpu
)) {
2091 * We're here if L1 chose not to trap WRMSR to TSC. According
2092 * to the spec, this should set L1's TSC; The offset that L1
2093 * set for L2 remains unchanged, and still needs to be added
2094 * to the newly set TSC to get L2's TSC.
2096 struct vmcs12
*vmcs12
;
2097 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
= offset
;
2098 /* recalculate vmcs02.TSC_OFFSET: */
2099 vmcs12
= get_vmcs12(vcpu
);
2100 vmcs_write64(TSC_OFFSET
, offset
+
2101 (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
) ?
2102 vmcs12
->tsc_offset
: 0));
2104 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
2105 vmcs_read64(TSC_OFFSET
), offset
);
2106 vmcs_write64(TSC_OFFSET
, offset
);
2110 static void vmx_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
, bool host
)
2112 u64 offset
= vmcs_read64(TSC_OFFSET
);
2114 vmcs_write64(TSC_OFFSET
, offset
+ adjustment
);
2115 if (is_guest_mode(vcpu
)) {
2116 /* Even when running L2, the adjustment needs to apply to L1 */
2117 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
+= adjustment
;
2119 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
, offset
,
2120 offset
+ adjustment
);
2123 static u64
vmx_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
2125 return target_tsc
- native_read_tsc();
2128 static bool guest_cpuid_has_vmx(struct kvm_vcpu
*vcpu
)
2130 struct kvm_cpuid_entry2
*best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
2131 return best
&& (best
->ecx
& (1 << (X86_FEATURE_VMX
& 31)));
2135 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2136 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2137 * all guests if the "nested" module option is off, and can also be disabled
2138 * for a single guest by disabling its VMX cpuid bit.
2140 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
2142 return nested
&& guest_cpuid_has_vmx(vcpu
);
2146 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2147 * returned for the various VMX controls MSRs when nested VMX is enabled.
2148 * The same values should also be used to verify that vmcs12 control fields are
2149 * valid during nested entry from L1 to L2.
2150 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2151 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2152 * bit in the high half is on if the corresponding bit in the control field
2153 * may be on. See also vmx_control_verify().
2154 * TODO: allow these variables to be modified (downgraded) by module options
2157 static u32 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
;
2158 static u32 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
;
2159 static u32 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
;
2160 static u32 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
;
2161 static u32 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
;
2162 static u32 nested_vmx_misc_low
, nested_vmx_misc_high
;
2163 static u32 nested_vmx_ept_caps
;
2164 static __init
void nested_vmx_setup_ctls_msrs(void)
2167 * Note that as a general rule, the high half of the MSRs (bits in
2168 * the control fields which may be 1) should be initialized by the
2169 * intersection of the underlying hardware's MSR (i.e., features which
2170 * can be supported) and the list of features we want to expose -
2171 * because they are known to be properly supported in our code.
2172 * Also, usually, the low half of the MSRs (bits which must be 1) can
2173 * be set to 0, meaning that L1 may turn off any of these bits. The
2174 * reason is that if one of these bits is necessary, it will appear
2175 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2176 * fields of vmcs01 and vmcs02, will turn these bits off - and
2177 * nested_vmx_exit_handled() will not pass related exits to L1.
2178 * These rules have exceptions below.
2181 /* pin-based controls */
2182 rdmsr(MSR_IA32_VMX_PINBASED_CTLS
,
2183 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
);
2185 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2186 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2188 nested_vmx_pinbased_ctls_low
|= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2189 nested_vmx_pinbased_ctls_high
&= PIN_BASED_EXT_INTR_MASK
|
2190 PIN_BASED_NMI_EXITING
| PIN_BASED_VIRTUAL_NMIS
|
2191 PIN_BASED_VMX_PREEMPTION_TIMER
;
2192 nested_vmx_pinbased_ctls_high
|= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2196 * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2199 rdmsr(MSR_IA32_VMX_EXIT_CTLS
,
2200 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
);
2201 nested_vmx_exit_ctls_low
= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
2202 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2203 nested_vmx_exit_ctls_high
&=
2204 #ifdef CONFIG_X86_64
2205 VM_EXIT_HOST_ADDR_SPACE_SIZE
|
2207 VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_SAVE_IA32_PAT
;
2208 nested_vmx_exit_ctls_high
|= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
|
2209 VM_EXIT_LOAD_IA32_EFER
);
2211 /* entry controls */
2212 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
2213 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
);
2214 /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2215 nested_vmx_entry_ctls_low
= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
2216 nested_vmx_entry_ctls_high
&=
2217 #ifdef CONFIG_X86_64
2218 VM_ENTRY_IA32E_MODE
|
2220 VM_ENTRY_LOAD_IA32_PAT
;
2221 nested_vmx_entry_ctls_high
|= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
|
2222 VM_ENTRY_LOAD_IA32_EFER
);
2224 /* cpu-based controls */
2225 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
2226 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
);
2227 nested_vmx_procbased_ctls_low
= 0;
2228 nested_vmx_procbased_ctls_high
&=
2229 CPU_BASED_VIRTUAL_INTR_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
2230 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
2231 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
2232 CPU_BASED_CR3_STORE_EXITING
|
2233 #ifdef CONFIG_X86_64
2234 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
2236 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
2237 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_EXITING
|
2238 CPU_BASED_RDPMC_EXITING
| CPU_BASED_RDTSC_EXITING
|
2239 CPU_BASED_PAUSE_EXITING
|
2240 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2242 * We can allow some features even when not supported by the
2243 * hardware. For example, L1 can specify an MSR bitmap - and we
2244 * can use it to avoid exits to L1 - even when L0 runs L2
2245 * without MSR bitmaps.
2247 nested_vmx_procbased_ctls_high
|= CPU_BASED_USE_MSR_BITMAPS
;
2249 /* secondary cpu-based controls */
2250 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
2251 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
);
2252 nested_vmx_secondary_ctls_low
= 0;
2253 nested_vmx_secondary_ctls_high
&=
2254 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2255 SECONDARY_EXEC_WBINVD_EXITING
;
2258 /* nested EPT: emulate EPT also to L1 */
2259 nested_vmx_secondary_ctls_high
|= SECONDARY_EXEC_ENABLE_EPT
;
2260 nested_vmx_ept_caps
= VMX_EPT_PAGE_WALK_4_BIT
|
2261 VMX_EPTP_WB_BIT
| VMX_EPT_INVEPT_BIT
;
2262 nested_vmx_ept_caps
&= vmx_capability
.ept
;
2264 * Since invept is completely emulated we support both global
2265 * and context invalidation independent of what host cpu
2268 nested_vmx_ept_caps
|= VMX_EPT_EXTENT_GLOBAL_BIT
|
2269 VMX_EPT_EXTENT_CONTEXT_BIT
;
2271 nested_vmx_ept_caps
= 0;
2273 /* miscellaneous data */
2274 rdmsr(MSR_IA32_VMX_MISC
, nested_vmx_misc_low
, nested_vmx_misc_high
);
2275 nested_vmx_misc_low
&= VMX_MISC_PREEMPTION_TIMER_RATE_MASK
|
2276 VMX_MISC_SAVE_EFER_LMA
;
2277 nested_vmx_misc_high
= 0;
2280 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
2283 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2285 return ((control
& high
) | low
) == control
;
2288 static inline u64
vmx_control_msr(u32 low
, u32 high
)
2290 return low
| ((u64
)high
<< 32);
2294 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2295 * also let it use VMX-specific MSRs.
2296 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2297 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2298 * like all other MSRs).
2300 static int vmx_get_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2302 if (!nested_vmx_allowed(vcpu
) && msr_index
>= MSR_IA32_VMX_BASIC
&&
2303 msr_index
<= MSR_IA32_VMX_TRUE_ENTRY_CTLS
) {
2305 * According to the spec, processors which do not support VMX
2306 * should throw a #GP(0) when VMX capability MSRs are read.
2308 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
2312 switch (msr_index
) {
2313 case MSR_IA32_FEATURE_CONTROL
:
2314 if (nested_vmx_allowed(vcpu
)) {
2315 *pdata
= to_vmx(vcpu
)->nested
.msr_ia32_feature_control
;
2319 case MSR_IA32_VMX_BASIC
:
2321 * This MSR reports some information about VMX support. We
2322 * should return information about the VMX we emulate for the
2323 * guest, and the VMCS structure we give it - not about the
2324 * VMX support of the underlying hardware.
2326 *pdata
= VMCS12_REVISION
|
2327 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
2328 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
2330 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2331 case MSR_IA32_VMX_PINBASED_CTLS
:
2332 *pdata
= vmx_control_msr(nested_vmx_pinbased_ctls_low
,
2333 nested_vmx_pinbased_ctls_high
);
2335 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2336 case MSR_IA32_VMX_PROCBASED_CTLS
:
2337 *pdata
= vmx_control_msr(nested_vmx_procbased_ctls_low
,
2338 nested_vmx_procbased_ctls_high
);
2340 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2341 case MSR_IA32_VMX_EXIT_CTLS
:
2342 *pdata
= vmx_control_msr(nested_vmx_exit_ctls_low
,
2343 nested_vmx_exit_ctls_high
);
2345 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2346 case MSR_IA32_VMX_ENTRY_CTLS
:
2347 *pdata
= vmx_control_msr(nested_vmx_entry_ctls_low
,
2348 nested_vmx_entry_ctls_high
);
2350 case MSR_IA32_VMX_MISC
:
2351 *pdata
= vmx_control_msr(nested_vmx_misc_low
,
2352 nested_vmx_misc_high
);
2355 * These MSRs specify bits which the guest must keep fixed (on or off)
2356 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2357 * We picked the standard core2 setting.
2359 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2360 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2361 case MSR_IA32_VMX_CR0_FIXED0
:
2362 *pdata
= VMXON_CR0_ALWAYSON
;
2364 case MSR_IA32_VMX_CR0_FIXED1
:
2367 case MSR_IA32_VMX_CR4_FIXED0
:
2368 *pdata
= VMXON_CR4_ALWAYSON
;
2370 case MSR_IA32_VMX_CR4_FIXED1
:
2373 case MSR_IA32_VMX_VMCS_ENUM
:
2376 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2377 *pdata
= vmx_control_msr(nested_vmx_secondary_ctls_low
,
2378 nested_vmx_secondary_ctls_high
);
2380 case MSR_IA32_VMX_EPT_VPID_CAP
:
2381 /* Currently, no nested vpid support */
2382 *pdata
= nested_vmx_ept_caps
;
2391 static int vmx_set_vmx_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2393 u32 msr_index
= msr_info
->index
;
2394 u64 data
= msr_info
->data
;
2395 bool host_initialized
= msr_info
->host_initiated
;
2397 if (!nested_vmx_allowed(vcpu
))
2400 if (msr_index
== MSR_IA32_FEATURE_CONTROL
) {
2401 if (!host_initialized
&&
2402 to_vmx(vcpu
)->nested
.msr_ia32_feature_control
2403 & FEATURE_CONTROL_LOCKED
)
2405 to_vmx(vcpu
)->nested
.msr_ia32_feature_control
= data
;
2410 * No need to treat VMX capability MSRs specially: If we don't handle
2411 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2417 * Reads an msr value (of 'msr_index') into 'pdata'.
2418 * Returns 0 on success, non-0 otherwise.
2419 * Assumes vcpu_load() was already called.
2421 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2424 struct shared_msr_entry
*msr
;
2427 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
2431 switch (msr_index
) {
2432 #ifdef CONFIG_X86_64
2434 data
= vmcs_readl(GUEST_FS_BASE
);
2437 data
= vmcs_readl(GUEST_GS_BASE
);
2439 case MSR_KERNEL_GS_BASE
:
2440 vmx_load_host_state(to_vmx(vcpu
));
2441 data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
2445 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
2447 data
= guest_read_tsc();
2449 case MSR_IA32_SYSENTER_CS
:
2450 data
= vmcs_read32(GUEST_SYSENTER_CS
);
2452 case MSR_IA32_SYSENTER_EIP
:
2453 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
2455 case MSR_IA32_SYSENTER_ESP
:
2456 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
2459 if (!to_vmx(vcpu
)->rdtscp_enabled
)
2461 /* Otherwise falls through */
2463 if (vmx_get_vmx_msr(vcpu
, msr_index
, pdata
))
2465 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
2470 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
2478 * Writes msr value into into the appropriate "register".
2479 * Returns 0 on success, non-0 otherwise.
2480 * Assumes vcpu_load() was already called.
2482 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2484 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2485 struct shared_msr_entry
*msr
;
2487 u32 msr_index
= msr_info
->index
;
2488 u64 data
= msr_info
->data
;
2490 switch (msr_index
) {
2492 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2494 #ifdef CONFIG_X86_64
2496 vmx_segment_cache_clear(vmx
);
2497 vmcs_writel(GUEST_FS_BASE
, data
);
2500 vmx_segment_cache_clear(vmx
);
2501 vmcs_writel(GUEST_GS_BASE
, data
);
2503 case MSR_KERNEL_GS_BASE
:
2504 vmx_load_host_state(vmx
);
2505 vmx
->msr_guest_kernel_gs_base
= data
;
2508 case MSR_IA32_SYSENTER_CS
:
2509 vmcs_write32(GUEST_SYSENTER_CS
, data
);
2511 case MSR_IA32_SYSENTER_EIP
:
2512 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
2514 case MSR_IA32_SYSENTER_ESP
:
2515 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
2518 kvm_write_tsc(vcpu
, msr_info
);
2520 case MSR_IA32_CR_PAT
:
2521 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2522 vmcs_write64(GUEST_IA32_PAT
, data
);
2523 vcpu
->arch
.pat
= data
;
2526 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2528 case MSR_IA32_TSC_ADJUST
:
2529 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2532 if (!vmx
->rdtscp_enabled
)
2534 /* Check reserved bit, higher 32 bits should be zero */
2535 if ((data
>> 32) != 0)
2537 /* Otherwise falls through */
2539 if (vmx_set_vmx_msr(vcpu
, msr_info
))
2541 msr
= find_msr_entry(vmx
, msr_index
);
2544 if (msr
- vmx
->guest_msrs
< vmx
->save_nmsrs
) {
2546 kvm_set_shared_msr(msr
->index
, msr
->data
,
2552 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2558 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
2560 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
2563 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
2566 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
2568 case VCPU_EXREG_PDPTR
:
2570 ept_save_pdptrs(vcpu
);
2577 static __init
int cpu_has_kvm_support(void)
2579 return cpu_has_vmx();
2582 static __init
int vmx_disabled_by_bios(void)
2586 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
2587 if (msr
& FEATURE_CONTROL_LOCKED
) {
2588 /* launched w/ TXT and VMX disabled */
2589 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2592 /* launched w/o TXT and VMX only enabled w/ TXT */
2593 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2594 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2595 && !tboot_enabled()) {
2596 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
2597 "activate TXT before enabling KVM\n");
2600 /* launched w/o TXT and VMX disabled */
2601 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2602 && !tboot_enabled())
2609 static void kvm_cpu_vmxon(u64 addr
)
2611 asm volatile (ASM_VMX_VMXON_RAX
2612 : : "a"(&addr
), "m"(addr
)
2616 static int hardware_enable(void *garbage
)
2618 int cpu
= raw_smp_processor_id();
2619 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
2622 if (read_cr4() & X86_CR4_VMXE
)
2625 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
2628 * Now we can enable the vmclear operation in kdump
2629 * since the loaded_vmcss_on_cpu list on this cpu
2630 * has been initialized.
2632 * Though the cpu is not in VMX operation now, there
2633 * is no problem to enable the vmclear operation
2634 * for the loaded_vmcss_on_cpu list is empty!
2636 crash_enable_local_vmclear(cpu
);
2638 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
2640 test_bits
= FEATURE_CONTROL_LOCKED
;
2641 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
2642 if (tboot_enabled())
2643 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
2645 if ((old
& test_bits
) != test_bits
) {
2646 /* enable and lock */
2647 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
2649 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
2651 if (vmm_exclusive
) {
2652 kvm_cpu_vmxon(phys_addr
);
2656 native_store_gdt(&__get_cpu_var(host_gdt
));
2661 static void vmclear_local_loaded_vmcss(void)
2663 int cpu
= raw_smp_processor_id();
2664 struct loaded_vmcs
*v
, *n
;
2666 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
2667 loaded_vmcss_on_cpu_link
)
2668 __loaded_vmcs_clear(v
);
2672 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2675 static void kvm_cpu_vmxoff(void)
2677 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
2680 static void hardware_disable(void *garbage
)
2682 if (vmm_exclusive
) {
2683 vmclear_local_loaded_vmcss();
2686 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
2689 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
2690 u32 msr
, u32
*result
)
2692 u32 vmx_msr_low
, vmx_msr_high
;
2693 u32 ctl
= ctl_min
| ctl_opt
;
2695 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2697 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
2698 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
2700 /* Ensure minimum (required) set of control bits are supported. */
2708 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
2710 u32 vmx_msr_low
, vmx_msr_high
;
2712 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2713 return vmx_msr_high
& ctl
;
2716 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
2718 u32 vmx_msr_low
, vmx_msr_high
;
2719 u32 min
, opt
, min2
, opt2
;
2720 u32 _pin_based_exec_control
= 0;
2721 u32 _cpu_based_exec_control
= 0;
2722 u32 _cpu_based_2nd_exec_control
= 0;
2723 u32 _vmexit_control
= 0;
2724 u32 _vmentry_control
= 0;
2726 min
= CPU_BASED_HLT_EXITING
|
2727 #ifdef CONFIG_X86_64
2728 CPU_BASED_CR8_LOAD_EXITING
|
2729 CPU_BASED_CR8_STORE_EXITING
|
2731 CPU_BASED_CR3_LOAD_EXITING
|
2732 CPU_BASED_CR3_STORE_EXITING
|
2733 CPU_BASED_USE_IO_BITMAPS
|
2734 CPU_BASED_MOV_DR_EXITING
|
2735 CPU_BASED_USE_TSC_OFFSETING
|
2736 CPU_BASED_MWAIT_EXITING
|
2737 CPU_BASED_MONITOR_EXITING
|
2738 CPU_BASED_INVLPG_EXITING
|
2739 CPU_BASED_RDPMC_EXITING
;
2741 opt
= CPU_BASED_TPR_SHADOW
|
2742 CPU_BASED_USE_MSR_BITMAPS
|
2743 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2744 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
2745 &_cpu_based_exec_control
) < 0)
2747 #ifdef CONFIG_X86_64
2748 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
2749 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
2750 ~CPU_BASED_CR8_STORE_EXITING
;
2752 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
2754 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2755 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2756 SECONDARY_EXEC_WBINVD_EXITING
|
2757 SECONDARY_EXEC_ENABLE_VPID
|
2758 SECONDARY_EXEC_ENABLE_EPT
|
2759 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
2760 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
2761 SECONDARY_EXEC_RDTSCP
|
2762 SECONDARY_EXEC_ENABLE_INVPCID
|
2763 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2764 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
2765 SECONDARY_EXEC_SHADOW_VMCS
;
2766 if (adjust_vmx_controls(min2
, opt2
,
2767 MSR_IA32_VMX_PROCBASED_CTLS2
,
2768 &_cpu_based_2nd_exec_control
) < 0)
2771 #ifndef CONFIG_X86_64
2772 if (!(_cpu_based_2nd_exec_control
&
2773 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
2774 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2777 if (!(_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
2778 _cpu_based_2nd_exec_control
&= ~(
2779 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2780 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2781 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
2783 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
2784 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2786 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
2787 CPU_BASED_CR3_STORE_EXITING
|
2788 CPU_BASED_INVLPG_EXITING
);
2789 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
2790 vmx_capability
.ept
, vmx_capability
.vpid
);
2794 #ifdef CONFIG_X86_64
2795 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
2797 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
|
2798 VM_EXIT_ACK_INTR_ON_EXIT
;
2799 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
2800 &_vmexit_control
) < 0)
2803 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
2804 opt
= PIN_BASED_VIRTUAL_NMIS
| PIN_BASED_POSTED_INTR
;
2805 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
2806 &_pin_based_exec_control
) < 0)
2809 if (!(_cpu_based_2nd_exec_control
&
2810 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
) ||
2811 !(_vmexit_control
& VM_EXIT_ACK_INTR_ON_EXIT
))
2812 _pin_based_exec_control
&= ~PIN_BASED_POSTED_INTR
;
2815 opt
= VM_ENTRY_LOAD_IA32_PAT
;
2816 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
2817 &_vmentry_control
) < 0)
2820 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
2822 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2823 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
2826 #ifdef CONFIG_X86_64
2827 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2828 if (vmx_msr_high
& (1u<<16))
2832 /* Require Write-Back (WB) memory type for VMCS accesses. */
2833 if (((vmx_msr_high
>> 18) & 15) != 6)
2836 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
2837 vmcs_conf
->order
= get_order(vmcs_config
.size
);
2838 vmcs_conf
->revision_id
= vmx_msr_low
;
2840 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
2841 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
2842 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
2843 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
2844 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
2846 cpu_has_load_ia32_efer
=
2847 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
2848 VM_ENTRY_LOAD_IA32_EFER
)
2849 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
2850 VM_EXIT_LOAD_IA32_EFER
);
2852 cpu_has_load_perf_global_ctrl
=
2853 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
2854 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
2855 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
2856 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
2859 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2860 * but due to arrata below it can't be used. Workaround is to use
2861 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2863 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2868 * BC86,AAY89,BD102 (model 44)
2872 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
2873 switch (boot_cpu_data
.x86_model
) {
2879 cpu_has_load_perf_global_ctrl
= false;
2880 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2881 "does not work properly. Using workaround\n");
2891 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
2893 int node
= cpu_to_node(cpu
);
2897 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
2900 vmcs
= page_address(pages
);
2901 memset(vmcs
, 0, vmcs_config
.size
);
2902 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
2906 static struct vmcs
*alloc_vmcs(void)
2908 return alloc_vmcs_cpu(raw_smp_processor_id());
2911 static void free_vmcs(struct vmcs
*vmcs
)
2913 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
2917 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2919 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
2921 if (!loaded_vmcs
->vmcs
)
2923 loaded_vmcs_clear(loaded_vmcs
);
2924 free_vmcs(loaded_vmcs
->vmcs
);
2925 loaded_vmcs
->vmcs
= NULL
;
2928 static void free_kvm_area(void)
2932 for_each_possible_cpu(cpu
) {
2933 free_vmcs(per_cpu(vmxarea
, cpu
));
2934 per_cpu(vmxarea
, cpu
) = NULL
;
2938 static __init
int alloc_kvm_area(void)
2942 for_each_possible_cpu(cpu
) {
2945 vmcs
= alloc_vmcs_cpu(cpu
);
2951 per_cpu(vmxarea
, cpu
) = vmcs
;
2956 static __init
int hardware_setup(void)
2958 if (setup_vmcs_config(&vmcs_config
) < 0)
2961 if (boot_cpu_has(X86_FEATURE_NX
))
2962 kvm_enable_efer_bits(EFER_NX
);
2964 if (!cpu_has_vmx_vpid())
2966 if (!cpu_has_vmx_shadow_vmcs())
2967 enable_shadow_vmcs
= 0;
2969 if (!cpu_has_vmx_ept() ||
2970 !cpu_has_vmx_ept_4levels()) {
2972 enable_unrestricted_guest
= 0;
2973 enable_ept_ad_bits
= 0;
2976 if (!cpu_has_vmx_ept_ad_bits())
2977 enable_ept_ad_bits
= 0;
2979 if (!cpu_has_vmx_unrestricted_guest())
2980 enable_unrestricted_guest
= 0;
2982 if (!cpu_has_vmx_flexpriority())
2983 flexpriority_enabled
= 0;
2985 if (!cpu_has_vmx_tpr_shadow())
2986 kvm_x86_ops
->update_cr8_intercept
= NULL
;
2988 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
2989 kvm_disable_largepages();
2991 if (!cpu_has_vmx_ple())
2994 if (!cpu_has_vmx_apicv())
2998 kvm_x86_ops
->update_cr8_intercept
= NULL
;
3000 kvm_x86_ops
->hwapic_irr_update
= NULL
;
3001 kvm_x86_ops
->deliver_posted_interrupt
= NULL
;
3002 kvm_x86_ops
->sync_pir_to_irr
= vmx_sync_pir_to_irr_dummy
;
3006 nested_vmx_setup_ctls_msrs();
3008 return alloc_kvm_area();
3011 static __exit
void hardware_unsetup(void)
3016 static bool emulation_required(struct kvm_vcpu
*vcpu
)
3018 return emulate_invalid_guest_state
&& !guest_state_valid(vcpu
);
3021 static void fix_pmode_seg(struct kvm_vcpu
*vcpu
, int seg
,
3022 struct kvm_segment
*save
)
3024 if (!emulate_invalid_guest_state
) {
3026 * CS and SS RPL should be equal during guest entry according
3027 * to VMX spec, but in reality it is not always so. Since vcpu
3028 * is in the middle of the transition from real mode to
3029 * protected mode it is safe to assume that RPL 0 is a good
3032 if (seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
)
3033 save
->selector
&= ~SELECTOR_RPL_MASK
;
3034 save
->dpl
= save
->selector
& SELECTOR_RPL_MASK
;
3037 vmx_set_segment(vcpu
, save
, seg
);
3040 static void enter_pmode(struct kvm_vcpu
*vcpu
)
3042 unsigned long flags
;
3043 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3046 * Update real mode segment cache. It may be not up-to-date if sement
3047 * register was written while vcpu was in a guest mode.
