2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
33 #include <trace/events/sched.h>
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 unsigned int sysctl_sched_latency
= 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG
;
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 unsigned int sysctl_sched_min_granularity
= 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 static unsigned int sched_nr_latency
= 8;
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
80 unsigned int sysctl_sched_child_runs_first __read_mostly
;
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
90 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
93 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
96 * The exponential sliding window over which load is averaged for shares
100 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
102 #ifdef CONFIG_CFS_BANDWIDTH
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
111 * default: 5 msec, units: microseconds
113 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
116 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
122 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
128 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
141 * This idea comes from the SD scheduler of Con Kolivas:
143 static int get_update_sysctl_factor(void)
145 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
148 switch (sysctl_sched_tunable_scaling
) {
149 case SCHED_TUNABLESCALING_NONE
:
152 case SCHED_TUNABLESCALING_LINEAR
:
155 case SCHED_TUNABLESCALING_LOG
:
157 factor
= 1 + ilog2(cpus
);
164 static void update_sysctl(void)
166 unsigned int factor
= get_update_sysctl_factor();
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity
);
171 SET_SYSCTL(sched_latency
);
172 SET_SYSCTL(sched_wakeup_granularity
);
176 void sched_init_granularity(void)
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
184 # define WMULT_CONST (1UL << 32)
187 #define WMULT_SHIFT 32
190 * Shift right and round:
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
195 * delta *= weight / lw
198 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
199 struct load_weight
*lw
)
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
208 if (likely(weight
> (1UL << SCHED_LOAD_RESOLUTION
)))
209 tmp
= (u64
)delta_exec
* scale_load_down(weight
);
211 tmp
= (u64
)delta_exec
;
213 if (!lw
->inv_weight
) {
214 unsigned long w
= scale_load_down(lw
->weight
);
216 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
218 else if (unlikely(!w
))
219 lw
->inv_weight
= WMULT_CONST
;
221 lw
->inv_weight
= WMULT_CONST
/ w
;
225 * Check whether we'd overflow the 64-bit multiplication:
227 if (unlikely(tmp
> WMULT_CONST
))
228 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
231 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
233 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
237 const struct sched_class fair_sched_class
;
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
243 #ifdef CONFIG_FAIR_GROUP_SCHED
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
254 static inline struct task_struct
*task_of(struct sched_entity
*se
)
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se
));
259 return container_of(se
, struct task_struct
, se
);
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
266 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
283 static void update_cfs_rq_blocked_load(struct cfs_rq
*cfs_rq
,
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
288 if (!cfs_rq
->on_list
) {
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
295 if (cfs_rq
->tg
->parent
&&
296 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
297 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
298 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
300 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
301 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq
, 0);
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
312 if (cfs_rq
->on_list
) {
313 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
322 /* Do the two (enqueued) entities belong to the same group ? */
324 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
326 if (se
->cfs_rq
== pse
->cfs_rq
)
332 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity
*se
)
342 for_each_sched_entity(se
)
349 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
351 int se_depth
, pse_depth
;
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
360 /* First walk up until both entities are at same depth */
361 se_depth
= depth_se(*se
);
362 pse_depth
= depth_se(*pse
);
364 while (se_depth
> pse_depth
) {
366 *se
= parent_entity(*se
);
369 while (pse_depth
> se_depth
) {
371 *pse
= parent_entity(*pse
);
374 while (!is_same_group(*se
, *pse
)) {
375 *se
= parent_entity(*se
);
376 *pse
= parent_entity(*pse
);
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
382 static inline struct task_struct
*task_of(struct sched_entity
*se
)
384 return container_of(se
, struct task_struct
, se
);
387 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
389 return container_of(cfs_rq
, struct rq
, cfs
);
392 #define entity_is_task(se) 1
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
397 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
399 return &task_rq(p
)->cfs
;
402 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
404 struct task_struct
*p
= task_of(se
);
405 struct rq
*rq
= task_rq(p
);
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
433 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
439 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, unsigned long delta_exec
);
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
452 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
454 s64 delta
= (s64
)(vruntime
- max_vruntime
);
456 max_vruntime
= vruntime
;
461 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
463 s64 delta
= (s64
)(vruntime
- min_vruntime
);
465 min_vruntime
= vruntime
;
470 static inline int entity_before(struct sched_entity
*a
,
471 struct sched_entity
*b
)
473 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
476 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
478 u64 vruntime
= cfs_rq
->min_vruntime
;
481 vruntime
= cfs_rq
->curr
->vruntime
;
483 if (cfs_rq
->rb_leftmost
) {
484 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
489 vruntime
= se
->vruntime
;
491 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
498 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
503 * Enqueue an entity into the rb-tree:
505 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
507 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
508 struct rb_node
*parent
= NULL
;
509 struct sched_entity
*entry
;
513 * Find the right place in the rbtree:
517 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
522 if (entity_before(se
, entry
)) {
523 link
= &parent
->rb_left
;
525 link
= &parent
->rb_right
;
531 * Maintain a cache of leftmost tree entries (it is frequently
535 cfs_rq
->rb_leftmost
= &se
->run_node
;
537 rb_link_node(&se
->run_node
, parent
, link
);
538 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
541 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
543 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
544 struct rb_node
*next_node
;
546 next_node
= rb_next(&se
->run_node
);
547 cfs_rq
->rb_leftmost
= next_node
;
550 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
553 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
555 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
560 return rb_entry(left
, struct sched_entity
, run_node
);
563 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
565 struct rb_node
*next
= rb_next(&se
->run_node
);
570 return rb_entry(next
, struct sched_entity
, run_node
);
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
576 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
581 return rb_entry(last
, struct sched_entity
, run_node
);
584 /**************************************************************
585 * Scheduling class statistics methods:
588 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
589 void __user
*buffer
, size_t *lenp
,
592 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
593 int factor
= get_update_sysctl_factor();
598 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
599 sysctl_sched_min_granularity
);
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity
);
604 WRT_SYSCTL(sched_latency
);
605 WRT_SYSCTL(sched_wakeup_granularity
);
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
618 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
619 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
625 * The idea is to set a period in which each task runs once.
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
630 * p = (nr <= nl) ? l : l*nr/nl
632 static u64
__sched_period(unsigned long nr_running
)
634 u64 period
= sysctl_sched_latency
;
635 unsigned long nr_latency
= sched_nr_latency
;
637 if (unlikely(nr_running
> nr_latency
)) {
638 period
= sysctl_sched_min_granularity
;
639 period
*= nr_running
;
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
651 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
653 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
655 for_each_sched_entity(se
) {
656 struct load_weight
*load
;
657 struct load_weight lw
;
659 cfs_rq
= cfs_rq_of(se
);
660 load
= &cfs_rq
->load
;
662 if (unlikely(!se
->on_rq
)) {
665 update_load_add(&lw
, se
->load
.weight
);
668 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
674 * We calculate the vruntime slice of a to-be-inserted task.
678 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
680 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
684 static inline void __update_task_entity_contrib(struct sched_entity
*se
);
686 /* Give new task start runnable values to heavy its load in infant time */
687 void init_task_runnable_average(struct task_struct
*p
)
691 p
->se
.avg
.decay_count
= 0;
692 slice
= sched_slice(task_cfs_rq(p
), &p
->se
) >> 10;
693 p
->se
.avg
.runnable_avg_sum
= slice
;
694 p
->se
.avg
.runnable_avg_period
= slice
;
695 __update_task_entity_contrib(&p
->se
);
698 void init_task_runnable_average(struct task_struct
*p
)
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
708 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
709 unsigned long delta_exec
)
711 unsigned long delta_exec_weighted
;
713 schedstat_set(curr
->statistics
.exec_max
,
714 max((u64
)delta_exec
, curr
->statistics
.exec_max
));
716 curr
->sum_exec_runtime
+= delta_exec
;
717 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
718 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
720 curr
->vruntime
+= delta_exec_weighted
;
721 update_min_vruntime(cfs_rq
);
724 static void update_curr(struct cfs_rq
*cfs_rq
)
726 struct sched_entity
*curr
= cfs_rq
->curr
;
727 u64 now
= rq_clock_task(rq_of(cfs_rq
));
728 unsigned long delta_exec
;
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
738 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
742 __update_curr(cfs_rq
, curr
, delta_exec
);
743 curr
->exec_start
= now
;
745 if (entity_is_task(curr
)) {
746 struct task_struct
*curtask
= task_of(curr
);
748 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
749 cpuacct_charge(curtask
, delta_exec
);
750 account_group_exec_runtime(curtask
, delta_exec
);
753 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
757 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
759 schedstat_set(se
->statistics
.wait_start
, rq_clock(rq_of(cfs_rq
)));
763 * Task is being enqueued - update stats:
765 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
771 if (se
!= cfs_rq
->curr
)
772 update_stats_wait_start(cfs_rq
, se
);
776 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
778 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
779 rq_clock(rq_of(cfs_rq
)) - se
->statistics
.wait_start
));
780 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
781 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
782 rq_clock(rq_of(cfs_rq
)) - se
->statistics
.wait_start
);
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se
)) {
785 trace_sched_stat_wait(task_of(se
),
786 rq_clock(rq_of(cfs_rq
)) - se
->statistics
.wait_start
);
789 schedstat_set(se
->statistics
.wait_start
, 0);
793 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
796 * Mark the end of the wait period if dequeueing a
799 if (se
!= cfs_rq
->curr
)
800 update_stats_wait_end(cfs_rq
, se
);
804 * We are picking a new current task - update its stats:
807 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
810 * We are starting a new run period:
812 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
815 /**************************************************
816 * Scheduling class queueing methods:
819 #ifdef CONFIG_NUMA_BALANCING
821 * numa task sample period in ms
823 unsigned int sysctl_numa_balancing_scan_period_min
= 100;
824 unsigned int sysctl_numa_balancing_scan_period_max
= 100*50;
825 unsigned int sysctl_numa_balancing_scan_period_reset
= 100*600;
827 /* Portion of address space to scan in MB */
828 unsigned int sysctl_numa_balancing_scan_size
= 256;
830 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
831 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
833 static void task_numa_placement(struct task_struct
*p
)
837 if (!p
->mm
) /* for example, ksmd faulting in a user's mm */
839 seq
= ACCESS_ONCE(p
->mm
->numa_scan_seq
);
840 if (p
->numa_scan_seq
== seq
)
842 p
->numa_scan_seq
= seq
;
844 /* FIXME: Scheduling placement policy hints go here */
848 * Got a PROT_NONE fault for a page on @node.
850 void task_numa_fault(int node
, int pages
, bool migrated
)
852 struct task_struct
*p
= current
;
854 if (!numabalancing_enabled
)
857 /* FIXME: Allocate task-specific structure for placement policy here */
860 * If pages are properly placed (did not migrate) then scan slower.
861 * This is reset periodically in case of phase changes
864 p
->numa_scan_period
= min(sysctl_numa_balancing_scan_period_max
,
865 p
->numa_scan_period
+ jiffies_to_msecs(10));
867 task_numa_placement(p
);
870 static void reset_ptenuma_scan(struct task_struct
*p
)
872 ACCESS_ONCE(p
->mm
->numa_scan_seq
)++;
873 p
->mm
->numa_scan_offset
= 0;
877 * The expensive part of numa migration is done from task_work context.
878 * Triggered from task_tick_numa().
880 void task_numa_work(struct callback_head
*work
)
882 unsigned long migrate
, next_scan
, now
= jiffies
;
883 struct task_struct
*p
= current
;
884 struct mm_struct
*mm
= p
->mm
;
885 struct vm_area_struct
*vma
;
886 unsigned long start
, end
;
889 WARN_ON_ONCE(p
!= container_of(work
, struct task_struct
, numa_work
));
891 work
->next
= work
; /* protect against double add */
893 * Who cares about NUMA placement when they're dying.
895 * NOTE: make sure not to dereference p->mm before this check,
896 * exit_task_work() happens _after_ exit_mm() so we could be called
897 * without p->mm even though we still had it when we enqueued this
900 if (p
->flags
& PF_EXITING
)
904 * We do not care about task placement until a task runs on a node
905 * other than the first one used by the address space. This is
906 * largely because migrations are driven by what CPU the task
907 * is running on. If it's never scheduled on another node, it'll
908 * not migrate so why bother trapping the fault.
910 if (mm
->first_nid
== NUMA_PTE_SCAN_INIT
)
911 mm
->first_nid
= numa_node_id();
912 if (mm
->first_nid
!= NUMA_PTE_SCAN_ACTIVE
) {
913 /* Are we running on a new node yet? */
914 if (numa_node_id() == mm
->first_nid
&&
915 !sched_feat_numa(NUMA_FORCE
))
918 mm
->first_nid
= NUMA_PTE_SCAN_ACTIVE
;
922 * Reset the scan period if enough time has gone by. Objective is that
923 * scanning will be reduced if pages are properly placed. As tasks
924 * can enter different phases this needs to be re-examined. Lacking
925 * proper tracking of reference behaviour, this blunt hammer is used.
927 migrate
= mm
->numa_next_reset
;
928 if (time_after(now
, migrate
)) {
929 p
->numa_scan_period
= sysctl_numa_balancing_scan_period_min
;
930 next_scan
= now
+ msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset
);
931 xchg(&mm
->numa_next_reset
, next_scan
);
935 * Enforce maximal scan/migration frequency..
937 migrate
= mm
->numa_next_scan
;
938 if (time_before(now
, migrate
))
941 if (p
->numa_scan_period
== 0)
942 p
->numa_scan_period
= sysctl_numa_balancing_scan_period_min
;
944 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
945 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
949 * Do not set pte_numa if the current running node is rate-limited.
950 * This loses statistics on the fault but if we are unwilling to
951 * migrate to this node, it is less likely we can do useful work
953 if (migrate_ratelimited(numa_node_id()))
956 start
= mm
->numa_scan_offset
;
957 pages
= sysctl_numa_balancing_scan_size
;
958 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
962 down_read(&mm
->mmap_sem
);
963 vma
= find_vma(mm
, start
);
965 reset_ptenuma_scan(p
);
969 for (; vma
; vma
= vma
->vm_next
) {
970 if (!vma_migratable(vma
))
973 /* Skip small VMAs. They are not likely to be of relevance */
974 if (vma
->vm_end
- vma
->vm_start
< HPAGE_SIZE
)
978 * Skip inaccessible VMAs to avoid any confusion between
979 * PROT_NONE and NUMA hinting ptes
981 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
985 start
= max(start
, vma
->vm_start
);
986 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
987 end
= min(end
, vma
->vm_end
);
988 pages
-= change_prot_numa(vma
, start
, end
);
993 } while (end
!= vma
->vm_end
);
998 * It is possible to reach the end of the VMA list but the last few VMAs are
999 * not guaranteed to the vma_migratable. If they are not, we would find the
1000 * !migratable VMA on the next scan but not reset the scanner to the start
1004 mm
->numa_scan_offset
= start
;
1006 reset_ptenuma_scan(p
);
1007 up_read(&mm
->mmap_sem
);
1011 * Drive the periodic memory faults..
1013 void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
1015 struct callback_head
*work
= &curr
->numa_work
;
1019 * We don't care about NUMA placement if we don't have memory.
1021 if (!curr
->mm
|| (curr
->flags
& PF_EXITING
) || work
->next
!= work
)
1025 * Using runtime rather than walltime has the dual advantage that
1026 * we (mostly) drive the selection from busy threads and that the
1027 * task needs to have done some actual work before we bother with
1030 now
= curr
->se
.sum_exec_runtime
;
1031 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
1033 if (now
- curr
->node_stamp
> period
) {
1034 if (!curr
->node_stamp
)
1035 curr
->numa_scan_period
= sysctl_numa_balancing_scan_period_min
;
1036 curr
->node_stamp
= now
;
1038 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
)) {
1039 init_task_work(work
, task_numa_work
); /* TODO: move this into sched_fork() */
1040 task_work_add(curr
, work
, true);
1045 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
1048 #endif /* CONFIG_NUMA_BALANCING */
1051 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1053 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
1054 if (!parent_entity(se
))
1055 update_load_add(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
1057 if (entity_is_task(se
))
1058 list_add(&se
->group_node
, &rq_of(cfs_rq
)->cfs_tasks
);
1060 cfs_rq
->nr_running
++;
1064 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1066 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
1067 if (!parent_entity(se
))
1068 update_load_sub(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
1069 if (entity_is_task(se
))
1070 list_del_init(&se
->group_node
);
1071 cfs_rq
->nr_running
--;
1074 #ifdef CONFIG_FAIR_GROUP_SCHED
1076 static inline long calc_tg_weight(struct task_group
*tg
, struct cfs_rq
*cfs_rq
)
1081 * Use this CPU's actual weight instead of the last load_contribution
1082 * to gain a more accurate current total weight. See
1083 * update_cfs_rq_load_contribution().
1085 tg_weight
= atomic_long_read(&tg
->load_avg
);
1086 tg_weight
-= cfs_rq
->tg_load_contrib
;
1087 tg_weight
+= cfs_rq
->load
.weight
;
1092 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
1094 long tg_weight
, load
, shares
;
1096 tg_weight
= calc_tg_weight(tg
, cfs_rq
);
1097 load
= cfs_rq
->load
.weight
;
1099 shares
= (tg
->shares
* load
);
1101 shares
/= tg_weight
;
1103 if (shares
< MIN_SHARES
)
1104 shares
= MIN_SHARES
;
1105 if (shares
> tg
->shares
)
1106 shares
= tg
->shares
;
1110 # else /* CONFIG_SMP */
1111 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
1115 # endif /* CONFIG_SMP */
1116 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
1117 unsigned long weight
)
1120 /* commit outstanding execution time */
1121 if (cfs_rq
->curr
== se
)
1122 update_curr(cfs_rq
);
1123 account_entity_dequeue(cfs_rq
, se
);
1126 update_load_set(&se
->load
, weight
);
1129 account_entity_enqueue(cfs_rq
, se
);
1132 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
1134 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
1136 struct task_group
*tg
;
1137 struct sched_entity
*se
;
1141 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
1142 if (!se
|| throttled_hierarchy(cfs_rq
))
1145 if (likely(se
->load
.weight
== tg
->shares
))
1148 shares
= calc_cfs_shares(cfs_rq
, tg
);
1150 reweight_entity(cfs_rq_of(se
), se
, shares
);
1152 #else /* CONFIG_FAIR_GROUP_SCHED */
1153 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
1156 #endif /* CONFIG_FAIR_GROUP_SCHED */
1160 * We choose a half-life close to 1 scheduling period.
1161 * Note: The tables below are dependent on this value.
1163 #define LOAD_AVG_PERIOD 32
1164 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1165 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1167 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1168 static const u32 runnable_avg_yN_inv
[] = {
1169 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1170 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1171 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1172 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1173 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1174 0x85aac367, 0x82cd8698,
1178 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1179 * over-estimates when re-combining.
