x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / kernel / time / alarmtimer.c
blobfe75444ae7ec3847484e8ba5891320829ae45dc9
1 /*
2 * Alarmtimer interface
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
10 * Copyright (C) 2010 IBM Corperation
12 * Author: John Stultz <john.stultz@linaro.org>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
29 /**
30 * struct alarm_base - Alarm timer bases
31 * @lock: Lock for syncrhonized access to the base
32 * @timerqueue: Timerqueue head managing the list of events
33 * @timer: hrtimer used to schedule events while running
34 * @gettime: Function to read the time correlating to the base
35 * @base_clockid: clockid for the base
37 static struct alarm_base {
38 spinlock_t lock;
39 struct timerqueue_head timerqueue;
40 ktime_t (*gettime)(void);
41 clockid_t base_clockid;
42 } alarm_bases[ALARM_NUMTYPE];
44 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
45 static ktime_t freezer_delta;
46 static DEFINE_SPINLOCK(freezer_delta_lock);
48 static struct wakeup_source *ws;
50 #ifdef CONFIG_RTC_CLASS
51 /* rtc timer and device for setting alarm wakeups at suspend */
52 static struct rtc_timer rtctimer;
53 static struct rtc_device *rtcdev;
54 static DEFINE_SPINLOCK(rtcdev_lock);
56 /**
57 * alarmtimer_get_rtcdev - Return selected rtcdevice
59 * This function returns the rtc device to use for wakealarms.
60 * If one has not already been chosen, it checks to see if a
61 * functional rtc device is available.
63 struct rtc_device *alarmtimer_get_rtcdev(void)
65 unsigned long flags;
66 struct rtc_device *ret;
68 spin_lock_irqsave(&rtcdev_lock, flags);
69 ret = rtcdev;
70 spin_unlock_irqrestore(&rtcdev_lock, flags);
72 return ret;
76 static int alarmtimer_rtc_add_device(struct device *dev,
77 struct class_interface *class_intf)
79 unsigned long flags;
80 struct rtc_device *rtc = to_rtc_device(dev);
82 if (rtcdev)
83 return -EBUSY;
85 if (!rtc->ops->set_alarm)
86 return -1;
87 if (!device_may_wakeup(rtc->dev.parent))
88 return -1;
90 spin_lock_irqsave(&rtcdev_lock, flags);
91 if (!rtcdev) {
92 rtcdev = rtc;
93 /* hold a reference so it doesn't go away */
94 get_device(dev);
96 spin_unlock_irqrestore(&rtcdev_lock, flags);
97 return 0;
100 static inline void alarmtimer_rtc_timer_init(void)
102 rtc_timer_init(&rtctimer, NULL, NULL);
105 static struct class_interface alarmtimer_rtc_interface = {
106 .add_dev = &alarmtimer_rtc_add_device,
109 static int alarmtimer_rtc_interface_setup(void)
111 alarmtimer_rtc_interface.class = rtc_class;
112 return class_interface_register(&alarmtimer_rtc_interface);
114 static void alarmtimer_rtc_interface_remove(void)
116 class_interface_unregister(&alarmtimer_rtc_interface);
118 #else
119 struct rtc_device *alarmtimer_get_rtcdev(void)
121 return NULL;
123 #define rtcdev (NULL)
124 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125 static inline void alarmtimer_rtc_interface_remove(void) { }
126 static inline void alarmtimer_rtc_timer_init(void) { }
127 #endif
130 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
131 * @base: pointer to the base where the timer is being run
132 * @alarm: pointer to alarm being enqueued.
134 * Adds alarm to a alarm_base timerqueue
136 * Must hold base->lock when calling.
138 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
140 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141 timerqueue_del(&base->timerqueue, &alarm->node);
143 timerqueue_add(&base->timerqueue, &alarm->node);
144 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
148 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149 * @base: pointer to the base where the timer is running
150 * @alarm: pointer to alarm being removed
152 * Removes alarm to a alarm_base timerqueue
154 * Must hold base->lock when calling.
156 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
158 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159 return;
161 timerqueue_del(&base->timerqueue, &alarm->node);
162 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
167 * alarmtimer_fired - Handles alarm hrtimer being fired.
168 * @timer: pointer to hrtimer being run
170 * When a alarm timer fires, this runs through the timerqueue to
171 * see which alarms expired, and runs those. If there are more alarm
172 * timers queued for the future, we set the hrtimer to fire when
173 * when the next future alarm timer expires.