3049 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3050 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3051 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3052 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3053 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3054 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3056 vmx
->rmode
.vm86_active
= 0;
3058 vmx_segment_cache_clear(vmx
);
3060 vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3062 flags
= vmcs_readl(GUEST_RFLAGS
);
3063 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
3064 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
3065 vmcs_writel(GUEST_RFLAGS
, flags
);
3067 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
3068 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
3070 update_exception_bitmap(vcpu
);
3072 fix_pmode_seg(vcpu
, VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3073 fix_pmode_seg(vcpu
, VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3074 fix_pmode_seg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3075 fix_pmode_seg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3076 fix_pmode_seg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3077 fix_pmode_seg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3079 /* CPL is always 0 when CPU enters protected mode */
3080 __set_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
3084 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
3086 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3087 struct kvm_segment var
= *save
;
3090 if (seg
== VCPU_SREG_CS
)
3093 if (!emulate_invalid_guest_state
) {
3094 var
.selector
= var
.base
>> 4;
3095 var
.base
= var
.base
& 0xffff0;
3105 if (save
->base
& 0xf)
3106 printk_once(KERN_WARNING
"kvm: segment base is not "
3107 "paragraph aligned when entering "
3108 "protected mode (seg=%d)", seg
);
3111 vmcs_write16(sf
->selector
, var
.selector
);
3112 vmcs_write32(sf
->base
, var
.base
);
3113 vmcs_write32(sf
->limit
, var
.limit
);
3114 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(&var
));
3117 static void enter_rmode(struct kvm_vcpu
*vcpu
)
3119 unsigned long flags
;
3120 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3122 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3123 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3124 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3125 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3126 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3127 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3128 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3130 vmx
->rmode
.vm86_active
= 1;
3133 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3134 * vcpu. Warn the user that an update is overdue.
3136 if (!vcpu
->kvm
->arch
.tss_addr
)
3137 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
3138 "called before entering vcpu\n");
3140 vmx_segment_cache_clear(vmx
);
3142 vmcs_writel(GUEST_TR_BASE
, vcpu
->kvm
->arch
.tss_addr
);
3143 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
3144 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
3146 flags
= vmcs_readl(GUEST_RFLAGS
);
3147 vmx
->rmode
.save_rflags
= flags
;
3149 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
3151 vmcs_writel(GUEST_RFLAGS
, flags
);
3152 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
3153 update_exception_bitmap(vcpu
);
3155 fix_rmode_seg(VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3156 fix_rmode_seg(VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3157 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3158 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3159 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3160 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3162 kvm_mmu_reset_context(vcpu
);
3165 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
3167 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3168 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
3174 * Force kernel_gs_base reloading before EFER changes, as control
3175 * of this msr depends on is_long_mode().
3177 vmx_load_host_state(to_vmx(vcpu
));
3178 vcpu
->arch
.efer
= efer
;
3179 if (efer
& EFER_LMA
) {
3180 vmcs_write32(VM_ENTRY_CONTROLS
,
3181 vmcs_read32(VM_ENTRY_CONTROLS
) |
3182 VM_ENTRY_IA32E_MODE
);
3185 vmcs_write32(VM_ENTRY_CONTROLS
,
3186 vmcs_read32(VM_ENTRY_CONTROLS
) &
3187 ~VM_ENTRY_IA32E_MODE
);
3189 msr
->data
= efer
& ~EFER_LME
;
3194 #ifdef CONFIG_X86_64
3196 static void enter_lmode(struct kvm_vcpu
*vcpu
)
3200 vmx_segment_cache_clear(to_vmx(vcpu
));
3202 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
3203 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
3204 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3206 vmcs_write32(GUEST_TR_AR_BYTES
,
3207 (guest_tr_ar
& ~AR_TYPE_MASK
)
3208 | AR_TYPE_BUSY_64_TSS
);
3210 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
3213 static void exit_lmode(struct kvm_vcpu
*vcpu
)
3215 vmcs_write32(VM_ENTRY_CONTROLS
,
3216 vmcs_read32(VM_ENTRY_CONTROLS
)
3217 & ~VM_ENTRY_IA32E_MODE
);
3218 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
3223 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
3225 vpid_sync_context(to_vmx(vcpu
));
3227 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3229 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
3233 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
3235 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
3237 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
3238 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
3241 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
3243 if (enable_ept
&& is_paging(vcpu
))
3244 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3245 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
3248 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
3250 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
3252 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
3253 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
3256 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
3258 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3260 if (!test_bit(VCPU_EXREG_PDPTR
,
3261 (unsigned long *)&vcpu
->arch
.regs_dirty
))
3264 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3265 vmcs_write64(GUEST_PDPTR0
, mmu
->pdptrs
[0]);
3266 vmcs_write64(GUEST_PDPTR1
, mmu
->pdptrs
[1]);
3267 vmcs_write64(GUEST_PDPTR2
, mmu
->pdptrs
[2]);
3268 vmcs_write64(GUEST_PDPTR3
, mmu
->pdptrs
[3]);
3272 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
3274 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3276 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3277 mmu
->pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
3278 mmu
->pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
3279 mmu
->pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
3280 mmu
->pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
3283 __set_bit(VCPU_EXREG_PDPTR
,
3284 (unsigned long *)&vcpu
->arch
.regs_avail
);
3285 __set_bit(VCPU_EXREG_PDPTR
,
3286 (unsigned long *)&vcpu
->arch
.regs_dirty
);
3289 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
3291 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
3293 struct kvm_vcpu
*vcpu
)
3295 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
3296 vmx_decache_cr3(vcpu
);
3297 if (!(cr0
& X86_CR0_PG
)) {
3298 /* From paging/starting to nonpaging */
3299 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3300 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
3301 (CPU_BASED_CR3_LOAD_EXITING
|
3302 CPU_BASED_CR3_STORE_EXITING
));
3303 vcpu
->arch
.cr0
= cr0
;
3304 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3305 } else if (!is_paging(vcpu
)) {
3306 /* From nonpaging to paging */
3307 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3308 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
3309 ~(CPU_BASED_CR3_LOAD_EXITING
|
3310 CPU_BASED_CR3_STORE_EXITING
));
3311 vcpu
->arch
.cr0
= cr0
;
3312 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3315 if (!(cr0
& X86_CR0_WP
))
3316 *hw_cr0
&= ~X86_CR0_WP
;
3319 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
3321 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3322 unsigned long hw_cr0
;
3324 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
);
3325 if (enable_unrestricted_guest
)
3326 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
3328 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON
;
3330 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
3333 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
3337 #ifdef CONFIG_X86_64
3338 if (vcpu
->arch
.efer
& EFER_LME
) {
3339 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
3341 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
3347 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
3349 if (!vcpu
->fpu_active
)
3350 hw_cr0
|= X86_CR0_TS
| X86_CR0_MP
;
3352 vmcs_writel(CR0_READ_SHADOW
, cr0
);
3353 vmcs_writel(GUEST_CR0
, hw_cr0
);
3354 vcpu
->arch
.cr0
= cr0
;
3356 /* depends on vcpu->arch.cr0 to be set to a new value */
3357 vmx
->emulation_required
= emulation_required(vcpu
);
3360 static u64
construct_eptp(unsigned long root_hpa
)
3364 /* TODO write the value reading from MSR */
3365 eptp
= VMX_EPT_DEFAULT_MT
|
3366 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
3367 if (enable_ept_ad_bits
)
3368 eptp
|= VMX_EPT_AD_ENABLE_BIT
;
3369 eptp
|= (root_hpa
& PAGE_MASK
);
3374 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
3376 unsigned long guest_cr3
;
3381 eptp
= construct_eptp(cr3
);
3382 vmcs_write64(EPT_POINTER
, eptp
);
3383 guest_cr3
= is_paging(vcpu
) ? kvm_read_cr3(vcpu
) :
3384 vcpu
->kvm
->arch
.ept_identity_map_addr
;
3385 ept_load_pdptrs(vcpu
);
3388 vmx_flush_tlb(vcpu
);
3389 vmcs_writel(GUEST_CR3
, guest_cr3
);
3392 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
3394 unsigned long hw_cr4
= cr4
| (to_vmx(vcpu
)->rmode
.vm86_active
?
3395 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
3397 if (cr4
& X86_CR4_VMXE
) {
3399 * To use VMXON (and later other VMX instructions), a guest
3400 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3401 * So basically the check on whether to allow nested VMX
3404 if (!nested_vmx_allowed(vcpu
))
3407 if (to_vmx(vcpu
)->nested
.vmxon
&&
3408 ((cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
))
3411 vcpu
->arch
.cr4
= cr4
;
3413 if (!is_paging(vcpu
)) {
3414 hw_cr4
&= ~X86_CR4_PAE
;
3415 hw_cr4
|= X86_CR4_PSE
;
3417 * SMEP is disabled if CPU is in non-paging mode in
3418 * hardware. However KVM always uses paging mode to
3419 * emulate guest non-paging mode with TDP.
3420 * To emulate this behavior, SMEP needs to be manually
3421 * disabled when guest switches to non-paging mode.
3423 hw_cr4
&= ~X86_CR4_SMEP
;
3424 } else if (!(cr4
& X86_CR4_PAE
)) {
3425 hw_cr4
&= ~X86_CR4_PAE
;
3429 vmcs_writel(CR4_READ_SHADOW
, cr4
);
3430 vmcs_writel(GUEST_CR4
, hw_cr4
);
3434 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
3435 struct kvm_segment
*var
, int seg
)
3437 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3440 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3441 *var
= vmx
->rmode
.segs
[seg
];
3442 if (seg
== VCPU_SREG_TR
3443 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
3445 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3446 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3449 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3450 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
3451 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3452 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
3453 var
->unusable
= (ar
>> 16) & 1;
3454 var
->type
= ar
& 15;
3455 var
->s
= (ar
>> 4) & 1;
3456 var
->dpl
= (ar
>> 5) & 3;
3458 * Some userspaces do not preserve unusable property. Since usable
3459 * segment has to be present according to VMX spec we can use present
3460 * property to amend userspace bug by making unusable segment always
3461 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3462 * segment as unusable.
3464 var
->present
= !var
->unusable
;
3465 var
->avl
= (ar
>> 12) & 1;
3466 var
->l
= (ar
>> 13) & 1;
3467 var
->db
= (ar
>> 14) & 1;
3468 var
->g
= (ar
>> 15) & 1;
3471 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3473 struct kvm_segment s
;
3475 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
3476 vmx_get_segment(vcpu
, &s
, seg
);
3479 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
3482 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
3484 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3486 if (!is_protmode(vcpu
))
3489 if (!is_long_mode(vcpu
)
3490 && (kvm_get_rflags(vcpu
) & X86_EFLAGS_VM
)) /* if virtual 8086 */
3493 if (!test_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
3494 __set_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
3495 vmx
->cpl
= vmx_read_guest_seg_selector(vmx
, VCPU_SREG_CS
) & 3;
3502 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
3506 if (var
->unusable
|| !var
->present
)
3509 ar
= var
->type
& 15;
3510 ar
|= (var
->s
& 1) << 4;
3511 ar
|= (var
->dpl
& 3) << 5;
3512 ar
|= (var
->present
& 1) << 7;
3513 ar
|= (var
->avl
& 1) << 12;
3514 ar
|= (var
->l
& 1) << 13;
3515 ar
|= (var
->db
& 1) << 14;
3516 ar
|= (var
->g
& 1) << 15;
3522 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
3523 struct kvm_segment
*var
, int seg
)
3525 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3526 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3528 vmx_segment_cache_clear(vmx
);
3529 if (seg
== VCPU_SREG_CS
)
3530 __clear_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
3532 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3533 vmx
->rmode
.segs
[seg
] = *var
;
3534 if (seg
== VCPU_SREG_TR
)
3535 vmcs_write16(sf
->selector
, var
->selector
);
3537 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
3541 vmcs_writel(sf
->base
, var
->base
);
3542 vmcs_write32(sf
->limit
, var
->limit
);
3543 vmcs_write16(sf
->selector
, var
->selector
);
3546 * Fix the "Accessed" bit in AR field of segment registers for older
3548 * IA32 arch specifies that at the time of processor reset the
3549 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3550 * is setting it to 0 in the userland code. This causes invalid guest
3551 * state vmexit when "unrestricted guest" mode is turned on.
3552 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3553 * tree. Newer qemu binaries with that qemu fix would not need this
3556 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
3557 var
->type
|= 0x1; /* Accessed */
3559 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(var
));
3562 vmx
->emulation_required
|= emulation_required(vcpu
);
3565 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3567 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
3569 *db
= (ar
>> 14) & 1;
3570 *l
= (ar
>> 13) & 1;
3573 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3575 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
3576 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
3579 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3581 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
3582 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
3585 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3587 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
3588 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
3591 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3593 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
3594 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
3597 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3599 struct kvm_segment var
;
3602 vmx_get_segment(vcpu
, &var
, seg
);
3604 if (seg
== VCPU_SREG_CS
)
3606 ar
= vmx_segment_access_rights(&var
);
3608 if (var
.base
!= (var
.selector
<< 4))
3610 if (var
.limit
!= 0xffff)
3618 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
3620 struct kvm_segment cs
;
3621 unsigned int cs_rpl
;
3623 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3624 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
3628 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
3632 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
3633 if (cs
.dpl
> cs_rpl
)
3636 if (cs
.dpl
!= cs_rpl
)
3642 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3646 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
3648 struct kvm_segment ss
;
3649 unsigned int ss_rpl
;
3651 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3652 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
3656 if (ss
.type
!= 3 && ss
.type
!= 7)
3660 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
3668 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3670 struct kvm_segment var
;
3673 vmx_get_segment(vcpu
, &var
, seg
);
3674 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
3682 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
3683 if (var
.dpl
< rpl
) /* DPL < RPL */
3687 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3693 static bool tr_valid(struct kvm_vcpu
*vcpu
)
3695 struct kvm_segment tr
;
3697 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
3701 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
3703 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
3711 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
3713 struct kvm_segment ldtr
;
3715 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
3719 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
3729 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
3731 struct kvm_segment cs
, ss
;
3733 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3734 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3736 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
3737 (ss
.selector
& SELECTOR_RPL_MASK
));
3741 * Check if guest state is valid. Returns true if valid, false if
3743 * We assume that registers are always usable
3745 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
3747 if (enable_unrestricted_guest
)
3750 /* real mode guest state checks */
3751 if (!is_protmode(vcpu
) || (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
3752 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
3754 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
3756 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
3758 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
3760 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
3762 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
3765 /* protected mode guest state checks */
3766 if (!cs_ss_rpl_check(vcpu
))
3768 if (!code_segment_valid(vcpu
))
3770 if (!stack_segment_valid(vcpu
))
3772 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
3774 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
3776 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
3778 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
3780 if (!tr_valid(vcpu
))
3782 if (!ldtr_valid(vcpu
))
3786 * - Add checks on RIP
3787 * - Add checks on RFLAGS
3793 static int init_rmode_tss(struct kvm
*kvm
)
3797 int r
, idx
, ret
= 0;
3799 idx
= srcu_read_lock(&kvm
->srcu
);
3800 fn
= kvm
->arch
.tss_addr
>> PAGE_SHIFT
;
3801 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
3804 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
3805 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
3806 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
3809 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
3812 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
3816 r
= kvm_write_guest_page(kvm
, fn
, &data
,
3817 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
3824 srcu_read_unlock(&kvm
->srcu
, idx
);
3828 static int init_rmode_identity_map(struct kvm
*kvm
)
3831 pfn_t identity_map_pfn
;
3836 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
3837 printk(KERN_ERR
"EPT: identity-mapping pagetable "
3838 "haven't been allocated!\n");
3841 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
3844 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
3845 idx
= srcu_read_lock(&kvm
->srcu
);
3846 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
3849 /* Set up identity-mapping pagetable for EPT in real mode */
3850 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
3851 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
3852 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
3853 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
3854 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
3858 kvm
->arch
.ept_identity_pagetable_done
= true;
3861 srcu_read_unlock(&kvm
->srcu
, idx
);
3865 static void seg_setup(int seg
)
3867 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3870 vmcs_write16(sf
->selector
, 0);
3871 vmcs_writel(sf
->base
, 0);
3872 vmcs_write32(sf
->limit
, 0xffff);
3874 if (seg
== VCPU_SREG_CS
)
3875 ar
|= 0x08; /* code segment */
3877 vmcs_write32(sf
->ar_bytes
, ar
);
3880 static int alloc_apic_access_page(struct kvm
*kvm
)
3883 struct kvm_userspace_memory_region kvm_userspace_mem
;
3886 mutex_lock(&kvm
->slots_lock
);
3887 if (kvm
->arch
.apic_access_page
)
3889 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
3890 kvm_userspace_mem
.flags
= 0;
3891 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
3892 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
3893 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
);
3897 page
= gfn_to_page(kvm
, 0xfee00);
3898 if (is_error_page(page
)) {
3903 kvm
->arch
.apic_access_page
= page
;
3905 mutex_unlock(&kvm
->slots_lock
);
3909 static int alloc_identity_pagetable(struct kvm
*kvm
)
3912 struct kvm_userspace_memory_region kvm_userspace_mem
;
3915 mutex_lock(&kvm
->slots_lock
);
3916 if (kvm
->arch
.ept_identity_pagetable
)
3918 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
3919 kvm_userspace_mem
.flags
= 0;
3920 kvm_userspace_mem
.guest_phys_addr
=
3921 kvm
->arch
.ept_identity_map_addr
;
3922 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
3923 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
);
3927 page
= gfn_to_page(kvm
, kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
);
3928 if (is_error_page(page
)) {
3933 kvm
->arch
.ept_identity_pagetable
= page
;
3935 mutex_unlock(&kvm
->slots_lock
);
3939 static void allocate_vpid(struct vcpu_vmx
*vmx
)
3946 spin_lock(&vmx_vpid_lock
);
3947 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
3948 if (vpid
< VMX_NR_VPIDS
) {
3950 __set_bit(vpid
, vmx_vpid_bitmap
);
3952 spin_unlock(&vmx_vpid_lock
);
3955 static void free_vpid(struct vcpu_vmx
*vmx
)
3959 spin_lock(&vmx_vpid_lock
);
3961 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
3962 spin_unlock(&vmx_vpid_lock
);
3965 #define MSR_TYPE_R 1
3966 #define MSR_TYPE_W 2
3967 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
3970 int f
= sizeof(unsigned long);
3972 if (!cpu_has_vmx_msr_bitmap())
3976 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3977 * have the write-low and read-high bitmap offsets the wrong way round.