1181 static const u32 runnable_avg_yN_sum
[] = {
1182 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1183 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1184 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1189 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1191 static __always_inline u64
decay_load(u64 val
, u64 n
)
1193 unsigned int local_n
;
1197 else if (unlikely(n
> LOAD_AVG_PERIOD
* 63))
1200 /* after bounds checking we can collapse to 32-bit */
1204 * As y^PERIOD = 1/2, we can combine
1205 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1206 * With a look-up table which covers k^n (n<PERIOD)
1208 * To achieve constant time decay_load.
1210 if (unlikely(local_n
>= LOAD_AVG_PERIOD
)) {
1211 val
>>= local_n
/ LOAD_AVG_PERIOD
;
1212 local_n
%= LOAD_AVG_PERIOD
;
1215 val
*= runnable_avg_yN_inv
[local_n
];
1216 /* We don't use SRR here since we always want to round down. */
1221 * For updates fully spanning n periods, the contribution to runnable
1222 * average will be: \Sum 1024*y^n
1224 * We can compute this reasonably efficiently by combining:
1225 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1227 static u32
__compute_runnable_contrib(u64 n
)
1231 if (likely(n
<= LOAD_AVG_PERIOD
))
1232 return runnable_avg_yN_sum
[n
];
1233 else if (unlikely(n
>= LOAD_AVG_MAX_N
))
1234 return LOAD_AVG_MAX
;
1236 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1238 contrib
/= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1239 contrib
+= runnable_avg_yN_sum
[LOAD_AVG_PERIOD
];
1241 n
-= LOAD_AVG_PERIOD
;
1242 } while (n
> LOAD_AVG_PERIOD
);
1244 contrib
= decay_load(contrib
, n
);
1245 return contrib
+ runnable_avg_yN_sum
[n
];
1249 * We can represent the historical contribution to runnable average as the
1250 * coefficients of a geometric series. To do this we sub-divide our runnable
1251 * history into segments of approximately 1ms (1024us); label the segment that
1252 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1254 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1256 * (now) (~1ms ago) (~2ms ago)
1258 * Let u_i denote the fraction of p_i that the entity was runnable.
1260 * We then designate the fractions u_i as our co-efficients, yielding the
1261 * following representation of historical load:
1262 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1264 * We choose y based on the with of a reasonably scheduling period, fixing:
1267 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1268 * approximately half as much as the contribution to load within the last ms
1271 * When a period "rolls over" and we have new u_0`, multiplying the previous
1272 * sum again by y is sufficient to update:
1273 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1274 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1276 static __always_inline
int __update_entity_runnable_avg(u64 now
,
1277 struct sched_avg
*sa
,
1281 u32 runnable_contrib
;
1282 int delta_w
, decayed
= 0;
1284 delta
= now
- sa
->last_runnable_update
;
1286 * This should only happen when time goes backwards, which it
1287 * unfortunately does during sched clock init when we swap over to TSC.
1289 if ((s64
)delta
< 0) {
1290 sa
->last_runnable_update
= now
;
1295 * Use 1024ns as the unit of measurement since it's a reasonable
1296 * approximation of 1us and fast to compute.
1301 sa
->last_runnable_update
= now
;
1303 /* delta_w is the amount already accumulated against our next period */
1304 delta_w
= sa
->runnable_avg_period
% 1024;
1305 if (delta
+ delta_w
>= 1024) {
1306 /* period roll-over */
1310 * Now that we know we're crossing a period boundary, figure
1311 * out how much from delta we need to complete the current
1312 * period and accrue it.
1314 delta_w
= 1024 - delta_w
;
1316 sa
->runnable_avg_sum
+= delta_w
;
1317 sa
->runnable_avg_period
+= delta_w
;
1321 /* Figure out how many additional periods this update spans */
1322 periods
= delta
/ 1024;
1325 sa
->runnable_avg_sum
= decay_load(sa
->runnable_avg_sum
,
1327 sa
->runnable_avg_period
= decay_load(sa
->runnable_avg_period
,
1330 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1331 runnable_contrib
= __compute_runnable_contrib(periods
);
1333 sa
->runnable_avg_sum
+= runnable_contrib
;
1334 sa
->runnable_avg_period
+= runnable_contrib
;
1337 /* Remainder of delta accrued against u_0` */
1339 sa
->runnable_avg_sum
+= delta
;
1340 sa
->runnable_avg_period
+= delta
;
1345 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1346 static inline u64
__synchronize_entity_decay(struct sched_entity
*se
)
1348 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1349 u64 decays
= atomic64_read(&cfs_rq
->decay_counter
);
1351 decays
-= se
->avg
.decay_count
;
1355 se
->avg
.load_avg_contrib
= decay_load(se
->avg
.load_avg_contrib
, decays
);
1356 se
->avg
.decay_count
= 0;
1361 #ifdef CONFIG_FAIR_GROUP_SCHED
1362 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq
*cfs_rq
,
1365 struct task_group
*tg
= cfs_rq
->tg
;
1368 tg_contrib
= cfs_rq
->runnable_load_avg
+ cfs_rq
->blocked_load_avg
;
1369 tg_contrib
-= cfs_rq
->tg_load_contrib
;
1371 if (force_update
|| abs(tg_contrib
) > cfs_rq
->tg_load_contrib
/ 8) {
1372 atomic_long_add(tg_contrib
, &tg
->load_avg
);
1373 cfs_rq
->tg_load_contrib
+= tg_contrib
;
1378 * Aggregate cfs_rq runnable averages into an equivalent task_group
1379 * representation for computing load contributions.
1381 static inline void __update_tg_runnable_avg(struct sched_avg
*sa
,
1382 struct cfs_rq
*cfs_rq
)
1384 struct task_group
*tg
= cfs_rq
->tg
;
1387 /* The fraction of a cpu used by this cfs_rq */
1388 contrib
= div_u64(sa
->runnable_avg_sum
<< NICE_0_SHIFT
,
1389 sa
->runnable_avg_period
+ 1);
1390 contrib
-= cfs_rq
->tg_runnable_contrib
;
1392 if (abs(contrib
) > cfs_rq
->tg_runnable_contrib
/ 64) {
1393 atomic_add(contrib
, &tg
->runnable_avg
);
1394 cfs_rq
->tg_runnable_contrib
+= contrib
;
1398 static inline void __update_group_entity_contrib(struct sched_entity
*se
)
1400 struct cfs_rq
*cfs_rq
= group_cfs_rq(se
);
1401 struct task_group
*tg
= cfs_rq
->tg
;
1406 contrib
= cfs_rq
->tg_load_contrib
* tg
->shares
;
1407 se
->avg
.load_avg_contrib
= div_u64(contrib
,
1408 atomic_long_read(&tg
->load_avg
) + 1);
1411 * For group entities we need to compute a correction term in the case
1412 * that they are consuming <1 cpu so that we would contribute the same
1413 * load as a task of equal weight.
1415 * Explicitly co-ordinating this measurement would be expensive, but
1416 * fortunately the sum of each cpus contribution forms a usable
1417 * lower-bound on the true value.
1419 * Consider the aggregate of 2 contributions. Either they are disjoint
1420 * (and the sum represents true value) or they are disjoint and we are
1421 * understating by the aggregate of their overlap.
1423 * Extending this to N cpus, for a given overlap, the maximum amount we
1424 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1425 * cpus that overlap for this interval and w_i is the interval width.
1427 * On a small machine; the first term is well-bounded which bounds the
1428 * total error since w_i is a subset of the period. Whereas on a
1429 * larger machine, while this first term can be larger, if w_i is the
1430 * of consequential size guaranteed to see n_i*w_i quickly converge to
1431 * our upper bound of 1-cpu.
1433 runnable_avg
= atomic_read(&tg
->runnable_avg
);
1434 if (runnable_avg
< NICE_0_LOAD
) {
1435 se
->avg
.load_avg_contrib
*= runnable_avg
;
1436 se
->avg
.load_avg_contrib
>>= NICE_0_SHIFT
;
1440 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq
*cfs_rq
,
1441 int force_update
) {}
1442 static inline void __update_tg_runnable_avg(struct sched_avg
*sa
,
1443 struct cfs_rq
*cfs_rq
) {}
1444 static inline void __update_group_entity_contrib(struct sched_entity
*se
) {}
1447 static inline void __update_task_entity_contrib(struct sched_entity
*se
)
1451 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1452 contrib
= se
->avg
.runnable_avg_sum
* scale_load_down(se
->load
.weight
);
1453 contrib
/= (se
->avg
.runnable_avg_period
+ 1);
1454 se
->avg
.load_avg_contrib
= scale_load(contrib
);
1457 /* Compute the current contribution to load_avg by se, return any delta */
1458 static long __update_entity_load_avg_contrib(struct sched_entity
*se
)
1460 long old_contrib
= se
->avg
.load_avg_contrib
;
1462 if (entity_is_task(se
)) {
1463 __update_task_entity_contrib(se
);
1465 __update_tg_runnable_avg(&se
->avg
, group_cfs_rq(se
));
1466 __update_group_entity_contrib(se
);
1469 return se
->avg
.load_avg_contrib
- old_contrib
;
1472 static inline void subtract_blocked_load_contrib(struct cfs_rq
*cfs_rq
,
1475 if (likely(load_contrib
< cfs_rq
->blocked_load_avg
))
1476 cfs_rq
->blocked_load_avg
-= load_contrib
;
1478 cfs_rq
->blocked_load_avg
= 0;
1481 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
);
1483 /* Update a sched_entity's runnable average */
1484 static inline void update_entity_load_avg(struct sched_entity
*se
,
1487 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1492 * For a group entity we need to use their owned cfs_rq_clock_task() in
1493 * case they are the parent of a throttled hierarchy.
1495 if (entity_is_task(se
))
1496 now
= cfs_rq_clock_task(cfs_rq
);
1498 now
= cfs_rq_clock_task(group_cfs_rq(se
));
1500 if (!__update_entity_runnable_avg(now
, &se
->avg
, se
->on_rq
))
1503 contrib_delta
= __update_entity_load_avg_contrib(se
);
1509 cfs_rq
->runnable_load_avg
+= contrib_delta
;
1511 subtract_blocked_load_contrib(cfs_rq
, -contrib_delta
);
1515 * Decay the load contributed by all blocked children and account this so that
1516 * their contribution may appropriately discounted when they wake up.
1518 static void update_cfs_rq_blocked_load(struct cfs_rq
*cfs_rq
, int force_update
)
1520 u64 now
= cfs_rq_clock_task(cfs_rq
) >> 20;
1523 decays
= now
- cfs_rq
->last_decay
;
1524 if (!decays
&& !force_update
)
1527 if (atomic_long_read(&cfs_rq
->removed_load
)) {
1528 unsigned long removed_load
;
1529 removed_load
= atomic_long_xchg(&cfs_rq
->removed_load
, 0);
1530 subtract_blocked_load_contrib(cfs_rq
, removed_load
);
1534 cfs_rq
->blocked_load_avg
= decay_load(cfs_rq
->blocked_load_avg
,
1536 atomic64_add(decays
, &cfs_rq
->decay_counter
);
1537 cfs_rq
->last_decay
= now
;
1540 __update_cfs_rq_tg_load_contrib(cfs_rq
, force_update
);
1543 static inline void update_rq_runnable_avg(struct rq
*rq
, int runnable
)
1545 __update_entity_runnable_avg(rq_clock_task(rq
), &rq
->avg
, runnable
);
1546 __update_tg_runnable_avg(&rq
->avg
, &rq
->cfs
);
1549 /* Add the load generated by se into cfs_rq's child load-average */
1550 static inline void enqueue_entity_load_avg(struct cfs_rq
*cfs_rq
,
1551 struct sched_entity
*se
,
1555 * We track migrations using entity decay_count <= 0, on a wake-up
1556 * migration we use a negative decay count to track the remote decays
1557 * accumulated while sleeping.
1559 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1560 * are seen by enqueue_entity_load_avg() as a migration with an already
1561 * constructed load_avg_contrib.
1563 if (unlikely(se
->avg
.decay_count
<= 0)) {
1564 se
->avg
.last_runnable_update
= rq_clock_task(rq_of(cfs_rq
));
1565 if (se
->avg
.decay_count
) {
1567 * In a wake-up migration we have to approximate the
1568 * time sleeping. This is because we can't synchronize
1569 * clock_task between the two cpus, and it is not
1570 * guaranteed to be read-safe. Instead, we can
1571 * approximate this using our carried decays, which are
1572 * explicitly atomically readable.
1574 se
->avg
.last_runnable_update
-= (-se
->avg
.decay_count
)
1576 update_entity_load_avg(se
, 0);
1577 /* Indicate that we're now synchronized and on-rq */
1578 se
->avg
.decay_count
= 0;
1582 __synchronize_entity_decay(se
);
1585 /* migrated tasks did not contribute to our blocked load */
1587 subtract_blocked_load_contrib(cfs_rq
, se
->avg
.load_avg_contrib
);
1588 update_entity_load_avg(se
, 0);
1591 cfs_rq
->runnable_load_avg
+= se
->avg
.load_avg_contrib
;
1592 /* we force update consideration on load-balancer moves */
1593 update_cfs_rq_blocked_load(cfs_rq
, !wakeup
);
1597 * Remove se's load from this cfs_rq child load-average, if the entity is
1598 * transitioning to a blocked state we track its projected decay using
1601 static inline void dequeue_entity_load_avg(struct cfs_rq
*cfs_rq
,
1602 struct sched_entity
*se
,
1605 update_entity_load_avg(se
, 1);
1606 /* we force update consideration on load-balancer moves */
1607 update_cfs_rq_blocked_load(cfs_rq
, !sleep
);
1609 cfs_rq
->runnable_load_avg
-= se
->avg
.load_avg_contrib
;
1611 cfs_rq
->blocked_load_avg
+= se
->avg
.load_avg_contrib
;
1612 se
->avg
.decay_count
= atomic64_read(&cfs_rq
->decay_counter
);
1613 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1617 * Update the rq's load with the elapsed running time before entering
1618 * idle. if the last scheduled task is not a CFS task, idle_enter will
1619 * be the only way to update the runnable statistic.
1621 void idle_enter_fair(struct rq
*this_rq
)
1623 update_rq_runnable_avg(this_rq
, 1);
1627 * Update the rq's load with the elapsed idle time before a task is
1628 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1629 * be the only way to update the runnable statistic.
1631 void idle_exit_fair(struct rq
*this_rq
)
1633 update_rq_runnable_avg(this_rq
, 0);
1637 static inline void update_entity_load_avg(struct sched_entity
*se
,
1638 int update_cfs_rq
) {}
1639 static inline void update_rq_runnable_avg(struct rq
*rq
, int runnable
) {}
1640 static inline void enqueue_entity_load_avg(struct cfs_rq
*cfs_rq
,
1641 struct sched_entity
*se
,
1643 static inline void dequeue_entity_load_avg(struct cfs_rq
*cfs_rq
,
1644 struct sched_entity
*se
,
1646 static inline void update_cfs_rq_blocked_load(struct cfs_rq
*cfs_rq
,
1647 int force_update
) {}
1650 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1652 #ifdef CONFIG_SCHEDSTATS
1653 struct task_struct
*tsk
= NULL
;
1655 if (entity_is_task(se
))
1658 if (se
->statistics
.sleep_start
) {
1659 u64 delta
= rq_clock(rq_of(cfs_rq
)) - se
->statistics
.sleep_start
;
1664 if (unlikely(delta
> se
->statistics
.sleep_max
))
1665 se
->statistics
.sleep_max
= delta
;
1667 se
->statistics
.sleep_start
= 0;
1668 se
->statistics
.sum_sleep_runtime
+= delta
;
1671 account_scheduler_latency(tsk
, delta
>> 10, 1);
1672 trace_sched_stat_sleep(tsk
, delta
);
1675 if (se
->statistics
.block_start
) {
1676 u64 delta
= rq_clock(rq_of(cfs_rq
)) - se
->statistics
.block_start
;
1681 if (unlikely(delta
> se
->statistics
.block_max
))
1682 se
->statistics
.block_max
= delta
;
1684 se
->statistics
.block_start
= 0;
1685 se
->statistics
.sum_sleep_runtime
+= delta
;
1688 if (tsk
->in_iowait
) {
1689 se
->statistics
.iowait_sum
+= delta
;
1690 se
->statistics
.iowait_count
++;
1691 trace_sched_stat_iowait(tsk
, delta
);
1694 trace_sched_stat_blocked(tsk
, delta
);
1697 * Blocking time is in units of nanosecs, so shift by
1698 * 20 to get a milliseconds-range estimation of the
1699 * amount of time that the task spent sleeping:
1701 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
1702 profile_hits(SLEEP_PROFILING
,
1703 (void *)get_wchan(tsk
),
1706 account_scheduler_latency(tsk
, delta
>> 10, 0);
1712 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1714 #ifdef CONFIG_SCHED_DEBUG
1715 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
1720 if (d
> 3*sysctl_sched_latency
)
1721 schedstat_inc(cfs_rq
, nr_spread_over
);
1726 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
1728 u64 vruntime
= cfs_rq
->min_vruntime
;
1731 * The 'current' period is already promised to the current tasks,
1732 * however the extra weight of the new task will slow them down a
1733 * little, place the new task so that it fits in the slot that
1734 * stays open at the end.
1736 if (initial
&& sched_feat(START_DEBIT
))
1737 vruntime
+= sched_vslice(cfs_rq
, se
);
1739 /* sleeps up to a single latency don't count. */
1741 unsigned long thresh
= sysctl_sched_latency
;
1744 * Halve their sleep time's effect, to allow
1745 * for a gentler effect of sleepers:
1747 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
1753 /* ensure we never gain time by being placed backwards. */
1754 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
1757 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
1760 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1763 * Update the normalized vruntime before updating min_vruntime
1764 * through calling update_curr().
1766 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
1767 se
->vruntime
+= cfs_rq
->min_vruntime
;
1770 * Update run-time statistics of the 'current'.
1772 update_curr(cfs_rq
);
1773 enqueue_entity_load_avg(cfs_rq
, se
, flags
& ENQUEUE_WAKEUP
);
1774 account_entity_enqueue(cfs_rq
, se
);
1775 update_cfs_shares(cfs_rq
);
1777 if (flags
& ENQUEUE_WAKEUP
) {
1778 place_entity(cfs_rq
, se
, 0);
1779 enqueue_sleeper(cfs_rq
, se
);
1782 update_stats_enqueue(cfs_rq
, se
);
1783 check_spread(cfs_rq
, se
);
1784 if (se
!= cfs_rq
->curr
)
1785 __enqueue_entity(cfs_rq
, se
);
1788 if (cfs_rq
->nr_running
== 1) {
1789 list_add_leaf_cfs_rq(cfs_rq
);
1790 check_enqueue_throttle(cfs_rq
);
1794 static void __clear_buddies_last(struct sched_entity
*se
)
1796 for_each_sched_entity(se
) {
1797 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1798 if (cfs_rq
->last
== se
)
1799 cfs_rq
->last
= NULL
;
1805 static void __clear_buddies_next(struct sched_entity
*se
)
1807 for_each_sched_entity(se
) {
1808 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1809 if (cfs_rq
->next
== se
)
1810 cfs_rq
->next
= NULL
;
1816 static void __clear_buddies_skip(struct sched_entity
*se
)
1818 for_each_sched_entity(se
) {
1819 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1820 if (cfs_rq
->skip
== se
)
1821 cfs_rq
->skip
= NULL
;
1827 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1829 if (cfs_rq
->last
== se
)
1830 __clear_buddies_last(se
);
1832 if (cfs_rq
->next
== se
)
1833 __clear_buddies_next(se
);
1835 if (cfs_rq
->skip
== se
)
1836 __clear_buddies_skip(se
);
1839 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
1842 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1845 * Update run-time statistics of the 'current'.
