x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / kernel / trace / ring_buffer.c
bloba758ec217bc03cc540a0ff19d338f665055140fb
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct *work);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq *s)
37 int ret;
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 return ret;
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
151 enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
156 enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
169 * tracing_off_permanent - permanently disable ring buffers
171 * This function, once called, will disable all ring buffers
172 * permanently.
174 void tracing_off_permanent(void)
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
190 #endif
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
197 enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
205 static inline int rb_null_event(struct ring_buffer_event *event)
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
210 static void rb_event_set_padding(struct ring_buffer_event *event)
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
220 unsigned length;
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
255 /* not hit */
256 return 0;
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
266 unsigned len = 0;
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
273 return len + rb_event_length(event);
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
288 unsigned length;
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
323 return rb_event_data(event);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
330 #define TS_SHIFT 27
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
339 struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
353 struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
372 * The counter is 20 bits, and the state data is 12.
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
377 static void rb_init_page(struct buffer_data_page *bpage)
379 local_set(&bpage->commit, 0);
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
386 * Returns the amount of data on the page, including buffer page header.
388 size_t ring_buffer_page_len(void *page)
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
398 static void free_buffer_page(struct buffer_page *bpage)
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
405 * We need to fit the time_stamp delta into 27 bits.
407 static inline int test_time_stamp(u64 delta)
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
419 int ring_buffer_print_page_header(struct trace_seq *s)
421 struct buffer_data_page field;
422 int ret;
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
439 (unsigned int)is_signed_type(long));
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
447 return ret;
450 struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
457 * head_page == tail_page && head == tail then buffer is empty.
459 struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
491 struct rb_irq_work irq_work;
494 struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
501 struct lock_class_key *reader_lock_key;
503 struct mutex mutex;
505 struct ring_buffer_per_cpu **buffers;
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509 #endif
510 u64 (*clock)(void);
512 struct rb_irq_work irq_work;
515 struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
530 static void rb_wake_up_waiters(struct irq_work *work)
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
534 wake_up_all(&rbwork->waiters);
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 return -ENODEV;
562 cpu_buffer = buffer->buffers[cpu];
563 work = &cpu_buffer->irq_work;
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
589 work->waiters_pending = true;
591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 schedule();
595 finish_wait(&work->waiters, &wait);
596 return 0;
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611 * zero otherwise.
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 struct file *filp, poll_table *poll_table)
616 struct ring_buffer_per_cpu *cpu_buffer;
617 struct rb_irq_work *work;
619 if (cpu == RING_BUFFER_ALL_CPUS)
620 work = &buffer->irq_work;
621 else {
622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 return -EINVAL;
625 cpu_buffer = buffer->buffers[cpu];
626 work = &cpu_buffer->irq_work;
629 work->waiters_pending = true;
630 poll_wait(filp, &work->waiters, poll_table);
632 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
633 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
634 return POLLIN | POLLRDNORM;
635 return 0;
638 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
639 #define RB_WARN_ON(b, cond) \
640 ({ \
641 int _____ret = unlikely(cond); \
642 if (_____ret) { \
643 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
644 struct ring_buffer_per_cpu *__b = \
645 (void *)b; \
646 atomic_inc(&__b->buffer->record_disabled); \
647 } else \
648 atomic_inc(&b->record_disabled); \
649 WARN_ON(1); \
651 _____ret; \
654 /* Up this if you want to test the TIME_EXTENTS and normalization */
655 #define DEBUG_SHIFT 0
657 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
659 /* shift to debug/test normalization and TIME_EXTENTS */
660 return buffer->clock() << DEBUG_SHIFT;
663 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665 u64 time;
667 preempt_disable_notrace();
668 time = rb_time_stamp(buffer);
669 preempt_enable_no_resched_notrace();
671 return time;
673 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
676 int cpu, u64 *ts)
678 /* Just stupid testing the normalize function and deltas */
679 *ts >>= DEBUG_SHIFT;
681 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
684 * Making the ring buffer lockless makes things tricky.
685 * Although writes only happen on the CPU that they are on,
686 * and they only need to worry about interrupts. Reads can
687 * happen on any CPU.
689 * The reader page is always off the ring buffer, but when the
690 * reader finishes with a page, it needs to swap its page with
691 * a new one from the buffer. The reader needs to take from
692 * the head (writes go to the tail). But if a writer is in overwrite
693 * mode and wraps, it must push the head page forward.
695 * Here lies the problem.
697 * The reader must be careful to replace only the head page, and
698 * not another one. As described at the top of the file in the
699 * ASCII art, the reader sets its old page to point to the next
700 * page after head. It then sets the page after head to point to
701 * the old reader page. But if the writer moves the head page
702 * during this operation, the reader could end up with the tail.
704 * We use cmpxchg to help prevent this race. We also do something
705 * special with the page before head. We set the LSB to 1.
707 * When the writer must push the page forward, it will clear the
708 * bit that points to the head page, move the head, and then set
709 * the bit that points to the new head page.
711 * We also don't want an interrupt coming in and moving the head
712 * page on another writer. Thus we use the second LSB to catch
713 * that too. Thus:
715 * head->list->prev->next bit 1 bit 0
716 * ------- -------
717 * Normal page 0 0
718 * Points to head page 0 1
719 * New head page 1 0
721 * Note we can not trust the prev pointer of the head page, because:
723 * +----+ +-----+ +-----+
724 * | |------>| T |---X--->| N |
725 * | |<------| | | |
726 * +----+ +-----+ +-----+
727 * ^ ^ |
728 * | +-----+ | |
729 * +----------| R |----------+ |
730 * | |<-----------+
731 * +-----+
733 * Key: ---X--> HEAD flag set in pointer
734 * T Tail page
735 * R Reader page
736 * N Next page
738 * (see __rb_reserve_next() to see where this happens)
740 * What the above shows is that the reader just swapped out
741 * the reader page with a page in the buffer, but before it
742 * could make the new header point back to the new page added
743 * it was preempted by a writer. The writer moved forward onto
744 * the new page added by the reader and is about to move forward
745 * again.
747 * You can see, it is legitimate for the previous pointer of
748 * the head (or any page) not to point back to itself. But only
749 * temporarially.
752 #define RB_PAGE_NORMAL 0UL
753 #define RB_PAGE_HEAD 1UL
754 #define RB_PAGE_UPDATE 2UL
757 #define RB_FLAG_MASK 3UL
759 /* PAGE_MOVED is not part of the mask */
760 #define RB_PAGE_MOVED 4UL
763 * rb_list_head - remove any bit
765 static struct list_head *rb_list_head(struct list_head *list)
767 unsigned long val = (unsigned long)list;
769 return (struct list_head *)(val & ~RB_FLAG_MASK);
773 * rb_is_head_page - test if the given page is the head page
775 * Because the reader may move the head_page pointer, we can
776 * not trust what the head page is (it may be pointing to
777 * the reader page). But if the next page is a header page,
778 * its flags will be non zero.
780 static inline int
781 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
782 struct buffer_page *page, struct list_head *list)
784 unsigned long val;
786 val = (unsigned long)list->next;
788 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
789 return RB_PAGE_MOVED;
791 return val & RB_FLAG_MASK;
795 * rb_is_reader_page
797 * The unique thing about the reader page, is that, if the
798 * writer is ever on it, the previous pointer never points
799 * back to the reader page.
801 static int rb_is_reader_page(struct buffer_page *page)
803 struct list_head *list = page->list.prev;
805 return rb_list_head(list->next) != &page->list;
809 * rb_set_list_to_head - set a list_head to be pointing to head.
811 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
812 struct list_head *list)
814 unsigned long *ptr;
816 ptr = (unsigned long *)&list->next;
817 *ptr |= RB_PAGE_HEAD;
818 *ptr &= ~RB_PAGE_UPDATE;
822 * rb_head_page_activate - sets up head page
824 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826 struct buffer_page *head;
828 head = cpu_buffer->head_page;
829 if (!head)
830 return;
833 * Set the previous list pointer to have the HEAD flag.