3978 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3980 if (msr
<= 0x1fff) {
3981 if (type
& MSR_TYPE_R
)
3983 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
);
3985 if (type
& MSR_TYPE_W
)
3987 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
);
3989 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
3991 if (type
& MSR_TYPE_R
)
3993 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
);
3995 if (type
& MSR_TYPE_W
)
3997 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4002 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap
,
4005 int f
= sizeof(unsigned long);
4007 if (!cpu_has_vmx_msr_bitmap())
4011 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4012 * have the write-low and read-high bitmap offsets the wrong way round.
4013 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4015 if (msr
<= 0x1fff) {
4016 if (type
& MSR_TYPE_R
)
4018 __set_bit(msr
, msr_bitmap
+ 0x000 / f
);
4020 if (type
& MSR_TYPE_W
)
4022 __set_bit(msr
, msr_bitmap
+ 0x800 / f
);
4024 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4026 if (type
& MSR_TYPE_R
)
4028 __set_bit(msr
, msr_bitmap
+ 0x400 / f
);
4030 if (type
& MSR_TYPE_W
)
4032 __set_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4037 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
4040 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
,
4041 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4042 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
,
4043 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4046 static void vmx_enable_intercept_msr_read_x2apic(u32 msr
)
4048 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4050 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4054 static void vmx_disable_intercept_msr_read_x2apic(u32 msr
)
4056 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4058 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4062 static void vmx_disable_intercept_msr_write_x2apic(u32 msr
)
4064 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4066 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4070 static int vmx_vm_has_apicv(struct kvm
*kvm
)
4072 return enable_apicv
&& irqchip_in_kernel(kvm
);
4076 * Send interrupt to vcpu via posted interrupt way.
4077 * 1. If target vcpu is running(non-root mode), send posted interrupt
4078 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4079 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4080 * interrupt from PIR in next vmentry.
4082 static void vmx_deliver_posted_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
4084 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4087 if (pi_test_and_set_pir(vector
, &vmx
->pi_desc
))
4090 r
= pi_test_and_set_on(&vmx
->pi_desc
);
4091 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4093 if (!r
&& (vcpu
->mode
== IN_GUEST_MODE
))
4094 apic
->send_IPI_mask(get_cpu_mask(vcpu
->cpu
),
4095 POSTED_INTR_VECTOR
);
4098 kvm_vcpu_kick(vcpu
);
4101 static void vmx_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
4103 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4105 if (!pi_test_and_clear_on(&vmx
->pi_desc
))
4108 kvm_apic_update_irr(vcpu
, vmx
->pi_desc
.pir
);
4111 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu
*vcpu
)
4117 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4118 * will not change in the lifetime of the guest.
4119 * Note that host-state that does change is set elsewhere. E.g., host-state
4120 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4122 static void vmx_set_constant_host_state(struct vcpu_vmx
*vmx
)
4128 vmcs_writel(HOST_CR0
, read_cr0() & ~X86_CR0_TS
); /* 22.2.3 */
4129 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
4130 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4132 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
4133 #ifdef CONFIG_X86_64
4135 * Load null selectors, so we can avoid reloading them in
4136 * __vmx_load_host_state(), in case userspace uses the null selectors
4137 * too (the expected case).
4139 vmcs_write16(HOST_DS_SELECTOR
, 0);
4140 vmcs_write16(HOST_ES_SELECTOR
, 0);
4142 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4143 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4145 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4146 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
4148 native_store_idt(&dt
);
4149 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
4150 vmx
->host_idt_base
= dt
.address
;
4152 vmcs_writel(HOST_RIP
, vmx_return
); /* 22.2.5 */
4154 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
4155 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
4156 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
4157 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
4159 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
4160 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
4161 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
4165 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
4167 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
4169 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
4170 if (is_guest_mode(&vmx
->vcpu
))
4171 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
4172 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
4173 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
4176 static u32
vmx_pin_based_exec_ctrl(struct vcpu_vmx
*vmx
)
4178 u32 pin_based_exec_ctrl
= vmcs_config
.pin_based_exec_ctrl
;
4180 if (!vmx_vm_has_apicv(vmx
->vcpu
.kvm
))
4181 pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
4182 return pin_based_exec_ctrl
;
4185 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
4187 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
4188 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
4189 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
4190 #ifdef CONFIG_X86_64
4191 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
4192 CPU_BASED_CR8_LOAD_EXITING
;
4196 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
4197 CPU_BASED_CR3_LOAD_EXITING
|
4198 CPU_BASED_INVLPG_EXITING
;
4199 return exec_control
;
4202 static u32
vmx_secondary_exec_control(struct vcpu_vmx
*vmx
)
4204 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
4205 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
4206 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
4208 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
4210 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
4211 enable_unrestricted_guest
= 0;
4212 /* Enable INVPCID for non-ept guests may cause performance regression. */
4213 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
4215 if (!enable_unrestricted_guest
)
4216 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
4218 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
4219 if (!vmx_vm_has_apicv(vmx
->vcpu
.kvm
))
4220 exec_control
&= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4221 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4222 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
4223 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4225 We can NOT enable shadow_vmcs here because we don't have yet
4228 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
4229 return exec_control
;
4232 static void ept_set_mmio_spte_mask(void)
4235 * EPT Misconfigurations can be generated if the value of bits 2:0
4236 * of an EPT paging-structure entry is 110b (write/execute).
4237 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4240 kvm_mmu_set_mmio_spte_mask((0x3ull
<< 62) | 0x6ull
);
4244 * Sets up the vmcs for emulated real mode.
4246 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
4248 #ifdef CONFIG_X86_64
4254 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
4255 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
4257 if (enable_shadow_vmcs
) {
4258 vmcs_write64(VMREAD_BITMAP
, __pa(vmx_vmread_bitmap
));
4259 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmwrite_bitmap
));
4261 if (cpu_has_vmx_msr_bitmap())
4262 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
4264 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
4267 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
4269 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
4271 if (cpu_has_secondary_exec_ctrls()) {
4272 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
4273 vmx_secondary_exec_control(vmx
));
4276 if (vmx_vm_has_apicv(vmx
->vcpu
.kvm
)) {
4277 vmcs_write64(EOI_EXIT_BITMAP0
, 0);
4278 vmcs_write64(EOI_EXIT_BITMAP1
, 0);
4279 vmcs_write64(EOI_EXIT_BITMAP2
, 0);
4280 vmcs_write64(EOI_EXIT_BITMAP3
, 0);
4282 vmcs_write16(GUEST_INTR_STATUS
, 0);
4284 vmcs_write64(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
4285 vmcs_write64(POSTED_INTR_DESC_ADDR
, __pa((&vmx
->pi_desc
)));
4289 vmcs_write32(PLE_GAP
, ple_gap
);
4290 vmcs_write32(PLE_WINDOW
, ple_window
);
4293 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
4294 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
4295 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
4297 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
4298 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
4299 vmx_set_constant_host_state(vmx
);
4300 #ifdef CONFIG_X86_64
4301 rdmsrl(MSR_FS_BASE
, a
);
4302 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
4303 rdmsrl(MSR_GS_BASE
, a
);
4304 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
4306 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
4307 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
4310 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
4311 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
4312 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
4313 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
4314 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
4316 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
4317 u32 msr_low
, msr_high
;
4319 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
4320 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
4321 /* Write the default value follow host pat */
4322 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
4323 /* Keep arch.pat sync with GUEST_IA32_PAT */
4324 vmx
->vcpu
.arch
.pat
= host_pat
;
4327 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
4328 u32 index
= vmx_msr_index
[i
];
4329 u32 data_low
, data_high
;
4332 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
4334 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
4336 vmx
->guest_msrs
[j
].index
= i
;
4337 vmx
->guest_msrs
[j
].data
= 0;
4338 vmx
->guest_msrs
[j
].mask
= -1ull;
4342 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
4344 /* 22.2.1, 20.8.1 */
4345 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
4347 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
4348 set_cr4_guest_host_mask(vmx
);
4353 static void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
4355 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4358 vmx
->rmode
.vm86_active
= 0;
4360 vmx
->soft_vnmi_blocked
= 0;
4362 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
4363 kvm_set_cr8(&vmx
->vcpu
, 0);
4364 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
4365 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
4366 msr
|= MSR_IA32_APICBASE_BSP
;
4367 kvm_set_apic_base(&vmx
->vcpu
, msr
);
4369 vmx_segment_cache_clear(vmx
);
4371 seg_setup(VCPU_SREG_CS
);
4372 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
4373 vmcs_write32(GUEST_CS_BASE
, 0xffff0000);
4375 seg_setup(VCPU_SREG_DS
);
4376 seg_setup(VCPU_SREG_ES
);
4377 seg_setup(VCPU_SREG_FS
);
4378 seg_setup(VCPU_SREG_GS
);
4379 seg_setup(VCPU_SREG_SS
);
4381 vmcs_write16(GUEST_TR_SELECTOR
, 0);
4382 vmcs_writel(GUEST_TR_BASE
, 0);
4383 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
4384 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
4386 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
4387 vmcs_writel(GUEST_LDTR_BASE
, 0);
4388 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
4389 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
4391 vmcs_write32(GUEST_SYSENTER_CS
, 0);
4392 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
4393 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
4395 vmcs_writel(GUEST_RFLAGS
, 0x02);
4396 kvm_rip_write(vcpu
, 0xfff0);
4398 vmcs_writel(GUEST_GDTR_BASE
, 0);
4399 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
4401 vmcs_writel(GUEST_IDTR_BASE
, 0);
4402 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
4404 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
4405 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
4406 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
4408 /* Special registers */
4409 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
4413 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
4415 if (cpu_has_vmx_tpr_shadow()) {
4416 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
4417 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
4418 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
4419 __pa(vmx
->vcpu
.arch
.apic
->regs
));
4420 vmcs_write32(TPR_THRESHOLD
, 0);
4423 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
4424 vmcs_write64(APIC_ACCESS_ADDR
,
4425 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
4427 if (vmx_vm_has_apicv(vcpu
->kvm
))
4428 memset(&vmx
->pi_desc
, 0, sizeof(struct pi_desc
));
4431 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
4433 vmx
->vcpu
.arch
.cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
4434 vmx_set_cr0(&vmx
->vcpu
, kvm_read_cr0(vcpu
)); /* enter rmode */
4435 vmx_set_cr4(&vmx
->vcpu
, 0);
4436 vmx_set_efer(&vmx
->vcpu
, 0);
4437 vmx_fpu_activate(&vmx
->vcpu
);
4438 update_exception_bitmap(&vmx
->vcpu
);
4440 vpid_sync_context(vmx
);
4444 * In nested virtualization, check if L1 asked to exit on external interrupts.
4445 * For most existing hypervisors, this will always return true.
4447 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
4449 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
4450 PIN_BASED_EXT_INTR_MASK
;
4453 static bool nested_exit_on_nmi(struct kvm_vcpu
*vcpu
)
4455 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
4456 PIN_BASED_NMI_EXITING
;
4459 static int enable_irq_window(struct kvm_vcpu
*vcpu
)
4461 u32 cpu_based_vm_exec_control
;
4463 if (is_guest_mode(vcpu
) && nested_exit_on_intr(vcpu
))
4465 * We get here if vmx_interrupt_allowed() said we can't
4466 * inject to L1 now because L2 must run. The caller will have
4467 * to make L2 exit right after entry, so we can inject to L1
4472 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4473 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
4474 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4478 static int enable_nmi_window(struct kvm_vcpu
*vcpu
)
4480 u32 cpu_based_vm_exec_control
;
4482 if (!cpu_has_virtual_nmis())
4483 return enable_irq_window(vcpu
);
4485 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
)
4486 return enable_irq_window(vcpu
);
4488 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4489 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
4490 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4494 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
4496 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4498 int irq
= vcpu
->arch
.interrupt
.nr
;
4500 trace_kvm_inj_virq(irq
);
4502 ++vcpu
->stat
.irq_injections
;
4503 if (vmx
->rmode
.vm86_active
) {
4505 if (vcpu
->arch
.interrupt
.soft
)
4506 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
4507 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
4508 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
4511 intr
= irq
| INTR_INFO_VALID_MASK
;
4512 if (vcpu
->arch
.interrupt
.soft
) {
4513 intr
|= INTR_TYPE_SOFT_INTR
;
4514 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
4515 vmx
->vcpu
.arch
.event_exit_inst_len
);
4517 intr
|= INTR_TYPE_EXT_INTR
;
4518 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
4521 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
4523 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4525 if (is_guest_mode(vcpu
))
4528 if (!cpu_has_virtual_nmis()) {
4530 * Tracking the NMI-blocked state in software is built upon
4531 * finding the next open IRQ window. This, in turn, depends on
4532 * well-behaving guests: They have to keep IRQs disabled at
4533 * least as long as the NMI handler runs. Otherwise we may
4534 * cause NMI nesting, maybe breaking the guest. But as this is
4535 * highly unlikely, we can live with the residual risk.
4537 vmx
->soft_vnmi_blocked
= 1;
4538 vmx
->vnmi_blocked_time
= 0;
4541 ++vcpu
->stat
.nmi_injections
;
4542 vmx
->nmi_known_unmasked
= false;
4543 if (vmx
->rmode
.vm86_active
) {
4544 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
4545 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
4548 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
4549 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
4552 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
4554 if (!cpu_has_virtual_nmis())
4555 return to_vmx(vcpu
)->soft_vnmi_blocked
;
4556 if (to_vmx(vcpu
)->nmi_known_unmasked
)
4558 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
4561 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
4563 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4565 if (!cpu_has_virtual_nmis()) {
4566 if (vmx
->soft_vnmi_blocked
!= masked
) {
4567 vmx
->soft_vnmi_blocked
= masked
;
4568 vmx
->vnmi_blocked_time
= 0;
4571 vmx
->nmi_known_unmasked
= !masked
;
4573 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
4574 GUEST_INTR_STATE_NMI
);
4576 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
4577 GUEST_INTR_STATE_NMI
);
4581 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
4583 if (is_guest_mode(vcpu
)) {
4584 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4586 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
4588 if (nested_exit_on_nmi(vcpu
)) {
4589 nested_vmx_vmexit(vcpu
);
4590 vmcs12
->vm_exit_reason
= EXIT_REASON_EXCEPTION_NMI
;
4591 vmcs12
->vm_exit_intr_info
= NMI_VECTOR
|
4592 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
;
4594 * The NMI-triggered VM exit counts as injection:
4595 * clear this one and block further NMIs.
4597 vcpu
->arch
.nmi_pending
= 0;
4598 vmx_set_nmi_mask(vcpu
, true);
4603 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
4606 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
4607 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
4608 | GUEST_INTR_STATE_NMI
));
4611 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4613 if (is_guest_mode(vcpu
)) {
4614 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4616 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
4618 if (nested_exit_on_intr(vcpu
)) {
4619 nested_vmx_vmexit(vcpu
);
4620 vmcs12
->vm_exit_reason
=
4621 EXIT_REASON_EXTERNAL_INTERRUPT
;
4622 vmcs12
->vm_exit_intr_info
= 0;
4624 * fall through to normal code, but now in L1, not L2
4629 return (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
4630 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
4631 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
4634 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
4637 struct kvm_userspace_memory_region tss_mem
= {
4638 .slot
= TSS_PRIVATE_MEMSLOT
,
4639 .guest_phys_addr
= addr
,
4640 .memory_size
= PAGE_SIZE
* 3,
4644 ret
= kvm_set_memory_region(kvm
, &tss_mem
);
4647 kvm
->arch
.tss_addr
= addr
;
4648 if (!init_rmode_tss(kvm
))
4654 static bool rmode_exception(struct kvm_vcpu
*vcpu
, int vec
)
4659 * Update instruction length as we may reinject the exception
4660 * from user space while in guest debugging mode.
4662 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
4663 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4664 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
4668 if (vcpu
->guest_debug
&
4669 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
4686 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
4687 int vec
, u32 err_code
)
4690 * Instruction with address size override prefix opcode 0x67
4691 * Cause the #SS fault with 0 error code in VM86 mode.
4693 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0) {
4694 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
) {
4695 if (vcpu
->arch
.halt_request
) {
4696 vcpu
->arch
.halt_request
= 0;
4697 return kvm_emulate_halt(vcpu
);
4705 * Forward all other exceptions that are valid in real mode.
4706 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4707 * the required debugging infrastructure rework.
4709 kvm_queue_exception(vcpu
, vec
);
4714 * Trigger machine check on the host. We assume all the MSRs are already set up
4715 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4716 * We pass a fake environment to the machine check handler because we want
4717 * the guest to be always treated like user space, no matter what context
4718 * it used internally.
4720 static void kvm_machine_check(void)
4722 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4723 struct pt_regs regs
= {
4724 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
4725 .flags
= X86_EFLAGS_IF
,
4728 do_machine_check(®s
, 0);
4732 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
4734 /* already handled by vcpu_run */
4738 static int handle_exception(struct kvm_vcpu
*vcpu
)
4740 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4741 struct kvm_run
*kvm_run
= vcpu
->run
;
4742 u32 intr_info
, ex_no
, error_code
;
4743 unsigned long cr2
, rip
, dr6
;
4745 enum emulation_result er
;
4747 vect_info
= vmx
->idt_vectoring_info
;
4748 intr_info
= vmx
->exit_intr_info
;
4750 if (is_machine_check(intr_info
))
4751 return handle_machine_check(vcpu
);
4753 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
4754 return 1; /* already handled by vmx_vcpu_run() */
4756 if (is_no_device(intr_info
)) {
4757 vmx_fpu_activate(vcpu
);
4761 if (is_invalid_opcode(intr_info
)) {
4762 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
4763 if (er
!= EMULATE_DONE
)
4764 kvm_queue_exception(vcpu
, UD_VECTOR
);
4769 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
4770 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
4773 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4774 * MMIO, it is better to report an internal error.
4775 * See the comments in vmx_handle_exit.