1847 update_curr(cfs_rq
);
1848 dequeue_entity_load_avg(cfs_rq
, se
, flags
& DEQUEUE_SLEEP
);
1850 update_stats_dequeue(cfs_rq
, se
);
1851 if (flags
& DEQUEUE_SLEEP
) {
1852 #ifdef CONFIG_SCHEDSTATS
1853 if (entity_is_task(se
)) {
1854 struct task_struct
*tsk
= task_of(se
);
1856 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1857 se
->statistics
.sleep_start
= rq_clock(rq_of(cfs_rq
));
1858 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1859 se
->statistics
.block_start
= rq_clock(rq_of(cfs_rq
));
1864 clear_buddies(cfs_rq
, se
);
1866 if (se
!= cfs_rq
->curr
)
1867 __dequeue_entity(cfs_rq
, se
);
1869 account_entity_dequeue(cfs_rq
, se
);
1872 * Normalize the entity after updating the min_vruntime because the
1873 * update can refer to the ->curr item and we need to reflect this
1874 * movement in our normalized position.
1876 if (!(flags
& DEQUEUE_SLEEP
))
1877 se
->vruntime
-= cfs_rq
->min_vruntime
;
1879 /* return excess runtime on last dequeue */
1880 return_cfs_rq_runtime(cfs_rq
);
1882 update_min_vruntime(cfs_rq
);
1883 update_cfs_shares(cfs_rq
);
1887 * Preempt the current task with a newly woken task if needed:
1890 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
1892 unsigned long ideal_runtime
, delta_exec
;
1893 struct sched_entity
*se
;
1896 ideal_runtime
= sched_slice(cfs_rq
, curr
);
1897 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1898 if (delta_exec
> ideal_runtime
) {
1899 resched_task(rq_of(cfs_rq
)->curr
);
1901 * The current task ran long enough, ensure it doesn't get
1902 * re-elected due to buddy favours.
1904 clear_buddies(cfs_rq
, curr
);
1909 * Ensure that a task that missed wakeup preemption by a
1910 * narrow margin doesn't have to wait for a full slice.
1911 * This also mitigates buddy induced latencies under load.
1913 if (delta_exec
< sysctl_sched_min_granularity
)
1916 se
= __pick_first_entity(cfs_rq
);
1917 delta
= curr
->vruntime
- se
->vruntime
;
1922 if (delta
> ideal_runtime
)
1923 resched_task(rq_of(cfs_rq
)->curr
);
1927 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1929 /* 'current' is not kept within the tree. */
1932 * Any task has to be enqueued before it get to execute on
1933 * a CPU. So account for the time it spent waiting on the
1936 update_stats_wait_end(cfs_rq
, se
);
1937 __dequeue_entity(cfs_rq
, se
);
1940 update_stats_curr_start(cfs_rq
, se
);
1942 #ifdef CONFIG_SCHEDSTATS
1944 * Track our maximum slice length, if the CPU's load is at
1945 * least twice that of our own weight (i.e. dont track it
1946 * when there are only lesser-weight tasks around):
1948 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
1949 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
1950 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
1953 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
1957 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
1960 * Pick the next process, keeping these things in mind, in this order:
1961 * 1) keep things fair between processes/task groups
1962 * 2) pick the "next" process, since someone really wants that to run
1963 * 3) pick the "last" process, for cache locality
1964 * 4) do not run the "skip" process, if something else is available
1966 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
1968 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
1969 struct sched_entity
*left
= se
;
1972 * Avoid running the skip buddy, if running something else can
1973 * be done without getting too unfair.
1975 if (cfs_rq
->skip
== se
) {
1976 struct sched_entity
*second
= __pick_next_entity(se
);
1977 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
1982 * Prefer last buddy, try to return the CPU to a preempted task.
1984 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
1988 * Someone really wants this to run. If it's not unfair, run it.
1990 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
1993 clear_buddies(cfs_rq
, se
);
1998 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
2000 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
2003 * If still on the runqueue then deactivate_task()
2004 * was not called and update_curr() has to be done:
2007 update_curr(cfs_rq
);
2009 /* throttle cfs_rqs exceeding runtime */
2010 check_cfs_rq_runtime(cfs_rq
);
2012 check_spread(cfs_rq
, prev
);
2014 update_stats_wait_start(cfs_rq
, prev
);
2015 /* Put 'current' back into the tree. */
2016 __enqueue_entity(cfs_rq
, prev
);
2017 /* in !on_rq case, update occurred at dequeue */
2018 update_entity_load_avg(prev
, 1);
2020 cfs_rq
->curr
= NULL
;
2024 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
2027 * Update run-time statistics of the 'current'.
2029 update_curr(cfs_rq
);
2032 * Ensure that runnable average is periodically updated.
2034 update_entity_load_avg(curr
, 1);
2035 update_cfs_rq_blocked_load(cfs_rq
, 1);
2036 update_cfs_shares(cfs_rq
);
2038 #ifdef CONFIG_SCHED_HRTICK
2040 * queued ticks are scheduled to match the slice, so don't bother
2041 * validating it and just reschedule.
2044 resched_task(rq_of(cfs_rq
)->curr
);
2048 * don't let the period tick interfere with the hrtick preemption
2050 if (!sched_feat(DOUBLE_TICK
) &&
2051 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
2055 if (cfs_rq
->nr_running
> 1)
2056 check_preempt_tick(cfs_rq
, curr
);
2060 /**************************************************
2061 * CFS bandwidth control machinery
2064 #ifdef CONFIG_CFS_BANDWIDTH
2066 #ifdef HAVE_JUMP_LABEL
2067 static struct static_key __cfs_bandwidth_used
;
2069 static inline bool cfs_bandwidth_used(void)
2071 return static_key_false(&__cfs_bandwidth_used
);
2074 void cfs_bandwidth_usage_inc(void)
2076 static_key_slow_inc(&__cfs_bandwidth_used
);
2079 void cfs_bandwidth_usage_dec(void)
2081 static_key_slow_dec(&__cfs_bandwidth_used
);
2083 #else /* HAVE_JUMP_LABEL */
2084 static bool cfs_bandwidth_used(void)
2089 void cfs_bandwidth_usage_inc(void) {}
2090 void cfs_bandwidth_usage_dec(void) {}
2091 #endif /* HAVE_JUMP_LABEL */
2094 * default period for cfs group bandwidth.
2095 * default: 0.1s, units: nanoseconds
2097 static inline u64
default_cfs_period(void)
2099 return 100000000ULL;
2102 static inline u64
sched_cfs_bandwidth_slice(void)
2104 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
2108 * Replenish runtime according to assigned quota and update expiration time.
2109 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2110 * additional synchronization around rq->lock.
2112 * requires cfs_b->lock
2114 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
2118 if (cfs_b
->quota
== RUNTIME_INF
)
2121 now
= sched_clock_cpu(smp_processor_id());
2122 cfs_b
->runtime
= cfs_b
->quota
;
2123 cfs_b
->runtime_expires
= now
+ ktime_to_ns(cfs_b
->period
);
2126 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
2128 return &tg
->cfs_bandwidth
;
2131 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2132 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
2134 if (unlikely(cfs_rq
->throttle_count
))
2135 return cfs_rq
->throttled_clock_task
;
2137 return rq_clock_task(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_task_time
;
2140 /* returns 0 on failure to allocate runtime */
2141 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
2143 struct task_group
*tg
= cfs_rq
->tg
;
2144 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
2145 u64 amount
= 0, min_amount
, expires
;
2147 /* note: this is a positive sum as runtime_remaining <= 0 */
2148 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
2150 raw_spin_lock(&cfs_b
->lock
);
2151 if (cfs_b
->quota
== RUNTIME_INF
)
2152 amount
= min_amount
;
2155 * If the bandwidth pool has become inactive, then at least one
2156 * period must have elapsed since the last consumption.
2157 * Refresh the global state and ensure bandwidth timer becomes
2160 if (!cfs_b
->timer_active
) {
2161 __refill_cfs_bandwidth_runtime(cfs_b
);
2162 __start_cfs_bandwidth(cfs_b
);
2165 if (cfs_b
->runtime
> 0) {
2166 amount
= min(cfs_b
->runtime
, min_amount
);
2167 cfs_b
->runtime
-= amount
;
2171 expires
= cfs_b
->runtime_expires
;
2172 raw_spin_unlock(&cfs_b
->lock
);
2174 cfs_rq
->runtime_remaining
+= amount
;
2176 * we may have advanced our local expiration to account for allowed
2177 * spread between our sched_clock and the one on which runtime was
2180 if ((s64
)(expires
- cfs_rq
->runtime_expires
) > 0)
2181 cfs_rq
->runtime_expires
= expires
;
2183 return cfs_rq
->runtime_remaining
> 0;
2187 * Note: This depends on the synchronization provided by sched_clock and the
2188 * fact that rq->clock snapshots this value.
2190 static void expire_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
2192 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
2194 /* if the deadline is ahead of our clock, nothing to do */
2195 if (likely((s64
)(rq_clock(rq_of(cfs_rq
)) - cfs_rq
->runtime_expires
) < 0))
2198 if (cfs_rq
->runtime_remaining
< 0)
2202 * If the local deadline has passed we have to consider the
2203 * possibility that our sched_clock is 'fast' and the global deadline
2204 * has not truly expired.
2206 * Fortunately we can check determine whether this the case by checking
2207 * whether the global deadline has advanced.
2210 if ((s64
)(cfs_rq
->runtime_expires
- cfs_b
->runtime_expires
) >= 0) {
2211 /* extend local deadline, drift is bounded above by 2 ticks */
2212 cfs_rq
->runtime_expires
+= TICK_NSEC
;
2214 /* global deadline is ahead, expiration has passed */
2215 cfs_rq
->runtime_remaining
= 0;
2219 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
2220 unsigned long delta_exec
)
2222 /* dock delta_exec before expiring quota (as it could span periods) */
2223 cfs_rq
->runtime_remaining
-= delta_exec
;
2224 expire_cfs_rq_runtime(cfs_rq
);
2226 if (likely(cfs_rq
->runtime_remaining
> 0))
2230 * if we're unable to extend our runtime we resched so that the active
2231 * hierarchy can be throttled
2233 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
2234 resched_task(rq_of(cfs_rq
)->curr
);
2237 static __always_inline
2238 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, unsigned long delta_exec
)
2240 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
2243 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
2246 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
2248 return cfs_bandwidth_used() && cfs_rq
->throttled
;
2251 /* check whether cfs_rq, or any parent, is throttled */
2252 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
2254 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
2258 * Ensure that neither of the group entities corresponding to src_cpu or
2259 * dest_cpu are members of a throttled hierarchy when performing group
2260 * load-balance operations.
2262 static inline int throttled_lb_pair(struct task_group
*tg
,
2263 int src_cpu
, int dest_cpu
)
2265 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
2267 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
2268 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
2270 return throttled_hierarchy(src_cfs_rq
) ||
2271 throttled_hierarchy(dest_cfs_rq
);
2274 /* updated child weight may affect parent so we have to do this bottom up */
2275 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
2277 struct rq
*rq
= data
;
2278 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
2280 cfs_rq
->throttle_count
--;
2282 if (!cfs_rq
->throttle_count
) {
2283 /* adjust cfs_rq_clock_task() */
2284 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
2285 cfs_rq
->throttled_clock_task
;
2292 static int tg_throttle_down(struct task_group
*tg
, void *data
)
2294 struct rq
*rq
= data
;
2295 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
2297 /* group is entering throttled state, stop time */
2298 if (!cfs_rq
->throttle_count
)
2299 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
2300 cfs_rq
->throttle_count
++;
2305 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
2307 struct rq
*rq
= rq_of(cfs_rq
);
2308 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
2309 struct sched_entity
*se
;
2310 long task_delta
, dequeue
= 1;
2312 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
2314 /* freeze hierarchy runnable averages while throttled */
2316 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
2319 task_delta
= cfs_rq
->h_nr_running
;
2320 for_each_sched_entity(se
) {
2321 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
2322 /* throttled entity or throttle-on-deactivate */
2327 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
2328 qcfs_rq
->h_nr_running
-= task_delta
;
2330 if (qcfs_rq
->load
.weight
)
2335 rq
->nr_running
-= task_delta
;
2337 cfs_rq
->throttled
= 1;
2338 cfs_rq
->throttled_clock
= rq_clock(rq
);
2339 raw_spin_lock(&cfs_b
->lock
);
2340 list_add_tail_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
2341 if (!cfs_b
->timer_active
)
2342 __start_cfs_bandwidth(cfs_b
);
2343 raw_spin_unlock(&cfs_b
->lock
);
2346 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
2348 struct rq
*rq
= rq_of(cfs_rq
);
2349 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
2350 struct sched_entity
*se
;
2354 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
2356 cfs_rq
->throttled
= 0;
2358 update_rq_clock(rq
);
2360 raw_spin_lock(&cfs_b
->lock
);
2361 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
2362 list_del_rcu(&cfs_rq
->throttled_list
);
2363 raw_spin_unlock(&cfs_b
->lock
);
2365 /* update hierarchical throttle state */
2366 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
2368 if (!cfs_rq
->load
.weight
)
2371 task_delta
= cfs_rq
->h_nr_running
;
2372 for_each_sched_entity(se
) {
2376 cfs_rq
= cfs_rq_of(se
);
2378 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
2379 cfs_rq
->h_nr_running
+= task_delta
;
2381 if (cfs_rq_throttled(cfs_rq
))
2386 rq
->nr_running
+= task_delta
;
2388 /* determine whether we need to wake up potentially idle cpu */
2389 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
2390 resched_task(rq
->curr
);
2393 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
,
2394 u64 remaining
, u64 expires
)
2396 struct cfs_rq
*cfs_rq
;
2397 u64 runtime
= remaining
;
2400 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
2402 struct rq
*rq
= rq_of(cfs_rq
);
2404 raw_spin_lock(&rq
->lock
);
2405 if (!cfs_rq_throttled(cfs_rq
))
2408 runtime
= -cfs_rq
->runtime_remaining
+ 1;
2409 if (runtime
> remaining
)
2410 runtime
= remaining
;
2411 remaining
-= runtime
;
2413 cfs_rq
->runtime_remaining
+= runtime
;
2414 cfs_rq
->runtime_expires
= expires
;
2416 /* we check whether we're throttled above */
2417 if (cfs_rq
->runtime_remaining
> 0)
2418 unthrottle_cfs_rq(cfs_rq
);
2421 raw_spin_unlock(&rq
->lock
);
2432 * Responsible for refilling a task_group's bandwidth and unthrottling its
2433 * cfs_rqs as appropriate. If there has been no activity within the last
2434 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2435 * used to track this state.
2437 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
)
2439 u64 runtime
, runtime_expires
;
2440 int idle
= 1, throttled
;
2442 raw_spin_lock(&cfs_b
->lock
);
2443 /* no need to continue the timer with no bandwidth constraint */
2444 if (cfs_b
->quota
== RUNTIME_INF
)
2447 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
2448 /* idle depends on !throttled (for the case of a large deficit) */
2449 idle
= cfs_b
->idle
&& !throttled
;
2450 cfs_b
->nr_periods
+= overrun
;
2452 /* if we're going inactive then everything else can be deferred */
2457 * if we have relooped after returning idle once, we need to update our
2458 * status as actually running, so that other cpus doing
2459 * __start_cfs_bandwidth will stop trying to cancel us.
2461 cfs_b
->timer_active
= 1;
2463 __refill_cfs_bandwidth_runtime(cfs_b
);
2466 /* mark as potentially idle for the upcoming period */
2471 /* account preceding periods in which throttling occurred */
2472 cfs_b
->nr_throttled
+= overrun
;
2475 * There are throttled entities so we must first use the new bandwidth
2476 * to unthrottle them before making it generally available. This
2477 * ensures that all existing debts will be paid before a new cfs_rq is
2480 runtime
= cfs_b
->runtime
;
2481 runtime_expires
= cfs_b
->runtime_expires
;
2485 * This check is repeated as we are holding onto the new bandwidth
2486 * while we unthrottle. This can potentially race with an unthrottled
2487 * group trying to acquire new bandwidth from the global pool.
2489 while (throttled
&& runtime
> 0) {
2490 raw_spin_unlock(&cfs_b
->lock
);
2491 /* we can't nest cfs_b->lock while distributing bandwidth */
2492 runtime
= distribute_cfs_runtime(cfs_b
, runtime
,
2494 raw_spin_lock(&cfs_b
->lock
);
2496 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
2499 /* return (any) remaining runtime */
2500 cfs_b
->runtime
= runtime
;
2502 * While we are ensured activity in the period following an
2503 * unthrottle, this also covers the case in which the new bandwidth is
2504 * insufficient to cover the existing bandwidth deficit. (Forcing the
2505 * timer to remain active while there are any throttled entities.)
2510 cfs_b
->timer_active
= 0;
2511 raw_spin_unlock(&cfs_b
->lock
);
2516 /* a cfs_rq won't donate quota below this amount */
2517 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
2518 /* minimum remaining period time to redistribute slack quota */
2519 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
2520 /* how long we wait to gather additional slack before distributing */
2521 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
2524 * Are we near the end of the current quota period?
2526 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
2527 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
2528 * migrate_hrtimers, base is never cleared, so we are fine.