835 rb_set_list_to_head(cpu_buffer, head->list.prev);
838 static void rb_list_head_clear(struct list_head *list)
840 unsigned long *ptr = (unsigned long *)&list->next;
842 *ptr &= ~RB_FLAG_MASK;
846 * rb_head_page_dactivate - clears head page ptr (for free list)
848 static void
849 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851 struct list_head *hd;
853 /* Go through the whole list and clear any pointers found. */
854 rb_list_head_clear(cpu_buffer->pages);
856 list_for_each(hd, cpu_buffer->pages)
857 rb_list_head_clear(hd);
860 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
861 struct buffer_page *head,
862 struct buffer_page *prev,
863 int old_flag, int new_flag)
865 struct list_head *list;
866 unsigned long val = (unsigned long)&head->list;
867 unsigned long ret;
869 list = &prev->list;
871 val &= ~RB_FLAG_MASK;
873 ret = cmpxchg((unsigned long *)&list->next,
874 val | old_flag, val | new_flag);
876 /* check if the reader took the page */
877 if ((ret & ~RB_FLAG_MASK) != val)
878 return RB_PAGE_MOVED;
880 return ret & RB_FLAG_MASK;
883 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
884 struct buffer_page *head,
885 struct buffer_page *prev,
886 int old_flag)
888 return rb_head_page_set(cpu_buffer, head, prev,
889 old_flag, RB_PAGE_UPDATE);
892 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
893 struct buffer_page *head,
894 struct buffer_page *prev,
895 int old_flag)
897 return rb_head_page_set(cpu_buffer, head, prev,
898 old_flag, RB_PAGE_HEAD);
901 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
902 struct buffer_page *head,
903 struct buffer_page *prev,
904 int old_flag)
906 return rb_head_page_set(cpu_buffer, head, prev,
907 old_flag, RB_PAGE_NORMAL);
910 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
911 struct buffer_page **bpage)
913 struct list_head *p = rb_list_head((*bpage)->list.next);
915 *bpage = list_entry(p, struct buffer_page, list);
918 static struct buffer_page *
919 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921 struct buffer_page *head;
922 struct buffer_page *page;
923 struct list_head *list;
924 int i;
926 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
927 return NULL;
929 /* sanity check */
930 list = cpu_buffer->pages;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
932 return NULL;
934 page = head = cpu_buffer->head_page;
936 * It is possible that the writer moves the header behind
937 * where we started, and we miss in one loop.
938 * A second loop should grab the header, but we'll do
939 * three loops just because I'm paranoid.
941 for (i = 0; i < 3; i++) {
942 do {
943 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
944 cpu_buffer->head_page = page;
945 return page;
947 rb_inc_page(cpu_buffer, &page);
948 } while (page != head);
951 RB_WARN_ON(cpu_buffer, 1);
953 return NULL;
956 static int rb_head_page_replace(struct buffer_page *old,
957 struct buffer_page *new)
959 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
960 unsigned long val;
961 unsigned long ret;
963 val = *ptr & ~RB_FLAG_MASK;
964 val |= RB_PAGE_HEAD;
966 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
968 return ret == val;
972 * rb_tail_page_update - move the tail page forward
974 * Returns 1 if moved tail page, 0 if someone else did.
976 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
977 struct buffer_page *tail_page,
978 struct buffer_page *next_page)
980 struct buffer_page *old_tail;
981 unsigned long old_entries;
982 unsigned long old_write;
983 int ret = 0;
986 * The tail page now needs to be moved forward.
988 * We need to reset the tail page, but without messing
989 * with possible erasing of data brought in by interrupts
990 * that have moved the tail page and are currently on it.
992 * We add a counter to the write field to denote this.
994 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
995 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
998 * Just make sure we have seen our old_write and synchronize
999 * with any interrupts that come in.
1001 barrier();
1004 * If the tail page is still the same as what we think
1005 * it is, then it is up to us to update the tail
1006 * pointer.
1008 if (tail_page == cpu_buffer->tail_page) {
1009 /* Zero the write counter */
1010 unsigned long val = old_write & ~RB_WRITE_MASK;
1011 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1014 * This will only succeed if an interrupt did
1015 * not come in and change it. In which case, we
1016 * do not want to modify it.
1018 * We add (void) to let the compiler know that we do not care
1019 * about the return value of these functions. We use the
1020 * cmpxchg to only update if an interrupt did not already
1021 * do it for us. If the cmpxchg fails, we don't care.
1023 (void)local_cmpxchg(&next_page->write, old_write, val);
1024 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1027 * No need to worry about races with clearing out the commit.
1028 * it only can increment when a commit takes place. But that
1029 * only happens in the outer most nested commit.
1031 local_set(&next_page->page->commit, 0);
1033 old_tail = cmpxchg(&cpu_buffer->tail_page,
1034 tail_page, next_page);
1036 if (old_tail == tail_page)
1037 ret = 1;
1040 return ret;
1043 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1044 struct buffer_page *bpage)
1046 unsigned long val = (unsigned long)bpage;
1048 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1049 return 1;
1051 return 0;
1055 * rb_check_list - make sure a pointer to a list has the last bits zero
1057 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1058 struct list_head *list)
1060 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1061 return 1;
1062 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1063 return 1;
1064 return 0;
1068 * rb_check_pages - integrity check of buffer pages
1069 * @cpu_buffer: CPU buffer with pages to test
1071 * As a safety measure we check to make sure the data pages have not
1072 * been corrupted.
1074 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076 struct list_head *head = cpu_buffer->pages;
1077 struct buffer_page *bpage, *tmp;
1079 /* Reset the head page if it exists */
1080 if (cpu_buffer->head_page)
1081 rb_set_head_page(cpu_buffer);
1083 rb_head_page_deactivate(cpu_buffer);
1085 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1086 return -1;
1087 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1088 return -1;
1090 if (rb_check_list(cpu_buffer, head))
1091 return -1;
1093 list_for_each_entry_safe(bpage, tmp, head, list) {
1094 if (RB_WARN_ON(cpu_buffer,
1095 bpage->list.next->prev != &bpage->list))
1096 return -1;
1097 if (RB_WARN_ON(cpu_buffer,
1098 bpage->list.prev->next != &bpage->list))
1099 return -1;
1100 if (rb_check_list(cpu_buffer, &bpage->list))
1101 return -1;
1104 rb_head_page_activate(cpu_buffer);
1106 return 0;
1109 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111 int i;
1112 struct buffer_page *bpage, *tmp;
1114 for (i = 0; i < nr_pages; i++) {
1115 struct page *page;
1117 * __GFP_NORETRY flag makes sure that the allocation fails
1118 * gracefully without invoking oom-killer and the system is
1119 * not destabilized.
1121 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1122 GFP_KERNEL | __GFP_NORETRY,
1123 cpu_to_node(cpu));
1124 if (!bpage)
1125 goto free_pages;
1127 list_add(&bpage->list, pages);
1129 page = alloc_pages_node(cpu_to_node(cpu),
1130 GFP_KERNEL | __GFP_NORETRY, 0);
1131 if (!page)
1132 goto free_pages;
1133 bpage->page = page_address(page);
1134 rb_init_page(bpage->page);
1137 return 0;
1139 free_pages:
1140 list_for_each_entry_safe(bpage, tmp, pages, list) {
1141 list_del_init(&bpage->list);
1142 free_buffer_page(bpage);
1145 return -ENOMEM;
1148 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1149 unsigned nr_pages)
1151 LIST_HEAD(pages);
1153 WARN_ON(!nr_pages);
1155 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1156 return -ENOMEM;
1159 * The ring buffer page list is a circular list that does not
1160 * start and end with a list head. All page list items point to
1161 * other pages.
1163 cpu_buffer->pages = pages.next;
1164 list_del(&pages);
1166 cpu_buffer->nr_pages = nr_pages;
1168 rb_check_pages(cpu_buffer);
1170 return 0;
1173 static struct ring_buffer_per_cpu *
1174 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176 struct ring_buffer_per_cpu *cpu_buffer;
1177 struct buffer_page *bpage;
1178 struct page *page;
1179 int ret;
1181 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1182 GFP_KERNEL, cpu_to_node(cpu));
1183 if (!cpu_buffer)
1184 return NULL;
1186 cpu_buffer->cpu = cpu;
1187 cpu_buffer->buffer = buffer;
1188 raw_spin_lock_init(&cpu_buffer->reader_lock);
1189 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1190 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1191 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1192 init_completion(&cpu_buffer->update_done);
1193 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1194 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1197 GFP_KERNEL, cpu_to_node(cpu));
1198 if (!bpage)
1199 goto fail_free_buffer;
1201 rb_check_bpage(cpu_buffer, bpage);
1203 cpu_buffer->reader_page = bpage;
1204 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1205 if (!page)
1206 goto fail_free_reader;
1207 bpage->page = page_address(page);
1208 rb_init_page(bpage->page);
1210 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1211 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1214 if (ret < 0)
1215 goto fail_free_reader;
1217 cpu_buffer->head_page
1218 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1219 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221 rb_head_page_activate(cpu_buffer);
1223 return cpu_buffer;
1225 fail_free_reader:
1226 free_buffer_page(cpu_buffer->reader_page);
1228 fail_free_buffer:
1229 kfree(cpu_buffer);
1230 return NULL;
1233 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235 struct list_head *head = cpu_buffer->pages;
1236 struct buffer_page *bpage, *tmp;
1238 free_buffer_page(cpu_buffer->reader_page);
1240 rb_head_page_deactivate(cpu_buffer);
1242 if (head) {
1243 list_for_each_entry_safe(bpage, tmp, head, list) {
1244 list_del_init(&bpage->list);
1245 free_buffer_page(bpage);
1247 bpage = list_entry(head, struct buffer_page, list);
1248 free_buffer_page(bpage);
1251 kfree(cpu_buffer);
1254 #ifdef CONFIG_HOTPLUG_CPU
1255 static int rb_cpu_notify(struct notifier_block *self,
1256 unsigned long action, void *hcpu);
1257 #endif
1260 * __ring_buffer_alloc - allocate a new ring_buffer
1261 * @size: the size in bytes per cpu that is needed.