4777 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
4778 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
4779 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4780 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
4781 vcpu
->run
->internal
.ndata
= 2;
4782 vcpu
->run
->internal
.data
[0] = vect_info
;
4783 vcpu
->run
->internal
.data
[1] = intr_info
;
4787 if (is_page_fault(intr_info
)) {
4788 /* EPT won't cause page fault directly */
4790 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
4791 trace_kvm_page_fault(cr2
, error_code
);
4793 if (kvm_event_needs_reinjection(vcpu
))
4794 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
4795 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
, NULL
, 0);
4798 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
4800 if (vmx
->rmode
.vm86_active
&& rmode_exception(vcpu
, ex_no
))
4801 return handle_rmode_exception(vcpu
, ex_no
, error_code
);
4805 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
4806 if (!(vcpu
->guest_debug
&
4807 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
4808 vcpu
->arch
.dr6
= dr6
| DR6_FIXED_1
;
4809 kvm_queue_exception(vcpu
, DB_VECTOR
);
4812 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
4813 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
4817 * Update instruction length as we may reinject #BP from
4818 * user space while in guest debugging mode. Reading it for
4819 * #DB as well causes no harm, it is not used in that case.
4821 vmx
->vcpu
.arch
.event_exit_inst_len
=
4822 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4823 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
4824 rip
= kvm_rip_read(vcpu
);
4825 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
4826 kvm_run
->debug
.arch
.exception
= ex_no
;
4829 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
4830 kvm_run
->ex
.exception
= ex_no
;
4831 kvm_run
->ex
.error_code
= error_code
;
4837 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
4839 ++vcpu
->stat
.irq_exits
;
4843 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
4845 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
4849 static int handle_io(struct kvm_vcpu
*vcpu
)
4851 unsigned long exit_qualification
;
4852 int size
, in
, string
;
4855 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4856 string
= (exit_qualification
& 16) != 0;
4857 in
= (exit_qualification
& 8) != 0;
4859 ++vcpu
->stat
.io_exits
;
4862 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
4864 port
= exit_qualification
>> 16;
4865 size
= (exit_qualification
& 7) + 1;
4866 skip_emulated_instruction(vcpu
);
4868 return kvm_fast_pio_out(vcpu
, size
, port
);
4872 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
4875 * Patch in the VMCALL instruction:
4877 hypercall
[0] = 0x0f;
4878 hypercall
[1] = 0x01;
4879 hypercall
[2] = 0xc1;
4882 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4883 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
4885 if (is_guest_mode(vcpu
)) {
4886 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4887 unsigned long orig_val
= val
;
4890 * We get here when L2 changed cr0 in a way that did not change
4891 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4892 * but did change L0 shadowed bits. So we first calculate the
4893 * effective cr0 value that L1 would like to write into the
4894 * hardware. It consists of the L2-owned bits from the new
4895 * value combined with the L1-owned bits from L1's guest_cr0.
4897 val
= (val
& ~vmcs12
->cr0_guest_host_mask
) |
4898 (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
);
4900 /* TODO: will have to take unrestricted guest mode into
4902 if ((val
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
)
4905 if (kvm_set_cr0(vcpu
, val
))
4907 vmcs_writel(CR0_READ_SHADOW
, orig_val
);
4910 if (to_vmx(vcpu
)->nested
.vmxon
&&
4911 ((val
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
))
4913 return kvm_set_cr0(vcpu
, val
);
4917 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
4919 if (is_guest_mode(vcpu
)) {
4920 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4921 unsigned long orig_val
= val
;
4923 /* analogously to handle_set_cr0 */
4924 val
= (val
& ~vmcs12
->cr4_guest_host_mask
) |
4925 (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
);
4926 if (kvm_set_cr4(vcpu
, val
))
4928 vmcs_writel(CR4_READ_SHADOW
, orig_val
);
4931 return kvm_set_cr4(vcpu
, val
);
4934 /* called to set cr0 as approriate for clts instruction exit. */
4935 static void handle_clts(struct kvm_vcpu
*vcpu
)
4937 if (is_guest_mode(vcpu
)) {
4939 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4940 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4941 * just pretend it's off (also in arch.cr0 for fpu_activate).
4943 vmcs_writel(CR0_READ_SHADOW
,
4944 vmcs_readl(CR0_READ_SHADOW
) & ~X86_CR0_TS
);
4945 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
4947 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
4950 static int handle_cr(struct kvm_vcpu
*vcpu
)
4952 unsigned long exit_qualification
, val
;
4957 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4958 cr
= exit_qualification
& 15;
4959 reg
= (exit_qualification
>> 8) & 15;
4960 switch ((exit_qualification
>> 4) & 3) {
4961 case 0: /* mov to cr */
4962 val
= kvm_register_read(vcpu
, reg
);
4963 trace_kvm_cr_write(cr
, val
);
4966 err
= handle_set_cr0(vcpu
, val
);
4967 kvm_complete_insn_gp(vcpu
, err
);
4970 err
= kvm_set_cr3(vcpu
, val
);
4971 kvm_complete_insn_gp(vcpu
, err
);
4974 err
= handle_set_cr4(vcpu
, val
);
4975 kvm_complete_insn_gp(vcpu
, err
);
4978 u8 cr8_prev
= kvm_get_cr8(vcpu
);
4979 u8 cr8
= kvm_register_read(vcpu
, reg
);
4980 err
= kvm_set_cr8(vcpu
, cr8
);
4981 kvm_complete_insn_gp(vcpu
, err
);
4982 if (irqchip_in_kernel(vcpu
->kvm
))
4984 if (cr8_prev
<= cr8
)
4986 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
4993 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
4994 skip_emulated_instruction(vcpu
);
4995 vmx_fpu_activate(vcpu
);
4997 case 1: /*mov from cr*/
5000 val
= kvm_read_cr3(vcpu
);
5001 kvm_register_write(vcpu
, reg
, val
);
5002 trace_kvm_cr_read(cr
, val
);
5003 skip_emulated_instruction(vcpu
);
5006 val
= kvm_get_cr8(vcpu
);
5007 kvm_register_write(vcpu
, reg
, val
);
5008 trace_kvm_cr_read(cr
, val
);
5009 skip_emulated_instruction(vcpu
);
5014 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
5015 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
5016 kvm_lmsw(vcpu
, val
);
5018 skip_emulated_instruction(vcpu
);
5023 vcpu
->run
->exit_reason
= 0;
5024 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
5025 (int)(exit_qualification
>> 4) & 3, cr
);
5029 static int handle_dr(struct kvm_vcpu
*vcpu
)
5031 unsigned long exit_qualification
;
5034 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5035 if (!kvm_require_cpl(vcpu
, 0))
5037 dr
= vmcs_readl(GUEST_DR7
);
5040 * As the vm-exit takes precedence over the debug trap, we
5041 * need to emulate the latter, either for the host or the
5042 * guest debugging itself.
5044 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5045 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
5046 vcpu
->run
->debug
.arch
.dr7
= dr
;
5047 vcpu
->run
->debug
.arch
.pc
=
5048 vmcs_readl(GUEST_CS_BASE
) +
5049 vmcs_readl(GUEST_RIP
);
5050 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
5051 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
5054 vcpu
->arch
.dr7
&= ~DR7_GD
;
5055 vcpu
->arch
.dr6
|= DR6_BD
;
5056 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
5057 kvm_queue_exception(vcpu
, DB_VECTOR
);
5062 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5063 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
5064 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
5065 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
5067 if (!kvm_get_dr(vcpu
, dr
, &val
))
5068 kvm_register_write(vcpu
, reg
, val
);
5070 kvm_set_dr(vcpu
, dr
, vcpu
->arch
.regs
[reg
]);
5071 skip_emulated_instruction(vcpu
);
5075 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
5077 vmcs_writel(GUEST_DR7
, val
);
5080 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
5082 kvm_emulate_cpuid(vcpu
);
5086 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
5088 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5091 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
5092 trace_kvm_msr_read_ex(ecx
);
5093 kvm_inject_gp(vcpu
, 0);
5097 trace_kvm_msr_read(ecx
, data
);
5099 /* FIXME: handling of bits 32:63 of rax, rdx */
5100 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
5101 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
5102 skip_emulated_instruction(vcpu
);
5106 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
5108 struct msr_data msr
;
5109 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5110 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
5111 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
5115 msr
.host_initiated
= false;
5116 if (vmx_set_msr(vcpu
, &msr
) != 0) {
5117 trace_kvm_msr_write_ex(ecx
, data
);
5118 kvm_inject_gp(vcpu
, 0);
5122 trace_kvm_msr_write(ecx
, data
);
5123 skip_emulated_instruction(vcpu
);
5127 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
5129 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5133 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
5135 u32 cpu_based_vm_exec_control
;
5137 /* clear pending irq */
5138 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5139 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
5140 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5142 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5144 ++vcpu
->stat
.irq_window_exits
;
5147 * If the user space waits to inject interrupts, exit as soon as
5150 if (!irqchip_in_kernel(vcpu
->kvm
) &&
5151 vcpu
->run
->request_interrupt_window
&&
5152 !kvm_cpu_has_interrupt(vcpu
)) {
5153 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
5159 static int handle_halt(struct kvm_vcpu
*vcpu
)
5161 skip_emulated_instruction(vcpu
);
5162 return kvm_emulate_halt(vcpu
);
5165 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
5167 skip_emulated_instruction(vcpu
);
5168 kvm_emulate_hypercall(vcpu
);
5172 static int handle_invd(struct kvm_vcpu
*vcpu
)
5174 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5177 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
5179 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5181 kvm_mmu_invlpg(vcpu
, exit_qualification
);
5182 skip_emulated_instruction(vcpu
);
5186 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
5190 err
= kvm_rdpmc(vcpu
);
5191 kvm_complete_insn_gp(vcpu
, err
);
5196 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
5198 skip_emulated_instruction(vcpu
);
5199 kvm_emulate_wbinvd(vcpu
);
5203 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
5205 u64 new_bv
= kvm_read_edx_eax(vcpu
);
5206 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5208 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
5209 skip_emulated_instruction(vcpu
);
5213 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
5215 if (likely(fasteoi
)) {
5216 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5217 int access_type
, offset
;
5219 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
5220 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
5222 * Sane guest uses MOV to write EOI, with written value
5223 * not cared. So make a short-circuit here by avoiding
5224 * heavy instruction emulation.
5226 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
5227 (offset
== APIC_EOI
)) {
5228 kvm_lapic_set_eoi(vcpu
);
5229 skip_emulated_instruction(vcpu
);
5233 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5236 static int handle_apic_eoi_induced(struct kvm_vcpu
*vcpu
)
5238 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5239 int vector
= exit_qualification
& 0xff;
5241 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5242 kvm_apic_set_eoi_accelerated(vcpu
, vector
);
5246 static int handle_apic_write(struct kvm_vcpu
*vcpu
)
5248 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5249 u32 offset
= exit_qualification
& 0xfff;
5251 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5252 kvm_apic_write_nodecode(vcpu
, offset
);
5256 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
5258 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5259 unsigned long exit_qualification
;
5260 bool has_error_code
= false;
5263 int reason
, type
, idt_v
, idt_index
;
5265 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
5266 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
5267 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
5269 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5271 reason
= (u32
)exit_qualification
>> 30;
5272 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
5274 case INTR_TYPE_NMI_INTR
:
5275 vcpu
->arch
.nmi_injected
= false;
5276 vmx_set_nmi_mask(vcpu
, true);
5278 case INTR_TYPE_EXT_INTR
:
5279 case INTR_TYPE_SOFT_INTR
:
5280 kvm_clear_interrupt_queue(vcpu
);
5282 case INTR_TYPE_HARD_EXCEPTION
:
5283 if (vmx
->idt_vectoring_info
&
5284 VECTORING_INFO_DELIVER_CODE_MASK
) {
5285 has_error_code
= true;
5287 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
5290 case INTR_TYPE_SOFT_EXCEPTION
:
5291 kvm_clear_exception_queue(vcpu
);
5297 tss_selector
= exit_qualification
;
5299 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
5300 type
!= INTR_TYPE_EXT_INTR
&&
5301 type
!= INTR_TYPE_NMI_INTR
))
5302 skip_emulated_instruction(vcpu
);
5304 if (kvm_task_switch(vcpu
, tss_selector
,
5305 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1, reason
,
5306 has_error_code
, error_code
) == EMULATE_FAIL
) {
5307 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5308 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5309 vcpu
->run
->internal
.ndata
= 0;
5313 /* clear all local breakpoint enable flags */
5314 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~55);
5317 * TODO: What about debug traps on tss switch?
5318 * Are we supposed to inject them and update dr6?
5324 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
5326 unsigned long exit_qualification
;
5331 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5333 gla_validity
= (exit_qualification
>> 7) & 0x3;
5334 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
5335 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
5336 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5337 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
5338 vmcs_readl(GUEST_LINEAR_ADDRESS
));
5339 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
5340 (long unsigned int)exit_qualification
);
5341 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5342 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
5347 * EPT violation happened while executing iret from NMI,
5348 * "blocked by NMI" bit has to be set before next VM entry.
5349 * There are errata that may cause this bit to not be set:
5352 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
5353 cpu_has_virtual_nmis() &&
5354 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
5355 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
, GUEST_INTR_STATE_NMI
);
5357 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5358 trace_kvm_page_fault(gpa
, exit_qualification
);
5360 /* It is a write fault? */
5361 error_code
= exit_qualification
& (1U << 1);
5362 /* It is a fetch fault? */
5363 error_code
|= (exit_qualification
& (1U << 2)) << 2;
5364 /* ept page table is present? */
5365 error_code
|= (exit_qualification
>> 3) & 0x1;
5367 vcpu
->arch
.exit_qualification
= exit_qualification
;
5369 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
5372 static u64
ept_rsvd_mask(u64 spte
, int level
)
5377 for (i
= 51; i
> boot_cpu_data
.x86_phys_bits
; i
--)
5378 mask
|= (1ULL << i
);
5381 /* bits 7:3 reserved */
5383 else if (level
== 2) {
5384 if (spte
& (1ULL << 7))
5385 /* 2MB ref, bits 20:12 reserved */
5388 /* bits 6:3 reserved */
5395 static void ept_misconfig_inspect_spte(struct kvm_vcpu
*vcpu
, u64 spte
,
5398 printk(KERN_ERR
"%s: spte 0x%llx level %d\n", __func__
, spte
, level
);
5400 /* 010b (write-only) */
5401 WARN_ON((spte
& 0x7) == 0x2);
5403 /* 110b (write/execute) */
5404 WARN_ON((spte
& 0x7) == 0x6);
5406 /* 100b (execute-only) and value not supported by logical processor */
5407 if (!cpu_has_vmx_ept_execute_only())
5408 WARN_ON((spte
& 0x7) == 0x4);
5412 u64 rsvd_bits
= spte
& ept_rsvd_mask(spte
, level
);
5414 if (rsvd_bits
!= 0) {
5415 printk(KERN_ERR
"%s: rsvd_bits = 0x%llx\n",
5416 __func__
, rsvd_bits
);
5420 if (level
== 1 || (level
== 2 && (spte
& (1ULL << 7)))) {
5421 u64 ept_mem_type
= (spte
& 0x38) >> 3;
5423 if (ept_mem_type
== 2 || ept_mem_type
== 3 ||
5424 ept_mem_type
== 7) {
5425 printk(KERN_ERR
"%s: ept_mem_type=0x%llx\n",
5426 __func__
, ept_mem_type
);
5433 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
5436 int nr_sptes
, i
, ret
;
5439 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5441 ret
= handle_mmio_page_fault_common(vcpu
, gpa
, true);
5442 if (likely(ret
== RET_MMIO_PF_EMULATE
))
5443 return x86_emulate_instruction(vcpu
, gpa
, 0, NULL
, 0) ==
5446 if (unlikely(ret
== RET_MMIO_PF_INVALID
))
5447 return kvm_mmu_page_fault(vcpu
, gpa
, 0, NULL
, 0);
5449 if (unlikely(ret
== RET_MMIO_PF_RETRY
))
5452 /* It is the real ept misconfig */
5453 printk(KERN_ERR
"EPT: Misconfiguration.\n");
5454 printk(KERN_ERR
"EPT: GPA: 0x%llx\n", gpa
);
5456 nr_sptes
= kvm_mmu_get_spte_hierarchy(vcpu
, gpa
, sptes
);
5458 for (i
= PT64_ROOT_LEVEL
; i
> PT64_ROOT_LEVEL
- nr_sptes
; --i
)
5459 ept_misconfig_inspect_spte(vcpu
, sptes
[i
-1], i
);
5461 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5462 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
5467 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
5469 u32 cpu_based_vm_exec_control
;
5471 /* clear pending NMI */
5472 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5473 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
5474 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5475 ++vcpu
->stat
.nmi_window_exits
;
5476 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5481 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
5483 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5484 enum emulation_result err
= EMULATE_DONE
;
5487 bool intr_window_requested
;
5488 unsigned count
= 130;
5490 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5491 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
5493 while (!guest_state_valid(vcpu
) && count
-- != 0) {
5494 if (intr_window_requested
&& vmx_interrupt_allowed(vcpu
))
5495 return handle_interrupt_window(&vmx
->vcpu
);
5497 if (test_bit(KVM_REQ_EVENT
, &vcpu
->requests
))
5500 err
= emulate_instruction(vcpu
, EMULTYPE_NO_REEXECUTE
);
5502 if (err
== EMULATE_USER_EXIT
) {
5503 ++vcpu
->stat
.mmio_exits
;
5508 if (err
!= EMULATE_DONE
) {
5509 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5510 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5511 vcpu
->run
->internal
.ndata
= 0;
5515 if (vcpu
->arch
.halt_request
) {
5516 vcpu
->arch
.halt_request
= 0;
5517 ret
= kvm_emulate_halt(vcpu
);
5521 if (signal_pending(current
))
5527 vmx
->emulation_required
= emulation_required(vcpu
);
5533 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5534 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5536 static int handle_pause(struct kvm_vcpu
*vcpu
)
5538 skip_emulated_instruction(vcpu
);
5539 kvm_vcpu_on_spin(vcpu
);
5544 static int handle_invalid_op(struct kvm_vcpu
*vcpu
)
5546 kvm_queue_exception(vcpu
, UD_VECTOR
);
5551 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5552 * We could reuse a single VMCS for all the L2 guests, but we also want the
5553 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5554 * allows keeping them loaded on the processor, and in the future will allow
5555 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5556 * every entry if they never change.
5557 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5558 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5560 * The following functions allocate and free a vmcs02 in this pool.
5563 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5564 static struct loaded_vmcs
*nested_get_current_vmcs02(struct vcpu_vmx
*vmx
)
5566 struct vmcs02_list
*item
;
5567 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
5568 if (item
->vmptr
== vmx
->nested
.current_vmptr
) {
5569 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
5570 return &item
->vmcs02
;
5573 if (vmx
->nested
.vmcs02_num
>= max(VMCS02_POOL_SIZE
, 1)) {
5574 /* Recycle the least recently used VMCS. */
5575 item
= list_entry(vmx
->nested
.vmcs02_pool
.prev
,
5576 struct vmcs02_list
, list
);
5577 item
->vmptr
= vmx
->nested
.current_vmptr
;
5578 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
5579 return &item
->vmcs02
;
5582 /* Create a new VMCS */
5583 item
= kmalloc(sizeof(struct vmcs02_list
), GFP_KERNEL
);
5586 item
->vmcs02
.vmcs
= alloc_vmcs();
5587 if (!item
->vmcs02
.vmcs
) {
5591 loaded_vmcs_init(&item
->vmcs02
);
5592 item
->vmptr
= vmx
->nested
.current_vmptr
;
5593 list_add(&(item
->list
), &(vmx
->nested
.vmcs02_pool
));
5594 vmx
->nested
.vmcs02_num
++;
5595 return &item
->vmcs02
;
5598 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5599 static void nested_free_vmcs02(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
5601 struct vmcs02_list
*item
;
5602 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
5603 if (item
->vmptr
== vmptr
) {
5604 free_loaded_vmcs(&item
->vmcs02
);
5605 list_del(&item
->list
);
5607 vmx
->nested
.vmcs02_num
--;
5613 * Free all VMCSs saved for this vcpu, except the one pointed by
5614 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5615 * currently used, if running L2), and vmcs01 when running L2.
5617 static void nested_free_all_saved_vmcss(struct vcpu_vmx
*vmx
)
5619 struct vmcs02_list
*item
, *n
;
5620 list_for_each_entry_safe(item
, n
, &vmx
->nested
.vmcs02_pool
, list
) {
5621 if (vmx
->loaded_vmcs
!= &item
->vmcs02
)
5622 free_loaded_vmcs(&item
->vmcs02
);
5623 list_del(&item
->list
);
5626 vmx
->nested
.vmcs02_num
= 0;
5628 if (vmx
->loaded_vmcs
!= &vmx
->vmcs01
)
5629 free_loaded_vmcs(&vmx
->vmcs01
);
5633 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5634 * set the success or error code of an emulated VMX instruction, as specified
5635 * by Vol 2B, VMX Instruction Reference, "Conventions".