175 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
177 struct alarm *alarm = container_of(timer, struct alarm, timer);
178 struct alarm_base *base = &alarm_bases[alarm->type];
179 unsigned long flags;
180 int ret = HRTIMER_NORESTART;
181 int restart = ALARMTIMER_NORESTART;
183 spin_lock_irqsave(&base->lock, flags);
184 alarmtimer_dequeue(base, alarm);
185 spin_unlock_irqrestore(&base->lock, flags);
187 if (alarm->function)
188 restart = alarm->function(alarm, base->gettime());
190 spin_lock_irqsave(&base->lock, flags);
191 if (restart != ALARMTIMER_NORESTART) {
192 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193 alarmtimer_enqueue(base, alarm);
194 ret = HRTIMER_RESTART;
196 spin_unlock_irqrestore(&base->lock, flags);
198 return ret;
202 ktime_t alarm_expires_remaining(const struct alarm *alarm)
204 struct alarm_base *base = &alarm_bases[alarm->type];
205 return ktime_sub(alarm->node.expires, base->gettime());
207 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
209 #ifdef CONFIG_RTC_CLASS
211 * alarmtimer_suspend - Suspend time callback
212 * @dev: unused
213 * @state: unused
215 * When we are going into suspend, we look through the bases
216 * to see which is the soonest timer to expire. We then
217 * set an rtc timer to fire that far into the future, which
218 * will wake us from suspend.
220 static int alarmtimer_suspend(struct device *dev)
222 struct rtc_time tm;
223 ktime_t min, now;
224 unsigned long flags;
225 struct rtc_device *rtc;
226 int i;
227 int ret;
229 spin_lock_irqsave(&freezer_delta_lock, flags);
230 min = freezer_delta;
231 freezer_delta = ktime_set(0, 0);
232 spin_unlock_irqrestore(&freezer_delta_lock, flags);
234 rtc = alarmtimer_get_rtcdev();
235 /* If we have no rtcdev, just return */
236 if (!rtc)
237 return 0;
239 /* Find the soonest timer to expire*/
240 for (i = 0; i < ALARM_NUMTYPE; i++) {
241 struct alarm_base *base = &alarm_bases[i];
242 struct timerqueue_node *next;
243 ktime_t delta;
245 spin_lock_irqsave(&base->lock, flags);
246 next = timerqueue_getnext(&base->timerqueue);
247 spin_unlock_irqrestore(&base->lock, flags);
248 if (!next)
249 continue;
250 delta = ktime_sub(next->expires, base->gettime());
251 if (!min.tv64 || (delta.tv64 < min.tv64))
252 min = delta;
254 if (min.tv64 == 0)
255 return 0;
257 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259 return -EBUSY;
262 /* Setup an rtc timer to fire that far in the future */
263 rtc_timer_cancel(rtc, &rtctimer);
264 rtc_read_time(rtc, &tm);
265 now = rtc_tm_to_ktime(tm);
266 now = ktime_add(now, min);
268 /* Set alarm, if in the past reject suspend briefly to handle */
269 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270 if (ret < 0)
271 __pm_wakeup_event(ws, MSEC_PER_SEC);
272 return ret;
274 #else
275 static int alarmtimer_suspend(struct device *dev)
277 return 0;
279 #endif
281 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
283 ktime_t delta;
284 unsigned long flags;
285 struct alarm_base *base = &alarm_bases[type];
287 delta = ktime_sub(absexp, base->gettime());
289 spin_lock_irqsave(&freezer_delta_lock, flags);
290 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
291 freezer_delta = delta;
292 spin_unlock_irqrestore(&freezer_delta_lock, flags);
297 * alarm_init - Initialize an alarm structure
298 * @alarm: ptr to alarm to be initialized
299 * @type: the type of the alarm
300 * @function: callback that is run when the alarm fires
302 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
303 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
305 timerqueue_init(&alarm->node);
306 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
307 HRTIMER_MODE_ABS);
308 alarm->timer.function = alarmtimer_fired;
309 alarm->function = function;
310 alarm->type = type;
311 alarm->state = ALARMTIMER_STATE_INACTIVE;
313 EXPORT_SYMBOL_GPL(alarm_init);
316 * alarm_start - Sets an absolute alarm to fire
317 * @alarm: ptr to alarm to set
318 * @start: time to run the alarm
320 int alarm_start(struct alarm *alarm, ktime_t start)
322 struct alarm_base *base = &alarm_bases[alarm->type];
323 unsigned long flags;
324 int ret;
326 spin_lock_irqsave(&base->lock, flags);
327 alarm->node.expires = start;
328 alarmtimer_enqueue(base, alarm);