1262 * @flags: attributes to set for the ring buffer.
1264 * Currently the only flag that is available is the RB_FL_OVERWRITE
1265 * flag. This flag means that the buffer will overwrite old data
1266 * when the buffer wraps. If this flag is not set, the buffer will
1267 * drop data when the tail hits the head.
1269 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1270 struct lock_class_key *key)
1272 struct ring_buffer *buffer;
1273 int bsize;
1274 int cpu, nr_pages;
1276 /* keep it in its own cache line */
1277 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1278 GFP_KERNEL);
1279 if (!buffer)
1280 return NULL;
1282 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1283 goto fail_free_buffer;
1285 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1286 buffer->flags = flags;
1287 buffer->clock = trace_clock_local;
1288 buffer->reader_lock_key = key;
1290 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1291 init_waitqueue_head(&buffer->irq_work.waiters);
1293 /* need at least two pages */
1294 if (nr_pages < 2)
1295 nr_pages = 2;
1298 * In case of non-hotplug cpu, if the ring-buffer is allocated
1299 * in early initcall, it will not be notified of secondary cpus.
1300 * In that off case, we need to allocate for all possible cpus.
1302 #ifdef CONFIG_HOTPLUG_CPU
1303 get_online_cpus();
1304 cpumask_copy(buffer->cpumask, cpu_online_mask);
1305 #else
1306 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1307 #endif
1308 buffer->cpus = nr_cpu_ids;
1310 bsize = sizeof(void *) * nr_cpu_ids;
1311 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1312 GFP_KERNEL);
1313 if (!buffer->buffers)
1314 goto fail_free_cpumask;
1316 for_each_buffer_cpu(buffer, cpu) {
1317 buffer->buffers[cpu] =
1318 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1319 if (!buffer->buffers[cpu])
1320 goto fail_free_buffers;
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1325 buffer->cpu_notify.priority = 0;
1326 register_cpu_notifier(&buffer->cpu_notify);
1327 #endif
1329 put_online_cpus();
1330 mutex_init(&buffer->mutex);
1332 return buffer;
1334 fail_free_buffers:
1335 for_each_buffer_cpu(buffer, cpu) {
1336 if (buffer->buffers[cpu])
1337 rb_free_cpu_buffer(buffer->buffers[cpu]);
1339 kfree(buffer->buffers);
1341 fail_free_cpumask:
1342 free_cpumask_var(buffer->cpumask);
1343 put_online_cpus();
1345 fail_free_buffer:
1346 kfree(buffer);
1347 return NULL;
1349 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1352 * ring_buffer_free - free a ring buffer.
1353 * @buffer: the buffer to free.
1355 void
1356 ring_buffer_free(struct ring_buffer *buffer)
1358 int cpu;
1360 get_online_cpus();
1362 #ifdef CONFIG_HOTPLUG_CPU
1363 unregister_cpu_notifier(&buffer->cpu_notify);
1364 #endif
1366 for_each_buffer_cpu(buffer, cpu)
1367 rb_free_cpu_buffer(buffer->buffers[cpu]);
1369 put_online_cpus();
1371 kfree(buffer->buffers);
1372 free_cpumask_var(buffer->cpumask);
1374 kfree(buffer);
1376 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378 void ring_buffer_set_clock(struct ring_buffer *buffer,
1379 u64 (*clock)(void))
1381 buffer->clock = clock;
1384 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 return local_read(&bpage->entries) & RB_WRITE_MASK;
1391 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 return local_read(&bpage->write) & RB_WRITE_MASK;
1396 static int
1397 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1399 struct list_head *tail_page, *to_remove, *next_page;
1400 struct buffer_page *to_remove_page, *tmp_iter_page;
1401 struct buffer_page *last_page, *first_page;
1402 unsigned int nr_removed;
1403 unsigned long head_bit;
1404 int page_entries;
1406 head_bit = 0;
1408 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1409 atomic_inc(&cpu_buffer->record_disabled);
1411 * We don't race with the readers since we have acquired the reader
1412 * lock. We also don't race with writers after disabling recording.
1413 * This makes it easy to figure out the first and the last page to be
1414 * removed from the list. We unlink all the pages in between including
1415 * the first and last pages. This is done in a busy loop so that we
1416 * lose the least number of traces.
1417 * The pages are freed after we restart recording and unlock readers.
1419 tail_page = &cpu_buffer->tail_page->list;
1422 * tail page might be on reader page, we remove the next page
1423 * from the ring buffer
1425 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1426 tail_page = rb_list_head(tail_page->next);
1427 to_remove = tail_page;
1429 /* start of pages to remove */
1430 first_page = list_entry(rb_list_head(to_remove->next),
1431 struct buffer_page, list);
1433 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1434 to_remove = rb_list_head(to_remove)->next;
1435 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1438 next_page = rb_list_head(to_remove)->next;
1441 * Now we remove all pages between tail_page and next_page.
1442 * Make sure that we have head_bit value preserved for the
1443 * next page
1445 tail_page->next = (struct list_head *)((unsigned long)next_page |
1446 head_bit);
1447 next_page = rb_list_head(next_page);
1448 next_page->prev = tail_page;
1450 /* make sure pages points to a valid page in the ring buffer */
1451 cpu_buffer->pages = next_page;
1453 /* update head page */
1454 if (head_bit)
1455 cpu_buffer->head_page = list_entry(next_page,
1456 struct buffer_page, list);
1459 * change read pointer to make sure any read iterators reset
1460 * themselves
1462 cpu_buffer->read = 0;
1464 /* pages are removed, resume tracing and then free the pages */
1465 atomic_dec(&cpu_buffer->record_disabled);
1466 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470 /* last buffer page to remove */
1471 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1472 list);
1473 tmp_iter_page = first_page;
1475 do {
1476 to_remove_page = tmp_iter_page;
1477 rb_inc_page(cpu_buffer, &tmp_iter_page);
1479 /* update the counters */
1480 page_entries = rb_page_entries(to_remove_page);
1481 if (page_entries) {
1483 * If something was added to this page, it was full
1484 * since it is not the tail page. So we deduct the
1485 * bytes consumed in ring buffer from here.
1486 * Increment overrun to account for the lost events.
1488 local_add(page_entries, &cpu_buffer->overrun);
1489 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1493 * We have already removed references to this list item, just
1494 * free up the buffer_page and its page
1496 free_buffer_page(to_remove_page);
1497 nr_removed--;
1499 } while (to_remove_page != last_page);
1501 RB_WARN_ON(cpu_buffer, nr_removed);
1503 return nr_removed == 0;
1506 static int
1507 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 struct list_head *pages = &cpu_buffer->new_pages;
1510 int retries, success;
1512 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514 * We are holding the reader lock, so the reader page won't be swapped
1515 * in the ring buffer. Now we are racing with the writer trying to
1516 * move head page and the tail page.
1517 * We are going to adapt the reader page update process where:
1518 * 1. We first splice the start and end of list of new pages between
1519 * the head page and its previous page.
1520 * 2. We cmpxchg the prev_page->next to point from head page to the
1521 * start of new pages list.
1522 * 3. Finally, we update the head->prev to the end of new list.
1524 * We will try this process 10 times, to make sure that we don't keep
1525 * spinning.
1527 retries = 10;
1528 success = 0;
1529 while (retries--) {
1530 struct list_head *head_page, *prev_page, *r;
1531 struct list_head *last_page, *first_page;
1532 struct list_head *head_page_with_bit;
1534 head_page = &rb_set_head_page(cpu_buffer)->list;
1535 if (!head_page)
1536 break;
1537 prev_page = head_page->prev;
1539 first_page = pages->next;
1540 last_page = pages->prev;
1542 head_page_with_bit = (struct list_head *)
1543 ((unsigned long)head_page | RB_PAGE_HEAD);
1545 last_page->next = head_page_with_bit;
1546 first_page->prev = prev_page;
1548 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550 if (r == head_page_with_bit) {
1552 * yay, we replaced the page pointer to our new list,
1553 * now, we just have to update to head page's prev
1554 * pointer to point to end of list
1556 head_page->prev = last_page;
1557 success = 1;
1558 break;
1562 if (success)
1563 INIT_LIST_HEAD(pages);
1565 * If we weren't successful in adding in new pages, warn and stop
1566 * tracing
1568 RB_WARN_ON(cpu_buffer, !success);
1569 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571 /* free pages if they weren't inserted */
1572 if (!success) {
1573 struct buffer_page *bpage, *tmp;
1574 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1575 list) {
1576 list_del_init(&bpage->list);
1577 free_buffer_page(bpage);
1580 return success;
1583 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 int success;
1587 if (cpu_buffer->nr_pages_to_update > 0)
1588 success = rb_insert_pages(cpu_buffer);
1589 else
1590 success = rb_remove_pages(cpu_buffer,
1591 -cpu_buffer->nr_pages_to_update);
1593 if (success)
1594 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1597 static void update_pages_handler(struct work_struct *work)
1599 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1600 struct ring_buffer_per_cpu, update_pages_work);
1601 rb_update_pages(cpu_buffer);
1602 complete(&cpu_buffer->update_done);
1606 * ring_buffer_resize - resize the ring buffer
1607 * @buffer: the buffer to resize.