5637 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
5639 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
5640 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
5641 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
5644 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
5646 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
5647 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
5648 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
5652 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
5653 u32 vm_instruction_error
)
5655 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
5657 * failValid writes the error number to the current VMCS, which
5658 * can't be done there isn't a current VMCS.
5660 nested_vmx_failInvalid(vcpu
);
5663 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
5664 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
5665 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
5667 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
5669 * We don't need to force a shadow sync because
5670 * VM_INSTRUCTION_ERROR is not shadowed
5675 * Emulate the VMXON instruction.
5676 * Currently, we just remember that VMX is active, and do not save or even
5677 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5678 * do not currently need to store anything in that guest-allocated memory
5679 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5680 * argument is different from the VMXON pointer (which the spec says they do).
5682 static int handle_vmon(struct kvm_vcpu
*vcpu
)
5684 struct kvm_segment cs
;
5685 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5686 struct vmcs
*shadow_vmcs
;
5687 const u64 VMXON_NEEDED_FEATURES
= FEATURE_CONTROL_LOCKED
5688 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
5690 /* The Intel VMX Instruction Reference lists a bunch of bits that
5691 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5692 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5693 * Otherwise, we should fail with #UD. We test these now:
5695 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
) ||
5696 !kvm_read_cr0_bits(vcpu
, X86_CR0_PE
) ||
5697 (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
5698 kvm_queue_exception(vcpu
, UD_VECTOR
);
5702 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5703 if (is_long_mode(vcpu
) && !cs
.l
) {
5704 kvm_queue_exception(vcpu
, UD_VECTOR
);
5708 if (vmx_get_cpl(vcpu
)) {
5709 kvm_inject_gp(vcpu
, 0);
5712 if (vmx
->nested
.vmxon
) {
5713 nested_vmx_failValid(vcpu
, VMXERR_VMXON_IN_VMX_ROOT_OPERATION
);
5714 skip_emulated_instruction(vcpu
);
5718 if ((vmx
->nested
.msr_ia32_feature_control
& VMXON_NEEDED_FEATURES
)
5719 != VMXON_NEEDED_FEATURES
) {
5720 kvm_inject_gp(vcpu
, 0);
5724 if (enable_shadow_vmcs
) {
5725 shadow_vmcs
= alloc_vmcs();
5728 /* mark vmcs as shadow */
5729 shadow_vmcs
->revision_id
|= (1u << 31);
5730 /* init shadow vmcs */
5731 vmcs_clear(shadow_vmcs
);
5732 vmx
->nested
.current_shadow_vmcs
= shadow_vmcs
;
5735 INIT_LIST_HEAD(&(vmx
->nested
.vmcs02_pool
));
5736 vmx
->nested
.vmcs02_num
= 0;
5738 vmx
->nested
.vmxon
= true;
5740 skip_emulated_instruction(vcpu
);
5741 nested_vmx_succeed(vcpu
);
5746 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5747 * for running VMX instructions (except VMXON, whose prerequisites are
5748 * slightly different). It also specifies what exception to inject otherwise.
5750 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
5752 struct kvm_segment cs
;
5753 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5755 if (!vmx
->nested
.vmxon
) {
5756 kvm_queue_exception(vcpu
, UD_VECTOR
);
5760 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5761 if ((vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) ||
5762 (is_long_mode(vcpu
) && !cs
.l
)) {
5763 kvm_queue_exception(vcpu
, UD_VECTOR
);
5767 if (vmx_get_cpl(vcpu
)) {
5768 kvm_inject_gp(vcpu
, 0);
5775 static inline void nested_release_vmcs12(struct vcpu_vmx
*vmx
)
5778 if (enable_shadow_vmcs
) {
5779 if (vmx
->nested
.current_vmcs12
!= NULL
) {
5780 /* copy to memory all shadowed fields in case
5781 they were modified */
5782 copy_shadow_to_vmcs12(vmx
);
5783 vmx
->nested
.sync_shadow_vmcs
= false;
5784 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
5785 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
5786 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
5787 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
5790 kunmap(vmx
->nested
.current_vmcs12_page
);
5791 nested_release_page(vmx
->nested
.current_vmcs12_page
);
5795 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5796 * just stops using VMX.
5798 static void free_nested(struct vcpu_vmx
*vmx
)
5800 if (!vmx
->nested
.vmxon
)
5802 vmx
->nested
.vmxon
= false;
5803 if (vmx
->nested
.current_vmptr
!= -1ull) {
5804 nested_release_vmcs12(vmx
);
5805 vmx
->nested
.current_vmptr
= -1ull;
5806 vmx
->nested
.current_vmcs12
= NULL
;
5808 if (enable_shadow_vmcs
)
5809 free_vmcs(vmx
->nested
.current_shadow_vmcs
);
5810 /* Unpin physical memory we referred to in current vmcs02 */
5811 if (vmx
->nested
.apic_access_page
) {
5812 nested_release_page(vmx
->nested
.apic_access_page
);
5813 vmx
->nested
.apic_access_page
= 0;
5816 nested_free_all_saved_vmcss(vmx
);
5819 /* Emulate the VMXOFF instruction */
5820 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
5822 if (!nested_vmx_check_permission(vcpu
))
5824 free_nested(to_vmx(vcpu
));
5825 skip_emulated_instruction(vcpu
);
5826 nested_vmx_succeed(vcpu
);
5831 * Decode the memory-address operand of a vmx instruction, as recorded on an
5832 * exit caused by such an instruction (run by a guest hypervisor).
5833 * On success, returns 0. When the operand is invalid, returns 1 and throws
5836 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
5837 unsigned long exit_qualification
,
5838 u32 vmx_instruction_info
, gva_t
*ret
)
5841 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5842 * Execution", on an exit, vmx_instruction_info holds most of the
5843 * addressing components of the operand. Only the displacement part
5844 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5845 * For how an actual address is calculated from all these components,
5846 * refer to Vol. 1, "Operand Addressing".
5848 int scaling
= vmx_instruction_info
& 3;
5849 int addr_size
= (vmx_instruction_info
>> 7) & 7;
5850 bool is_reg
= vmx_instruction_info
& (1u << 10);
5851 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
5852 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
5853 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
5854 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
5855 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
5858 kvm_queue_exception(vcpu
, UD_VECTOR
);
5862 /* Addr = segment_base + offset */
5863 /* offset = base + [index * scale] + displacement */
5864 *ret
= vmx_get_segment_base(vcpu
, seg_reg
);
5866 *ret
+= kvm_register_read(vcpu
, base_reg
);
5868 *ret
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
5869 *ret
+= exit_qualification
; /* holds the displacement */
5871 if (addr_size
== 1) /* 32 bit */
5875 * TODO: throw #GP (and return 1) in various cases that the VM*
5876 * instructions require it - e.g., offset beyond segment limit,
5877 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5878 * address, and so on. Currently these are not checked.
5883 /* Emulate the VMCLEAR instruction */
5884 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
5886 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5889 struct vmcs12
*vmcs12
;
5891 struct x86_exception e
;
5893 if (!nested_vmx_check_permission(vcpu
))
5896 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
5897 vmcs_read32(VMX_INSTRUCTION_INFO
), &gva
))
5900 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
5901 sizeof(vmptr
), &e
)) {
5902 kvm_inject_page_fault(vcpu
, &e
);
5906 if (!IS_ALIGNED(vmptr
, PAGE_SIZE
)) {
5907 nested_vmx_failValid(vcpu
, VMXERR_VMCLEAR_INVALID_ADDRESS
);
5908 skip_emulated_instruction(vcpu
);
5912 if (vmptr
== vmx
->nested
.current_vmptr
) {
5913 nested_release_vmcs12(vmx
);
5914 vmx
->nested
.current_vmptr
= -1ull;
5915 vmx
->nested
.current_vmcs12
= NULL
;
5918 page
= nested_get_page(vcpu
, vmptr
);
5921 * For accurate processor emulation, VMCLEAR beyond available
5922 * physical memory should do nothing at all. However, it is
5923 * possible that a nested vmx bug, not a guest hypervisor bug,
5924 * resulted in this case, so let's shut down before doing any
5927 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5930 vmcs12
= kmap(page
);
5931 vmcs12
->launch_state
= 0;
5933 nested_release_page(page
);
5935 nested_free_vmcs02(vmx
, vmptr
);
5937 skip_emulated_instruction(vcpu
);
5938 nested_vmx_succeed(vcpu
);
5942 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
5944 /* Emulate the VMLAUNCH instruction */
5945 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
5947 return nested_vmx_run(vcpu
, true);
5950 /* Emulate the VMRESUME instruction */
5951 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
5954 return nested_vmx_run(vcpu
, false);
5957 enum vmcs_field_type
{
5958 VMCS_FIELD_TYPE_U16
= 0,
5959 VMCS_FIELD_TYPE_U64
= 1,
5960 VMCS_FIELD_TYPE_U32
= 2,
5961 VMCS_FIELD_TYPE_NATURAL_WIDTH
= 3
5964 static inline int vmcs_field_type(unsigned long field
)
5966 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
5967 return VMCS_FIELD_TYPE_U32
;
5968 return (field
>> 13) & 0x3 ;
5971 static inline int vmcs_field_readonly(unsigned long field
)
5973 return (((field
>> 10) & 0x3) == 1);
5977 * Read a vmcs12 field. Since these can have varying lengths and we return
5978 * one type, we chose the biggest type (u64) and zero-extend the return value
5979 * to that size. Note that the caller, handle_vmread, might need to use only
5980 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5981 * 64-bit fields are to be returned).
5983 static inline bool vmcs12_read_any(struct kvm_vcpu
*vcpu
,
5984 unsigned long field
, u64
*ret
)
5986 short offset
= vmcs_field_to_offset(field
);
5992 p
= ((char *)(get_vmcs12(vcpu
))) + offset
;
5994 switch (vmcs_field_type(field
)) {
5995 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
5996 *ret
= *((natural_width
*)p
);
5998 case VMCS_FIELD_TYPE_U16
:
6001 case VMCS_FIELD_TYPE_U32
:
6004 case VMCS_FIELD_TYPE_U64
:
6008 return 0; /* can never happen. */
6013 static inline bool vmcs12_write_any(struct kvm_vcpu
*vcpu
,
6014 unsigned long field
, u64 field_value
){
6015 short offset
= vmcs_field_to_offset(field
);
6016 char *p
= ((char *) get_vmcs12(vcpu
)) + offset
;
6020 switch (vmcs_field_type(field
)) {
6021 case VMCS_FIELD_TYPE_U16
:
6022 *(u16
*)p
= field_value
;
6024 case VMCS_FIELD_TYPE_U32
:
6025 *(u32
*)p
= field_value
;
6027 case VMCS_FIELD_TYPE_U64
:
6028 *(u64
*)p
= field_value
;
6030 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6031 *(natural_width
*)p
= field_value
;
6034 return false; /* can never happen. */
6039 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
)
6042 unsigned long field
;
6044 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
6045 const unsigned long *fields
= shadow_read_write_fields
;
6046 const int num_fields
= max_shadow_read_write_fields
;
6048 vmcs_load(shadow_vmcs
);
6050 for (i
= 0; i
< num_fields
; i
++) {
6052 switch (vmcs_field_type(field
)) {
6053 case VMCS_FIELD_TYPE_U16
:
6054 field_value
= vmcs_read16(field
);
6056 case VMCS_FIELD_TYPE_U32
:
6057 field_value
= vmcs_read32(field
);
6059 case VMCS_FIELD_TYPE_U64
:
6060 field_value
= vmcs_read64(field
);
6062 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6063 field_value
= vmcs_readl(field
);
6066 vmcs12_write_any(&vmx
->vcpu
, field
, field_value
);
6069 vmcs_clear(shadow_vmcs
);
6070 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
6073 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
)
6075 const unsigned long *fields
[] = {
6076 shadow_read_write_fields
,
6077 shadow_read_only_fields
6079 const int max_fields
[] = {
6080 max_shadow_read_write_fields
,
6081 max_shadow_read_only_fields
6084 unsigned long field
;
6085 u64 field_value
= 0;
6086 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
6088 vmcs_load(shadow_vmcs
);
6090 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
6091 for (i
= 0; i
< max_fields
[q
]; i
++) {
6092 field
= fields
[q
][i
];
6093 vmcs12_read_any(&vmx
->vcpu
, field
, &field_value
);
6095 switch (vmcs_field_type(field
)) {
6096 case VMCS_FIELD_TYPE_U16
:
6097 vmcs_write16(field
, (u16
)field_value
);
6099 case VMCS_FIELD_TYPE_U32
:
6100 vmcs_write32(field
, (u32
)field_value
);
6102 case VMCS_FIELD_TYPE_U64
:
6103 vmcs_write64(field
, (u64
)field_value
);
6105 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6106 vmcs_writel(field
, (long)field_value
);
6112 vmcs_clear(shadow_vmcs
);
6113 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
6117 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6118 * used before) all generate the same failure when it is missing.
6120 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
6122 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6123 if (vmx
->nested
.current_vmptr
== -1ull) {
6124 nested_vmx_failInvalid(vcpu
);
6125 skip_emulated_instruction(vcpu
);
6131 static int handle_vmread(struct kvm_vcpu
*vcpu
)
6133 unsigned long field
;
6135 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6136 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6139 if (!nested_vmx_check_permission(vcpu
) ||
6140 !nested_vmx_check_vmcs12(vcpu
))
6143 /* Decode instruction info and find the field to read */
6144 field
= kvm_register_read(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
6145 /* Read the field, zero-extended to a u64 field_value */
6146 if (!vmcs12_read_any(vcpu
, field
, &field_value
)) {
6147 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
6148 skip_emulated_instruction(vcpu
);
6152 * Now copy part of this value to register or memory, as requested.
6153 * Note that the number of bits actually copied is 32 or 64 depending
6154 * on the guest's mode (32 or 64 bit), not on the given field's length.
6156 if (vmx_instruction_info
& (1u << 10)) {
6157 kvm_register_write(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
6160 if (get_vmx_mem_address(vcpu
, exit_qualification
,
6161 vmx_instruction_info
, &gva
))
6163 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6164 kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, gva
,
6165 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), NULL
);
6168 nested_vmx_succeed(vcpu
);
6169 skip_emulated_instruction(vcpu
);
6174 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
6176 unsigned long field
;
6178 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6179 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6180 /* The value to write might be 32 or 64 bits, depending on L1's long
6181 * mode, and eventually we need to write that into a field of several
6182 * possible lengths. The code below first zero-extends the value to 64
6183 * bit (field_value), and then copies only the approriate number of
6184 * bits into the vmcs12 field.
6186 u64 field_value
= 0;
6187 struct x86_exception e
;
6189 if (!nested_vmx_check_permission(vcpu
) ||
6190 !nested_vmx_check_vmcs12(vcpu
))
6193 if (vmx_instruction_info
& (1u << 10))
6194 field_value
= kvm_register_read(vcpu
,
6195 (((vmx_instruction_info
) >> 3) & 0xf));
6197 if (get_vmx_mem_address(vcpu
, exit_qualification
,
6198 vmx_instruction_info
, &gva
))
6200 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
,
6201 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), &e
)) {
6202 kvm_inject_page_fault(vcpu
, &e
);
6208 field
= kvm_register_read(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
6209 if (vmcs_field_readonly(field
)) {
6210 nested_vmx_failValid(vcpu
,
6211 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
6212 skip_emulated_instruction(vcpu
);
6216 if (!vmcs12_write_any(vcpu
, field
, field_value
)) {
6217 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
6218 skip_emulated_instruction(vcpu
);
6222 nested_vmx_succeed(vcpu
);
6223 skip_emulated_instruction(vcpu
);
6227 /* Emulate the VMPTRLD instruction */
6228 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
6230 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6233 struct x86_exception e
;
6236 if (!nested_vmx_check_permission(vcpu
))
6239 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
6240 vmcs_read32(VMX_INSTRUCTION_INFO
), &gva
))
6243 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
6244 sizeof(vmptr
), &e
)) {
6245 kvm_inject_page_fault(vcpu
, &e
);
6249 if (!IS_ALIGNED(vmptr
, PAGE_SIZE
)) {
6250 nested_vmx_failValid(vcpu
, VMXERR_VMPTRLD_INVALID_ADDRESS
);
6251 skip_emulated_instruction(vcpu
);
6255 if (vmx
->nested
.current_vmptr
!= vmptr
) {
6256 struct vmcs12
*new_vmcs12
;
6258 page
= nested_get_page(vcpu
, vmptr
);
6260 nested_vmx_failInvalid(vcpu
);
6261 skip_emulated_instruction(vcpu
);
6264 new_vmcs12
= kmap(page
);
6265 if (new_vmcs12
->revision_id
!= VMCS12_REVISION
) {
6267 nested_release_page_clean(page
);
6268 nested_vmx_failValid(vcpu
,
6269 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
6270 skip_emulated_instruction(vcpu
);
6273 if (vmx
->nested
.current_vmptr
!= -1ull)
6274 nested_release_vmcs12(vmx
);
6276 vmx
->nested
.current_vmptr
= vmptr
;
6277 vmx
->nested
.current_vmcs12
= new_vmcs12
;
6278 vmx
->nested
.current_vmcs12_page
= page
;
6279 if (enable_shadow_vmcs
) {
6280 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6281 exec_control
|= SECONDARY_EXEC_SHADOW_VMCS
;
6282 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
6283 vmcs_write64(VMCS_LINK_POINTER
,
6284 __pa(vmx
->nested
.current_shadow_vmcs
));
6285 vmx
->nested
.sync_shadow_vmcs
= true;
6289 nested_vmx_succeed(vcpu
);
6290 skip_emulated_instruction(vcpu
);
6294 /* Emulate the VMPTRST instruction */
6295 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
6297 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6298 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6300 struct x86_exception e
;
6302 if (!nested_vmx_check_permission(vcpu
))
6305 if (get_vmx_mem_address(vcpu
, exit_qualification
,
6306 vmx_instruction_info
, &vmcs_gva
))
6308 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6309 if (kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, vmcs_gva
,
6310 (void *)&to_vmx(vcpu
)->nested
.current_vmptr
,
6312 kvm_inject_page_fault(vcpu
, &e
);
6315 nested_vmx_succeed(vcpu
);
6316 skip_emulated_instruction(vcpu
);
6320 /* Emulate the INVEPT instruction */
6321 static int handle_invept(struct kvm_vcpu
*vcpu
)
6323 u32 vmx_instruction_info
, types
;
6326 struct x86_exception e
;
6330 u64 eptp_mask
= ((1ull << 51) - 1) & PAGE_MASK
;
6332 if (!(nested_vmx_secondary_ctls_high
& SECONDARY_EXEC_ENABLE_EPT
) ||
6333 !(nested_vmx_ept_caps
& VMX_EPT_INVEPT_BIT
)) {
6334 kvm_queue_exception(vcpu
, UD_VECTOR
);
6338 if (!nested_vmx_check_permission(vcpu
))
6341 if (!kvm_read_cr0_bits(vcpu
, X86_CR0_PE
)) {
6342 kvm_queue_exception(vcpu
, UD_VECTOR
);
6346 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6347 type
= kvm_register_read(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
6349 types
= (nested_vmx_ept_caps
>> VMX_EPT_EXTENT_SHIFT
) & 6;
6351 if (!(types
& (1UL << type
))) {
6352 nested_vmx_failValid(vcpu
,
6353 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
6357 /* According to the Intel VMX instruction reference, the memory
6358 * operand is read even if it isn't needed (e.g., for type==global)
6360 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
6361 vmx_instruction_info
, &gva
))
6363 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &operand
,
6364 sizeof(operand
), &e
)) {
6365 kvm_inject_page_fault(vcpu
, &e
);
6370 case VMX_EPT_EXTENT_CONTEXT
:
6371 if ((operand
.eptp
& eptp_mask
) !=
6372 (nested_ept_get_cr3(vcpu
) & eptp_mask
))
6374 case VMX_EPT_EXTENT_GLOBAL
:
6375 kvm_mmu_sync_roots(vcpu
);
6376 kvm_mmu_flush_tlb(vcpu
);
6377 nested_vmx_succeed(vcpu
);
6384 skip_emulated_instruction(vcpu
);
6389 * The exit handlers return 1 if the exit was handled fully and guest execution
6390 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6391 * to be done to userspace and return 0.