329 ret = hrtimer_start(&alarm->timer, alarm->node.expires,
330 HRTIMER_MODE_ABS);
331 spin_unlock_irqrestore(&base->lock, flags);
332 return ret;
334 EXPORT_SYMBOL_GPL(alarm_start);
337 * alarm_start_relative - Sets a relative alarm to fire
338 * @alarm: ptr to alarm to set
339 * @start: time relative to now to run the alarm
341 int alarm_start_relative(struct alarm *alarm, ktime_t start)
343 struct alarm_base *base = &alarm_bases[alarm->type];
345 start = ktime_add(start, base->gettime());
346 return alarm_start(alarm, start);
348 EXPORT_SYMBOL_GPL(alarm_start_relative);
350 void alarm_restart(struct alarm *alarm)
352 struct alarm_base *base = &alarm_bases[alarm->type];
353 unsigned long flags;
355 spin_lock_irqsave(&base->lock, flags);
356 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
357 hrtimer_restart(&alarm->timer);
358 alarmtimer_enqueue(base, alarm);
359 spin_unlock_irqrestore(&base->lock, flags);
361 EXPORT_SYMBOL_GPL(alarm_restart);
364 * alarm_try_to_cancel - Tries to cancel an alarm timer
365 * @alarm: ptr to alarm to be canceled
367 * Returns 1 if the timer was canceled, 0 if it was not running,
368 * and -1 if the callback was running
370 int alarm_try_to_cancel(struct alarm *alarm)
372 struct alarm_base *base = &alarm_bases[alarm->type];
373 unsigned long flags;
374 int ret;
376 spin_lock_irqsave(&base->lock, flags);
377 ret = hrtimer_try_to_cancel(&alarm->timer);
378 if (ret >= 0)
379 alarmtimer_dequeue(base, alarm);
380 spin_unlock_irqrestore(&base->lock, flags);
381 return ret;
383 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
387 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
388 * @alarm: ptr to alarm to be canceled
390 * Returns 1 if the timer was canceled, 0 if it was not active.
392 int alarm_cancel(struct alarm *alarm)
394 for (;;) {
395 int ret = alarm_try_to_cancel(alarm);
396 if (ret >= 0)
397 return ret;
398 cpu_relax();
401 EXPORT_SYMBOL_GPL(alarm_cancel);
404 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
406 u64 overrun = 1;
407 ktime_t delta;
409 delta = ktime_sub(now, alarm->node.expires);
411 if (delta.tv64 < 0)
412 return 0;
414 if (unlikely(delta.tv64 >= interval.tv64)) {
415 s64 incr = ktime_to_ns(interval);
417 overrun = ktime_divns(delta, incr);
419 alarm->node.expires = ktime_add_ns(alarm->node.expires,
420 incr*overrun);
422 if (alarm->node.expires.tv64 > now.tv64)
423 return overrun;
425 * This (and the ktime_add() below) is the
426 * correction for exact:
428 overrun++;
431 alarm->node.expires = ktime_add(alarm->node.expires, interval);
432 return overrun;
434 EXPORT_SYMBOL_GPL(alarm_forward);
436 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
438 struct alarm_base *base = &alarm_bases[alarm->type];
440 return alarm_forward(alarm, base->gettime(), interval);
442 EXPORT_SYMBOL_GPL(alarm_forward_now);
446 * clock2alarm - helper that converts from clockid to alarmtypes
447 * @clockid: clockid.
449 static enum alarmtimer_type clock2alarm(clockid_t clockid)
451 if (clockid == CLOCK_REALTIME_ALARM)
452 return ALARM_REALTIME;
453 if (clockid == CLOCK_BOOTTIME_ALARM)
454 return ALARM_BOOTTIME;
455 return -1;
459 * alarm_handle_timer - Callback for posix timers
460 * @alarm: alarm that fired
462 * Posix timer callback for expired alarm timers.
464 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
465 ktime_t now)
467 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
468 it.alarm.alarmtimer);
469 if (posix_timer_event(ptr, 0) != 0)
470 ptr->it_overrun++;
472 /* Re-add periodic timers */
473 if (ptr->it.alarm.interval.tv64) {
474 ptr->it_overrun += alarm_forward(alarm, now,
475 ptr->it.alarm.interval);
476 return ALARMTIMER_RESTART;
478 return ALARMTIMER_NORESTART;
482 * alarm_clock_getres - posix getres interface
483 * @which_clock: clockid
484 * @tp: timespec to fill
486 * Returns the granularity of underlying alarm base clock
488 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
490 clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
492 if (!alarmtimer_get_rtcdev())
493 return -EINVAL;
495 return hrtimer_get_res(baseid, tp);
499 * alarm_clock_get - posix clock_get interface
500 * @which_clock: clockid
501 * @tp: timespec to fill.