1608 * @size: the new size.
1609 * @cpu_id: the cpu buffer to resize
1611 * Minimum size is 2 * BUF_PAGE_SIZE.
1613 * Returns 0 on success and < 0 on failure.
1615 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1616 int cpu_id)
1618 struct ring_buffer_per_cpu *cpu_buffer;
1619 unsigned nr_pages;
1620 int cpu, err = 0;
1623 * Always succeed at resizing a non-existent buffer:
1625 if (!buffer)
1626 return size;
1628 /* Make sure the requested buffer exists */
1629 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1630 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1631 return size;
1633 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1634 size *= BUF_PAGE_SIZE;
1636 /* we need a minimum of two pages */
1637 if (size < BUF_PAGE_SIZE * 2)
1638 size = BUF_PAGE_SIZE * 2;
1640 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1643 * Don't succeed if resizing is disabled, as a reader might be
1644 * manipulating the ring buffer and is expecting a sane state while
1645 * this is true.
1647 if (atomic_read(&buffer->resize_disabled))
1648 return -EBUSY;
1650 /* prevent another thread from changing buffer sizes */
1651 mutex_lock(&buffer->mutex);
1653 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654 /* calculate the pages to update */
1655 for_each_buffer_cpu(buffer, cpu) {
1656 cpu_buffer = buffer->buffers[cpu];
1658 cpu_buffer->nr_pages_to_update = nr_pages -
1659 cpu_buffer->nr_pages;
1661 * nothing more to do for removing pages or no update
1663 if (cpu_buffer->nr_pages_to_update <= 0)
1664 continue;
1666 * to add pages, make sure all new pages can be
1667 * allocated without receiving ENOMEM
1669 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1671 &cpu_buffer->new_pages, cpu)) {
1672 /* not enough memory for new pages */
1673 err = -ENOMEM;
1674 goto out_err;
1678 get_online_cpus();
1680 * Fire off all the required work handlers
1681 * We can't schedule on offline CPUs, but it's not necessary
1682 * since we can change their buffer sizes without any race.
1684 for_each_buffer_cpu(buffer, cpu) {
1685 cpu_buffer = buffer->buffers[cpu];
1686 if (!cpu_buffer->nr_pages_to_update)
1687 continue;
1689 /* The update must run on the CPU that is being updated. */
1690 preempt_disable();
1691 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1692 rb_update_pages(cpu_buffer);
1693 cpu_buffer->nr_pages_to_update = 0;
1694 } else {
1696 * Can not disable preemption for schedule_work_on()
1697 * on PREEMPT_RT.
1699 preempt_enable();
1700 schedule_work_on(cpu,
1701 &cpu_buffer->update_pages_work);
1702 preempt_disable();
1704 preempt_enable();
1707 /* wait for all the updates to complete */
1708 for_each_buffer_cpu(buffer, cpu) {
1709 cpu_buffer = buffer->buffers[cpu];
1710 if (!cpu_buffer->nr_pages_to_update)
1711 continue;
1713 if (cpu_online(cpu))
1714 wait_for_completion(&cpu_buffer->update_done);
1715 cpu_buffer->nr_pages_to_update = 0;
1718 put_online_cpus();
1719 } else {
1720 /* Make sure this CPU has been intitialized */
1721 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1722 goto out;
1724 cpu_buffer = buffer->buffers[cpu_id];
1726 if (nr_pages == cpu_buffer->nr_pages)
1727 goto out;
1729 cpu_buffer->nr_pages_to_update = nr_pages -
1730 cpu_buffer->nr_pages;
1732 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1733 if (cpu_buffer->nr_pages_to_update > 0 &&
1734 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1735 &cpu_buffer->new_pages, cpu_id)) {
1736 err = -ENOMEM;
1737 goto out_err;
1740 get_online_cpus();
1742 preempt_disable();
1743 /* The update must run on the CPU that is being updated. */
1744 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1745 rb_update_pages(cpu_buffer);
1746 else {
1748 * Can not disable preemption for schedule_work_on()
1749 * on PREEMPT_RT.
1751 preempt_enable();
1752 schedule_work_on(cpu_id,
1753 &cpu_buffer->update_pages_work);
1754 wait_for_completion(&cpu_buffer->update_done);
1755 preempt_disable();
1757 preempt_enable();
1759 cpu_buffer->nr_pages_to_update = 0;
1760 put_online_cpus();
1763 out:
1765 * The ring buffer resize can happen with the ring buffer
1766 * enabled, so that the update disturbs the tracing as little
1767 * as possible. But if the buffer is disabled, we do not need
1768 * to worry about that, and we can take the time to verify
1769 * that the buffer is not corrupt.
1771 if (atomic_read(&buffer->record_disabled)) {
1772 atomic_inc(&buffer->record_disabled);
1774 * Even though the buffer was disabled, we must make sure
1775 * that it is truly disabled before calling rb_check_pages.
1776 * There could have been a race between checking
1777 * record_disable and incrementing it.
1779 synchronize_sched();
1780 for_each_buffer_cpu(buffer, cpu) {
1781 cpu_buffer = buffer->buffers[cpu];
1782 rb_check_pages(cpu_buffer);
1784 atomic_dec(&buffer->record_disabled);
1787 mutex_unlock(&buffer->mutex);
1788 return size;
1790 out_err:
1791 for_each_buffer_cpu(buffer, cpu) {
1792 struct buffer_page *bpage, *tmp;
1794 cpu_buffer = buffer->buffers[cpu];
1795 cpu_buffer->nr_pages_to_update = 0;
1797 if (list_empty(&cpu_buffer->new_pages))
1798 continue;
1800 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1801 list) {
1802 list_del_init(&bpage->list);
1803 free_buffer_page(bpage);
1806 mutex_unlock(&buffer->mutex);
1807 return err;
1809 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1811 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1813 mutex_lock(&buffer->mutex);
1814 if (val)
1815 buffer->flags |= RB_FL_OVERWRITE;
1816 else
1817 buffer->flags &= ~RB_FL_OVERWRITE;
1818 mutex_unlock(&buffer->mutex);
1820 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1822 static inline void *
1823 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1825 return bpage->data + index;
1828 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1830 return bpage->page->data + index;
1833 static inline struct ring_buffer_event *
1834 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1836 return __rb_page_index(cpu_buffer->reader_page,
1837 cpu_buffer->reader_page->read);
1840 static inline struct ring_buffer_event *
1841 rb_iter_head_event(struct ring_buffer_iter *iter)
1843 return __rb_page_index(iter->head_page, iter->head);
1846 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1848 return local_read(&bpage->page->commit);
1851 /* Size is determined by what has been committed */
1852 static inline unsigned rb_page_size(struct buffer_page *bpage)
1854 return rb_page_commit(bpage);
1857 static inline unsigned
1858 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1860 return rb_page_commit(cpu_buffer->commit_page);
1863 static inline unsigned
1864 rb_event_index(struct ring_buffer_event *event)
1866 unsigned long addr = (unsigned long)event;
1868 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1871 static inline int
1872 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1873 struct ring_buffer_event *event)
1875 unsigned long addr = (unsigned long)event;
1876 unsigned long index;
1878 index = rb_event_index(event);
1879 addr &= PAGE_MASK;
1881 return cpu_buffer->commit_page->page == (void *)addr &&
1882 rb_commit_index(cpu_buffer) == index;
1885 static void
1886 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1888 unsigned long max_count;
1891 * We only race with interrupts and NMIs on this CPU.
1892 * If we own the commit event, then we can commit
1893 * all others that interrupted us, since the interruptions
1894 * are in stack format (they finish before they come
1895 * back to us). This allows us to do a simple loop to
1896 * assign the commit to the tail.
1898 again:
1899 max_count = cpu_buffer->nr_pages * 100;
1901 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1902 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1903 return;
1904 if (RB_WARN_ON(cpu_buffer,
1905 rb_is_reader_page(cpu_buffer->tail_page)))
1906 return;
1907 local_set(&cpu_buffer->commit_page->page->commit,
1908 rb_page_write(cpu_buffer->commit_page));
1909 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1910 cpu_buffer->write_stamp =
1911 cpu_buffer->commit_page->page->time_stamp;
1912 /* add barrier to keep gcc from optimizing too much */
1913 barrier();
1915 while (rb_commit_index(cpu_buffer) !=
1916 rb_page_write(cpu_buffer->commit_page)) {
1918 local_set(&cpu_buffer->commit_page->page->commit,
1919 rb_page_write(cpu_buffer->commit_page));
1920 RB_WARN_ON(cpu_buffer,
1921 local_read(&cpu_buffer->commit_page->page->commit) &
1922 ~RB_WRITE_MASK);
1923 barrier();
1926 /* again, keep gcc from optimizing */
1927 barrier();
1930 * If an interrupt came in just after the first while loop
1931 * and pushed the tail page forward, we will be left with
1932 * a dangling commit that will never go forward.