2530 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
2532 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
2535 /* if the call-back is running a quota refresh is already occurring */
2536 if (hrtimer_callback_running(refresh_timer
))
2539 /* is a quota refresh about to occur? */
2540 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
2541 if (remaining
< min_expire
)
2547 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
2549 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
2551 /* if there's a quota refresh soon don't bother with slack */
2552 if (runtime_refresh_within(cfs_b
, min_left
))
2555 start_bandwidth_timer(&cfs_b
->slack_timer
,
2556 ns_to_ktime(cfs_bandwidth_slack_period
));
2559 /* we know any runtime found here is valid as update_curr() precedes return */
2560 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
2562 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
2563 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
2565 if (slack_runtime
<= 0)
2568 raw_spin_lock(&cfs_b
->lock
);
2569 if (cfs_b
->quota
!= RUNTIME_INF
&&
2570 cfs_rq
->runtime_expires
== cfs_b
->runtime_expires
) {
2571 cfs_b
->runtime
+= slack_runtime
;
2573 /* we are under rq->lock, defer unthrottling using a timer */
2574 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
2575 !list_empty(&cfs_b
->throttled_cfs_rq
))
2576 start_cfs_slack_bandwidth(cfs_b
);
2578 raw_spin_unlock(&cfs_b
->lock
);
2580 /* even if it's not valid for return we don't want to try again */
2581 cfs_rq
->runtime_remaining
-= slack_runtime
;
2584 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
2586 if (!cfs_bandwidth_used())
2589 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
2592 __return_cfs_rq_runtime(cfs_rq
);
2596 * This is done with a timer (instead of inline with bandwidth return) since
2597 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2599 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
2601 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
2604 /* confirm we're still not at a refresh boundary */
2605 raw_spin_lock(&cfs_b
->lock
);
2606 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
2607 raw_spin_unlock(&cfs_b
->lock
);
2611 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
) {
2612 runtime
= cfs_b
->runtime
;
2615 expires
= cfs_b
->runtime_expires
;
2616 raw_spin_unlock(&cfs_b
->lock
);
2621 runtime
= distribute_cfs_runtime(cfs_b
, runtime
, expires
);
2623 raw_spin_lock(&cfs_b
->lock
);
2624 if (expires
== cfs_b
->runtime_expires
)
2625 cfs_b
->runtime
= runtime
;
2626 raw_spin_unlock(&cfs_b
->lock
);
2630 * When a group wakes up we want to make sure that its quota is not already
2631 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2632 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2634 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
2636 if (!cfs_bandwidth_used())
2639 /* an active group must be handled by the update_curr()->put() path */
2640 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
2643 /* ensure the group is not already throttled */
2644 if (cfs_rq_throttled(cfs_rq
))
2647 /* update runtime allocation */
2648 account_cfs_rq_runtime(cfs_rq
, 0);
2649 if (cfs_rq
->runtime_remaining
<= 0)
2650 throttle_cfs_rq(cfs_rq
);
2653 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2654 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
2656 if (!cfs_bandwidth_used())
2659 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
2663 * it's possible for a throttled entity to be forced into a running
2664 * state (e.g. set_curr_task), in this case we're finished.
2666 if (cfs_rq_throttled(cfs_rq
))
2669 throttle_cfs_rq(cfs_rq
);
2672 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
2674 struct cfs_bandwidth
*cfs_b
=
2675 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
2676 do_sched_cfs_slack_timer(cfs_b
);
2678 return HRTIMER_NORESTART
;
2681 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
2683 struct cfs_bandwidth
*cfs_b
=
2684 container_of(timer
, struct cfs_bandwidth
, period_timer
);
2690 now
= hrtimer_cb_get_time(timer
);
2691 overrun
= hrtimer_forward(timer
, now
, cfs_b
->period
);
2696 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
2699 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
2702 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
2704 raw_spin_lock_init(&cfs_b
->lock
);
2706 cfs_b
->quota
= RUNTIME_INF
;
2707 cfs_b
->period
= ns_to_ktime(default_cfs_period());
2709 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
2710 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
2711 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
2712 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
2713 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
2716 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
2718 cfs_rq
->runtime_enabled
= 0;
2719 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
2722 /* requires cfs_b->lock, may release to reprogram timer */
2723 void __start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
2726 * The timer may be active because we're trying to set a new bandwidth
2727 * period or because we're racing with the tear-down path
2728 * (timer_active==0 becomes visible before the hrtimer call-back
2729 * terminates). In either case we ensure that it's re-programmed
2731 while (unlikely(hrtimer_active(&cfs_b
->period_timer
)) &&
2732 hrtimer_try_to_cancel(&cfs_b
->period_timer
) < 0) {
2733 /* bounce the lock to allow do_sched_cfs_period_timer to run */
2734 raw_spin_unlock(&cfs_b
->lock
);
2736 raw_spin_lock(&cfs_b
->lock
);
2737 /* if someone else restarted the timer then we're done */
2738 if (cfs_b
->timer_active
)
2742 cfs_b
->timer_active
= 1;
2743 start_bandwidth_timer(&cfs_b
->period_timer
, cfs_b
->period
);
2746 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
2748 hrtimer_cancel(&cfs_b
->period_timer
);
2749 hrtimer_cancel(&cfs_b
->slack_timer
);
2752 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
2754 struct cfs_rq
*cfs_rq
;
2756 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
2757 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
2759 if (!cfs_rq
->runtime_enabled
)
2763 * clock_task is not advancing so we just need to make sure
2764 * there's some valid quota amount
2766 cfs_rq
->runtime_remaining
= cfs_b
->quota
;
2767 if (cfs_rq_throttled(cfs_rq
))
2768 unthrottle_cfs_rq(cfs_rq
);
2772 #else /* CONFIG_CFS_BANDWIDTH */
2773 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
2775 return rq_clock_task(rq_of(cfs_rq
));
2778 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
2779 unsigned long delta_exec
) {}
2780 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
2781 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
2782 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
2784 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
2789 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
2794 static inline int throttled_lb_pair(struct task_group
*tg
,
2795 int src_cpu
, int dest_cpu
)
2800 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
2802 #ifdef CONFIG_FAIR_GROUP_SCHED
2803 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
2806 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
2810 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
2811 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
2813 #endif /* CONFIG_CFS_BANDWIDTH */
2815 /**************************************************
2816 * CFS operations on tasks:
2819 #ifdef CONFIG_SCHED_HRTICK
2820 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
2822 struct sched_entity
*se
= &p
->se
;
2823 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
2825 WARN_ON(task_rq(p
) != rq
);
2827 if (cfs_rq
->nr_running
> 1) {
2828 u64 slice
= sched_slice(cfs_rq
, se
);
2829 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
2830 s64 delta
= slice
- ran
;
2839 * Don't schedule slices shorter than 10000ns, that just
2840 * doesn't make sense. Rely on vruntime for fairness.
2843 delta
= max_t(s64
, 10000LL, delta
);
2845 hrtick_start(rq
, delta
);
2850 * called from enqueue/dequeue and updates the hrtick when the
2851 * current task is from our class and nr_running is low enough
2854 static void hrtick_update(struct rq
*rq
)
2856 struct task_struct
*curr
= rq
->curr
;
2858 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
2861 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
2862 hrtick_start_fair(rq
, curr
);
2864 #else /* !CONFIG_SCHED_HRTICK */
2866 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
2870 static inline void hrtick_update(struct rq
*rq
)
2876 * The enqueue_task method is called before nr_running is
2877 * increased. Here we update the fair scheduling stats and
2878 * then put the task into the rbtree:
2881 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
2883 struct cfs_rq
*cfs_rq
;
2884 struct sched_entity
*se
= &p
->se
;
2886 for_each_sched_entity(se
) {
2889 cfs_rq
= cfs_rq_of(se
);
2890 enqueue_entity(cfs_rq
, se
, flags
);
2893 * end evaluation on encountering a throttled cfs_rq
2895 * note: in the case of encountering a throttled cfs_rq we will
2896 * post the final h_nr_running increment below.
2898 if (cfs_rq_throttled(cfs_rq
))
2900 cfs_rq
->h_nr_running
++;
2902 flags
= ENQUEUE_WAKEUP
;
2905 for_each_sched_entity(se
) {
2906 cfs_rq
= cfs_rq_of(se
);
2907 cfs_rq
->h_nr_running
++;
2909 if (cfs_rq_throttled(cfs_rq
))
2912 update_cfs_shares(cfs_rq
);
2913 update_entity_load_avg(se
, 1);
2917 update_rq_runnable_avg(rq
, rq
->nr_running
);
2923 static void set_next_buddy(struct sched_entity
*se
);
2926 * The dequeue_task method is called before nr_running is
2927 * decreased. We remove the task from the rbtree and
2928 * update the fair scheduling stats:
2930 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
2932 struct cfs_rq
*cfs_rq
;
2933 struct sched_entity
*se
= &p
->se
;
2934 int task_sleep
= flags
& DEQUEUE_SLEEP
;
2936 for_each_sched_entity(se
) {
2937 cfs_rq
= cfs_rq_of(se
);
2938 dequeue_entity(cfs_rq
, se
, flags
);
2941 * end evaluation on encountering a throttled cfs_rq
2943 * note: in the case of encountering a throttled cfs_rq we will
2944 * post the final h_nr_running decrement below.
2946 if (cfs_rq_throttled(cfs_rq
))
2948 cfs_rq
->h_nr_running
--;
2950 /* Don't dequeue parent if it has other entities besides us */
2951 if (cfs_rq
->load
.weight
) {
2953 * Bias pick_next to pick a task from this cfs_rq, as
2954 * p is sleeping when it is within its sched_slice.
2956 if (task_sleep
&& parent_entity(se
))
2957 set_next_buddy(parent_entity(se
));
2959 /* avoid re-evaluating load for this entity */
2960 se
= parent_entity(se
);
2963 flags
|= DEQUEUE_SLEEP
;
2966 for_each_sched_entity(se
) {
2967 cfs_rq
= cfs_rq_of(se
);
2968 cfs_rq
->h_nr_running
--;
2970 if (cfs_rq_throttled(cfs_rq
))
2973 update_cfs_shares(cfs_rq
);
2974 update_entity_load_avg(se
, 1);
2979 update_rq_runnable_avg(rq
, 1);
2985 /* Used instead of source_load when we know the type == 0 */
2986 static unsigned long weighted_cpuload(const int cpu
)
2988 return cpu_rq(cpu
)->cfs
.runnable_load_avg
;
2992 * Return a low guess at the load of a migration-source cpu weighted
2993 * according to the scheduling class and "nice" value.
2995 * We want to under-estimate the load of migration sources, to
2996 * balance conservatively.
2998 static unsigned long source_load(int cpu
, int type
)
3000 struct rq
*rq
= cpu_rq(cpu
);
3001 unsigned long total
= weighted_cpuload(cpu
);
3003 if (type
== 0 || !sched_feat(LB_BIAS
))
3006 return min(rq
->cpu_load
[type
-1], total
);
3010 * Return a high guess at the load of a migration-target cpu weighted
3011 * according to the scheduling class and "nice" value.
3013 static unsigned long target_load(int cpu
, int type
)
3015 struct rq
*rq
= cpu_rq(cpu
);
3016 unsigned long total
= weighted_cpuload(cpu
);
3018 if (type
== 0 || !sched_feat(LB_BIAS
))
3021 return max(rq
->cpu_load
[type
-1], total
);
3024 static unsigned long power_of(int cpu
)
3026 return cpu_rq(cpu
)->cpu_power
;
3029 static unsigned long cpu_avg_load_per_task(int cpu
)
3031 struct rq
*rq
= cpu_rq(cpu
);
3032 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
3033 unsigned long load_avg
= rq
->cfs
.runnable_load_avg
;
3036 return load_avg
/ nr_running
;
3041 static void record_wakee(struct task_struct
*p
)
3044 * Rough decay (wiping) for cost saving, don't worry
3045 * about the boundary, really active task won't care
3048 if (jiffies
> current
->wakee_flip_decay_ts
+ HZ
) {
3049 current
->wakee_flips
= 0;
3050 current
->wakee_flip_decay_ts
= jiffies
;
3053 if (current
->last_wakee
!= p
) {
3054 current
->last_wakee
= p
;
3055 current
->wakee_flips
++;
3059 static void task_waking_fair(struct task_struct
*p
)
3061 struct sched_entity
*se
= &p
->se
;
3062 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3065 #ifndef CONFIG_64BIT
3066 u64 min_vruntime_copy
;
3069 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
3071 min_vruntime
= cfs_rq
->min_vruntime
;
3072 } while (min_vruntime
!= min_vruntime_copy
);
3074 min_vruntime
= cfs_rq
->min_vruntime
;
3077 se
->vruntime
-= min_vruntime
;
3081 #ifdef CONFIG_FAIR_GROUP_SCHED
3083 * effective_load() calculates the load change as seen from the root_task_group
3085 * Adding load to a group doesn't make a group heavier, but can cause movement
3086 * of group shares between cpus. Assuming the shares were perfectly aligned one
3087 * can calculate the shift in shares.
3089 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3090 * on this @cpu and results in a total addition (subtraction) of @wg to the
3091 * total group weight.
3093 * Given a runqueue weight distribution (rw_i) we can compute a shares
3094 * distribution (s_i) using:
3096 * s_i = rw_i / \Sum rw_j (1)
3098 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3099 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3100 * shares distribution (s_i):
3102 * rw_i = { 2, 4, 1, 0 }
3103 * s_i = { 2/7, 4/7, 1/7, 0 }
3105 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3106 * task used to run on and the CPU the waker is running on), we need to
3107 * compute the effect of waking a task on either CPU and, in case of a sync
3108 * wakeup, compute the effect of the current task going to sleep.
3110 * So for a change of @wl to the local @cpu with an overall group weight change
3111 * of @wl we can compute the new shares distribution (s'_i) using:
3113 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3115 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3116 * differences in waking a task to CPU 0. The additional task changes the
3117 * weight and shares distributions like:
3119 * rw'_i = { 3, 4, 1, 0 }
3120 * s'_i = { 3/8, 4/8, 1/8, 0 }
3122 * We can then compute the difference in effective weight by using:
3124 * dw_i = S * (s'_i - s_i) (3)
3126 * Where 'S' is the group weight as seen by its parent.
3128 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3129 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3130 * 4/7) times the weight of the group.
3132 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
3134 struct sched_entity
*se
= tg
->se
[cpu
];
3136 if (!tg
->parent
) /* the trivial, non-cgroup case */
3139 for_each_sched_entity(se
) {
3145 * W = @wg + \Sum rw_j
3147 W
= wg
+ calc_tg_weight(tg
, se
->my_q
);
3152 w
= se
->my_q
->load
.weight
+ wl
;
3155 * wl = S * s'_i; see (2)
3158 wl
= (w
* tg
->shares
) / W
;
3163 * Per the above, wl is the new se->load.weight value; since
3164 * those are clipped to [MIN_SHARES, ...) do so now. See
3165 * calc_cfs_shares().
3167 if (wl
< MIN_SHARES
)
3171 * wl = dw_i = S * (s'_i - s_i); see (3)
3173 wl
-= se
->load
.weight
;
3176 * Recursively apply this logic to all parent groups to compute
3177 * the final effective load change on the root group. Since
3178 * only the @tg group gets extra weight, all parent groups can
3179 * only redistribute existing shares. @wl is the shift in shares
3180 * resulting from this level per the above.
3189 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
3190 unsigned long wl
, unsigned long wg
)
3197 static int wake_wide(struct task_struct
*p
)
3199 int factor
= this_cpu_read(sd_llc_size
);
3202 * Yeah, it's the switching-frequency, could means many wakee or
3203 * rapidly switch, use factor here will just help to automatically
3204 * adjust the loose-degree, so bigger node will lead to more pull.
3206 if (p
->wakee_flips
> factor
) {
3208 * wakee is somewhat hot, it needs certain amount of cpu
3209 * resource, so if waker is far more hot, prefer to leave
3212 if (current
->wakee_flips
> (factor
* p
->wakee_flips
))
3219 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
3221 s64 this_load
, load
;
3222 int idx
, this_cpu
, prev_cpu
;
3223 unsigned long tl_per_task
;
3224 struct task_group
*tg
;
3225 unsigned long weight
;
3229 * If we wake multiple tasks be careful to not bounce
3230 * ourselves around too much.
3236 this_cpu
= smp_processor_id();
3237 prev_cpu
= task_cpu(p
);
3238 load
= source_load(prev_cpu
, idx
);
3239 this_load
= target_load(this_cpu
, idx
);
3242 * If sync wakeup then subtract the (maximum possible)
3243 * effect of the currently running task from the load
3244 * of the current CPU:
3247 tg
= task_group(current
);
3248 weight
= current
->se
.load
.weight
;
3250 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
3251 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
3255 weight
= p
->se
.load
.weight
;
3258 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3259 * due to the sync cause above having dropped this_load to 0, we'll
3260 * always have an imbalance, but there's really nothing you can do
3261 * about that, so that's good too.
3263 * Otherwise check if either cpus are near enough in load to allow this
3264 * task to be woken on this_cpu.
3266 if (this_load
> 0) {
3267 s64 this_eff_load
, prev_eff_load
;
3269 this_eff_load
= 100;
3270 this_eff_load
*= power_of(prev_cpu
);
3271 this_eff_load
*= this_load
+
3272 effective_load(tg
, this_cpu
, weight
, weight
);
3274 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
3275 prev_eff_load
*= power_of(this_cpu
);
3276 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
3278 balanced
= this_eff_load
<= prev_eff_load
;
3283 * If the currently running task will sleep within
3284 * a reasonable amount of time then attract this newly
3287 if (sync
&& balanced
)
3290 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
3291 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
3294 (this_load
<= load
&&
3295 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
3297 * This domain has SD_WAKE_AFFINE and
3298 * p is cache cold in this domain, and
3299 * there is no bad imbalance.
3301 schedstat_inc(sd
, ttwu_move_affine
);
3302 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
3310 * find_idlest_group finds and returns the least busy CPU group within the
3313 static struct sched_group
*
3314 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
3315 int this_cpu
, int load_idx
)
3317 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
3318 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
3319 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
3322 unsigned long load
, avg_load
;
3326 /* Skip over this group if it has no CPUs allowed */
3327 if (!cpumask_intersects(sched_group_cpus(group
),
3328 tsk_cpus_allowed(p
)))
3331 local_group
= cpumask_test_cpu(this_cpu
,
3332 sched_group_cpus(group
));
3334 /* Tally up the load of all CPUs in the group */
3337 for_each_cpu(i
, sched_group_cpus(group
)) {
3338 /* Bias balancing toward cpus of our domain */
3340 load
= source_load(i
, load_idx
);
3342 load
= target_load(i
, load_idx
);
3347 /* Adjust by relative CPU power of the group */
3348 avg_load
= (avg_load
* SCHED_POWER_SCALE
) / group
->sgp
->power
;
3351 this_load
= avg_load
;
3352 } else if (avg_load
< min_load
) {
3353 min_load
= avg_load
;
3356 } while (group
= group
->next
, group
!= sd
->groups
);
3358 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
3364 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3367 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
3369 unsigned long load
, min_load
= ULONG_MAX
;
3373 /* Traverse only the allowed CPUs */
3374 for_each_cpu_and(i
, sched_group_cpus(group
), tsk_cpus_allowed(p
)) {
3375 load
= weighted_cpuload(i
);
3377 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
3387 * Try and locate an idle CPU in the sched_domain.
3389 static int select_idle_sibling(struct task_struct
*p
, int target
)
3391 struct sched_domain
*sd
;
3392 struct sched_group
*sg
;
3393 int i
= task_cpu(p
);
3395 if (idle_cpu(target
))
3399 * If the prevous cpu is cache affine and idle, don't be stupid.