503 * Provides the underlying alarm base time.
505 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
507 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
509 if (!alarmtimer_get_rtcdev())
510 return -EINVAL;
512 *tp = ktime_to_timespec(base->gettime());
513 return 0;
517 * alarm_timer_create - posix timer_create interface
518 * @new_timer: k_itimer pointer to manage
520 * Initializes the k_itimer structure.
522 static int alarm_timer_create(struct k_itimer *new_timer)
524 enum alarmtimer_type type;
525 struct alarm_base *base;
527 if (!alarmtimer_get_rtcdev())
528 return -ENOTSUPP;
530 if (!capable(CAP_WAKE_ALARM))
531 return -EPERM;
533 type = clock2alarm(new_timer->it_clock);
534 base = &alarm_bases[type];
535 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
536 return 0;
540 * alarm_timer_get - posix timer_get interface
541 * @new_timer: k_itimer pointer
542 * @cur_setting: itimerspec data to fill
544 * Copies the itimerspec data out from the k_itimer
546 static void alarm_timer_get(struct k_itimer *timr,
547 struct itimerspec *cur_setting)
549 memset(cur_setting, 0, sizeof(struct itimerspec));
551 cur_setting->it_interval =
552 ktime_to_timespec(timr->it.alarm.interval);
553 cur_setting->it_value =
554 ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
555 return;
559 * alarm_timer_del - posix timer_del interface
560 * @timr: k_itimer pointer to be deleted
562 * Cancels any programmed alarms for the given timer.
564 static int alarm_timer_del(struct k_itimer *timr)
566 if (!rtcdev)
567 return -ENOTSUPP;
569 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
570 return TIMER_RETRY;
572 return 0;
576 * alarm_timer_set - posix timer_set interface
577 * @timr: k_itimer pointer to be deleted
578 * @flags: timer flags
579 * @new_setting: itimerspec to be used
580 * @old_setting: itimerspec being replaced
582 * Sets the timer to new_setting, and starts the timer.
584 static int alarm_timer_set(struct k_itimer *timr, int flags,
585 struct itimerspec *new_setting,
586 struct itimerspec *old_setting)
588 ktime_t exp;
590 if (!rtcdev)
591 return -ENOTSUPP;
593 if (flags & ~TIMER_ABSTIME)
594 return -EINVAL;
596 if (old_setting)
597 alarm_timer_get(timr, old_setting);
599 /* If the timer was already set, cancel it */
600 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
601 return TIMER_RETRY;
603 /* start the timer */
604 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
605 exp = timespec_to_ktime(new_setting->it_value);
606 /* Convert (if necessary) to absolute time */
607 if (flags != TIMER_ABSTIME) {
608 ktime_t now;
610 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
611 exp = ktime_add(now, exp);
614 alarm_start(&timr->it.alarm.alarmtimer, exp);
615 return 0;
619 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
620 * @alarm: ptr to alarm that fired
622 * Wakes up the task that set the alarmtimer
624 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
625 ktime_t now)
627 struct task_struct *task = (struct task_struct *)alarm->data;
629 alarm->data = NULL;
630 if (task)
631 wake_up_process(task);
632 return ALARMTIMER_NORESTART;
636 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
637 * @alarm: ptr to alarmtimer
638 * @absexp: absolute expiration time
640 * Sets the alarm timer and sleeps until it is fired or interrupted.