1934 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1935 goto again;
1938 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1940 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1941 cpu_buffer->reader_page->read = 0;
1944 static void rb_inc_iter(struct ring_buffer_iter *iter)
1946 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1949 * The iterator could be on the reader page (it starts there).
1950 * But the head could have moved, since the reader was
1951 * found. Check for this case and assign the iterator
1952 * to the head page instead of next.
1954 if (iter->head_page == cpu_buffer->reader_page)
1955 iter->head_page = rb_set_head_page(cpu_buffer);
1956 else
1957 rb_inc_page(cpu_buffer, &iter->head_page);
1959 iter->read_stamp = iter->head_page->page->time_stamp;
1960 iter->head = 0;
1963 /* Slow path, do not inline */
1964 static noinline struct ring_buffer_event *
1965 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1967 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1969 /* Not the first event on the page? */
1970 if (rb_event_index(event)) {
1971 event->time_delta = delta & TS_MASK;
1972 event->array[0] = delta >> TS_SHIFT;
1973 } else {
1974 /* nope, just zero it */
1975 event->time_delta = 0;
1976 event->array[0] = 0;
1979 return skip_time_extend(event);
1983 * rb_update_event - update event type and data
1984 * @event: the even to update
1985 * @type: the type of event
1986 * @length: the size of the event field in the ring buffer
1988 * Update the type and data fields of the event. The length
1989 * is the actual size that is written to the ring buffer,
1990 * and with this, we can determine what to place into the
1991 * data field.
1993 static void
1994 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1995 struct ring_buffer_event *event, unsigned length,
1996 int add_timestamp, u64 delta)
1998 /* Only a commit updates the timestamp */
1999 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2000 delta = 0;
2003 * If we need to add a timestamp, then we
2004 * add it to the start of the resevered space.
2006 if (unlikely(add_timestamp)) {
2007 event = rb_add_time_stamp(event, delta);
2008 length -= RB_LEN_TIME_EXTEND;
2009 delta = 0;
2012 event->time_delta = delta;
2013 length -= RB_EVNT_HDR_SIZE;
2014 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2015 event->type_len = 0;
2016 event->array[0] = length;
2017 } else
2018 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2022 * rb_handle_head_page - writer hit the head page
2024 * Returns: +1 to retry page
2025 * 0 to continue
2026 * -1 on error
2028 static int
2029 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2030 struct buffer_page *tail_page,
2031 struct buffer_page *next_page)
2033 struct buffer_page *new_head;
2034 int entries;
2035 int type;
2036 int ret;
2038 entries = rb_page_entries(next_page);
2041 * The hard part is here. We need to move the head
2042 * forward, and protect against both readers on
2043 * other CPUs and writers coming in via interrupts.
2045 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2046 RB_PAGE_HEAD);
2049 * type can be one of four:
2050 * NORMAL - an interrupt already moved it for us
2051 * HEAD - we are the first to get here.
2052 * UPDATE - we are the interrupt interrupting
2053 * a current move.
2054 * MOVED - a reader on another CPU moved the next
2055 * pointer to its reader page. Give up
2056 * and try again.
2059 switch (type) {
2060 case RB_PAGE_HEAD:
2062 * We changed the head to UPDATE, thus
2063 * it is our responsibility to update
2064 * the counters.
2066 local_add(entries, &cpu_buffer->overrun);
2067 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2070 * The entries will be zeroed out when we move the
2071 * tail page.
2074 /* still more to do */
2075 break;
2077 case RB_PAGE_UPDATE:
2079 * This is an interrupt that interrupt the
2080 * previous update. Still more to do.
2082 break;
2083 case RB_PAGE_NORMAL:
2085 * An interrupt came in before the update
2086 * and processed this for us.
2087 * Nothing left to do.
2089 return 1;
2090 case RB_PAGE_MOVED:
2092 * The reader is on another CPU and just did
2093 * a swap with our next_page.
2094 * Try again.
2096 return 1;
2097 default:
2098 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2099 return -1;
2103 * Now that we are here, the old head pointer is
2104 * set to UPDATE. This will keep the reader from
2105 * swapping the head page with the reader page.
2106 * The reader (on another CPU) will spin till
2107 * we are finished.
2109 * We just need to protect against interrupts
2110 * doing the job. We will set the next pointer
2111 * to HEAD. After that, we set the old pointer
2112 * to NORMAL, but only if it was HEAD before.
2113 * otherwise we are an interrupt, and only
2114 * want the outer most commit to reset it.
2116 new_head = next_page;
2117 rb_inc_page(cpu_buffer, &new_head);
2119 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2120 RB_PAGE_NORMAL);
2123 * Valid returns are:
2124 * HEAD - an interrupt came in and already set it.
2125 * NORMAL - One of two things:
2126 * 1) We really set it.
2127 * 2) A bunch of interrupts came in and moved
2128 * the page forward again.
2130 switch (ret) {
2131 case RB_PAGE_HEAD:
2132 case RB_PAGE_NORMAL:
2133 /* OK */
2134 break;
2135 default:
2136 RB_WARN_ON(cpu_buffer, 1);
2137 return -1;
2141 * It is possible that an interrupt came in,
2142 * set the head up, then more interrupts came in
2143 * and moved it again. When we get back here,
2144 * the page would have been set to NORMAL but we
2145 * just set it back to HEAD.
2147 * How do you detect this? Well, if that happened
2148 * the tail page would have moved.
2150 if (ret == RB_PAGE_NORMAL) {
2152 * If the tail had moved passed next, then we need
2153 * to reset the pointer.
2155 if (cpu_buffer->tail_page != tail_page &&
2156 cpu_buffer->tail_page != next_page)
2157 rb_head_page_set_normal(cpu_buffer, new_head,
2158 next_page,
2159 RB_PAGE_HEAD);
2163 * If this was the outer most commit (the one that
2164 * changed the original pointer from HEAD to UPDATE),
2165 * then it is up to us to reset it to NORMAL.
2167 if (type == RB_PAGE_HEAD) {
2168 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2169 tail_page,
2170 RB_PAGE_UPDATE);
2171 if (RB_WARN_ON(cpu_buffer,
2172 ret != RB_PAGE_UPDATE))
2173 return -1;
2176 return 0;
2179 static unsigned rb_calculate_event_length(unsigned length)
2181 struct ring_buffer_event event; /* Used only for sizeof array */
2183 /* zero length can cause confusions */
2184 if (!length)
2185 length = 1;
2187 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2188 length += sizeof(event.array[0]);
2190 length += RB_EVNT_HDR_SIZE;
2191 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2193 return length;
2196 static inline void
2197 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2198 struct buffer_page *tail_page,
2199 unsigned long tail, unsigned long length)
2201 struct ring_buffer_event *event;
2204 * Only the event that crossed the page boundary
2205 * must fill the old tail_page with padding.
2207 if (tail >= BUF_PAGE_SIZE) {
2209 * If the page was filled, then we still need
2210 * to update the real_end. Reset it to zero
2211 * and the reader will ignore it.
2213 if (tail == BUF_PAGE_SIZE)
2214 tail_page->real_end = 0;
2216 local_sub(length, &tail_page->write);
2217 return;
2220 event = __rb_page_index(tail_page, tail);
2221 kmemcheck_annotate_bitfield(event, bitfield);
2223 /* account for padding bytes */
2224 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2227 * Save the original length to the meta data.
2228 * This will be used by the reader to add lost event
2229 * counter.
2231 tail_page->real_end = tail;
2234 * If this event is bigger than the minimum size, then
2235 * we need to be careful that we don't subtract the
2236 * write counter enough to allow another writer to slip
2237 * in on this page.
2238 * We put in a discarded commit instead, to make sure
2239 * that this space is not used again.
2241 * If we are less than the minimum size, we don't need to
2242 * worry about it.
2244 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2245 /* No room for any events */
2247 /* Mark the rest of the page with padding */
2248 rb_event_set_padding(event);
2250 /* Set the write back to the previous setting */
2251 local_sub(length, &tail_page->write);
2252 return;
2255 /* Put in a discarded event */
2256 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2257 event->type_len = RINGBUF_TYPE_PADDING;
2258 /* time delta must be non zero */
2259 event->time_delta = 1;
2261 /* Set write to end of buffer */
2262 length = (tail + length) - BUF_PAGE_SIZE;
2263 local_sub(length, &tail_page->write);
2267 * This is the slow path, force gcc not to inline it.
2269 static noinline struct ring_buffer_event *
2270 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2271 unsigned long length, unsigned long tail,
2272 struct buffer_page *tail_page, u64 ts)
2274 struct buffer_page *commit_page = cpu_buffer->commit_page;
2275 struct ring_buffer *buffer = cpu_buffer->buffer;
2276 struct buffer_page *next_page;
2277 int ret;
2279 next_page = tail_page;
2281 rb_inc_page(cpu_buffer, &next_page);
2284 * If for some reason, we had an interrupt storm that made
2285 * it all the way around the buffer, bail, and warn
2286 * about it.