3401 if (i
!= target
&& cpus_share_cache(i
, target
) && idle_cpu(i
))
3405 * Otherwise, iterate the domains and find an elegible idle cpu.
3407 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
3408 for_each_lower_domain(sd
) {
3411 if (!cpumask_intersects(sched_group_cpus(sg
),
3412 tsk_cpus_allowed(p
)))
3415 for_each_cpu(i
, sched_group_cpus(sg
)) {
3416 if (i
== target
|| !idle_cpu(i
))
3420 target
= cpumask_first_and(sched_group_cpus(sg
),
3421 tsk_cpus_allowed(p
));
3425 } while (sg
!= sd
->groups
);
3432 * sched_balance_self: balance the current task (running on cpu) in domains
3433 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3436 * Balance, ie. select the least loaded group.
3438 * Returns the target CPU number, or the same CPU if no balancing is needed.
3440 * preempt must be disabled.
3443 select_task_rq_fair(struct task_struct
*p
, int sd_flag
, int wake_flags
)
3445 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
3446 int cpu
= smp_processor_id();
3447 int prev_cpu
= task_cpu(p
);
3449 int want_affine
= 0;
3450 int sync
= wake_flags
& WF_SYNC
;
3452 if (p
->nr_cpus_allowed
== 1)
3455 if (sd_flag
& SD_BALANCE_WAKE
) {
3456 if (cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
3462 for_each_domain(cpu
, tmp
) {
3463 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
3467 * If both cpu and prev_cpu are part of this domain,
3468 * cpu is a valid SD_WAKE_AFFINE target.
3470 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
3471 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
3476 if (tmp
->flags
& sd_flag
)
3481 if (cpu
!= prev_cpu
&& wake_affine(affine_sd
, p
, sync
))
3484 new_cpu
= select_idle_sibling(p
, prev_cpu
);
3489 int load_idx
= sd
->forkexec_idx
;
3490 struct sched_group
*group
;
3493 if (!(sd
->flags
& sd_flag
)) {
3498 if (sd_flag
& SD_BALANCE_WAKE
)
3499 load_idx
= sd
->wake_idx
;
3501 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
3507 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
3508 if (new_cpu
== -1 || new_cpu
== cpu
) {
3509 /* Now try balancing at a lower domain level of cpu */
3514 /* Now try balancing at a lower domain level of new_cpu */
3516 weight
= sd
->span_weight
;
3518 for_each_domain(cpu
, tmp
) {
3519 if (weight
<= tmp
->span_weight
)
3521 if (tmp
->flags
& sd_flag
)
3524 /* while loop will break here if sd == NULL */
3533 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3534 * cfs_rq_of(p) references at time of call are still valid and identify the
3535 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3536 * other assumptions, including the state of rq->lock, should be made.
3539 migrate_task_rq_fair(struct task_struct
*p
, int next_cpu
)
3541 struct sched_entity
*se
= &p
->se
;
3542 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3545 * Load tracking: accumulate removed load so that it can be processed
3546 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3547 * to blocked load iff they have a positive decay-count. It can never
3548 * be negative here since on-rq tasks have decay-count == 0.
3550 if (se
->avg
.decay_count
) {
3551 se
->avg
.decay_count
= -__synchronize_entity_decay(se
);
3552 atomic_long_add(se
->avg
.load_avg_contrib
,
3553 &cfs_rq
->removed_load
);
3556 #endif /* CONFIG_SMP */
3558 static unsigned long
3559 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
3561 unsigned long gran
= sysctl_sched_wakeup_granularity
;
3564 * Since its curr running now, convert the gran from real-time
3565 * to virtual-time in his units.
3567 * By using 'se' instead of 'curr' we penalize light tasks, so
3568 * they get preempted easier. That is, if 'se' < 'curr' then
3569 * the resulting gran will be larger, therefore penalizing the
3570 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3571 * be smaller, again penalizing the lighter task.
3573 * This is especially important for buddies when the leftmost
3574 * task is higher priority than the buddy.
3576 return calc_delta_fair(gran
, se
);
3580 * Should 'se' preempt 'curr'.
3594 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
3596 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
3601 gran
= wakeup_gran(curr
, se
);
3608 static void set_last_buddy(struct sched_entity
*se
)
3610 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
3613 for_each_sched_entity(se
)
3614 cfs_rq_of(se
)->last
= se
;
3617 static void set_next_buddy(struct sched_entity
*se
)
3619 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
3622 for_each_sched_entity(se
)
3623 cfs_rq_of(se
)->next
= se
;
3626 static void set_skip_buddy(struct sched_entity
*se
)
3628 for_each_sched_entity(se
)
3629 cfs_rq_of(se
)->skip
= se
;
3633 * Preempt the current task with a newly woken task if needed:
3635 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
3637 struct task_struct
*curr
= rq
->curr
;
3638 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
3639 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
3640 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
3641 int next_buddy_marked
= 0;
3643 if (unlikely(se
== pse
))
3647 * This is possible from callers such as move_task(), in which we
3648 * unconditionally check_prempt_curr() after an enqueue (which may have
3649 * lead to a throttle). This both saves work and prevents false
3650 * next-buddy nomination below.
3652 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
3655 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
3656 set_next_buddy(pse
);
3657 next_buddy_marked
= 1;
3661 * We can come here with TIF_NEED_RESCHED already set from new task
3664 * Note: this also catches the edge-case of curr being in a throttled
3665 * group (e.g. via set_curr_task), since update_curr() (in the
3666 * enqueue of curr) will have resulted in resched being set. This
3667 * prevents us from potentially nominating it as a false LAST_BUDDY
3670 if (test_tsk_need_resched(curr
))
3673 /* Idle tasks are by definition preempted by non-idle tasks. */
3674 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
3675 likely(p
->policy
!= SCHED_IDLE
))
3679 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3680 * is driven by the tick):
3682 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
3685 find_matching_se(&se
, &pse
);
3686 update_curr(cfs_rq_of(se
));
3688 if (wakeup_preempt_entity(se
, pse
) == 1) {
3690 * Bias pick_next to pick the sched entity that is
3691 * triggering this preemption.
3693 if (!next_buddy_marked
)
3694 set_next_buddy(pse
);
3703 * Only set the backward buddy when the current task is still
3704 * on the rq. This can happen when a wakeup gets interleaved
3705 * with schedule on the ->pre_schedule() or idle_balance()
3706 * point, either of which can * drop the rq lock.
3708 * Also, during early boot the idle thread is in the fair class,
3709 * for obvious reasons its a bad idea to schedule back to it.
3711 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
3714 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
3718 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
3720 struct task_struct
*p
;
3721 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
3722 struct sched_entity
*se
;
3724 if (!cfs_rq
->nr_running
)
3728 se
= pick_next_entity(cfs_rq
);
3729 set_next_entity(cfs_rq
, se
);
3730 cfs_rq
= group_cfs_rq(se
);
3734 if (hrtick_enabled(rq
))
3735 hrtick_start_fair(rq
, p
);
3741 * Account for a descheduled task:
3743 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
3745 struct sched_entity
*se
= &prev
->se
;
3746 struct cfs_rq
*cfs_rq
;
3748 for_each_sched_entity(se
) {
3749 cfs_rq
= cfs_rq_of(se
);
3750 put_prev_entity(cfs_rq
, se
);
3755 * sched_yield() is very simple
3757 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3759 static void yield_task_fair(struct rq
*rq
)
3761 struct task_struct
*curr
= rq
->curr
;
3762 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
3763 struct sched_entity
*se
= &curr
->se
;
3766 * Are we the only task in the tree?
3768 if (unlikely(rq
->nr_running
== 1))
3771 clear_buddies(cfs_rq
, se
);
3773 if (curr
->policy
!= SCHED_BATCH
) {
3774 update_rq_clock(rq
);
3776 * Update run-time statistics of the 'current'.
3778 update_curr(cfs_rq
);
3780 * Tell update_rq_clock() that we've just updated,
3781 * so we don't do microscopic update in schedule()
3782 * and double the fastpath cost.
3784 rq
->skip_clock_update
= 1;
3790 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
3792 struct sched_entity
*se
= &p
->se
;
3794 /* throttled hierarchies are not runnable */
3795 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
3798 /* Tell the scheduler that we'd really like pse to run next. */
3801 yield_task_fair(rq
);
3807 /**************************************************
3808 * Fair scheduling class load-balancing methods.
3812 * The purpose of load-balancing is to achieve the same basic fairness the
3813 * per-cpu scheduler provides, namely provide a proportional amount of compute
3814 * time to each task. This is expressed in the following equation:
3816 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3818 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3819 * W_i,0 is defined as:
3821 * W_i,0 = \Sum_j w_i,j (2)
3823 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3824 * is derived from the nice value as per prio_to_weight[].
3826 * The weight average is an exponential decay average of the instantaneous
3829 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3831 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3832 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3833 * can also include other factors [XXX].
3835 * To achieve this balance we define a measure of imbalance which follows
3836 * directly from (1):
3838 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3840 * We them move tasks around to minimize the imbalance. In the continuous
3841 * function space it is obvious this converges, in the discrete case we get
3842 * a few fun cases generally called infeasible weight scenarios.
3845 * - infeasible weights;
3846 * - local vs global optima in the discrete case. ]
3851 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3852 * for all i,j solution, we create a tree of cpus that follows the hardware
3853 * topology where each level pairs two lower groups (or better). This results
3854 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3855 * tree to only the first of the previous level and we decrease the frequency
3856 * of load-balance at each level inv. proportional to the number of cpus in
3862 * \Sum { --- * --- * 2^i } = O(n) (5)
3864 * `- size of each group
3865 * | | `- number of cpus doing load-balance
3867 * `- sum over all levels
3869 * Coupled with a limit on how many tasks we can migrate every balance pass,
3870 * this makes (5) the runtime complexity of the balancer.
3872 * An important property here is that each CPU is still (indirectly) connected
3873 * to every other cpu in at most O(log n) steps:
3875 * The adjacency matrix of the resulting graph is given by:
3878 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3881 * And you'll find that:
3883 * A^(log_2 n)_i,j != 0 for all i,j (7)
3885 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3886 * The task movement gives a factor of O(m), giving a convergence complexity
3889 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3894 * In order to avoid CPUs going idle while there's still work to do, new idle
3895 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3896 * tree itself instead of relying on other CPUs to bring it work.
3898 * This adds some complexity to both (5) and (8) but it reduces the total idle
3906 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3909 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3914 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3916 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3918 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3921 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3922 * rewrite all of this once again.]
3925 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
3927 #define LBF_ALL_PINNED 0x01
3928 #define LBF_NEED_BREAK 0x02
3929 #define LBF_SOME_PINNED 0x04
3932 struct sched_domain
*sd
;
3940 struct cpumask
*dst_grpmask
;
3942 enum cpu_idle_type idle
;
3944 /* The set of CPUs under consideration for load-balancing */
3945 struct cpumask
*cpus
;
3950 unsigned int loop_break
;
3951 unsigned int loop_max
;
3955 * move_task - move a task from one runqueue to another runqueue.
3956 * Both runqueues must be locked.
3958 static void move_task(struct task_struct
*p
, struct lb_env
*env
)
3960 deactivate_task(env
->src_rq
, p
, 0);
3961 set_task_cpu(p
, env
->dst_cpu
);
3962 activate_task(env
->dst_rq
, p
, 0);
3963 check_preempt_curr(env
->dst_rq
, p
, 0);
3967 * Is this task likely cache-hot:
3970 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
3974 if (p
->sched_class
!= &fair_sched_class
)
3977 if (unlikely(p
->policy
== SCHED_IDLE
))
3981 * Buddy candidates are cache hot:
3983 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
3984 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
3985 &p
->se
== cfs_rq_of(&p
->se
)->last
))
3988 if (sysctl_sched_migration_cost
== -1)
3990 if (sysctl_sched_migration_cost
== 0)
3993 delta
= now
- p
->se
.exec_start
;
3995 return delta
< (s64
)sysctl_sched_migration_cost
;
3999 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4002 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
4004 int tsk_cache_hot
= 0;
4006 * We do not migrate tasks that are:
4007 * 1) throttled_lb_pair, or
4008 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4009 * 3) running (obviously), or
4010 * 4) are cache-hot on their current CPU.
4012 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
4015 if (!cpumask_test_cpu(env
->dst_cpu
, tsk_cpus_allowed(p
))) {
4018 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
4021 * Remember if this task can be migrated to any other cpu in
4022 * our sched_group. We may want to revisit it if we couldn't
4023 * meet load balance goals by pulling other tasks on src_cpu.
4025 * Also avoid computing new_dst_cpu if we have already computed
4026 * one in current iteration.
4028 if (!env
->dst_grpmask
|| (env
->flags
& LBF_SOME_PINNED
))
4031 /* Prevent to re-select dst_cpu via env's cpus */
4032 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
4033 if (cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
))) {
4034 env
->flags
|= LBF_SOME_PINNED
;
4035 env
->new_dst_cpu
= cpu
;
4043 /* Record that we found atleast one task that could run on dst_cpu */
4044 env
->flags
&= ~LBF_ALL_PINNED
;
4046 if (task_running(env
->src_rq
, p
)) {
4047 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
4052 * Aggressive migration if:
4053 * 1) task is cache cold, or
4054 * 2) too many balance attempts have failed.
4057 tsk_cache_hot
= task_hot(p
, rq_clock_task(env
->src_rq
), env
->sd
);
4058 if (!tsk_cache_hot
||
4059 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
4061 if (tsk_cache_hot
) {
4062 schedstat_inc(env
->sd
, lb_hot_gained
[env
->idle
]);
4063 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
4069 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
4074 * move_one_task tries to move exactly one task from busiest to this_rq, as
4075 * part of active balancing operations within "domain".
4076 * Returns 1 if successful and 0 otherwise.
4078 * Called with both runqueues locked.
4080 static int move_one_task(struct lb_env
*env
)
4082 struct task_struct
*p
, *n
;
4084 list_for_each_entry_safe(p
, n
, &env
->src_rq
->cfs_tasks
, se
.group_node
) {
4085 if (!can_migrate_task(p
, env
))
4090 * Right now, this is only the second place move_task()
4091 * is called, so we can safely collect move_task()
4092 * stats here rather than inside move_task().
4094 schedstat_inc(env
->sd
, lb_gained
[env
->idle
]);
4100 static unsigned long task_h_load(struct task_struct
*p
);
4102 static const unsigned int sched_nr_migrate_break
= 32;
4105 * move_tasks tries to move up to imbalance weighted load from busiest to
4106 * this_rq, as part of a balancing operation within domain "sd".
4107 * Returns 1 if successful and 0 otherwise.
4109 * Called with both runqueues locked.
4111 static int move_tasks(struct lb_env
*env
)
4113 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
4114 struct task_struct
*p
;
4118 if (env
->imbalance
<= 0)
4121 while (!list_empty(tasks
)) {
4122 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
4125 /* We've more or less seen every task there is, call it quits */
4126 if (env
->loop
> env
->loop_max
)
4129 /* take a breather every nr_migrate tasks */
4130 if (env
->loop
> env
->loop_break
) {
4131 env
->loop_break
+= sched_nr_migrate_break
;
4132 env
->flags
|= LBF_NEED_BREAK
;
4136 if (!can_migrate_task(p
, env
))
4139 load
= task_h_load(p
);
4141 if (sched_feat(LB_MIN
) && load
< 16 && !env
->sd
->nr_balance_failed
)
4144 if ((load
/ 2) > env
->imbalance
)
4149 env
->imbalance
-= load
;
4151 #ifdef CONFIG_PREEMPT
4153 * NEWIDLE balancing is a source of latency, so preemptible
4154 * kernels will stop after the first task is pulled to minimize
4155 * the critical section.
4157 if (env
->idle
== CPU_NEWLY_IDLE
)
4162 * We only want to steal up to the prescribed amount of
4165 if (env
->imbalance
<= 0)
4170 list_move_tail(&p
->se
.group_node
, tasks
);
4174 * Right now, this is one of only two places move_task() is called,
4175 * so we can safely collect move_task() stats here rather than
4176 * inside move_task().
4178 schedstat_add(env
->sd
, lb_gained
[env
->idle
], pulled
);
4183 #ifdef CONFIG_FAIR_GROUP_SCHED
4185 * update tg->load_weight by folding this cpu's load_avg
4187 static void __update_blocked_averages_cpu(struct task_group
*tg
, int cpu
)
4189 struct sched_entity
*se
= tg
->se
[cpu
];
4190 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu
];
4192 /* throttled entities do not contribute to load */
4193 if (throttled_hierarchy(cfs_rq
))
4196 update_cfs_rq_blocked_load(cfs_rq
, 1);
4199 update_entity_load_avg(se
, 1);
4201 * We pivot on our runnable average having decayed to zero for
4202 * list removal. This generally implies that all our children
4203 * have also been removed (modulo rounding error or bandwidth
4204 * control); however, such cases are rare and we can fix these
4207 * TODO: fix up out-of-order children on enqueue.
4209 if (!se
->avg
.runnable_avg_sum
&& !cfs_rq
->nr_running
)
4210 list_del_leaf_cfs_rq(cfs_rq
);
4212 struct rq
*rq
= rq_of(cfs_rq
);
4213 update_rq_runnable_avg(rq
, rq
->nr_running
);
4217 static void update_blocked_averages(int cpu
)
4219 struct rq
*rq
= cpu_rq(cpu
);
4220 struct cfs_rq
*cfs_rq
;
4221 unsigned long flags
;
4223 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4224 update_rq_clock(rq
);
4226 * Iterates the task_group tree in a bottom up fashion, see
4227 * list_add_leaf_cfs_rq() for details.
4229 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
4231 * Note: We may want to consider periodically releasing
4232 * rq->lock about these updates so that creating many task
4233 * groups does not result in continually extending hold time.
4235 __update_blocked_averages_cpu(cfs_rq
->tg
, rq
->cpu
);
4238 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4242 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4243 * This needs to be done in a top-down fashion because the load of a child
4244 * group is a fraction of its parents load.