642 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
644 alarm->data = (void *)current;
645 do {
646 set_current_state(TASK_INTERRUPTIBLE);
647 alarm_start(alarm, absexp);
648 if (likely(alarm->data))
649 schedule();
651 alarm_cancel(alarm);
652 } while (alarm->data && !signal_pending(current));
654 __set_current_state(TASK_RUNNING);
656 return (alarm->data == NULL);
661 * update_rmtp - Update remaining timespec value
662 * @exp: expiration time
663 * @type: timer type
664 * @rmtp: user pointer to remaining timepsec value
666 * Helper function that fills in rmtp value with time between
667 * now and the exp value
669 static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
670 struct timespec __user *rmtp)
672 struct timespec rmt;
673 ktime_t rem;
675 rem = ktime_sub(exp, alarm_bases[type].gettime());
677 if (rem.tv64 <= 0)
678 return 0;
679 rmt = ktime_to_timespec(rem);
681 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
682 return -EFAULT;
684 return 1;
689 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
690 * @restart: ptr to restart block
692 * Handles restarted clock_nanosleep calls
694 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
696 enum alarmtimer_type type = restart->nanosleep.clockid;
697 ktime_t exp;
698 struct timespec __user *rmtp;
699 struct alarm alarm;
700 int ret = 0;
702 exp.tv64 = restart->nanosleep.expires;
703 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
705 if (alarmtimer_do_nsleep(&alarm, exp))
706 goto out;
708 if (freezing(current))
709 alarmtimer_freezerset(exp, type);
711 rmtp = restart->nanosleep.rmtp;
712 if (rmtp) {
713 ret = update_rmtp(exp, type, rmtp);
714 if (ret <= 0)
715 goto out;
719 /* The other values in restart are already filled in */
720 ret = -ERESTART_RESTARTBLOCK;
721 out:
722 return ret;
726 * alarm_timer_nsleep - alarmtimer nanosleep
727 * @which_clock: clockid
728 * @flags: determins abstime or relative
729 * @tsreq: requested sleep time (abs or rel)
730 * @rmtp: remaining sleep time saved
732 * Handles clock_nanosleep calls against _ALARM clockids
734 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
735 struct timespec *tsreq, struct timespec __user *rmtp)
737 enum alarmtimer_type type = clock2alarm(which_clock);
738 struct alarm alarm;
739 ktime_t exp;
740 int ret = 0;
741 struct restart_block *restart;
743 if (!alarmtimer_get_rtcdev())
744 return -ENOTSUPP;
746 if (flags & ~TIMER_ABSTIME)
747 return -EINVAL;
749 if (!capable(CAP_WAKE_ALARM))
750 return -EPERM;
752 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
754 exp = timespec_to_ktime(*tsreq);
755 /* Convert (if necessary) to absolute time */
756 if (flags != TIMER_ABSTIME) {
757 ktime_t now = alarm_bases[type].gettime();
758 exp = ktime_add(now, exp);
761 if (alarmtimer_do_nsleep(&alarm, exp))
762 goto out;
764 if (freezing(current))
765 alarmtimer_freezerset(exp, type);
767 /* abs timers don't set remaining time or restart */
768 if (flags == TIMER_ABSTIME) {
769 ret = -ERESTARTNOHAND;
770 goto out;
773 if (rmtp) {
774 ret = update_rmtp(exp, type, rmtp);
775 if (ret <= 0)
776 goto out;
779 restart = &current_thread_info()->restart_block;
780 restart->fn = alarm_timer_nsleep_restart;
781 restart->nanosleep.clockid = type;
782 restart->nanosleep.expires = exp.tv64;
783 restart->nanosleep.rmtp = rmtp;
784 ret = -ERESTART_RESTARTBLOCK;
786 out:
787 return ret;
791 /* Suspend hook structures */
792 static const struct dev_pm_ops alarmtimer_pm_ops = {
793 .suspend = alarmtimer_suspend,
796 static struct platform_driver alarmtimer_driver = {
797 .driver = {
798 .name = "alarmtimer",
799 .pm = &alarmtimer_pm_ops,
804 * alarmtimer_init - Initialize alarm timer code
806 * This function initializes the alarm bases and registers
807 * the posix clock ids.
809 static int __init alarmtimer_init(void)
811 struct platform_device *pdev;
812 int error = 0;
813 int i;
814 struct k_clock alarm_clock = {
815 .clock_getres = alarm_clock_getres,
816 .clock_get = alarm_clock_get,
817 .timer_create = alarm_timer_create,
818 .timer_set = alarm_timer_set,
819 .timer_del = alarm_timer_del,
820 .timer_get = alarm_timer_get,
821 .nsleep = alarm_timer_nsleep,
824 alarmtimer_rtc_timer_init();
826 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
827 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
829 /* Initialize alarm bases */
830 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
831 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
832 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
833 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
834 for (i = 0; i < ALARM_NUMTYPE; i++) {
835 timerqueue_init_head(&alarm_bases[i].timerqueue);
836 spin_lock_init(&alarm_bases[i].lock);
839 error = alarmtimer_rtc_interface_setup();
840 if (error)
841 return error;
843 error = platform_driver_register(&alarmtimer_driver);
844 if (error)
845 goto out_if;
847 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
848 if (IS_ERR(pdev)) {
849 error = PTR_ERR(pdev);
850 goto out_drv;
852 ws = wakeup_source_register("alarmtimer");
853 return 0;
855 out_drv:
856 platform_driver_unregister(&alarmtimer_driver);
857 out_if:
858 alarmtimer_rtc_interface_remove();
859 return error;
861 device_initcall(alarmtimer_init);