2288 if (unlikely(next_page == commit_page)) {
2289 local_inc(&cpu_buffer->commit_overrun);
2290 goto out_reset;
2294 * This is where the fun begins!
2296 * We are fighting against races between a reader that
2297 * could be on another CPU trying to swap its reader
2298 * page with the buffer head.
2300 * We are also fighting against interrupts coming in and
2301 * moving the head or tail on us as well.
2303 * If the next page is the head page then we have filled
2304 * the buffer, unless the commit page is still on the
2305 * reader page.
2307 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2310 * If the commit is not on the reader page, then
2311 * move the header page.
2313 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2315 * If we are not in overwrite mode,
2316 * this is easy, just stop here.
2318 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2319 local_inc(&cpu_buffer->dropped_events);
2320 goto out_reset;
2323 ret = rb_handle_head_page(cpu_buffer,
2324 tail_page,
2325 next_page);
2326 if (ret < 0)
2327 goto out_reset;
2328 if (ret)
2329 goto out_again;
2330 } else {
2332 * We need to be careful here too. The
2333 * commit page could still be on the reader
2334 * page. We could have a small buffer, and
2335 * have filled up the buffer with events
2336 * from interrupts and such, and wrapped.
2338 * Note, if the tail page is also the on the
2339 * reader_page, we let it move out.
2341 if (unlikely((cpu_buffer->commit_page !=
2342 cpu_buffer->tail_page) &&
2343 (cpu_buffer->commit_page ==
2344 cpu_buffer->reader_page))) {
2345 local_inc(&cpu_buffer->commit_overrun);
2346 goto out_reset;
2351 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2352 if (ret) {
2354 * Nested commits always have zero deltas, so
2355 * just reread the time stamp
2357 ts = rb_time_stamp(buffer);
2358 next_page->page->time_stamp = ts;
2361 out_again:
2363 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2365 /* fail and let the caller try again */
2366 return ERR_PTR(-EAGAIN);
2368 out_reset:
2369 /* reset write */
2370 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2372 return NULL;
2375 static struct ring_buffer_event *
2376 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2377 unsigned long length, u64 ts,
2378 u64 delta, int add_timestamp)
2380 struct buffer_page *tail_page;
2381 struct ring_buffer_event *event;
2382 unsigned long tail, write;
2385 * If the time delta since the last event is too big to
2386 * hold in the time field of the event, then we append a
2387 * TIME EXTEND event ahead of the data event.
2389 if (unlikely(add_timestamp))
2390 length += RB_LEN_TIME_EXTEND;
2392 tail_page = cpu_buffer->tail_page;
2393 write = local_add_return(length, &tail_page->write);
2395 /* set write to only the index of the write */
2396 write &= RB_WRITE_MASK;
2397 tail = write - length;
2400 * If this is the first commit on the page, then it has the same
2401 * timestamp as the page itself.
2403 if (!tail)
2404 delta = 0;
2406 /* See if we shot pass the end of this buffer page */
2407 if (unlikely(write > BUF_PAGE_SIZE))
2408 return rb_move_tail(cpu_buffer, length, tail,
2409 tail_page, ts);
2411 /* We reserved something on the buffer */
2413 event = __rb_page_index(tail_page, tail);
2414 kmemcheck_annotate_bitfield(event, bitfield);
2415 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2417 local_inc(&tail_page->entries);
2420 * If this is the first commit on the page, then update
2421 * its timestamp.
2423 if (!tail)
2424 tail_page->page->time_stamp = ts;
2426 /* account for these added bytes */
2427 local_add(length, &cpu_buffer->entries_bytes);
2429 return event;
2432 static inline int
2433 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2434 struct ring_buffer_event *event)
2436 unsigned long new_index, old_index;
2437 struct buffer_page *bpage;
2438 unsigned long index;
2439 unsigned long addr;
2441 new_index = rb_event_index(event);
2442 old_index = new_index + rb_event_ts_length(event);
2443 addr = (unsigned long)event;
2444 addr &= PAGE_MASK;
2446 bpage = cpu_buffer->tail_page;
2448 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2449 unsigned long write_mask =
2450 local_read(&bpage->write) & ~RB_WRITE_MASK;
2451 unsigned long event_length = rb_event_length(event);
2453 * This is on the tail page. It is possible that
2454 * a write could come in and move the tail page
2455 * and write to the next page. That is fine
2456 * because we just shorten what is on this page.
2458 old_index += write_mask;
2459 new_index += write_mask;
2460 index = local_cmpxchg(&bpage->write, old_index, new_index);
2461 if (index == old_index) {
2462 /* update counters */
2463 local_sub(event_length, &cpu_buffer->entries_bytes);
2464 return 1;
2468 /* could not discard */
2469 return 0;
2472 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2474 local_inc(&cpu_buffer->committing);
2475 local_inc(&cpu_buffer->commits);
2478 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2480 unsigned long commits;
2482 if (RB_WARN_ON(cpu_buffer,
2483 !local_read(&cpu_buffer->committing)))
2484 return;
2486 again:
2487 commits = local_read(&cpu_buffer->commits);
2488 /* synchronize with interrupts */
2489 barrier();
2490 if (local_read(&cpu_buffer->committing) == 1)
2491 rb_set_commit_to_write(cpu_buffer);
2493 local_dec(&cpu_buffer->committing);
2495 /* synchronize with interrupts */
2496 barrier();
2499 * Need to account for interrupts coming in between the
2500 * updating of the commit page and the clearing of the
2501 * committing counter.
2503 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2504 !local_read(&cpu_buffer->committing)) {
2505 local_inc(&cpu_buffer->committing);
2506 goto again;
2510 static struct ring_buffer_event *
2511 rb_reserve_next_event(struct ring_buffer *buffer,
2512 struct ring_buffer_per_cpu *cpu_buffer,
2513 unsigned long length)
2515 struct ring_buffer_event *event;
2516 u64 ts, delta;
2517 int nr_loops = 0;
2518 int add_timestamp;
2519 u64 diff;
2521 rb_start_commit(cpu_buffer);
2523 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2525 * Due to the ability to swap a cpu buffer from a buffer
2526 * it is possible it was swapped before we committed.
2527 * (committing stops a swap). We check for it here and
2528 * if it happened, we have to fail the write.
2530 barrier();
2531 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2532 local_dec(&cpu_buffer->committing);
2533 local_dec(&cpu_buffer->commits);
2534 return NULL;
2536 #endif
2538 length = rb_calculate_event_length(length);
2539 again:
2540 add_timestamp = 0;
2541 delta = 0;
2544 * We allow for interrupts to reenter here and do a trace.
2545 * If one does, it will cause this original code to loop
2546 * back here. Even with heavy interrupts happening, this
2547 * should only happen a few times in a row. If this happens
2548 * 1000 times in a row, there must be either an interrupt
2549 * storm or we have something buggy.
2550 * Bail!
2552 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2553 goto out_fail;
2555 ts = rb_time_stamp(cpu_buffer->buffer);
2556 diff = ts - cpu_buffer->write_stamp;
2558 /* make sure this diff is calculated here */
2559 barrier();
2561 /* Did the write stamp get updated already? */
2562 if (likely(ts >= cpu_buffer->write_stamp)) {
2563 delta = diff;
2564 if (unlikely(test_time_stamp(delta))) {
2565 int local_clock_stable = 1;
2566 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2567 local_clock_stable = sched_clock_stable;
2568 #endif
2569 WARN_ONCE(delta > (1ULL << 59),
2570 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2571 (unsigned long long)delta,
2572 (unsigned long long)ts,
2573 (unsigned long long)cpu_buffer->write_stamp,
2574 local_clock_stable ? "" :
2575 "If you just came from a suspend/resume,\n"
2576 "please switch to the trace global clock:\n"
2577 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2578 add_timestamp = 1;
2582 event = __rb_reserve_next(cpu_buffer, length, ts,
2583 delta, add_timestamp);
2584 if (unlikely(PTR_ERR(event) == -EAGAIN))
2585 goto again;
2587 if (!event)
2588 goto out_fail;
2590 return event;
2592 out_fail:
2593 rb_end_commit(cpu_buffer);
2594 return NULL;
2597 #ifdef CONFIG_TRACING
2600 * The lock and unlock are done within a preempt disable section.
2601 * The current_context per_cpu variable can only be modified
2602 * by the current task between lock and unlock. But it can
2603 * be modified more than once via an interrupt. To pass this
2604 * information from the lock to the unlock without having to
2605 * access the 'in_interrupt()' functions again (which do show
2606 * a bit of overhead in something as critical as function tracing,
2607 * we use a bitmask trick.
2609 * bit 0 = NMI context
2610 * bit 1 = IRQ context
2611 * bit 2 = SoftIRQ context
2612 * bit 3 = normal context.
2614 * This works because this is the order of contexts that can
2615 * preempt other contexts. A SoftIRQ never preempts an IRQ
2616 * context.