6393 static int (*const kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
6394 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
6395 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
6396 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
6397 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
6398 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
6399 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
6400 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
6401 [EXIT_REASON_CPUID
] = handle_cpuid
,
6402 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
6403 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
6404 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
6405 [EXIT_REASON_HLT
] = handle_halt
,
6406 [EXIT_REASON_INVD
] = handle_invd
,
6407 [EXIT_REASON_INVLPG
] = handle_invlpg
,
6408 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
6409 [EXIT_REASON_VMCALL
] = handle_vmcall
,
6410 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
6411 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
6412 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
6413 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
6414 [EXIT_REASON_VMREAD
] = handle_vmread
,
6415 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
6416 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
6417 [EXIT_REASON_VMOFF
] = handle_vmoff
,
6418 [EXIT_REASON_VMON
] = handle_vmon
,
6419 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
6420 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
6421 [EXIT_REASON_APIC_WRITE
] = handle_apic_write
,
6422 [EXIT_REASON_EOI_INDUCED
] = handle_apic_eoi_induced
,
6423 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
6424 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
6425 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
6426 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
6427 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
6428 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
6429 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
6430 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_invalid_op
,
6431 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_invalid_op
,
6432 [EXIT_REASON_INVEPT
] = handle_invept
,
6435 static const int kvm_vmx_max_exit_handlers
=
6436 ARRAY_SIZE(kvm_vmx_exit_handlers
);
6438 static bool nested_vmx_exit_handled_io(struct kvm_vcpu
*vcpu
,
6439 struct vmcs12
*vmcs12
)
6441 unsigned long exit_qualification
;
6442 gpa_t bitmap
, last_bitmap
;
6447 if (nested_cpu_has(vmcs12
, CPU_BASED_UNCOND_IO_EXITING
))
6450 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
6453 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6455 port
= exit_qualification
>> 16;
6456 size
= (exit_qualification
& 7) + 1;
6458 last_bitmap
= (gpa_t
)-1;
6463 bitmap
= vmcs12
->io_bitmap_a
;
6464 else if (port
< 0x10000)
6465 bitmap
= vmcs12
->io_bitmap_b
;
6468 bitmap
+= (port
& 0x7fff) / 8;
6470 if (last_bitmap
!= bitmap
)
6471 if (kvm_read_guest(vcpu
->kvm
, bitmap
, &b
, 1))
6473 if (b
& (1 << (port
& 7)))
6478 last_bitmap
= bitmap
;
6485 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6486 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6487 * disinterest in the current event (read or write a specific MSR) by using an
6488 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6490 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
6491 struct vmcs12
*vmcs12
, u32 exit_reason
)
6493 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
6496 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
6500 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6501 * for the four combinations of read/write and low/high MSR numbers.
6502 * First we need to figure out which of the four to use:
6504 bitmap
= vmcs12
->msr_bitmap
;
6505 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
6507 if (msr_index
>= 0xc0000000) {
6508 msr_index
-= 0xc0000000;
6512 /* Then read the msr_index'th bit from this bitmap: */
6513 if (msr_index
< 1024*8) {
6515 if (kvm_read_guest(vcpu
->kvm
, bitmap
+ msr_index
/8, &b
, 1))
6517 return 1 & (b
>> (msr_index
& 7));
6519 return 1; /* let L1 handle the wrong parameter */
6523 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6524 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6525 * intercept (via guest_host_mask etc.) the current event.
6527 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
6528 struct vmcs12
*vmcs12
)
6530 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6531 int cr
= exit_qualification
& 15;
6532 int reg
= (exit_qualification
>> 8) & 15;
6533 unsigned long val
= kvm_register_read(vcpu
, reg
);
6535 switch ((exit_qualification
>> 4) & 3) {
6536 case 0: /* mov to cr */
6539 if (vmcs12
->cr0_guest_host_mask
&
6540 (val
^ vmcs12
->cr0_read_shadow
))
6544 if ((vmcs12
->cr3_target_count
>= 1 &&
6545 vmcs12
->cr3_target_value0
== val
) ||
6546 (vmcs12
->cr3_target_count
>= 2 &&
6547 vmcs12
->cr3_target_value1
== val
) ||
6548 (vmcs12
->cr3_target_count
>= 3 &&
6549 vmcs12
->cr3_target_value2
== val
) ||
6550 (vmcs12
->cr3_target_count
>= 4 &&
6551 vmcs12
->cr3_target_value3
== val
))
6553 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
6557 if (vmcs12
->cr4_guest_host_mask
&
6558 (vmcs12
->cr4_read_shadow
^ val
))
6562 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
6568 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
6569 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
6572 case 1: /* mov from cr */
6575 if (vmcs12
->cpu_based_vm_exec_control
&
6576 CPU_BASED_CR3_STORE_EXITING
)
6580 if (vmcs12
->cpu_based_vm_exec_control
&
6581 CPU_BASED_CR8_STORE_EXITING
)
6588 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6589 * cr0. Other attempted changes are ignored, with no exit.
6591 if (vmcs12
->cr0_guest_host_mask
& 0xe &
6592 (val
^ vmcs12
->cr0_read_shadow
))
6594 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
6595 !(vmcs12
->cr0_read_shadow
& 0x1) &&
6604 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6605 * should handle it ourselves in L0 (and then continue L2). Only call this
6606 * when in is_guest_mode (L2).
6608 static bool nested_vmx_exit_handled(struct kvm_vcpu
*vcpu
)
6610 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
6611 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6612 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6613 u32 exit_reason
= vmx
->exit_reason
;
6615 if (vmx
->nested
.nested_run_pending
)
6618 if (unlikely(vmx
->fail
)) {
6619 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
6620 vmcs_read32(VM_INSTRUCTION_ERROR
));
6624 switch (exit_reason
) {
6625 case EXIT_REASON_EXCEPTION_NMI
:
6626 if (!is_exception(intr_info
))
6628 else if (is_page_fault(intr_info
))
6630 return vmcs12
->exception_bitmap
&
6631 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
6632 case EXIT_REASON_EXTERNAL_INTERRUPT
:
6634 case EXIT_REASON_TRIPLE_FAULT
:
6636 case EXIT_REASON_PENDING_INTERRUPT
:
6637 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_INTR_PENDING
);
6638 case EXIT_REASON_NMI_WINDOW
:
6639 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_NMI_PENDING
);
6640 case EXIT_REASON_TASK_SWITCH
:
6642 case EXIT_REASON_CPUID
:
6644 case EXIT_REASON_HLT
:
6645 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
6646 case EXIT_REASON_INVD
:
6648 case EXIT_REASON_INVLPG
:
6649 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
6650 case EXIT_REASON_RDPMC
:
6651 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
6652 case EXIT_REASON_RDTSC
:
6653 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
6654 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
6655 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
6656 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMREAD
:
6657 case EXIT_REASON_VMRESUME
: case EXIT_REASON_VMWRITE
:
6658 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
6659 case EXIT_REASON_INVEPT
:
6661 * VMX instructions trap unconditionally. This allows L1 to
6662 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6665 case EXIT_REASON_CR_ACCESS
:
6666 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
6667 case EXIT_REASON_DR_ACCESS
:
6668 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
6669 case EXIT_REASON_IO_INSTRUCTION
:
6670 return nested_vmx_exit_handled_io(vcpu
, vmcs12
);
6671 case EXIT_REASON_MSR_READ
:
6672 case EXIT_REASON_MSR_WRITE
:
6673 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
6674 case EXIT_REASON_INVALID_STATE
:
6676 case EXIT_REASON_MWAIT_INSTRUCTION
:
6677 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
6678 case EXIT_REASON_MONITOR_INSTRUCTION
:
6679 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
6680 case EXIT_REASON_PAUSE_INSTRUCTION
:
6681 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
6682 nested_cpu_has2(vmcs12
,
6683 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
6684 case EXIT_REASON_MCE_DURING_VMENTRY
:
6686 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
6688 case EXIT_REASON_APIC_ACCESS
:
6689 return nested_cpu_has2(vmcs12
,
6690 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
6691 case EXIT_REASON_EPT_VIOLATION
:
6693 * L0 always deals with the EPT violation. If nested EPT is
6694 * used, and the nested mmu code discovers that the address is
6695 * missing in the guest EPT table (EPT12), the EPT violation
6696 * will be injected with nested_ept_inject_page_fault()
6699 case EXIT_REASON_EPT_MISCONFIG
:
6701 * L2 never uses directly L1's EPT, but rather L0's own EPT
6702 * table (shadow on EPT) or a merged EPT table that L0 built
6703 * (EPT on EPT). So any problems with the structure of the
6704 * table is L0's fault.
6707 case EXIT_REASON_PREEMPTION_TIMER
:
6708 return vmcs12
->pin_based_vm_exec_control
&
6709 PIN_BASED_VMX_PREEMPTION_TIMER
;
6710 case EXIT_REASON_WBINVD
:
6711 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
6712 case EXIT_REASON_XSETBV
:
6719 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
6721 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
6722 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
6726 * The guest has exited. See if we can fix it or if we need userspace
6729 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
6731 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6732 u32 exit_reason
= vmx
->exit_reason
;
6733 u32 vectoring_info
= vmx
->idt_vectoring_info
;
6735 /* If guest state is invalid, start emulating */
6736 if (vmx
->emulation_required
)
6737 return handle_invalid_guest_state(vcpu
);
6740 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6741 * we did not inject a still-pending event to L1 now because of
6742 * nested_run_pending, we need to re-enable this bit.
6744 if (vmx
->nested
.nested_run_pending
)
6745 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6747 if (!is_guest_mode(vcpu
) && (exit_reason
== EXIT_REASON_VMLAUNCH
||
6748 exit_reason
== EXIT_REASON_VMRESUME
))
6749 vmx
->nested
.nested_run_pending
= 1;
6751 vmx
->nested
.nested_run_pending
= 0;
6753 if (is_guest_mode(vcpu
) && nested_vmx_exit_handled(vcpu
)) {
6754 nested_vmx_vmexit(vcpu
);
6758 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
6759 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
6760 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
6765 if (unlikely(vmx
->fail
)) {
6766 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
6767 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
6768 = vmcs_read32(VM_INSTRUCTION_ERROR
);
6774 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6775 * delivery event since it indicates guest is accessing MMIO.
6776 * The vm-exit can be triggered again after return to guest that
6777 * will cause infinite loop.
6779 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
6780 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
6781 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
6782 exit_reason
!= EXIT_REASON_TASK_SWITCH
)) {
6783 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6784 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
6785 vcpu
->run
->internal
.ndata
= 2;
6786 vcpu
->run
->internal
.data
[0] = vectoring_info
;
6787 vcpu
->run
->internal
.data
[1] = exit_reason
;
6791 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
&&
6792 !(is_guest_mode(vcpu
) && nested_cpu_has_virtual_nmis(
6793 get_vmcs12(vcpu
))))) {
6794 if (vmx_interrupt_allowed(vcpu
)) {
6795 vmx
->soft_vnmi_blocked
= 0;
6796 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
6797 vcpu
->arch
.nmi_pending
) {
6799 * This CPU don't support us in finding the end of an
6800 * NMI-blocked window if the guest runs with IRQs
6801 * disabled. So we pull the trigger after 1 s of
6802 * futile waiting, but inform the user about this.
6804 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
6805 "state on VCPU %d after 1 s timeout\n",
6806 __func__
, vcpu
->vcpu_id
);
6807 vmx
->soft_vnmi_blocked
= 0;
6811 if (exit_reason
< kvm_vmx_max_exit_handlers
6812 && kvm_vmx_exit_handlers
[exit_reason
])
6813 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
6815 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
6816 vcpu
->run
->hw
.hardware_exit_reason
= exit_reason
;
6821 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
6823 if (irr
== -1 || tpr
< irr
) {
6824 vmcs_write32(TPR_THRESHOLD
, 0);
6828 vmcs_write32(TPR_THRESHOLD
, irr
);
6831 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
6833 u32 sec_exec_control
;
6836 * There is not point to enable virtualize x2apic without enable
6839 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6840 !vmx_vm_has_apicv(vcpu
->kvm
))
6843 if (!vm_need_tpr_shadow(vcpu
->kvm
))
6846 sec_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6849 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
6850 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
6852 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
6853 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
6855 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, sec_exec_control
);
6857 vmx_set_msr_bitmap(vcpu
);
6860 static void vmx_hwapic_isr_update(struct kvm
*kvm
, int isr
)
6865 if (!vmx_vm_has_apicv(kvm
))
6871 status
= vmcs_read16(GUEST_INTR_STATUS
);
6876 vmcs_write16(GUEST_INTR_STATUS
, status
);
6880 static void vmx_set_rvi(int vector
)
6885 status
= vmcs_read16(GUEST_INTR_STATUS
);
6886 old
= (u8
)status
& 0xff;
6887 if ((u8
)vector
!= old
) {
6889 status
|= (u8
)vector
;
6890 vmcs_write16(GUEST_INTR_STATUS
, status
);
6894 static void vmx_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
6899 vmx_set_rvi(max_irr
);
6902 static void vmx_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
6904 if (!vmx_vm_has_apicv(vcpu
->kvm
))
6907 vmcs_write64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap
[0]);
6908 vmcs_write64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap
[1]);
6909 vmcs_write64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap
[2]);
6910 vmcs_write64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap
[3]);
6913 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
6917 if (!(vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
6918 || vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
6921 vmx
->exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
6922 exit_intr_info
= vmx
->exit_intr_info
;
6924 /* Handle machine checks before interrupts are enabled */
6925 if (is_machine_check(exit_intr_info
))
6926 kvm_machine_check();
6928 /* We need to handle NMIs before interrupts are enabled */
6929 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
6930 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
6931 kvm_before_handle_nmi(&vmx
->vcpu
);
6933 kvm_after_handle_nmi(&vmx
->vcpu
);
6937 static void vmx_handle_external_intr(struct kvm_vcpu
*vcpu
)
6939 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
6942 * If external interrupt exists, IF bit is set in rflags/eflags on the
6943 * interrupt stack frame, and interrupt will be enabled on a return
6944 * from interrupt handler.
6946 if ((exit_intr_info
& (INTR_INFO_VALID_MASK
| INTR_INFO_INTR_TYPE_MASK
))
6947 == (INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
)) {
6948 unsigned int vector
;
6949 unsigned long entry
;
6951 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6952 #ifdef CONFIG_X86_64
6956 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
6957 desc
= (gate_desc
*)vmx
->host_idt_base
+ vector
;
6958 entry
= gate_offset(*desc
);
6960 #ifdef CONFIG_X86_64
6961 "mov %%" _ASM_SP
", %[sp]\n\t"
6962 "and $0xfffffffffffffff0, %%" _ASM_SP
"\n\t"
6967 "orl $0x200, (%%" _ASM_SP
")\n\t"
6968 __ASM_SIZE(push
) " $%c[cs]\n\t"
6969 "call *%[entry]\n\t"
6971 #ifdef CONFIG_X86_64
6976 [ss
]"i"(__KERNEL_DS
),
6977 [cs
]"i"(__KERNEL_CS
)
6983 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
6988 bool idtv_info_valid
;
6990 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
6992 if (cpu_has_virtual_nmis()) {
6993 if (vmx
->nmi_known_unmasked
)
6996 * Can't use vmx->exit_intr_info since we're not sure what
6997 * the exit reason is.
6999 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7000 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
7001 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
7003 * SDM 3: 27.7.1.2 (September 2008)
7004 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7005 * a guest IRET fault.
7006 * SDM 3: 23.2.2 (September 2008)
7007 * Bit 12 is undefined in any of the following cases:
7008 * If the VM exit sets the valid bit in the IDT-vectoring
7009 * information field.
7010 * If the VM exit is due to a double fault.
7012 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
7013 vector
!= DF_VECTOR
&& !idtv_info_valid
)
7014 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
7015 GUEST_INTR_STATE_NMI
);
7017 vmx
->nmi_known_unmasked
=
7018 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
7019 & GUEST_INTR_STATE_NMI
);
7020 } else if (unlikely(vmx
->soft_vnmi_blocked
))
7021 vmx
->vnmi_blocked_time
+=
7022 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
7025 static void __vmx_complete_interrupts(struct kvm_vcpu
*vcpu
,
7026 u32 idt_vectoring_info
,
7027 int instr_len_field
,
7028 int error_code_field
)
7032 bool idtv_info_valid
;
7034 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
7036 vcpu
->arch
.nmi_injected
= false;
7037 kvm_clear_exception_queue(vcpu
);
7038 kvm_clear_interrupt_queue(vcpu
);
7040 if (!idtv_info_valid
)
7043 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7045 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
7046 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
7049 case INTR_TYPE_NMI_INTR
:
7050 vcpu
->arch
.nmi_injected
= true;
7052 * SDM 3: 27.7.1.2 (September 2008)
7053 * Clear bit "block by NMI" before VM entry if a NMI
7056 vmx_set_nmi_mask(vcpu
, false);
7058 case INTR_TYPE_SOFT_EXCEPTION
:
7059 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
7061 case INTR_TYPE_HARD_EXCEPTION
:
7062 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
7063 u32 err
= vmcs_read32(error_code_field
);
7064 kvm_queue_exception_e(vcpu
, vector
, err
);
7066 kvm_queue_exception(vcpu
, vector
);
7068 case INTR_TYPE_SOFT_INTR
:
7069 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
7071 case INTR_TYPE_EXT_INTR
:
7072 kvm_queue_interrupt(vcpu
, vector
, type
== INTR_TYPE_SOFT_INTR
);
7079 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
7081 __vmx_complete_interrupts(&vmx
->vcpu
, vmx
->idt_vectoring_info
,
7082 VM_EXIT_INSTRUCTION_LEN
,
7083 IDT_VECTORING_ERROR_CODE
);
7086 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
7088 __vmx_complete_interrupts(vcpu
,
7089 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
7090 VM_ENTRY_INSTRUCTION_LEN
,
7091 VM_ENTRY_EXCEPTION_ERROR_CODE
);
7093 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
7096 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
7099 struct perf_guest_switch_msr
*msrs
;
7101 msrs
= perf_guest_get_msrs(&nr_msrs
);
7106 for (i
= 0; i
< nr_msrs
; i
++)
7107 if (msrs
[i
].host
== msrs
[i
].guest
)
7108 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
7110 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
7114 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
7116 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7117 unsigned long debugctlmsr
;
7119 /* Record the guest's net vcpu time for enforced NMI injections. */
7120 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
7121 vmx
->entry_time
= ktime_get();
7123 /* Don't enter VMX if guest state is invalid, let the exit handler
7124 start emulation until we arrive back to a valid state */
7125 if (vmx
->emulation_required
)
7128 if (vmx
->nested
.sync_shadow_vmcs
) {
7129 copy_vmcs12_to_shadow(vmx
);
7130 vmx
->nested
.sync_shadow_vmcs
= false;
7133 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
7134 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
7135 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
7136 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
7138 /* When single-stepping over STI and MOV SS, we must clear the
7139 * corresponding interruptibility bits in the guest state. Otherwise
7140 * vmentry fails as it then expects bit 14 (BS) in pending debug
7141 * exceptions being set, but that's not correct for the guest debugging
7143 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7144 vmx_set_interrupt_shadow(vcpu
, 0);
7146 atomic_switch_perf_msrs(vmx
);
7147 debugctlmsr
= get_debugctlmsr();
7149 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
7151 /* Store host registers */
7152 "push %%" _ASM_DX
"; push %%" _ASM_BP
";"
7153 "push %%" _ASM_CX
" \n\t" /* placeholder for guest rcx */
7154 "push %%" _ASM_CX
" \n\t"
7155 "cmp %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
7157 "mov %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
7158 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
7160 /* Reload cr2 if changed */
7161 "mov %c[cr2](%0), %%" _ASM_AX
" \n\t"
7162 "mov %%cr2, %%" _ASM_DX
" \n\t"
7163 "cmp %%" _ASM_AX
", %%" _ASM_DX
" \n\t"
7165 "mov %%" _ASM_AX
", %%cr2 \n\t"
7167 /* Check if vmlaunch of vmresume is needed */
7168 "cmpl $0, %c[launched](%0) \n\t"
7169 /* Load guest registers. Don't clobber flags. */
7170 "mov %c[rax](%0), %%" _ASM_AX
" \n\t"
7171 "mov %c[rbx](%0), %%" _ASM_BX
" \n\t"
7172 "mov %c[rdx](%0), %%" _ASM_DX
" \n\t"
7173 "mov %c[rsi](%0), %%" _ASM_SI
" \n\t"
7174 "mov %c[rdi](%0), %%" _ASM_DI
" \n\t"
7175 "mov %c[rbp](%0), %%" _ASM_BP
" \n\t"
7176 #ifdef CONFIG_X86_64
7177 "mov %c[r8](%0), %%r8 \n\t"
7178 "mov %c[r9](%0), %%r9 \n\t"
7179 "mov %c[r10](%0), %%r10 \n\t"
7180 "mov %c[r11](%0), %%r11 \n\t"
7181 "mov %c[r12](%0), %%r12 \n\t"
7182 "mov %c[r13](%0), %%r13 \n\t"
7183 "mov %c[r14](%0), %%r14 \n\t"
7184 "mov %c[r15](%0), %%r15 \n\t"
7186 "mov %c[rcx](%0), %%" _ASM_CX
" \n\t" /* kills %0 (ecx) */
7188 /* Enter guest mode */
7190 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
7192 "1: " __ex(ASM_VMX_VMRESUME
) "\n\t"
7194 /* Save guest registers, load host registers, keep flags */
7195 "mov %0, %c[wordsize](%%" _ASM_SP
") \n\t"
7197 "mov %%" _ASM_AX
", %c[rax](%0) \n\t"
7198 "mov %%" _ASM_BX
", %c[rbx](%0) \n\t"
7199 __ASM_SIZE(pop
) " %c[rcx](%0) \n\t"
7200 "mov %%" _ASM_DX
", %c[rdx](%0) \n\t"
7201 "mov %%" _ASM_SI
", %c[rsi](%0) \n\t"
7202 "mov %%" _ASM_DI
", %c[rdi](%0) \n\t"
7203 "mov %%" _ASM_BP
", %c[rbp](%0) \n\t"
7204 #ifdef CONFIG_X86_64
7205 "mov %%r8, %c[r8](%0) \n\t"
7206 "mov %%r9, %c[r9](%0) \n\t"
7207 "mov %%r10, %c[r10](%0) \n\t"
7208 "mov %%r11, %c[r11](%0) \n\t"
7209 "mov %%r12, %c[r12](%0) \n\t"
7210 "mov %%r13, %c[r13](%0) \n\t"
7211 "mov %%r14, %c[r14](%0) \n\t"
7212 "mov %%r15, %c[r15](%0) \n\t"
7214 "mov %%cr2, %%" _ASM_AX
" \n\t"
7215 "mov %%" _ASM_AX
", %c[cr2](%0) \n\t"
7217 "pop %%" _ASM_BP
"; pop %%" _ASM_DX
" \n\t"
7218 "setbe %c[fail](%0) \n\t"
7219 ".pushsection .rodata \n\t"
7220 ".global vmx_return \n\t"
7221 "vmx_return: " _ASM_PTR
" 2b \n\t"
7223 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
7224 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
7225 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
7226 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
7227 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
7228 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
7229 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
7230 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
7231 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
7232 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
7233 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
7234 #ifdef CONFIG_X86_64
7235 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
7236 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
7237 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
7238 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
7239 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
7240 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
7241 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
7242 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
7244 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
7245 [wordsize
]"i"(sizeof(ulong
))
7247 #ifdef CONFIG_X86_64
7248 , "rax", "rbx", "rdi", "rsi"
7249 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7251 , "eax", "ebx", "edi", "esi"
7255 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7257 update_debugctlmsr(debugctlmsr
);
7259 #ifndef CONFIG_X86_64
7261 * The sysexit path does not restore ds/es, so we must set them to
7262 * a reasonable value ourselves.