4246 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
4248 struct rq
*rq
= rq_of(cfs_rq
);
4249 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4250 unsigned long now
= jiffies
;
4253 if (cfs_rq
->last_h_load_update
== now
)
4256 cfs_rq
->h_load_next
= NULL
;
4257 for_each_sched_entity(se
) {
4258 cfs_rq
= cfs_rq_of(se
);
4259 cfs_rq
->h_load_next
= se
;
4260 if (cfs_rq
->last_h_load_update
== now
)
4265 cfs_rq
->h_load
= cfs_rq
->runnable_load_avg
;
4266 cfs_rq
->last_h_load_update
= now
;
4269 while ((se
= cfs_rq
->h_load_next
) != NULL
) {
4270 load
= cfs_rq
->h_load
;
4271 load
= div64_ul(load
* se
->avg
.load_avg_contrib
,
4272 cfs_rq
->runnable_load_avg
+ 1);
4273 cfs_rq
= group_cfs_rq(se
);
4274 cfs_rq
->h_load
= load
;
4275 cfs_rq
->last_h_load_update
= now
;
4279 static unsigned long task_h_load(struct task_struct
*p
)
4281 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
4283 update_cfs_rq_h_load(cfs_rq
);
4284 return div64_ul(p
->se
.avg
.load_avg_contrib
* cfs_rq
->h_load
,
4285 cfs_rq
->runnable_load_avg
+ 1);
4288 static inline void update_blocked_averages(int cpu
)
4292 static unsigned long task_h_load(struct task_struct
*p
)
4294 return p
->se
.avg
.load_avg_contrib
;
4298 /********** Helpers for find_busiest_group ************************/
4300 * sg_lb_stats - stats of a sched_group required for load_balancing
4302 struct sg_lb_stats
{
4303 unsigned long avg_load
; /*Avg load across the CPUs of the group */
4304 unsigned long group_load
; /* Total load over the CPUs of the group */
4305 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
4306 unsigned long load_per_task
;
4307 unsigned long group_power
;
4308 unsigned int sum_nr_running
; /* Nr tasks running in the group */
4309 unsigned int group_capacity
;
4310 unsigned int idle_cpus
;
4311 unsigned int group_weight
;
4312 int group_imb
; /* Is there an imbalance in the group ? */
4313 int group_has_capacity
; /* Is there extra capacity in the group? */
4317 * sd_lb_stats - Structure to store the statistics of a sched_domain
4318 * during load balancing.
4320 struct sd_lb_stats
{
4321 struct sched_group
*busiest
; /* Busiest group in this sd */
4322 struct sched_group
*local
; /* Local group in this sd */
4323 unsigned long total_load
; /* Total load of all groups in sd */
4324 unsigned long total_pwr
; /* Total power of all groups in sd */
4325 unsigned long avg_load
; /* Average load across all groups in sd */
4327 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
4328 struct sg_lb_stats local_stat
; /* Statistics of the local group */
4331 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
4334 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4335 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4336 * We must however clear busiest_stat::avg_load because
4337 * update_sd_pick_busiest() reads this before assignment.
4339 *sds
= (struct sd_lb_stats
){
4351 * get_sd_load_idx - Obtain the load index for a given sched domain.
4352 * @sd: The sched_domain whose load_idx is to be obtained.
4353 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4355 * Return: The load index.
4357 static inline int get_sd_load_idx(struct sched_domain
*sd
,
4358 enum cpu_idle_type idle
)
4364 load_idx
= sd
->busy_idx
;
4367 case CPU_NEWLY_IDLE
:
4368 load_idx
= sd
->newidle_idx
;
4371 load_idx
= sd
->idle_idx
;
4378 static unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
4380 return SCHED_POWER_SCALE
;
4383 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
4385 return default_scale_freq_power(sd
, cpu
);
4388 static unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
4390 unsigned long weight
= sd
->span_weight
;
4391 unsigned long smt_gain
= sd
->smt_gain
;
4398 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
4400 return default_scale_smt_power(sd
, cpu
);
4403 static unsigned long scale_rt_power(int cpu
)
4405 struct rq
*rq
= cpu_rq(cpu
);
4406 u64 total
, available
, age_stamp
, avg
;
4410 * Since we're reading these variables without serialization make sure
4411 * we read them once before doing sanity checks on them.
4413 age_stamp
= ACCESS_ONCE(rq
->age_stamp
);
4414 avg
= ACCESS_ONCE(rq
->rt_avg
);
4416 delta
= rq_clock(rq
) - age_stamp
;
4417 if (unlikely(delta
< 0))
4420 total
= sched_avg_period() + delta
;
4422 if (unlikely(total
< avg
)) {
4423 /* Ensures that power won't end up being negative */
4426 available
= total
- avg
;
4429 if (unlikely((s64
)total
< SCHED_POWER_SCALE
))
4430 total
= SCHED_POWER_SCALE
;
4432 total
>>= SCHED_POWER_SHIFT
;
4434 return div_u64(available
, total
);
4437 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
4439 unsigned long weight
= sd
->span_weight
;
4440 unsigned long power
= SCHED_POWER_SCALE
;
4441 struct sched_group
*sdg
= sd
->groups
;
4443 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
4444 if (sched_feat(ARCH_POWER
))
4445 power
*= arch_scale_smt_power(sd
, cpu
);
4447 power
*= default_scale_smt_power(sd
, cpu
);
4449 power
>>= SCHED_POWER_SHIFT
;
4452 sdg
->sgp
->power_orig
= power
;
4454 if (sched_feat(ARCH_POWER
))
4455 power
*= arch_scale_freq_power(sd
, cpu
);
4457 power
*= default_scale_freq_power(sd
, cpu
);
4459 power
>>= SCHED_POWER_SHIFT
;
4461 power
*= scale_rt_power(cpu
);
4462 power
>>= SCHED_POWER_SHIFT
;
4467 cpu_rq(cpu
)->cpu_power
= power
;
4468 sdg
->sgp
->power
= power
;
4471 void update_group_power(struct sched_domain
*sd
, int cpu
)
4473 struct sched_domain
*child
= sd
->child
;
4474 struct sched_group
*group
, *sdg
= sd
->groups
;
4475 unsigned long power
;
4476 unsigned long interval
;
4478 interval
= msecs_to_jiffies(sd
->balance_interval
);
4479 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
4480 sdg
->sgp
->next_update
= jiffies
+ interval
;
4483 update_cpu_power(sd
, cpu
);
4489 if (child
->flags
& SD_OVERLAP
) {
4491 * SD_OVERLAP domains cannot assume that child groups
4492 * span the current group.
4495 for_each_cpu(cpu
, sched_group_cpus(sdg
))
4496 power
+= power_of(cpu
);
4499 * !SD_OVERLAP domains can assume that child groups
4500 * span the current group.
4503 group
= child
->groups
;
4505 power
+= group
->sgp
->power
;
4506 group
= group
->next
;
4507 } while (group
!= child
->groups
);
4510 sdg
->sgp
->power_orig
= sdg
->sgp
->power
= power
;
4514 * Try and fix up capacity for tiny siblings, this is needed when
4515 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4516 * which on its own isn't powerful enough.
4518 * See update_sd_pick_busiest() and check_asym_packing().
4521 fix_small_capacity(struct sched_domain
*sd
, struct sched_group
*group
)
4524 * Only siblings can have significantly less than SCHED_POWER_SCALE
4526 if (!(sd
->flags
& SD_SHARE_CPUPOWER
))
4530 * If ~90% of the cpu_power is still there, we're good.
4532 if (group
->sgp
->power
* 32 > group
->sgp
->power_orig
* 29)
4539 * Group imbalance indicates (and tries to solve) the problem where balancing
4540 * groups is inadequate due to tsk_cpus_allowed() constraints.
4542 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
4543 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
4546 * { 0 1 2 3 } { 4 5 6 7 }
4549 * If we were to balance group-wise we'd place two tasks in the first group and
4550 * two tasks in the second group. Clearly this is undesired as it will overload
4551 * cpu 3 and leave one of the cpus in the second group unused.
4553 * The current solution to this issue is detecting the skew in the first group
4554 * by noticing it has a cpu that is overloaded while the remaining cpus are
4555 * idle -- or rather, there's a distinct imbalance in the cpus; see
4558 * When this is so detected; this group becomes a candidate for busiest; see
4559 * update_sd_pick_busiest(). And calculcate_imbalance() and
4560 * find_busiest_group() avoid some of the usual balance conditional to allow it
4561 * to create an effective group imbalance.
4563 * This is a somewhat tricky proposition since the next run might not find the
4564 * group imbalance and decide the groups need to be balanced again. A most
4565 * subtle and fragile situation.
4568 struct sg_imb_stats
{
4569 unsigned long max_nr_running
, min_nr_running
;
4570 unsigned long max_cpu_load
, min_cpu_load
;
4573 static inline void init_sg_imb_stats(struct sg_imb_stats
*sgi
)
4575 sgi
->max_cpu_load
= sgi
->max_nr_running
= 0UL;
4576 sgi
->min_cpu_load
= sgi
->min_nr_running
= ~0UL;
4580 update_sg_imb_stats(struct sg_imb_stats
*sgi
,
4581 unsigned long load
, unsigned long nr_running
)
4583 if (load
> sgi
->max_cpu_load
)
4584 sgi
->max_cpu_load
= load
;
4585 if (sgi
->min_cpu_load
> load
)
4586 sgi
->min_cpu_load
= load
;
4588 if (nr_running
> sgi
->max_nr_running
)
4589 sgi
->max_nr_running
= nr_running
;
4590 if (sgi
->min_nr_running
> nr_running
)
4591 sgi
->min_nr_running
= nr_running
;
4595 sg_imbalanced(struct sg_lb_stats
*sgs
, struct sg_imb_stats
*sgi
)
4598 * Consider the group unbalanced when the imbalance is larger
4599 * than the average weight of a task.
4601 * APZ: with cgroup the avg task weight can vary wildly and
4602 * might not be a suitable number - should we keep a
4603 * normalized nr_running number somewhere that negates
4606 if ((sgi
->max_cpu_load
- sgi
->min_cpu_load
) >= sgs
->load_per_task
&&
4607 (sgi
->max_nr_running
- sgi
->min_nr_running
) > 1)
4614 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4615 * @env: The load balancing environment.
4616 * @group: sched_group whose statistics are to be updated.
4617 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4618 * @local_group: Does group contain this_cpu.
4619 * @sgs: variable to hold the statistics for this group.
4621 static inline void update_sg_lb_stats(struct lb_env
*env
,
4622 struct sched_group
*group
, int load_idx
,
4623 int local_group
, struct sg_lb_stats
*sgs
)
4625 struct sg_imb_stats sgi
;
4626 unsigned long nr_running
;
4630 init_sg_imb_stats(&sgi
);
4632 for_each_cpu_and(i
, sched_group_cpus(group
), env
->cpus
) {
4633 struct rq
*rq
= cpu_rq(i
);
4635 nr_running
= rq
->nr_running
;
4637 /* Bias balancing toward cpus of our domain */
4639 load
= target_load(i
, load_idx
);
4641 load
= source_load(i
, load_idx
);
4642 update_sg_imb_stats(&sgi
, load
, nr_running
);
4645 sgs
->group_load
+= load
;
4646 sgs
->sum_nr_running
+= nr_running
;
4647 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
4652 if (local_group
&& (env
->idle
!= CPU_NEWLY_IDLE
||
4653 time_after_eq(jiffies
, group
->sgp
->next_update
)))
4654 update_group_power(env
->sd
, env
->dst_cpu
);
4656 /* Adjust by relative CPU power of the group */
4657 sgs
->group_power
= group
->sgp
->power
;
4658 sgs
->avg_load
= (sgs
->group_load
*SCHED_POWER_SCALE
) / sgs
->group_power
;
4660 if (sgs
->sum_nr_running
)
4661 sgs
->load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
4663 sgs
->group_imb
= sg_imbalanced(sgs
, &sgi
);
4665 sgs
->group_capacity
=
4666 DIV_ROUND_CLOSEST(sgs
->group_power
, SCHED_POWER_SCALE
);
4668 if (!sgs
->group_capacity
)
4669 sgs
->group_capacity
= fix_small_capacity(env
->sd
, group
);
4671 sgs
->group_weight
= group
->group_weight
;
4673 if (sgs
->group_capacity
> sgs
->sum_nr_running
)
4674 sgs
->group_has_capacity
= 1;
4678 * update_sd_pick_busiest - return 1 on busiest group
4679 * @env: The load balancing environment.
4680 * @sds: sched_domain statistics
4681 * @sg: sched_group candidate to be checked for being the busiest
4682 * @sgs: sched_group statistics
4684 * Determine if @sg is a busier group than the previously selected
4687 * Return: %true if @sg is a busier group than the previously selected
4688 * busiest group. %false otherwise.
4690 static bool update_sd_pick_busiest(struct lb_env
*env
,
4691 struct sd_lb_stats
*sds
,
4692 struct sched_group
*sg
,
4693 struct sg_lb_stats
*sgs
)
4695 if (sgs
->avg_load
<= sds
->busiest_stat
.avg_load
)
4698 if (sgs
->sum_nr_running
> sgs
->group_capacity
)
4705 * ASYM_PACKING needs to move all the work to the lowest
4706 * numbered CPUs in the group, therefore mark all groups
4707 * higher than ourself as busy.
4709 if ((env
->sd
->flags
& SD_ASYM_PACKING
) && sgs
->sum_nr_running
&&
4710 env
->dst_cpu
< group_first_cpu(sg
)) {
4714 if (group_first_cpu(sds
->busiest
) > group_first_cpu(sg
))
4722 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4723 * @env: The load balancing environment.
4724 * @balance: Should we balance.
4725 * @sds: variable to hold the statistics for this sched_domain.
4727 static inline void update_sd_lb_stats(struct lb_env
*env
,
4728 struct sd_lb_stats
*sds
)
4730 struct sched_domain
*child
= env
->sd
->child
;
4731 struct sched_group
*sg
= env
->sd
->groups
;
4732 struct sg_lb_stats tmp_sgs
;
4733 int load_idx
, prefer_sibling
= 0;
4735 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
4738 load_idx
= get_sd_load_idx(env
->sd
, env
->idle
);
4741 struct sg_lb_stats
*sgs
= &tmp_sgs
;
4744 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_cpus(sg
));
4747 sgs
= &sds
->local_stat
;
4750 memset(sgs
, 0, sizeof(*sgs
));
4751 update_sg_lb_stats(env
, sg
, load_idx
, local_group
, sgs
);
4754 * In case the child domain prefers tasks go to siblings
4755 * first, lower the sg capacity to one so that we'll try
4756 * and move all the excess tasks away. We lower the capacity
4757 * of a group only if the local group has the capacity to fit
4758 * these excess tasks, i.e. nr_running < group_capacity. The
4759 * extra check prevents the case where you always pull from the
4760 * heaviest group when it is already under-utilized (possible
4761 * with a large weight task outweighs the tasks on the system).
4763 if (prefer_sibling
&& !local_group
&&
4764 sds
->local
&& sds
->local_stat
.group_has_capacity
)
4765 sgs
->group_capacity
= min(sgs
->group_capacity
, 1U);
4767 /* Now, start updating sd_lb_stats */
4768 sds
->total_load
+= sgs
->group_load
;
4769 sds
->total_pwr
+= sgs
->group_power
;
4771 if (!local_group
&& update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
4773 sds
->busiest_stat
= *sgs
;
4777 } while (sg
!= env
->sd
->groups
);
4781 * check_asym_packing - Check to see if the group is packed into the
4784 * This is primarily intended to used at the sibling level. Some
4785 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4786 * case of POWER7, it can move to lower SMT modes only when higher
4787 * threads are idle. When in lower SMT modes, the threads will
4788 * perform better since they share less core resources. Hence when we
4789 * have idle threads, we want them to be the higher ones.
4791 * This packing function is run on idle threads. It checks to see if
4792 * the busiest CPU in this domain (core in the P7 case) has a higher
4793 * CPU number than the packing function is being run on. Here we are
4794 * assuming lower CPU number will be equivalent to lower a SMT thread
4797 * Return: 1 when packing is required and a task should be moved to
4798 * this CPU. The amount of the imbalance is returned in *imbalance.
4800 * @env: The load balancing environment.
4801 * @sds: Statistics of the sched_domain which is to be packed
4803 static int check_asym_packing(struct lb_env
*env
, struct sd_lb_stats
*sds
)
4807 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
4813 busiest_cpu
= group_first_cpu(sds
->busiest
);
4814 if (env
->dst_cpu
> busiest_cpu
)
4817 env
->imbalance
= DIV_ROUND_CLOSEST(
4818 sds
->busiest_stat
.avg_load
* sds
->busiest_stat
.group_power
,
4825 * fix_small_imbalance - Calculate the minor imbalance that exists
4826 * amongst the groups of a sched_domain, during
4828 * @env: The load balancing environment.
4829 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4832 void fix_small_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
4834 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
4835 unsigned int imbn
= 2;
4836 unsigned long scaled_busy_load_per_task
;
4837 struct sg_lb_stats
*local
, *busiest
;
4839 local
= &sds
->local_stat
;
4840 busiest
= &sds
->busiest_stat
;
4842 if (!local
->sum_nr_running
)
4843 local
->load_per_task
= cpu_avg_load_per_task(env
->dst_cpu
);
4844 else if (busiest
->load_per_task
> local
->load_per_task
)
4847 scaled_busy_load_per_task
=
4848 (busiest
->load_per_task
* SCHED_POWER_SCALE
) /
4849 busiest
->group_power
;
4851 if (busiest
->avg_load
+ scaled_busy_load_per_task
>=
4852 local
->avg_load
+ (scaled_busy_load_per_task
* imbn
)) {
4853 env
->imbalance
= busiest
->load_per_task
;
4858 * OK, we don't have enough imbalance to justify moving tasks,
4859 * however we may be able to increase total CPU power used by
4863 pwr_now
+= busiest
->group_power
*
4864 min(busiest
->load_per_task
, busiest
->avg_load
);
4865 pwr_now
+= local
->group_power
*
4866 min(local
->load_per_task
, local
->avg_load
);
4867 pwr_now
/= SCHED_POWER_SCALE
;
4869 /* Amount of load we'd subtract */
4870 tmp
= (busiest
->load_per_task
* SCHED_POWER_SCALE
) /
4871 busiest
->group_power
;
4872 if (busiest
->avg_load
> tmp
) {
4873 pwr_move
+= busiest
->group_power
*
4874 min(busiest
->load_per_task
,
4875 busiest
->avg_load
- tmp
);
4878 /* Amount of load we'd add */
4879 if (busiest
->avg_load
* busiest
->group_power
<
4880 busiest
->load_per_task
* SCHED_POWER_SCALE
) {
4881 tmp
= (busiest
->avg_load
* busiest
->group_power
) /
4884 tmp
= (busiest
->load_per_task
* SCHED_POWER_SCALE
) /
4887 pwr_move
+= local
->group_power
*
4888 min(local
->load_per_task
, local
->avg_load
+ tmp
);
4889 pwr_move
/= SCHED_POWER_SCALE
;
4891 /* Move if we gain throughput */
4892 if (pwr_move
> pwr_now
)
4893 env
->imbalance
= busiest
->load_per_task
;
4897 * calculate_imbalance - Calculate the amount of imbalance present within the
4898 * groups of a given sched_domain during load balance.
4899 * @env: load balance environment
4900 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4902 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
4904 unsigned long max_pull
, load_above_capacity
= ~0UL;
4905 struct sg_lb_stats
*local
, *busiest
;
4907 local
= &sds
->local_stat
;
4908 busiest
= &sds
->busiest_stat
;
4910 if (busiest
->group_imb
) {
4912 * In the group_imb case we cannot rely on group-wide averages
4913 * to ensure cpu-load equilibrium, look at wider averages. XXX
4915 busiest
->load_per_task
=
4916 min(busiest
->load_per_task
, sds
->avg_load
);
4920 * In the presence of smp nice balancing, certain scenarios can have
4921 * max load less than avg load(as we skip the groups at or below
4922 * its cpu_power, while calculating max_load..)