2618 * When the context is determined, the corresponding bit is
2619 * checked and set (if it was set, then a recursion of that context
2620 * happened).
2622 * On unlock, we need to clear this bit. To do so, just subtract
2623 * 1 from the current_context and AND it to itself.
2625 * (binary)
2626 * 101 - 1 = 100
2627 * 101 & 100 = 100 (clearing bit zero)
2629 * 1010 - 1 = 1001
2630 * 1010 & 1001 = 1000 (clearing bit 1)
2632 * The least significant bit can be cleared this way, and it
2633 * just so happens that it is the same bit corresponding to
2634 * the current context.
2636 static DEFINE_PER_CPU(unsigned int, current_context);
2638 static __always_inline int trace_recursive_lock(void)
2640 unsigned int val = this_cpu_read(current_context);
2641 int bit;
2643 if (in_interrupt()) {
2644 if (in_nmi())
2645 bit = 0;
2646 else if (in_irq())
2647 bit = 1;
2648 else
2649 bit = 2;
2650 } else
2651 bit = 3;
2653 if (unlikely(val & (1 << bit)))
2654 return 1;
2656 val |= (1 << bit);
2657 this_cpu_write(current_context, val);
2659 return 0;
2662 static __always_inline void trace_recursive_unlock(void)
2664 unsigned int val = this_cpu_read(current_context);
2666 val--;
2667 val &= this_cpu_read(current_context);
2668 this_cpu_write(current_context, val);
2671 #else
2673 #define trace_recursive_lock() (0)
2674 #define trace_recursive_unlock() do { } while (0)
2676 #endif
2679 * ring_buffer_lock_reserve - reserve a part of the buffer
2680 * @buffer: the ring buffer to reserve from
2681 * @length: the length of the data to reserve (excluding event header)
2683 * Returns a reseverd event on the ring buffer to copy directly to.
2684 * The user of this interface will need to get the body to write into
2685 * and can use the ring_buffer_event_data() interface.
2687 * The length is the length of the data needed, not the event length
2688 * which also includes the event header.
2690 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2691 * If NULL is returned, then nothing has been allocated or locked.
2693 struct ring_buffer_event *
2694 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2696 struct ring_buffer_per_cpu *cpu_buffer;
2697 struct ring_buffer_event *event;
2698 int cpu;
2700 if (ring_buffer_flags != RB_BUFFERS_ON)
2701 return NULL;
2703 /* If we are tracing schedule, we don't want to recurse */
2704 preempt_disable_notrace();
2706 if (atomic_read(&buffer->record_disabled))
2707 goto out_nocheck;
2709 if (trace_recursive_lock())
2710 goto out_nocheck;
2712 cpu = raw_smp_processor_id();
2714 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2715 goto out;
2717 cpu_buffer = buffer->buffers[cpu];
2719 if (atomic_read(&cpu_buffer->record_disabled))
2720 goto out;
2722 if (length > BUF_MAX_DATA_SIZE)
2723 goto out;
2725 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2726 if (!event)
2727 goto out;
2729 return event;
2731 out:
2732 trace_recursive_unlock();
2734 out_nocheck:
2735 preempt_enable_notrace();
2736 return NULL;
2738 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2740 static void
2741 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2742 struct ring_buffer_event *event)
2744 u64 delta;
2747 * The event first in the commit queue updates the
2748 * time stamp.
2750 if (rb_event_is_commit(cpu_buffer, event)) {
2752 * A commit event that is first on a page
2753 * updates the write timestamp with the page stamp
2755 if (!rb_event_index(event))
2756 cpu_buffer->write_stamp =
2757 cpu_buffer->commit_page->page->time_stamp;
2758 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2759 delta = event->array[0];
2760 delta <<= TS_SHIFT;
2761 delta += event->time_delta;
2762 cpu_buffer->write_stamp += delta;
2763 } else
2764 cpu_buffer->write_stamp += event->time_delta;
2768 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2769 struct ring_buffer_event *event)
2771 local_inc(&cpu_buffer->entries);
2772 rb_update_write_stamp(cpu_buffer, event);
2773 rb_end_commit(cpu_buffer);
2776 static __always_inline void
2777 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2779 if (buffer->irq_work.waiters_pending) {
2780 buffer->irq_work.waiters_pending = false;
2781 /* irq_work_queue() supplies it's own memory barriers */
2782 irq_work_queue(&buffer->irq_work.work);
2785 if (cpu_buffer->irq_work.waiters_pending) {
2786 cpu_buffer->irq_work.waiters_pending = false;
2787 /* irq_work_queue() supplies it's own memory barriers */
2788 irq_work_queue(&cpu_buffer->irq_work.work);
2793 * ring_buffer_unlock_commit - commit a reserved
2794 * @buffer: The buffer to commit to
2795 * @event: The event pointer to commit.
2797 * This commits the data to the ring buffer, and releases any locks held.
2799 * Must be paired with ring_buffer_lock_reserve.
2801 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2802 struct ring_buffer_event *event)
2804 struct ring_buffer_per_cpu *cpu_buffer;
2805 int cpu = raw_smp_processor_id();
2807 cpu_buffer = buffer->buffers[cpu];
2809 rb_commit(cpu_buffer, event);
2811 rb_wakeups(buffer, cpu_buffer);
2813 trace_recursive_unlock();
2815 preempt_enable_notrace();
2817 return 0;
2819 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2821 static inline void rb_event_discard(struct ring_buffer_event *event)
2823 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2824 event = skip_time_extend(event);
2826 /* array[0] holds the actual length for the discarded event */
2827 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2828 event->type_len = RINGBUF_TYPE_PADDING;
2829 /* time delta must be non zero */
2830 if (!event->time_delta)
2831 event->time_delta = 1;
2835 * Decrement the entries to the page that an event is on.
2836 * The event does not even need to exist, only the pointer
2837 * to the page it is on. This may only be called before the commit
2838 * takes place.
2840 static inline void
2841 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2842 struct ring_buffer_event *event)
2844 unsigned long addr = (unsigned long)event;
2845 struct buffer_page *bpage = cpu_buffer->commit_page;
2846 struct buffer_page *start;
2848 addr &= PAGE_MASK;
2850 /* Do the likely case first */
2851 if (likely(bpage->page == (void *)addr)) {
2852 local_dec(&bpage->entries);
2853 return;
2857 * Because the commit page may be on the reader page we
2858 * start with the next page and check the end loop there.
2860 rb_inc_page(cpu_buffer, &bpage);
2861 start = bpage;
2862 do {
2863 if (bpage->page == (void *)addr) {
2864 local_dec(&bpage->entries);
2865 return;
2867 rb_inc_page(cpu_buffer, &bpage);
2868 } while (bpage != start);
2870 /* commit not part of this buffer?? */
2871 RB_WARN_ON(cpu_buffer, 1);
2875 * ring_buffer_commit_discard - discard an event that has not been committed
2876 * @buffer: the ring buffer
2877 * @event: non committed event to discard
2879 * Sometimes an event that is in the ring buffer needs to be ignored.
2880 * This function lets the user discard an event in the ring buffer
2881 * and then that event will not be read later.
2883 * This function only works if it is called before the the item has been
2884 * committed. It will try to free the event from the ring buffer
2885 * if another event has not been added behind it.
2887 * If another event has been added behind it, it will set the event
2888 * up as discarded, and perform the commit.
2890 * If this function is called, do not call ring_buffer_unlock_commit on
2891 * the event.
2893 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2894 struct ring_buffer_event *event)
2896 struct ring_buffer_per_cpu *cpu_buffer;
2897 int cpu;
2899 /* The event is discarded regardless */
2900 rb_event_discard(event);
2902 cpu = smp_processor_id();
2903 cpu_buffer = buffer->buffers[cpu];
2906 * This must only be called if the event has not been
2907 * committed yet. Thus we can assume that preemption
2908 * is still disabled.
2910 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2912 rb_decrement_entry(cpu_buffer, event);
2913 if (rb_try_to_discard(cpu_buffer, event))
2914 goto out;
2917 * The commit is still visible by the reader, so we
2918 * must still update the timestamp.
2920 rb_update_write_stamp(cpu_buffer, event);
2921 out:
2922 rb_end_commit(cpu_buffer);
2924 trace_recursive_unlock();
2926 preempt_enable_notrace();
2929 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2932 * ring_buffer_write - write data to the buffer without reserving
2933 * @buffer: The ring buffer to write to.
2934 * @length: The length of the data being written (excluding the event header)
2935 * @data: The data to write to the buffer.
2937 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2938 * one function. If you already have the data to write to the buffer, it
2939 * may be easier to simply call this function.
2941 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2942 * and not the length of the event which would hold the header.