7264 * We can't defer this to vmx_load_host_state() since that function
7265 * may be executed in interrupt context, which saves and restore segments
7266 * around it, nullifying its effect.
7268 loadsegment(ds
, __USER_DS
);
7269 loadsegment(es
, __USER_DS
);
7272 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
7273 | (1 << VCPU_EXREG_RFLAGS
)
7274 | (1 << VCPU_EXREG_CPL
)
7275 | (1 << VCPU_EXREG_PDPTR
)
7276 | (1 << VCPU_EXREG_SEGMENTS
)
7277 | (1 << VCPU_EXREG_CR3
));
7278 vcpu
->arch
.regs_dirty
= 0;
7280 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
7282 vmx
->loaded_vmcs
->launched
= 1;
7284 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
7285 trace_kvm_exit(vmx
->exit_reason
, vcpu
, KVM_ISA_VMX
);
7287 vmx_complete_atomic_exit(vmx
);
7288 vmx_recover_nmi_blocking(vmx
);
7289 vmx_complete_interrupts(vmx
);
7292 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
7294 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7297 free_loaded_vmcs(vmx
->loaded_vmcs
);
7299 kfree(vmx
->guest_msrs
);
7300 kvm_vcpu_uninit(vcpu
);
7301 kmem_cache_free(kvm_vcpu_cache
, vmx
);
7304 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
7307 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
7311 return ERR_PTR(-ENOMEM
);
7315 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
7319 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
7321 if (!vmx
->guest_msrs
) {
7325 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
7326 vmx
->loaded_vmcs
->vmcs
= alloc_vmcs();
7327 if (!vmx
->loaded_vmcs
->vmcs
)
7330 kvm_cpu_vmxon(__pa(per_cpu(vmxarea
, raw_smp_processor_id())));
7331 loaded_vmcs_init(vmx
->loaded_vmcs
);
7336 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
7337 vmx
->vcpu
.cpu
= cpu
;
7338 err
= vmx_vcpu_setup(vmx
);
7339 vmx_vcpu_put(&vmx
->vcpu
);
7343 if (vm_need_virtualize_apic_accesses(kvm
)) {
7344 err
= alloc_apic_access_page(kvm
);
7350 if (!kvm
->arch
.ept_identity_map_addr
)
7351 kvm
->arch
.ept_identity_map_addr
=
7352 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
7354 if (alloc_identity_pagetable(kvm
) != 0)
7356 if (!init_rmode_identity_map(kvm
))
7360 vmx
->nested
.current_vmptr
= -1ull;
7361 vmx
->nested
.current_vmcs12
= NULL
;
7366 free_loaded_vmcs(vmx
->loaded_vmcs
);
7368 kfree(vmx
->guest_msrs
);
7370 kvm_vcpu_uninit(&vmx
->vcpu
);
7373 kmem_cache_free(kvm_vcpu_cache
, vmx
);
7374 return ERR_PTR(err
);
7377 static void __init
vmx_check_processor_compat(void *rtn
)
7379 struct vmcs_config vmcs_conf
;
7382 if (setup_vmcs_config(&vmcs_conf
) < 0)
7384 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
7385 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
7386 smp_processor_id());
7391 static int get_ept_level(void)
7393 return VMX_EPT_DEFAULT_GAW
+ 1;
7396 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
7400 /* For VT-d and EPT combination
7401 * 1. MMIO: always map as UC
7403 * a. VT-d without snooping control feature: can't guarantee the
7404 * result, try to trust guest.
7405 * b. VT-d with snooping control feature: snooping control feature of
7406 * VT-d engine can guarantee the cache correctness. Just set it
7407 * to WB to keep consistent with host. So the same as item 3.
7408 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7409 * consistent with host MTRR
7412 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
7413 else if (vcpu
->kvm
->arch
.iommu_domain
&&
7414 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
))
7415 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
7416 VMX_EPT_MT_EPTE_SHIFT
;
7418 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
7424 static int vmx_get_lpage_level(void)
7426 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
7427 return PT_DIRECTORY_LEVEL
;
7429 /* For shadow and EPT supported 1GB page */
7430 return PT_PDPE_LEVEL
;
7433 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
7435 struct kvm_cpuid_entry2
*best
;
7436 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7439 vmx
->rdtscp_enabled
= false;
7440 if (vmx_rdtscp_supported()) {
7441 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
7442 if (exec_control
& SECONDARY_EXEC_RDTSCP
) {
7443 best
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
7444 if (best
&& (best
->edx
& bit(X86_FEATURE_RDTSCP
)))
7445 vmx
->rdtscp_enabled
= true;
7447 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
7448 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
7454 /* Exposing INVPCID only when PCID is exposed */
7455 best
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
7456 if (vmx_invpcid_supported() &&
7457 best
&& (best
->ebx
& bit(X86_FEATURE_INVPCID
)) &&
7458 guest_cpuid_has_pcid(vcpu
)) {
7459 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
7460 exec_control
|= SECONDARY_EXEC_ENABLE_INVPCID
;
7461 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
7464 if (cpu_has_secondary_exec_ctrls()) {
7465 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
7466 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
7467 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
7471 best
->ebx
&= ~bit(X86_FEATURE_INVPCID
);
7475 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
7477 if (func
== 1 && nested
)
7478 entry
->ecx
|= bit(X86_FEATURE_VMX
);
7481 static void nested_ept_inject_page_fault(struct kvm_vcpu
*vcpu
,
7482 struct x86_exception
*fault
)
7484 struct vmcs12
*vmcs12
;
7485 nested_vmx_vmexit(vcpu
);
7486 vmcs12
= get_vmcs12(vcpu
);
7488 if (fault
->error_code
& PFERR_RSVD_MASK
)
7489 vmcs12
->vm_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
7491 vmcs12
->vm_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
7492 vmcs12
->exit_qualification
= vcpu
->arch
.exit_qualification
;
7493 vmcs12
->guest_physical_address
= fault
->address
;
7496 /* Callbacks for nested_ept_init_mmu_context: */
7498 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
)
7500 /* return the page table to be shadowed - in our case, EPT12 */
7501 return get_vmcs12(vcpu
)->ept_pointer
;
7504 static int nested_ept_init_mmu_context(struct kvm_vcpu
*vcpu
)
7506 int r
= kvm_init_shadow_ept_mmu(vcpu
, &vcpu
->arch
.mmu
,
7507 nested_vmx_ept_caps
& VMX_EPT_EXECUTE_ONLY_BIT
);
7509 vcpu
->arch
.mmu
.set_cr3
= vmx_set_cr3
;
7510 vcpu
->arch
.mmu
.get_cr3
= nested_ept_get_cr3
;
7511 vcpu
->arch
.mmu
.inject_page_fault
= nested_ept_inject_page_fault
;
7513 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
7518 static void nested_ept_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
7520 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
7524 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7525 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7526 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7527 * guest in a way that will both be appropriate to L1's requests, and our
7528 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7529 * function also has additional necessary side-effects, like setting various
7530 * vcpu->arch fields.
7532 static void prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
7534 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7537 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
7538 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
7539 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
7540 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
7541 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
7542 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
7543 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
7544 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
7545 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
7546 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
7547 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
7548 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
7549 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
7550 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
7551 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
7552 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
7553 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
7554 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
7555 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
7556 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
7557 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
7558 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
7559 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
7560 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
7561 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
7562 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
7563 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
7564 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
7565 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
7566 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
7567 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
7568 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
7569 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
7570 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
7571 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
7572 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
7574 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
7575 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
7576 vmcs12
->vm_entry_intr_info_field
);
7577 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
7578 vmcs12
->vm_entry_exception_error_code
);
7579 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
7580 vmcs12
->vm_entry_instruction_len
);
7581 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
7582 vmcs12
->guest_interruptibility_info
);
7583 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
7584 kvm_set_dr(vcpu
, 7, vmcs12
->guest_dr7
);
7585 vmx_set_rflags(vcpu
, vmcs12
->guest_rflags
);
7586 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
7587 vmcs12
->guest_pending_dbg_exceptions
);
7588 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
7589 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
7591 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
7593 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
7594 (vmcs_config
.pin_based_exec_ctrl
|
7595 vmcs12
->pin_based_vm_exec_control
));
7597 if (vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VMX_PREEMPTION_TIMER
)
7598 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE
,
7599 vmcs12
->vmx_preemption_timer_value
);
7602 * Whether page-faults are trapped is determined by a combination of
7603 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7604 * If enable_ept, L0 doesn't care about page faults and we should
7605 * set all of these to L1's desires. However, if !enable_ept, L0 does
7606 * care about (at least some) page faults, and because it is not easy
7607 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7608 * to exit on each and every L2 page fault. This is done by setting
7609 * MASK=MATCH=0 and (see below) EB.PF=1.
7610 * Note that below we don't need special code to set EB.PF beyond the
7611 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7612 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7613 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7615 * A problem with this approach (when !enable_ept) is that L1 may be
7616 * injected with more page faults than it asked for. This could have
7617 * caused problems, but in practice existing hypervisors don't care.
7618 * To fix this, we will need to emulate the PFEC checking (on the L1
7619 * page tables), using walk_addr(), when injecting PFs to L1.
7621 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
7622 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
7623 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
7624 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
7626 if (cpu_has_secondary_exec_ctrls()) {
7627 u32 exec_control
= vmx_secondary_exec_control(vmx
);
7628 if (!vmx
->rdtscp_enabled
)
7629 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
7630 /* Take the following fields only from vmcs12 */
7631 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
7632 if (nested_cpu_has(vmcs12
,
7633 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
))
7634 exec_control
|= vmcs12
->secondary_vm_exec_control
;
7636 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) {
7638 * Translate L1 physical address to host physical
7639 * address for vmcs02. Keep the page pinned, so this
7640 * physical address remains valid. We keep a reference
7641 * to it so we can release it later.
7643 if (vmx
->nested
.apic_access_page
) /* shouldn't happen */
7644 nested_release_page(vmx
->nested
.apic_access_page
);
7645 vmx
->nested
.apic_access_page
=
7646 nested_get_page(vcpu
, vmcs12
->apic_access_addr
);
7648 * If translation failed, no matter: This feature asks
7649 * to exit when accessing the given address, and if it
7650 * can never be accessed, this feature won't do
7653 if (!vmx
->nested
.apic_access_page
)
7655 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
7657 vmcs_write64(APIC_ACCESS_ADDR
,
7658 page_to_phys(vmx
->nested
.apic_access_page
));
7661 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
7666 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7667 * Some constant fields are set here by vmx_set_constant_host_state().
7668 * Other fields are different per CPU, and will be set later when
7669 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7671 vmx_set_constant_host_state(vmx
);
7674 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7675 * entry, but only if the current (host) sp changed from the value
7676 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7677 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7678 * here we just force the write to happen on entry.
7682 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
7683 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
7684 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
7685 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
7686 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
7688 * Merging of IO and MSR bitmaps not currently supported.
7689 * Rather, exit every time.
7691 exec_control
&= ~CPU_BASED_USE_MSR_BITMAPS
;
7692 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
7693 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
7695 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
7697 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7698 * bitwise-or of what L1 wants to trap for L2, and what we want to
7699 * trap. Note that CR0.TS also needs updating - we do this later.
7701 update_exception_bitmap(vcpu
);
7702 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
7703 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
7705 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7706 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7707 * bits are further modified by vmx_set_efer() below.
7709 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
7711 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7712 * emulated by vmx_set_efer(), below.
7714 vmcs_write32(VM_ENTRY_CONTROLS
,
7715 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_LOAD_IA32_EFER
&
7716 ~VM_ENTRY_IA32E_MODE
) |
7717 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
7719 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
) {
7720 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
7721 vcpu
->arch
.pat
= vmcs12
->guest_ia32_pat
;
7722 } else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
7723 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
7726 set_cr4_guest_host_mask(vmx
);
7728 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
7729 vmcs_write64(TSC_OFFSET
,
7730 vmx
->nested
.vmcs01_tsc_offset
+ vmcs12
->tsc_offset
);
7732 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
7736 * Trivially support vpid by letting L2s share their parent
7737 * L1's vpid. TODO: move to a more elaborate solution, giving
7738 * each L2 its own vpid and exposing the vpid feature to L1.
7740 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
7741 vmx_flush_tlb(vcpu
);
7744 if (nested_cpu_has_ept(vmcs12
)) {
7745 kvm_mmu_unload(vcpu
);
7746 nested_ept_init_mmu_context(vcpu
);
7749 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)
7750 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
7751 else if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
7752 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
7754 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
7755 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7756 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
7759 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7760 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7761 * The CR0_READ_SHADOW is what L2 should have expected to read given
7762 * the specifications by L1; It's not enough to take
7763 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7764 * have more bits than L1 expected.
7766 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
7767 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
7769 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
7770 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
7772 /* shadow page tables on either EPT or shadow page tables */
7773 kvm_set_cr3(vcpu
, vmcs12
->guest_cr3
);
7774 kvm_mmu_reset_context(vcpu
);
7777 * L1 may access the L2's PDPTR, so save them to construct vmcs12
7780 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
7781 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
7782 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
7783 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
7786 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
7787 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
7791 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7792 * for running an L2 nested guest.
7794 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
7796 struct vmcs12
*vmcs12
;
7797 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7799 struct loaded_vmcs
*vmcs02
;
7802 if (!nested_vmx_check_permission(vcpu
) ||
7803 !nested_vmx_check_vmcs12(vcpu
))
7806 skip_emulated_instruction(vcpu
);
7807 vmcs12
= get_vmcs12(vcpu
);
7809 if (enable_shadow_vmcs
)
7810 copy_shadow_to_vmcs12(vmx
);
7813 * The nested entry process starts with enforcing various prerequisites
7814 * on vmcs12 as required by the Intel SDM, and act appropriately when
7815 * they fail: As the SDM explains, some conditions should cause the
7816 * instruction to fail, while others will cause the instruction to seem
7817 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7818 * To speed up the normal (success) code path, we should avoid checking
7819 * for misconfigurations which will anyway be caught by the processor
7820 * when using the merged vmcs02.
7822 if (vmcs12
->launch_state
== launch
) {
7823 nested_vmx_failValid(vcpu
,
7824 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7825 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
7829 if (vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_ACTIVE
) {
7830 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
7834 if ((vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_MSR_BITMAPS
) &&
7835 !IS_ALIGNED(vmcs12
->msr_bitmap
, PAGE_SIZE
)) {
7836 /*TODO: Also verify bits beyond physical address width are 0*/
7837 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
7841 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) &&
7842 !IS_ALIGNED(vmcs12
->apic_access_addr
, PAGE_SIZE
)) {
7843 /*TODO: Also verify bits beyond physical address width are 0*/
7844 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
7848 if (vmcs12
->vm_entry_msr_load_count
> 0 ||
7849 vmcs12
->vm_exit_msr_load_count
> 0 ||
7850 vmcs12
->vm_exit_msr_store_count
> 0) {
7851 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7853 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
7857 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
7858 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
) ||
7859 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
7860 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
) ||
7861 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
7862 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
) ||
7863 !vmx_control_verify(vmcs12
->vm_exit_controls
,
7864 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
) ||
7865 !vmx_control_verify(vmcs12
->vm_entry_controls
,
7866 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
))
7868 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
7872 if (((vmcs12
->host_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
7873 ((vmcs12
->host_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
7874 nested_vmx_failValid(vcpu
,
7875 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
);
7879 if (((vmcs12
->guest_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
7880 ((vmcs12
->guest_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
7881 nested_vmx_entry_failure(vcpu
, vmcs12
,
7882 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
7885 if (vmcs12
->vmcs_link_pointer
!= -1ull) {
7886 nested_vmx_entry_failure(vcpu
, vmcs12
,
7887 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_VMCS_LINK_PTR
);
7892 * If the load IA32_EFER VM-entry control is 1, the following checks
7893 * are performed on the field for the IA32_EFER MSR:
7894 * - Bits reserved in the IA32_EFER MSR must be 0.
7895 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
7896 * the IA-32e mode guest VM-exit control. It must also be identical
7897 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
7900 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
) {
7901 ia32e
= (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
) != 0;
7902 if (!kvm_valid_efer(vcpu
, vmcs12
->guest_ia32_efer
) ||
7903 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LMA
) ||
7904 ((vmcs12
->guest_cr0
& X86_CR0_PG
) &&
7905 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LME
))) {
7906 nested_vmx_entry_failure(vcpu
, vmcs12
,
7907 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
7913 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
7914 * IA32_EFER MSR must be 0 in the field for that register. In addition,
7915 * the values of the LMA and LME bits in the field must each be that of
7916 * the host address-space size VM-exit control.
7918 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
) {
7919 ia32e
= (vmcs12
->vm_exit_controls
&
7920 VM_EXIT_HOST_ADDR_SPACE_SIZE
) != 0;
7921 if (!kvm_valid_efer(vcpu
, vmcs12
->host_ia32_efer
) ||
7922 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LMA
) ||
7923 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LME
)) {
7924 nested_vmx_entry_failure(vcpu
, vmcs12
,
7925 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
7931 * We're finally done with prerequisite checking, and can start with
7935 vmcs02
= nested_get_current_vmcs02(vmx
);
7939 enter_guest_mode(vcpu
);
7941 vmx
->nested
.vmcs01_tsc_offset
= vmcs_read64(TSC_OFFSET
);
7944 vmx
->loaded_vmcs
= vmcs02
;
7946 vmx_vcpu_load(vcpu
, cpu
);
7950 vmx_segment_cache_clear(vmx
);
7952 vmcs12
->launch_state
= 1;
7954 prepare_vmcs02(vcpu
, vmcs12
);
7957 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7958 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7959 * returned as far as L1 is concerned. It will only return (and set
7960 * the success flag) when L2 exits (see nested_vmx_vmexit()).