4924 if (busiest
->avg_load
<= sds
->avg_load
||
4925 local
->avg_load
>= sds
->avg_load
) {
4927 return fix_small_imbalance(env
, sds
);
4930 if (!busiest
->group_imb
) {
4932 * Don't want to pull so many tasks that a group would go idle.
4933 * Except of course for the group_imb case, since then we might
4934 * have to drop below capacity to reach cpu-load equilibrium.
4936 load_above_capacity
=
4937 (busiest
->sum_nr_running
- busiest
->group_capacity
);
4939 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_POWER_SCALE
);
4940 load_above_capacity
/= busiest
->group_power
;
4944 * We're trying to get all the cpus to the average_load, so we don't
4945 * want to push ourselves above the average load, nor do we wish to
4946 * reduce the max loaded cpu below the average load. At the same time,
4947 * we also don't want to reduce the group load below the group capacity
4948 * (so that we can implement power-savings policies etc). Thus we look
4949 * for the minimum possible imbalance.
4951 max_pull
= min(busiest
->avg_load
- sds
->avg_load
, load_above_capacity
);
4953 /* How much load to actually move to equalise the imbalance */
4954 env
->imbalance
= min(
4955 max_pull
* busiest
->group_power
,
4956 (sds
->avg_load
- local
->avg_load
) * local
->group_power
4957 ) / SCHED_POWER_SCALE
;
4960 * if *imbalance is less than the average load per runnable task
4961 * there is no guarantee that any tasks will be moved so we'll have
4962 * a think about bumping its value to force at least one task to be
4965 if (env
->imbalance
< busiest
->load_per_task
)
4966 return fix_small_imbalance(env
, sds
);
4969 /******* find_busiest_group() helpers end here *********************/
4972 * find_busiest_group - Returns the busiest group within the sched_domain
4973 * if there is an imbalance. If there isn't an imbalance, and
4974 * the user has opted for power-savings, it returns a group whose
4975 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4976 * such a group exists.
4978 * Also calculates the amount of weighted load which should be moved
4979 * to restore balance.
4981 * @env: The load balancing environment.
4983 * Return: - The busiest group if imbalance exists.
4984 * - If no imbalance and user has opted for power-savings balance,
4985 * return the least loaded group whose CPUs can be
4986 * put to idle by rebalancing its tasks onto our group.
4988 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
4990 struct sg_lb_stats
*local
, *busiest
;
4991 struct sd_lb_stats sds
;
4993 init_sd_lb_stats(&sds
);
4996 * Compute the various statistics relavent for load balancing at
4999 update_sd_lb_stats(env
, &sds
);
5000 local
= &sds
.local_stat
;
5001 busiest
= &sds
.busiest_stat
;
5003 if ((env
->idle
== CPU_IDLE
|| env
->idle
== CPU_NEWLY_IDLE
) &&
5004 check_asym_packing(env
, &sds
))
5007 /* There is no busy sibling group to pull tasks from */
5008 if (!sds
.busiest
|| busiest
->sum_nr_running
== 0)
5011 sds
.avg_load
= (SCHED_POWER_SCALE
* sds
.total_load
) / sds
.total_pwr
;
5014 * If the busiest group is imbalanced the below checks don't
5015 * work because they assume all things are equal, which typically
5016 * isn't true due to cpus_allowed constraints and the like.
5018 if (busiest
->group_imb
)
5021 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5022 if (env
->idle
== CPU_NEWLY_IDLE
&& local
->group_has_capacity
&&
5023 !busiest
->group_has_capacity
)
5027 * If the local group is more busy than the selected busiest group
5028 * don't try and pull any tasks.
5030 if (local
->avg_load
>= busiest
->avg_load
)
5034 * Don't pull any tasks if this group is already above the domain
5037 if (local
->avg_load
>= sds
.avg_load
)
5040 if (env
->idle
== CPU_IDLE
) {
5042 * This cpu is idle. If the busiest group load doesn't
5043 * have more tasks than the number of available cpu's and
5044 * there is no imbalance between this and busiest group
5045 * wrt to idle cpu's, it is balanced.
5047 if ((local
->idle_cpus
< busiest
->idle_cpus
) &&
5048 busiest
->sum_nr_running
<= busiest
->group_weight
)
5052 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5053 * imbalance_pct to be conservative.
5055 if (100 * busiest
->avg_load
<=
5056 env
->sd
->imbalance_pct
* local
->avg_load
)
5061 /* Looks like there is an imbalance. Compute it */
5062 calculate_imbalance(env
, &sds
);
5071 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5073 static struct rq
*find_busiest_queue(struct lb_env
*env
,
5074 struct sched_group
*group
)
5076 struct rq
*busiest
= NULL
, *rq
;
5077 unsigned long busiest_load
= 0, busiest_power
= 1;
5080 for_each_cpu_and(i
, sched_group_cpus(group
), env
->cpus
) {
5081 unsigned long power
= power_of(i
);
5082 unsigned long capacity
= DIV_ROUND_CLOSEST(power
,
5087 capacity
= fix_small_capacity(env
->sd
, group
);
5090 wl
= weighted_cpuload(i
);
5093 * When comparing with imbalance, use weighted_cpuload()
5094 * which is not scaled with the cpu power.
5096 if (capacity
&& rq
->nr_running
== 1 && wl
> env
->imbalance
)
5100 * For the load comparisons with the other cpu's, consider
5101 * the weighted_cpuload() scaled with the cpu power, so that
5102 * the load can be moved away from the cpu that is potentially
5103 * running at a lower capacity.
5105 * Thus we're looking for max(wl_i / power_i), crosswise
5106 * multiplication to rid ourselves of the division works out
5107 * to: wl_i * power_j > wl_j * power_i; where j is our
5110 if (wl
* busiest_power
> busiest_load
* power
) {
5112 busiest_power
= power
;
5121 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5122 * so long as it is large enough.
5124 #define MAX_PINNED_INTERVAL 512
5126 /* Working cpumask for load_balance and load_balance_newidle. */
5127 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5129 static int need_active_balance(struct lb_env
*env
)
5131 struct sched_domain
*sd
= env
->sd
;
5133 if (env
->idle
== CPU_NEWLY_IDLE
) {
5136 * ASYM_PACKING needs to force migrate tasks from busy but
5137 * higher numbered CPUs in order to pack all tasks in the
5138 * lowest numbered CPUs.
5140 if ((sd
->flags
& SD_ASYM_PACKING
) && env
->src_cpu
> env
->dst_cpu
)
5144 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
5147 static int active_load_balance_cpu_stop(void *data
);
5149 static int should_we_balance(struct lb_env
*env
)
5151 struct sched_group
*sg
= env
->sd
->groups
;
5152 struct cpumask
*sg_cpus
, *sg_mask
;
5153 int cpu
, balance_cpu
= -1;
5156 * In the newly idle case, we will allow all the cpu's
5157 * to do the newly idle load balance.
5159 if (env
->idle
== CPU_NEWLY_IDLE
)
5162 sg_cpus
= sched_group_cpus(sg
);
5163 sg_mask
= sched_group_mask(sg
);
5164 /* Try to find first idle cpu */
5165 for_each_cpu_and(cpu
, sg_cpus
, env
->cpus
) {
5166 if (!cpumask_test_cpu(cpu
, sg_mask
) || !idle_cpu(cpu
))
5173 if (balance_cpu
== -1)
5174 balance_cpu
= group_balance_cpu(sg
);
5177 * First idle cpu or the first cpu(busiest) in this sched group
5178 * is eligible for doing load balancing at this and above domains.
5180 return balance_cpu
== env
->dst_cpu
;
5184 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5185 * tasks if there is an imbalance.
5187 static int load_balance(int this_cpu
, struct rq
*this_rq
,
5188 struct sched_domain
*sd
, enum cpu_idle_type idle
,
5189 int *continue_balancing
)
5191 int ld_moved
, cur_ld_moved
, active_balance
= 0;
5192 struct sched_group
*group
;
5194 unsigned long flags
;
5195 struct cpumask
*cpus
= __get_cpu_var(load_balance_mask
);
5197 struct lb_env env
= {
5199 .dst_cpu
= this_cpu
,
5201 .dst_grpmask
= sched_group_cpus(sd
->groups
),
5203 .loop_break
= sched_nr_migrate_break
,
5208 * For NEWLY_IDLE load_balancing, we don't need to consider
5209 * other cpus in our group
5211 if (idle
== CPU_NEWLY_IDLE
)
5212 env
.dst_grpmask
= NULL
;
5214 cpumask_copy(cpus
, cpu_active_mask
);
5216 schedstat_inc(sd
, lb_count
[idle
]);
5219 if (!should_we_balance(&env
)) {
5220 *continue_balancing
= 0;
5224 group
= find_busiest_group(&env
);
5226 schedstat_inc(sd
, lb_nobusyg
[idle
]);
5230 busiest
= find_busiest_queue(&env
, group
);
5232 schedstat_inc(sd
, lb_nobusyq
[idle
]);
5236 BUG_ON(busiest
== env
.dst_rq
);
5238 schedstat_add(sd
, lb_imbalance
[idle
], env
.imbalance
);
5241 if (busiest
->nr_running
> 1) {
5243 * Attempt to move tasks. If find_busiest_group has found
5244 * an imbalance but busiest->nr_running <= 1, the group is
5245 * still unbalanced. ld_moved simply stays zero, so it is
5246 * correctly treated as an imbalance.
5248 env
.flags
|= LBF_ALL_PINNED
;
5249 env
.src_cpu
= busiest
->cpu
;
5250 env
.src_rq
= busiest
;
5251 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
5254 local_irq_save(flags
);
5255 double_rq_lock(env
.dst_rq
, busiest
);
5258 * cur_ld_moved - load moved in current iteration
5259 * ld_moved - cumulative load moved across iterations
5261 cur_ld_moved
= move_tasks(&env
);
5262 ld_moved
+= cur_ld_moved
;
5263 double_rq_unlock(env
.dst_rq
, busiest
);
5264 local_irq_restore(flags
);
5267 * some other cpu did the load balance for us.
5269 if (cur_ld_moved
&& env
.dst_cpu
!= smp_processor_id())
5270 resched_cpu(env
.dst_cpu
);
5272 if (env
.flags
& LBF_NEED_BREAK
) {
5273 env
.flags
&= ~LBF_NEED_BREAK
;
5278 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5279 * us and move them to an alternate dst_cpu in our sched_group
5280 * where they can run. The upper limit on how many times we
5281 * iterate on same src_cpu is dependent on number of cpus in our
5284 * This changes load balance semantics a bit on who can move
5285 * load to a given_cpu. In addition to the given_cpu itself
5286 * (or a ilb_cpu acting on its behalf where given_cpu is
5287 * nohz-idle), we now have balance_cpu in a position to move
5288 * load to given_cpu. In rare situations, this may cause
5289 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5290 * _independently_ and at _same_ time to move some load to
5291 * given_cpu) causing exceess load to be moved to given_cpu.
5292 * This however should not happen so much in practice and
5293 * moreover subsequent load balance cycles should correct the
5294 * excess load moved.
5296 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0) {
5298 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
5299 env
.dst_cpu
= env
.new_dst_cpu
;
5300 env
.flags
&= ~LBF_SOME_PINNED
;
5302 env
.loop_break
= sched_nr_migrate_break
;
5304 /* Prevent to re-select dst_cpu via env's cpus */
5305 cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
5308 * Go back to "more_balance" rather than "redo" since we
5309 * need to continue with same src_cpu.
5314 /* All tasks on this runqueue were pinned by CPU affinity */
5315 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
5316 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
5317 if (!cpumask_empty(cpus
)) {
5319 env
.loop_break
= sched_nr_migrate_break
;
5327 schedstat_inc(sd
, lb_failed
[idle
]);
5329 * Increment the failure counter only on periodic balance.
5330 * We do not want newidle balance, which can be very
5331 * frequent, pollute the failure counter causing
5332 * excessive cache_hot migrations and active balances.
5334 if (idle
!= CPU_NEWLY_IDLE
)
5335 sd
->nr_balance_failed
++;
5337 if (need_active_balance(&env
)) {
5338 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
5340 /* don't kick the active_load_balance_cpu_stop,
5341 * if the curr task on busiest cpu can't be
5344 if (!cpumask_test_cpu(this_cpu
,
5345 tsk_cpus_allowed(busiest
->curr
))) {
5346 raw_spin_unlock_irqrestore(&busiest
->lock
,
5348 env
.flags
|= LBF_ALL_PINNED
;
5349 goto out_one_pinned
;
5353 * ->active_balance synchronizes accesses to
5354 * ->active_balance_work. Once set, it's cleared
5355 * only after active load balance is finished.
5357 if (!busiest
->active_balance
) {
5358 busiest
->active_balance
= 1;
5359 busiest
->push_cpu
= this_cpu
;
5362 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
5364 if (active_balance
) {
5365 stop_one_cpu_nowait(cpu_of(busiest
),
5366 active_load_balance_cpu_stop
, busiest
,
5367 &busiest
->active_balance_work
);
5371 * We've kicked active balancing, reset the failure
5374 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
5377 sd
->nr_balance_failed
= 0;
5379 if (likely(!active_balance
)) {
5380 /* We were unbalanced, so reset the balancing interval */
5381 sd
->balance_interval
= sd
->min_interval
;
5384 * If we've begun active balancing, start to back off. This
5385 * case may not be covered by the all_pinned logic if there
5386 * is only 1 task on the busy runqueue (because we don't call
5389 if (sd
->balance_interval
< sd
->max_interval
)
5390 sd
->balance_interval
*= 2;
5396 schedstat_inc(sd
, lb_balanced
[idle
]);
5398 sd
->nr_balance_failed
= 0;
5401 /* tune up the balancing interval */
5402 if (((env
.flags
& LBF_ALL_PINNED
) &&
5403 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
5404 (sd
->balance_interval
< sd
->max_interval
))
5405 sd
->balance_interval
*= 2;
5413 * idle_balance is called by schedule() if this_cpu is about to become
5414 * idle. Attempts to pull tasks from other CPUs.
5416 void idle_balance(int this_cpu
, struct rq
*this_rq
)
5418 struct sched_domain
*sd
;
5419 int pulled_task
= 0;
5420 unsigned long next_balance
= jiffies
+ HZ
;
5422 this_rq
->idle_stamp
= rq_clock(this_rq
);
5424 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
5428 * Drop the rq->lock, but keep IRQ/preempt disabled.
5430 raw_spin_unlock(&this_rq
->lock
);
5432 update_blocked_averages(this_cpu
);
5434 for_each_domain(this_cpu
, sd
) {
5435 unsigned long interval
;
5436 int continue_balancing
= 1;
5438 if (!(sd
->flags
& SD_LOAD_BALANCE
))
5441 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
5442 /* If we've pulled tasks over stop searching: */
5443 pulled_task
= load_balance(this_cpu
, this_rq
,
5445 &continue_balancing
);
5448 interval
= msecs_to_jiffies(sd
->balance_interval
);
5449 if (time_after(next_balance
, sd
->last_balance
+ interval
))
5450 next_balance
= sd
->last_balance
+ interval
;
5452 this_rq
->idle_stamp
= 0;
5458 raw_spin_lock(&this_rq
->lock
);
5460 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
5462 * We are going idle. next_balance may be set based on
5463 * a busy processor. So reset next_balance.
5465 this_rq
->next_balance
= next_balance
;
5470 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5471 * running tasks off the busiest CPU onto idle CPUs. It requires at
5472 * least 1 task to be running on each physical CPU where possible, and
5473 * avoids physical / logical imbalances.
5475 static int active_load_balance_cpu_stop(void *data
)
5477 struct rq
*busiest_rq
= data
;
5478 int busiest_cpu
= cpu_of(busiest_rq
);
5479 int target_cpu
= busiest_rq
->push_cpu
;
5480 struct rq
*target_rq
= cpu_rq(target_cpu
);
5481 struct sched_domain
*sd
;
5483 raw_spin_lock_irq(&busiest_rq
->lock
);
5485 /* make sure the requested cpu hasn't gone down in the meantime */
5486 if (unlikely(busiest_cpu
!= smp_processor_id() ||
5487 !busiest_rq
->active_balance
))
5490 /* Is there any task to move? */
5491 if (busiest_rq
->nr_running
<= 1)
5495 * This condition is "impossible", if it occurs
5496 * we need to fix it. Originally reported by
5497 * Bjorn Helgaas on a 128-cpu setup.
5499 BUG_ON(busiest_rq
== target_rq
);
5501 /* move a task from busiest_rq to target_rq */
5502 double_lock_balance(busiest_rq
, target_rq
);
5504 /* Search for an sd spanning us and the target CPU. */
5506 for_each_domain(target_cpu
, sd
) {
5507 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
5508 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
5513 struct lb_env env
= {
5515 .dst_cpu
= target_cpu
,
5516 .dst_rq
= target_rq
,
5517 .src_cpu
= busiest_rq
->cpu
,
5518 .src_rq
= busiest_rq
,
5522 schedstat_inc(sd
, alb_count
);
5524 if (move_one_task(&env
))
5525 schedstat_inc(sd
, alb_pushed
);
5527 schedstat_inc(sd
, alb_failed
);
5530 double_unlock_balance(busiest_rq
, target_rq
);
5532 busiest_rq
->active_balance
= 0;
5533 raw_spin_unlock_irq(&busiest_rq
->lock
);
5537 #ifdef CONFIG_NO_HZ_COMMON
5539 * idle load balancing details
5540 * - When one of the busy CPUs notice that there may be an idle rebalancing
5541 * needed, they will kick the idle load balancer, which then does idle
5542 * load balancing for all the idle CPUs.
5545 cpumask_var_t idle_cpus_mask
;
5547 unsigned long next_balance
; /* in jiffy units */
5548 } nohz ____cacheline_aligned
;
5550 static inline int find_new_ilb(int call_cpu
)
5552 int ilb
= cpumask_first(nohz
.idle_cpus_mask
);
5554 if (ilb
< nr_cpu_ids
&& idle_cpu(ilb
))
5561 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5562 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5563 * CPU (if there is one).
5565 static void nohz_balancer_kick(int cpu
)
5569 nohz
.next_balance
++;
5571 ilb_cpu
= find_new_ilb(cpu
);
5573 if (ilb_cpu
>= nr_cpu_ids
)
5576 if (test_and_set_bit(NOHZ_BALANCE_KICK
, nohz_flags(ilb_cpu
)))
5579 * Use smp_send_reschedule() instead of resched_cpu().
5580 * This way we generate a sched IPI on the target cpu which
5581 * is idle. And the softirq performing nohz idle load balance
5582 * will be run before returning from the IPI.