7966 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7967 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7968 * This function returns the new value we should put in vmcs12.guest_cr0.
7969 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7970 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7971 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7972 * didn't trap the bit, because if L1 did, so would L0).
7973 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7974 * been modified by L2, and L1 knows it. So just leave the old value of
7975 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7976 * isn't relevant, because if L0 traps this bit it can set it to anything.
7977 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7978 * changed these bits, and therefore they need to be updated, but L0
7979 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7980 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7982 static inline unsigned long
7983 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
7986 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
7987 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
7988 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
7989 vcpu
->arch
.cr0_guest_owned_bits
));
7992 static inline unsigned long
7993 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
7996 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
7997 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
7998 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
7999 vcpu
->arch
.cr4_guest_owned_bits
));
8002 static void vmcs12_save_pending_event(struct kvm_vcpu
*vcpu
,
8003 struct vmcs12
*vmcs12
)
8008 if (vcpu
->arch
.exception
.pending
) {
8009 nr
= vcpu
->arch
.exception
.nr
;
8010 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
8012 if (kvm_exception_is_soft(nr
)) {
8013 vmcs12
->vm_exit_instruction_len
=
8014 vcpu
->arch
.event_exit_inst_len
;
8015 idt_vectoring
|= INTR_TYPE_SOFT_EXCEPTION
;
8017 idt_vectoring
|= INTR_TYPE_HARD_EXCEPTION
;
8019 if (vcpu
->arch
.exception
.has_error_code
) {
8020 idt_vectoring
|= VECTORING_INFO_DELIVER_CODE_MASK
;
8021 vmcs12
->idt_vectoring_error_code
=
8022 vcpu
->arch
.exception
.error_code
;
8025 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
8026 } else if (vcpu
->arch
.nmi_pending
) {
8027 vmcs12
->idt_vectoring_info_field
=
8028 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
;
8029 } else if (vcpu
->arch
.interrupt
.pending
) {
8030 nr
= vcpu
->arch
.interrupt
.nr
;
8031 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
8033 if (vcpu
->arch
.interrupt
.soft
) {
8034 idt_vectoring
|= INTR_TYPE_SOFT_INTR
;
8035 vmcs12
->vm_entry_instruction_len
=
8036 vcpu
->arch
.event_exit_inst_len
;
8038 idt_vectoring
|= INTR_TYPE_EXT_INTR
;
8040 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
8045 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8046 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8047 * and this function updates it to reflect the changes to the guest state while
8048 * L2 was running (and perhaps made some exits which were handled directly by L0
8049 * without going back to L1), and to reflect the exit reason.
8050 * Note that we do not have to copy here all VMCS fields, just those that
8051 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8052 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8053 * which already writes to vmcs12 directly.
8055 static void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
8057 /* update guest state fields: */
8058 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
8059 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
8061 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
8062 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
8063 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
8064 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
8066 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
8067 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
8068 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
8069 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
8070 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
8071 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
8072 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
8073 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
8074 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
8075 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
8076 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
8077 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
8078 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
8079 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
8080 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
8081 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
8082 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
8083 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
8084 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
8085 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
8086 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
8087 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
8088 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
8089 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
8090 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
8091 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
8092 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
8093 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
8094 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
8095 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
8096 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
8097 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
8098 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
8099 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
8100 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
8101 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
8103 vmcs12
->guest_interruptibility_info
=
8104 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
8105 vmcs12
->guest_pending_dbg_exceptions
=
8106 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
8109 * In some cases (usually, nested EPT), L2 is allowed to change its
8110 * own CR3 without exiting. If it has changed it, we must keep it.
8111 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8112 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8114 * Additionally, restore L2's PDPTR to vmcs12.
8117 vmcs12
->guest_cr3
= vmcs_read64(GUEST_CR3
);
8118 vmcs12
->guest_pdptr0
= vmcs_read64(GUEST_PDPTR0
);
8119 vmcs12
->guest_pdptr1
= vmcs_read64(GUEST_PDPTR1
);
8120 vmcs12
->guest_pdptr2
= vmcs_read64(GUEST_PDPTR2
);
8121 vmcs12
->guest_pdptr3
= vmcs_read64(GUEST_PDPTR3
);
8124 vmcs12
->vm_entry_controls
=
8125 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_IA32E_MODE
) |
8126 (vmcs_read32(VM_ENTRY_CONTROLS
) & VM_ENTRY_IA32E_MODE
);
8128 /* TODO: These cannot have changed unless we have MSR bitmaps and
8129 * the relevant bit asks not to trap the change */
8130 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
8131 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_PAT
)
8132 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
8133 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
8134 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
8135 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
8137 /* update exit information fields: */
8139 vmcs12
->vm_exit_reason
= to_vmx(vcpu
)->exit_reason
;
8140 vmcs12
->exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
8142 vmcs12
->vm_exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8143 if ((vmcs12
->vm_exit_intr_info
&
8144 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) ==
8145 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
))
8146 vmcs12
->vm_exit_intr_error_code
=
8147 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
8148 vmcs12
->idt_vectoring_info_field
= 0;
8149 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
8150 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
8152 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
)) {
8153 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8154 * instead of reading the real value. */
8155 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
8158 * Transfer the event that L0 or L1 may wanted to inject into
8159 * L2 to IDT_VECTORING_INFO_FIELD.
8161 vmcs12_save_pending_event(vcpu
, vmcs12
);
8165 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8166 * preserved above and would only end up incorrectly in L1.
8168 vcpu
->arch
.nmi_injected
= false;
8169 kvm_clear_exception_queue(vcpu
);
8170 kvm_clear_interrupt_queue(vcpu
);
8174 * A part of what we need to when the nested L2 guest exits and we want to
8175 * run its L1 parent, is to reset L1's guest state to the host state specified
8177 * This function is to be called not only on normal nested exit, but also on
8178 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8179 * Failures During or After Loading Guest State").
8180 * This function should be called when the active VMCS is L1's (vmcs01).
8182 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
8183 struct vmcs12
*vmcs12
)
8185 struct kvm_segment seg
;
8187 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
8188 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
8189 else if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
8190 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
8192 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
8193 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
8195 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
8196 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
8197 vmx_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
8199 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8200 * actually changed, because it depends on the current state of
8201 * fpu_active (which may have changed).
8202 * Note that vmx_set_cr0 refers to efer set above.
8204 kvm_set_cr0(vcpu
, vmcs12
->host_cr0
);
8206 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8207 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8208 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8210 update_exception_bitmap(vcpu
);
8211 vcpu
->arch
.cr0_guest_owned_bits
= (vcpu
->fpu_active
? X86_CR0_TS
: 0);
8212 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
8215 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8216 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8218 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
8219 kvm_set_cr4(vcpu
, vmcs12
->host_cr4
);
8221 nested_ept_uninit_mmu_context(vcpu
);
8223 kvm_set_cr3(vcpu
, vmcs12
->host_cr3
);
8224 kvm_mmu_reset_context(vcpu
);
8228 * Trivially support vpid by letting L2s share their parent
8229 * L1's vpid. TODO: move to a more elaborate solution, giving
8230 * each L2 its own vpid and exposing the vpid feature to L1.
8232 vmx_flush_tlb(vcpu
);
8236 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
8237 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
8238 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
8239 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
8240 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
8242 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) {
8243 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
8244 vcpu
->arch
.pat
= vmcs12
->host_ia32_pat
;
8246 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
8247 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
8248 vmcs12
->host_ia32_perf_global_ctrl
);
8250 /* Set L1 segment info according to Intel SDM
8251 27.5.2 Loading Host Segment and Descriptor-Table Registers */
8252 seg
= (struct kvm_segment
) {
8254 .limit
= 0xFFFFFFFF,
8255 .selector
= vmcs12
->host_cs_selector
,
8261 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
8265 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_CS
);
8266 seg
= (struct kvm_segment
) {
8268 .limit
= 0xFFFFFFFF,
8275 seg
.selector
= vmcs12
->host_ds_selector
;
8276 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_DS
);
8277 seg
.selector
= vmcs12
->host_es_selector
;
8278 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_ES
);
8279 seg
.selector
= vmcs12
->host_ss_selector
;
8280 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_SS
);
8281 seg
.selector
= vmcs12
->host_fs_selector
;
8282 seg
.base
= vmcs12
->host_fs_base
;
8283 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_FS
);
8284 seg
.selector
= vmcs12
->host_gs_selector
;
8285 seg
.base
= vmcs12
->host_gs_base
;
8286 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_GS
);
8287 seg
= (struct kvm_segment
) {
8288 .base
= vmcs12
->host_tr_base
,
8290 .selector
= vmcs12
->host_tr_selector
,
8294 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_TR
);
8296 kvm_set_dr(vcpu
, 7, 0x400);
8297 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
8301 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8302 * and modify vmcs12 to make it see what it would expect to see there if
8303 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8305 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
)
8307 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8309 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8311 /* trying to cancel vmlaunch/vmresume is a bug */
8312 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
8314 leave_guest_mode(vcpu
);
8315 prepare_vmcs12(vcpu
, vmcs12
);
8318 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
8320 vmx_vcpu_load(vcpu
, cpu
);
8324 vmx_segment_cache_clear(vmx
);
8326 /* if no vmcs02 cache requested, remove the one we used */
8327 if (VMCS02_POOL_SIZE
== 0)
8328 nested_free_vmcs02(vmx
, vmx
->nested
.current_vmptr
);
8330 load_vmcs12_host_state(vcpu
, vmcs12
);
8332 /* Update TSC_OFFSET if TSC was changed while L2 ran */
8333 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
8335 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8338 /* Unpin physical memory we referred to in vmcs02 */
8339 if (vmx
->nested
.apic_access_page
) {
8340 nested_release_page(vmx
->nested
.apic_access_page
);
8341 vmx
->nested
.apic_access_page
= 0;
8345 * Exiting from L2 to L1, we're now back to L1 which thinks it just
8346 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8347 * success or failure flag accordingly.
8349 if (unlikely(vmx
->fail
)) {
8351 nested_vmx_failValid(vcpu
, vmcs_read32(VM_INSTRUCTION_ERROR
));
8353 nested_vmx_succeed(vcpu
);
8354 if (enable_shadow_vmcs
)
8355 vmx
->nested
.sync_shadow_vmcs
= true;
8359 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8360 * 23.7 "VM-entry failures during or after loading guest state" (this also
8361 * lists the acceptable exit-reason and exit-qualification parameters).
8362 * It should only be called before L2 actually succeeded to run, and when
8363 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8365 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
8366 struct vmcs12
*vmcs12
,
8367 u32 reason
, unsigned long qualification
)
8369 load_vmcs12_host_state(vcpu
, vmcs12
);
8370 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
8371 vmcs12
->exit_qualification
= qualification
;
8372 nested_vmx_succeed(vcpu
);
8373 if (enable_shadow_vmcs
)
8374 to_vmx(vcpu
)->nested
.sync_shadow_vmcs
= true;
8377 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
8378 struct x86_instruction_info
*info
,
8379 enum x86_intercept_stage stage
)
8381 return X86EMUL_CONTINUE
;
8384 static struct kvm_x86_ops vmx_x86_ops
= {
8385 .cpu_has_kvm_support
= cpu_has_kvm_support
,
8386 .disabled_by_bios
= vmx_disabled_by_bios
,
8387 .hardware_setup
= hardware_setup
,
8388 .hardware_unsetup
= hardware_unsetup
,
8389 .check_processor_compatibility
= vmx_check_processor_compat
,
8390 .hardware_enable
= hardware_enable
,
8391 .hardware_disable
= hardware_disable
,
8392 .cpu_has_accelerated_tpr
= report_flexpriority
,
8394 .vcpu_create
= vmx_create_vcpu
,
8395 .vcpu_free
= vmx_free_vcpu
,
8396 .vcpu_reset
= vmx_vcpu_reset
,
8398 .prepare_guest_switch
= vmx_save_host_state
,
8399 .vcpu_load
= vmx_vcpu_load
,
8400 .vcpu_put
= vmx_vcpu_put
,
8402 .update_db_bp_intercept
= update_exception_bitmap
,
8403 .get_msr
= vmx_get_msr
,
8404 .set_msr
= vmx_set_msr
,
8405 .get_segment_base
= vmx_get_segment_base
,
8406 .get_segment
= vmx_get_segment
,
8407 .set_segment
= vmx_set_segment
,
8408 .get_cpl
= vmx_get_cpl
,
8409 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
8410 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
8411 .decache_cr3
= vmx_decache_cr3
,
8412 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
8413 .set_cr0
= vmx_set_cr0
,
8414 .set_cr3
= vmx_set_cr3
,
8415 .set_cr4
= vmx_set_cr4
,
8416 .set_efer
= vmx_set_efer
,
8417 .get_idt
= vmx_get_idt
,
8418 .set_idt
= vmx_set_idt
,
8419 .get_gdt
= vmx_get_gdt
,
8420 .set_gdt
= vmx_set_gdt
,
8421 .set_dr7
= vmx_set_dr7
,
8422 .cache_reg
= vmx_cache_reg
,
8423 .get_rflags
= vmx_get_rflags
,
8424 .set_rflags
= vmx_set_rflags
,
8425 .fpu_activate
= vmx_fpu_activate
,
8426 .fpu_deactivate
= vmx_fpu_deactivate
,
8428 .tlb_flush
= vmx_flush_tlb
,
8430 .run
= vmx_vcpu_run
,
8431 .handle_exit
= vmx_handle_exit
,
8432 .skip_emulated_instruction
= skip_emulated_instruction
,
8433 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
8434 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
8435 .patch_hypercall
= vmx_patch_hypercall
,
8436 .set_irq
= vmx_inject_irq
,
8437 .set_nmi
= vmx_inject_nmi
,
8438 .queue_exception
= vmx_queue_exception
,
8439 .cancel_injection
= vmx_cancel_injection
,
8440 .interrupt_allowed
= vmx_interrupt_allowed
,
8441 .nmi_allowed
= vmx_nmi_allowed
,
8442 .get_nmi_mask
= vmx_get_nmi_mask
,
8443 .set_nmi_mask
= vmx_set_nmi_mask
,
8444 .enable_nmi_window
= enable_nmi_window
,
8445 .enable_irq_window
= enable_irq_window
,
8446 .update_cr8_intercept
= update_cr8_intercept
,
8447 .set_virtual_x2apic_mode
= vmx_set_virtual_x2apic_mode
,
8448 .vm_has_apicv
= vmx_vm_has_apicv
,
8449 .load_eoi_exitmap
= vmx_load_eoi_exitmap
,
8450 .hwapic_irr_update
= vmx_hwapic_irr_update
,
8451 .hwapic_isr_update
= vmx_hwapic_isr_update
,
8452 .sync_pir_to_irr
= vmx_sync_pir_to_irr
,
8453 .deliver_posted_interrupt
= vmx_deliver_posted_interrupt
,
8455 .set_tss_addr
= vmx_set_tss_addr
,
8456 .get_tdp_level
= get_ept_level
,
8457 .get_mt_mask
= vmx_get_mt_mask
,
8459 .get_exit_info
= vmx_get_exit_info
,
8461 .get_lpage_level
= vmx_get_lpage_level
,
8463 .cpuid_update
= vmx_cpuid_update
,
8465 .rdtscp_supported
= vmx_rdtscp_supported
,
8466 .invpcid_supported
= vmx_invpcid_supported
,
8468 .set_supported_cpuid
= vmx_set_supported_cpuid
,
8470 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
8472 .set_tsc_khz
= vmx_set_tsc_khz
,
8473 .read_tsc_offset
= vmx_read_tsc_offset
,
8474 .write_tsc_offset
= vmx_write_tsc_offset
,
8475 .adjust_tsc_offset
= vmx_adjust_tsc_offset
,
8476 .compute_tsc_offset
= vmx_compute_tsc_offset
,
8477 .read_l1_tsc
= vmx_read_l1_tsc
,
8479 .set_tdp_cr3
= vmx_set_cr3
,
8481 .check_intercept
= vmx_check_intercept
,
8482 .handle_external_intr
= vmx_handle_external_intr
,
8485 static int __init
vmx_init(void)
8489 rdmsrl_safe(MSR_EFER
, &host_efer
);
8491 for (i
= 0; i
< NR_VMX_MSR
; ++i
)
8492 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
8494 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8495 if (!vmx_io_bitmap_a
)
8500 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8501 if (!vmx_io_bitmap_b
)
8504 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8505 if (!vmx_msr_bitmap_legacy
)
8508 vmx_msr_bitmap_legacy_x2apic
=
8509 (unsigned long *)__get_free_page(GFP_KERNEL
);
8510 if (!vmx_msr_bitmap_legacy_x2apic
)
8513 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8514 if (!vmx_msr_bitmap_longmode
)
8517 vmx_msr_bitmap_longmode_x2apic
=
8518 (unsigned long *)__get_free_page(GFP_KERNEL
);
8519 if (!vmx_msr_bitmap_longmode_x2apic
)
8521 vmx_vmread_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8522 if (!vmx_vmread_bitmap
)
8525 vmx_vmwrite_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8526 if (!vmx_vmwrite_bitmap
)
8529 memset(vmx_vmread_bitmap
, 0xff, PAGE_SIZE
);
8530 memset(vmx_vmwrite_bitmap
, 0xff, PAGE_SIZE
);
8531 /* shadowed read/write fields */
8532 for (i
= 0; i
< max_shadow_read_write_fields
; i
++) {
8533 clear_bit(shadow_read_write_fields
[i
], vmx_vmwrite_bitmap
);
8534 clear_bit(shadow_read_write_fields
[i
], vmx_vmread_bitmap
);
8536 /* shadowed read only fields */
8537 for (i
= 0; i
< max_shadow_read_only_fields
; i
++)
8538 clear_bit(shadow_read_only_fields
[i
], vmx_vmread_bitmap
);
8541 * Allow direct access to the PC debug port (it is often used for I/O
8542 * delays, but the vmexits simply slow things down).
8544 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
8545 clear_bit(0x80, vmx_io_bitmap_a
);
8547 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
8549 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
8550 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
8552 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
8554 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
8555 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
8560 rcu_assign_pointer(crash_vmclear_loaded_vmcss
,
8561 crash_vmclear_local_loaded_vmcss
);
8564 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
8565 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
8566 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
8567 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
8568 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
8569 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
8570 memcpy(vmx_msr_bitmap_legacy_x2apic
,
8571 vmx_msr_bitmap_legacy
, PAGE_SIZE
);
8572 memcpy(vmx_msr_bitmap_longmode_x2apic
,
8573 vmx_msr_bitmap_longmode
, PAGE_SIZE
);
8576 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
8577 vmx_disable_intercept_msr_read_x2apic(msr
);
8579 /* According SDM, in x2apic mode, the whole id reg is used.
8580 * But in KVM, it only use the highest eight bits. Need to
8582 vmx_enable_intercept_msr_read_x2apic(0x802);
8584 vmx_enable_intercept_msr_read_x2apic(0x839);
8586 vmx_disable_intercept_msr_write_x2apic(0x808);
8588 vmx_disable_intercept_msr_write_x2apic(0x80b);
8590 vmx_disable_intercept_msr_write_x2apic(0x83f);
8594 kvm_mmu_set_mask_ptes(0ull,
8595 (enable_ept_ad_bits
) ? VMX_EPT_ACCESS_BIT
: 0ull,
8596 (enable_ept_ad_bits
) ? VMX_EPT_DIRTY_BIT
: 0ull,
8597 0ull, VMX_EPT_EXECUTABLE_MASK
);
8598 ept_set_mmio_spte_mask();
8606 free_page((unsigned long)vmx_vmwrite_bitmap
);
8608 free_page((unsigned long)vmx_vmread_bitmap
);
8610 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
8612 free_page((unsigned long)vmx_msr_bitmap_longmode
);
8614 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
8616 free_page((unsigned long)vmx_msr_bitmap_legacy
);
8618 free_page((unsigned long)vmx_io_bitmap_b
);
8620 free_page((unsigned long)vmx_io_bitmap_a
);
8624 static void __exit
vmx_exit(void)
8626 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
8627 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
8628 free_page((unsigned long)vmx_msr_bitmap_legacy
);
8629 free_page((unsigned long)vmx_msr_bitmap_longmode
);
8630 free_page((unsigned long)vmx_io_bitmap_b
);
8631 free_page((unsigned long)vmx_io_bitmap_a
);
8632 free_page((unsigned long)vmx_vmwrite_bitmap
);
8633 free_page((unsigned long)vmx_vmread_bitmap
);
8636 rcu_assign_pointer(crash_vmclear_loaded_vmcss
, NULL
);
8643 module_init(vmx_init
)
8644 module_exit(vmx_exit
)