5584 smp_send_reschedule(ilb_cpu
);
5588 static inline void nohz_balance_exit_idle(int cpu
)
5590 if (unlikely(test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))) {
5591 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
5592 atomic_dec(&nohz
.nr_cpus
);
5593 clear_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
5597 static inline void set_cpu_sd_state_busy(void)
5599 struct sched_domain
*sd
;
5600 int cpu
= smp_processor_id();
5603 sd
= rcu_dereference(per_cpu(sd_busy
, cpu
));
5605 if (!sd
|| !sd
->nohz_idle
)
5609 atomic_inc(&sd
->groups
->sgp
->nr_busy_cpus
);
5614 void set_cpu_sd_state_idle(void)
5616 struct sched_domain
*sd
;
5617 int cpu
= smp_processor_id();
5620 sd
= rcu_dereference(per_cpu(sd_busy
, cpu
));
5622 if (!sd
|| sd
->nohz_idle
)
5626 atomic_dec(&sd
->groups
->sgp
->nr_busy_cpus
);
5632 * This routine will record that the cpu is going idle with tick stopped.
5633 * This info will be used in performing idle load balancing in the future.
5635 void nohz_balance_enter_idle(int cpu
)
5638 * If this cpu is going down, then nothing needs to be done.
5640 if (!cpu_active(cpu
))
5643 if (test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))
5646 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
5647 atomic_inc(&nohz
.nr_cpus
);
5648 set_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
5651 static int sched_ilb_notifier(struct notifier_block
*nfb
,
5652 unsigned long action
, void *hcpu
)
5654 switch (action
& ~CPU_TASKS_FROZEN
) {
5656 nohz_balance_exit_idle(smp_processor_id());
5664 static DEFINE_SPINLOCK(balancing
);
5667 * Scale the max load_balance interval with the number of CPUs in the system.
5668 * This trades load-balance latency on larger machines for less cross talk.
5670 void update_max_interval(void)
5672 max_load_balance_interval
= HZ
*num_online_cpus()/10;
5676 * It checks each scheduling domain to see if it is due to be balanced,
5677 * and initiates a balancing operation if so.
5679 * Balancing parameters are set up in init_sched_domains.
5681 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
5683 int continue_balancing
= 1;
5684 struct rq
*rq
= cpu_rq(cpu
);
5685 unsigned long interval
;
5686 struct sched_domain
*sd
;
5687 /* Earliest time when we have to do rebalance again */
5688 unsigned long next_balance
= jiffies
+ 60*HZ
;
5689 int update_next_balance
= 0;
5692 update_blocked_averages(cpu
);
5695 for_each_domain(cpu
, sd
) {
5696 if (!(sd
->flags
& SD_LOAD_BALANCE
))
5699 interval
= sd
->balance_interval
;
5700 if (idle
!= CPU_IDLE
)
5701 interval
*= sd
->busy_factor
;
5703 /* scale ms to jiffies */
5704 interval
= msecs_to_jiffies(interval
);
5705 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
5707 need_serialize
= sd
->flags
& SD_SERIALIZE
;
5709 if (need_serialize
) {
5710 if (!spin_trylock(&balancing
))
5714 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
5715 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
5717 * The LBF_SOME_PINNED logic could have changed
5718 * env->dst_cpu, so we can't know our idle
5719 * state even if we migrated tasks. Update it.
5721 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
5723 sd
->last_balance
= jiffies
;
5726 spin_unlock(&balancing
);
5728 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
5729 next_balance
= sd
->last_balance
+ interval
;
5730 update_next_balance
= 1;
5734 * Stop the load balance at this level. There is another
5735 * CPU in our sched group which is doing load balancing more
5738 if (!continue_balancing
)
5744 * next_balance will be updated only when there is a need.
5745 * When the cpu is attached to null domain for ex, it will not be
5748 if (likely(update_next_balance
))
5749 rq
->next_balance
= next_balance
;
5752 #ifdef CONFIG_NO_HZ_COMMON
5754 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5755 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5757 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
)
5759 struct rq
*this_rq
= cpu_rq(this_cpu
);
5763 if (idle
!= CPU_IDLE
||
5764 !test_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
)))
5767 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
5768 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
5772 * If this cpu gets work to do, stop the load balancing
5773 * work being done for other cpus. Next load
5774 * balancing owner will pick it up.
5779 rq
= cpu_rq(balance_cpu
);
5781 raw_spin_lock_irq(&rq
->lock
);
5782 update_rq_clock(rq
);
5783 update_idle_cpu_load(rq
);
5784 raw_spin_unlock_irq(&rq
->lock
);
5786 rebalance_domains(balance_cpu
, CPU_IDLE
);
5788 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
5789 this_rq
->next_balance
= rq
->next_balance
;
5791 nohz
.next_balance
= this_rq
->next_balance
;
5793 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
));
5797 * Current heuristic for kicking the idle load balancer in the presence
5798 * of an idle cpu is the system.
5799 * - This rq has more than one task.
5800 * - At any scheduler domain level, this cpu's scheduler group has multiple
5801 * busy cpu's exceeding the group's power.
5802 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5803 * domain span are idle.
5805 static inline int nohz_kick_needed(struct rq
*rq
, int cpu
)
5807 unsigned long now
= jiffies
;
5808 struct sched_domain
*sd
;
5809 struct sched_group_power
*sgp
;
5812 if (unlikely(idle_cpu(cpu
)))
5816 * We may be recently in ticked or tickless idle mode. At the first
5817 * busy tick after returning from idle, we will update the busy stats.
5819 set_cpu_sd_state_busy();
5820 nohz_balance_exit_idle(cpu
);
5823 * None are in tickless mode and hence no need for NOHZ idle load
5826 if (likely(!atomic_read(&nohz
.nr_cpus
)))
5829 if (time_before(now
, nohz
.next_balance
))
5832 if (rq
->nr_running
>= 2)
5836 sd
= rcu_dereference(per_cpu(sd_busy
, cpu
));
5839 sgp
= sd
->groups
->sgp
;
5840 nr_busy
= atomic_read(&sgp
->nr_busy_cpus
);
5843 goto need_kick_unlock
;
5846 sd
= rcu_dereference(per_cpu(sd_asym
, cpu
));
5848 if (sd
&& (cpumask_first_and(nohz
.idle_cpus_mask
,
5849 sched_domain_span(sd
)) < cpu
))
5850 goto need_kick_unlock
;
5861 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
) { }
5865 * run_rebalance_domains is triggered when needed from the scheduler tick.
5866 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5868 static void run_rebalance_domains(struct softirq_action
*h
)
5870 int this_cpu
= smp_processor_id();
5871 struct rq
*this_rq
= cpu_rq(this_cpu
);
5872 enum cpu_idle_type idle
= this_rq
->idle_balance
?
5873 CPU_IDLE
: CPU_NOT_IDLE
;
5875 rebalance_domains(this_cpu
, idle
);
5878 * If this cpu has a pending nohz_balance_kick, then do the
5879 * balancing on behalf of the other idle cpus whose ticks are
5882 nohz_idle_balance(this_cpu
, idle
);
5885 static inline int on_null_domain(int cpu
)
5887 return !rcu_dereference_sched(cpu_rq(cpu
)->sd
);
5891 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5893 void trigger_load_balance(struct rq
*rq
, int cpu
)
5895 /* Don't need to rebalance while attached to NULL domain */
5896 if (time_after_eq(jiffies
, rq
->next_balance
) &&
5897 likely(!on_null_domain(cpu
)))
5898 raise_softirq(SCHED_SOFTIRQ
);
5899 #ifdef CONFIG_NO_HZ_COMMON
5900 if (nohz_kick_needed(rq
, cpu
) && likely(!on_null_domain(cpu
)))
5901 nohz_balancer_kick(cpu
);
5905 static void rq_online_fair(struct rq
*rq
)
5910 static void rq_offline_fair(struct rq
*rq
)
5914 /* Ensure any throttled groups are reachable by pick_next_task */
5915 unthrottle_offline_cfs_rqs(rq
);
5918 #endif /* CONFIG_SMP */
5921 * scheduler tick hitting a task of our scheduling class:
5923 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
5925 struct cfs_rq
*cfs_rq
;
5926 struct sched_entity
*se
= &curr
->se
;
5928 for_each_sched_entity(se
) {
5929 cfs_rq
= cfs_rq_of(se
);
5930 entity_tick(cfs_rq
, se
, queued
);
5933 if (numabalancing_enabled
)
5934 task_tick_numa(rq
, curr
);
5936 update_rq_runnable_avg(rq
, 1);
5940 * called on fork with the child task as argument from the parent's context
5941 * - child not yet on the tasklist
5942 * - preemption disabled
5944 static void task_fork_fair(struct task_struct
*p
)
5946 struct cfs_rq
*cfs_rq
;
5947 struct sched_entity
*se
= &p
->se
, *curr
;
5948 int this_cpu
= smp_processor_id();
5949 struct rq
*rq
= this_rq();
5950 unsigned long flags
;
5952 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5954 update_rq_clock(rq
);
5956 cfs_rq
= task_cfs_rq(current
);
5957 curr
= cfs_rq
->curr
;
5960 * Not only the cpu but also the task_group of the parent might have
5961 * been changed after parent->se.parent,cfs_rq were copied to
5962 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
5963 * of child point to valid ones.
5966 __set_task_cpu(p
, this_cpu
);
5969 update_curr(cfs_rq
);
5972 se
->vruntime
= curr
->vruntime
;
5973 place_entity(cfs_rq
, se
, 1);
5975 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
5977 * Upon rescheduling, sched_class::put_prev_task() will place
5978 * 'current' within the tree based on its new key value.
5980 swap(curr
->vruntime
, se
->vruntime
);
5981 resched_task(rq
->curr
);
5984 se
->vruntime
-= cfs_rq
->min_vruntime
;
5986 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5990 * Priority of the task has changed. Check to see if we preempt
5994 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
6000 * Reschedule if we are currently running on this runqueue and
6001 * our priority decreased, or if we are not currently running on
6002 * this runqueue and our priority is higher than the current's
6004 if (rq
->curr
== p
) {
6005 if (p
->prio
> oldprio
)
6006 resched_task(rq
->curr
);
6008 check_preempt_curr(rq
, p
, 0);
6011 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
6013 struct sched_entity
*se
= &p
->se
;
6014 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6017 * Ensure the task's vruntime is normalized, so that when it's
6018 * switched back to the fair class the enqueue_entity(.flags=0) will
6019 * do the right thing.
6021 * If it's on_rq, then the dequeue_entity(.flags=0) will already
6022 * have normalized the vruntime, if it's !on_rq, then only when
6023 * the task is sleeping will it still have non-normalized vruntime.
6025 if (!p
->on_rq
&& p
->state
!= TASK_RUNNING
) {
6027 * Fix up our vruntime so that the current sleep doesn't
6028 * cause 'unlimited' sleep bonus.
6030 place_entity(cfs_rq
, se
, 0);
6031 se
->vruntime
-= cfs_rq
->min_vruntime
;
6036 * Remove our load from contribution when we leave sched_fair
6037 * and ensure we don't carry in an old decay_count if we
6040 if (se
->avg
.decay_count
) {
6041 __synchronize_entity_decay(se
);
6042 subtract_blocked_load_contrib(cfs_rq
, se
->avg
.load_avg_contrib
);
6048 * We switched to the sched_fair class.
6050 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
6056 * We were most likely switched from sched_rt, so
6057 * kick off the schedule if running, otherwise just see
6058 * if we can still preempt the current task.
6061 resched_task(rq
->curr
);
6063 check_preempt_curr(rq
, p
, 0);
6066 /* Account for a task changing its policy or group.
6068 * This routine is mostly called to set cfs_rq->curr field when a task
6069 * migrates between groups/classes.
6071 static void set_curr_task_fair(struct rq
*rq
)
6073 struct sched_entity
*se
= &rq
->curr
->se
;
6075 for_each_sched_entity(se
) {
6076 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6078 set_next_entity(cfs_rq
, se
);
6079 /* ensure bandwidth has been allocated on our new cfs_rq */
6080 account_cfs_rq_runtime(cfs_rq
, 0);
6084 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
6086 cfs_rq
->tasks_timeline
= RB_ROOT
;
6087 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6088 #ifndef CONFIG_64BIT
6089 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
6092 atomic64_set(&cfs_rq
->decay_counter
, 1);
6093 atomic_long_set(&cfs_rq
->removed_load
, 0);
6097 #ifdef CONFIG_FAIR_GROUP_SCHED
6098 static void task_move_group_fair(struct task_struct
*p
, int on_rq
)
6100 struct cfs_rq
*cfs_rq
;
6102 * If the task was not on the rq at the time of this cgroup movement
6103 * it must have been asleep, sleeping tasks keep their ->vruntime
6104 * absolute on their old rq until wakeup (needed for the fair sleeper
6105 * bonus in place_entity()).
6107 * If it was on the rq, we've just 'preempted' it, which does convert
6108 * ->vruntime to a relative base.
6110 * Make sure both cases convert their relative position when migrating
6111 * to another cgroup's rq. This does somewhat interfere with the
6112 * fair sleeper stuff for the first placement, but who cares.
6115 * When !on_rq, vruntime of the task has usually NOT been normalized.
6116 * But there are some cases where it has already been normalized:
6118 * - Moving a forked child which is waiting for being woken up by
6119 * wake_up_new_task().
6120 * - Moving a task which has been woken up by try_to_wake_up() and
6121 * waiting for actually being woken up by sched_ttwu_pending().
6123 * To prevent boost or penalty in the new cfs_rq caused by delta
6124 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6126 if (!on_rq
&& (!p
->se
.sum_exec_runtime
|| p
->state
== TASK_WAKING
))
6130 p
->se
.vruntime
-= cfs_rq_of(&p
->se
)->min_vruntime
;
6131 set_task_rq(p
, task_cpu(p
));
6133 cfs_rq
= cfs_rq_of(&p
->se
);
6134 p
->se
.vruntime
+= cfs_rq
->min_vruntime
;
6137 * migrate_task_rq_fair() will have removed our previous
6138 * contribution, but we must synchronize for ongoing future
6141 p
->se
.avg
.decay_count
= atomic64_read(&cfs_rq
->decay_counter
);
6142 cfs_rq
->blocked_load_avg
+= p
->se
.avg
.load_avg_contrib
;
6147 void free_fair_sched_group(struct task_group
*tg
)
6151 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
6153 for_each_possible_cpu(i
) {
6155 kfree(tg
->cfs_rq
[i
]);
6164 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
6166 struct cfs_rq
*cfs_rq
;
6167 struct sched_entity
*se
;
6170 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
6173 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
6177 tg
->shares
= NICE_0_LOAD
;
6179 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
6181 for_each_possible_cpu(i
) {
6182 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
6183 GFP_KERNEL
, cpu_to_node(i
));
6187 se
= kzalloc_node(sizeof(struct sched_entity
),
6188 GFP_KERNEL
, cpu_to_node(i
));
6192 init_cfs_rq(cfs_rq
);
6193 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
6204 void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
6206 struct rq
*rq
= cpu_rq(cpu
);
6207 unsigned long flags
;
6210 * Only empty task groups can be destroyed; so we can speculatively
6211 * check on_list without danger of it being re-added.
6213 if (!tg
->cfs_rq
[cpu
]->on_list
)
6216 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6217 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
6218 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6221 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
6222 struct sched_entity
*se
, int cpu
,
6223 struct sched_entity
*parent
)
6225 struct rq
*rq
= cpu_rq(cpu
);
6229 init_cfs_rq_runtime(cfs_rq
);
6231 tg
->cfs_rq
[cpu
] = cfs_rq
;
6234 /* se could be NULL for root_task_group */
6239 se
->cfs_rq
= &rq
->cfs
;
6241 se
->cfs_rq
= parent
->my_q
;
6244 /* guarantee group entities always have weight */
6245 update_load_set(&se
->load
, NICE_0_LOAD
);
6246 se
->parent
= parent
;
6249 static DEFINE_MUTEX(shares_mutex
);
6251 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
6254 unsigned long flags
;
6257 * We can't change the weight of the root cgroup.
6262 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
6264 mutex_lock(&shares_mutex
);
6265 if (tg
->shares
== shares
)
6268 tg
->shares
= shares
;
6269 for_each_possible_cpu(i
) {
6270 struct rq
*rq
= cpu_rq(i
);
6271 struct sched_entity
*se
;
6274 /* Propagate contribution to hierarchy */
6275 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6277 /* Possible calls to update_curr() need rq clock */
6278 update_rq_clock(rq
);
6279 for_each_sched_entity(se
)
6280 update_cfs_shares(group_cfs_rq(se
));
6281 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6285 mutex_unlock(&shares_mutex
);
6288 #else /* CONFIG_FAIR_GROUP_SCHED */
6290 void free_fair_sched_group(struct task_group
*tg
) { }
6292 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
6297 void unregister_fair_sched_group(struct task_group
*tg
, int cpu
) { }
6299 #endif /* CONFIG_FAIR_GROUP_SCHED */
6302 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
6304 struct sched_entity
*se
= &task
->se
;
6305 unsigned int rr_interval
= 0;
6308 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6311 if (rq
->cfs
.load
.weight
)
6312 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
6318 * All the scheduling class methods:
6320 const struct sched_class fair_sched_class
= {
6321 .next
= &idle_sched_class
,
6322 .enqueue_task
= enqueue_task_fair
,
6323 .dequeue_task
= dequeue_task_fair
,
6324 .yield_task
= yield_task_fair
,
6325 .yield_to_task
= yield_to_task_fair
,
6327 .check_preempt_curr
= check_preempt_wakeup
,
6329 .pick_next_task
= pick_next_task_fair
,
6330 .put_prev_task
= put_prev_task_fair
,
6333 .select_task_rq
= select_task_rq_fair
,
6334 .migrate_task_rq
= migrate_task_rq_fair
,
6336 .rq_online
= rq_online_fair
,
6337 .rq_offline
= rq_offline_fair
,
6339 .task_waking
= task_waking_fair
,
6342 .set_curr_task
= set_curr_task_fair
,
6343 .task_tick
= task_tick_fair
,
6344 .task_fork
= task_fork_fair
,
6346 .prio_changed
= prio_changed_fair
,
6347 .switched_from
= switched_from_fair
,
6348 .switched_to
= switched_to_fair
,
6350 .get_rr_interval
= get_rr_interval_fair
,
6352 #ifdef CONFIG_FAIR_GROUP_SCHED
6353 .task_move_group
= task_move_group_fair
,
6357 #ifdef CONFIG_SCHED_DEBUG
6358 void print_cfs_stats(struct seq_file
*m
, int cpu
)
6360 struct cfs_rq
*cfs_rq
;
6363 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
6364 print_cfs_rq(m
, cpu
, cfs_rq
);
6369 __init
void init_sched_fair_class(void)
6372 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
6374 #ifdef CONFIG_NO_HZ_COMMON
6375 nohz
.next_balance
= jiffies
;
6376 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
6377 cpu_notifier(sched_ilb_notifier
, 0);