2944 int ring_buffer_write(struct ring_buffer *buffer,
2945 unsigned long length,
2946 void *data)
2948 struct ring_buffer_per_cpu *cpu_buffer;
2949 struct ring_buffer_event *event;
2950 void *body;
2951 int ret = -EBUSY;
2952 int cpu;
2954 if (ring_buffer_flags != RB_BUFFERS_ON)
2955 return -EBUSY;
2957 preempt_disable_notrace();
2959 if (atomic_read(&buffer->record_disabled))
2960 goto out;
2962 cpu = raw_smp_processor_id();
2964 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2965 goto out;
2967 cpu_buffer = buffer->buffers[cpu];
2969 if (atomic_read(&cpu_buffer->record_disabled))
2970 goto out;
2972 if (length > BUF_MAX_DATA_SIZE)
2973 goto out;
2975 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2976 if (!event)
2977 goto out;
2979 body = rb_event_data(event);
2981 memcpy(body, data, length);
2983 rb_commit(cpu_buffer, event);
2985 rb_wakeups(buffer, cpu_buffer);
2987 ret = 0;
2988 out:
2989 preempt_enable_notrace();
2991 return ret;
2993 EXPORT_SYMBOL_GPL(ring_buffer_write);
2995 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2997 struct buffer_page *reader = cpu_buffer->reader_page;
2998 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2999 struct buffer_page *commit = cpu_buffer->commit_page;
3001 /* In case of error, head will be NULL */
3002 if (unlikely(!head))
3003 return 1;
3005 return reader->read == rb_page_commit(reader) &&
3006 (commit == reader ||
3007 (commit == head &&
3008 head->read == rb_page_commit(commit)));
3012 * ring_buffer_record_disable - stop all writes into the buffer
3013 * @buffer: The ring buffer to stop writes to.
3015 * This prevents all writes to the buffer. Any attempt to write
3016 * to the buffer after this will fail and return NULL.
3018 * The caller should call synchronize_sched() after this.
3020 void ring_buffer_record_disable(struct ring_buffer *buffer)
3022 atomic_inc(&buffer->record_disabled);
3024 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3027 * ring_buffer_record_enable - enable writes to the buffer
3028 * @buffer: The ring buffer to enable writes
3030 * Note, multiple disables will need the same number of enables
3031 * to truly enable the writing (much like preempt_disable).
3033 void ring_buffer_record_enable(struct ring_buffer *buffer)
3035 atomic_dec(&buffer->record_disabled);
3037 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3040 * ring_buffer_record_off - stop all writes into the buffer
3041 * @buffer: The ring buffer to stop writes to.
3043 * This prevents all writes to the buffer. Any attempt to write
3044 * to the buffer after this will fail and return NULL.
3046 * This is different than ring_buffer_record_disable() as
3047 * it works like an on/off switch, where as the disable() version
3048 * must be paired with a enable().
3050 void ring_buffer_record_off(struct ring_buffer *buffer)
3052 unsigned int rd;
3053 unsigned int new_rd;
3055 do {
3056 rd = atomic_read(&buffer->record_disabled);
3057 new_rd = rd | RB_BUFFER_OFF;
3058 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3060 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3063 * ring_buffer_record_on - restart writes into the buffer
3064 * @buffer: The ring buffer to start writes to.
3066 * This enables all writes to the buffer that was disabled by
3067 * ring_buffer_record_off().
3069 * This is different than ring_buffer_record_enable() as
3070 * it works like an on/off switch, where as the enable() version
3071 * must be paired with a disable().
3073 void ring_buffer_record_on(struct ring_buffer *buffer)
3075 unsigned int rd;
3076 unsigned int new_rd;
3078 do {
3079 rd = atomic_read(&buffer->record_disabled);
3080 new_rd = rd & ~RB_BUFFER_OFF;
3081 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3083 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3086 * ring_buffer_record_is_on - return true if the ring buffer can write
3087 * @buffer: The ring buffer to see if write is enabled
3089 * Returns true if the ring buffer is in a state that it accepts writes.
3091 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3093 return !atomic_read(&buffer->record_disabled);
3097 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3098 * @buffer: The ring buffer to stop writes to.
3099 * @cpu: The CPU buffer to stop
3101 * This prevents all writes to the buffer. Any attempt to write
3102 * to the buffer after this will fail and return NULL.
3104 * The caller should call synchronize_sched() after this.
3106 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3108 struct ring_buffer_per_cpu *cpu_buffer;
3110 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3111 return;
3113 cpu_buffer = buffer->buffers[cpu];
3114 atomic_inc(&cpu_buffer->record_disabled);
3116 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3119 * ring_buffer_record_enable_cpu - enable writes to the buffer
3120 * @buffer: The ring buffer to enable writes
3121 * @cpu: The CPU to enable.
3123 * Note, multiple disables will need the same number of enables
3124 * to truly enable the writing (much like preempt_disable).
3126 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3128 struct ring_buffer_per_cpu *cpu_buffer;
3130 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3131 return;
3133 cpu_buffer = buffer->buffers[cpu];
3134 atomic_dec(&cpu_buffer->record_disabled);
3136 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3139 * The total entries in the ring buffer is the running counter
3140 * of entries entered into the ring buffer, minus the sum of
3141 * the entries read from the ring buffer and the number of
3142 * entries that were overwritten.
3144 static inline unsigned long
3145 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3147 return local_read(&cpu_buffer->entries) -
3148 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3152 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3153 * @buffer: The ring buffer
3154 * @cpu: The per CPU buffer to read from.
3156 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3158 unsigned long flags;
3159 struct ring_buffer_per_cpu *cpu_buffer;
3160 struct buffer_page *bpage;
3161 u64 ret = 0;
3163 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3164 return 0;
3166 cpu_buffer = buffer->buffers[cpu];
3167 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3169 * if the tail is on reader_page, oldest time stamp is on the reader
3170 * page
3172 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3173 bpage = cpu_buffer->reader_page;
3174 else
3175 bpage = rb_set_head_page(cpu_buffer);
3176 if (bpage)
3177 ret = bpage->page->time_stamp;
3178 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3180 return ret;
3182 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3185 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3186 * @buffer: The ring buffer
3187 * @cpu: The per CPU buffer to read from.
3189 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3191 struct ring_buffer_per_cpu *cpu_buffer;
3192 unsigned long ret;
3194 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3195 return 0;
3197 cpu_buffer = buffer->buffers[cpu];
3198 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3200 return ret;
3202 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3205 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3206 * @buffer: The ring buffer
3207 * @cpu: The per CPU buffer to get the entries from.
3209 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3211 struct ring_buffer_per_cpu *cpu_buffer;
3213 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3214 return 0;
3216 cpu_buffer = buffer->buffers[cpu];
3218 return rb_num_of_entries(cpu_buffer);
3220 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3223 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3224 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3225 * @buffer: The ring buffer
3226 * @cpu: The per CPU buffer to get the number of overruns from
3228 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3230 struct ring_buffer_per_cpu *cpu_buffer;
3231 unsigned long ret;
3233 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3234 return 0;
3236 cpu_buffer = buffer->buffers[cpu];
3237 ret = local_read(&cpu_buffer->overrun);
3239 return ret;
3241 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3244 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3245 * commits failing due to the buffer wrapping around while there are uncommitted
3246 * events, such as during an interrupt storm.
3247 * @buffer: The ring buffer
3248 * @cpu: The per CPU buffer to get the number of overruns from
3250 unsigned long
3251 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3253 struct ring_buffer_per_cpu *cpu_buffer;
3254 unsigned long ret;
3256 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3257 return 0;
3259 cpu_buffer = buffer->buffers[cpu];
3260 ret = local_read(&cpu_buffer->commit_overrun);
3262 return ret;
3264 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3267 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3268 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3269 * @buffer: The ring buffer
3270 * @cpu: The per CPU buffer to get the number of overruns from
3272 unsigned long
3273 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3275 struct ring_buffer_per_cpu *cpu_buffer;
3276 unsigned long ret;
3278 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3279 return 0;
3281 cpu_buffer = buffer->buffers[cpu];
3282 ret = local_read(&cpu_buffer->dropped_events);
3284 return ret;
3286 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3289 * ring_buffer_read_events_cpu - get the number of events successfully read
3290 * @buffer: The ring buffer
3291 * @cpu: The per CPU buffer to get the number of events read
3293 unsigned long
3294 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3296 struct ring_buffer_per_cpu *cpu_buffer;
3298 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3299 return 0;
3301 cpu_buffer = buffer->buffers[cpu];
3302 return cpu_buffer->read;
3304 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3307 * ring_buffer_entries - get the number of entries in a buffer
3308 * @buffer: The ring buffer
3310 * Returns the total number of entries in the ring buffer
3311 * (all CPU entries)
3313 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3315 struct ring_buffer_per_cpu *cpu_buffer;
3316 unsigned long entries = 0;
3317 int cpu;
3319 /* if you care about this being correct, lock the buffer */
3320 for_each_buffer_cpu(buffer, cpu) {
3321 cpu_buffer = buffer->buffers[cpu];
3322 entries += rb_num_of_entries(cpu_buffer);
3325 return entries;
3327 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3330 * ring_buffer_overruns - get the number of overruns in buffer
3331 * @buffer: The ring buffer
3333 * Returns the total number of overruns in the ring buffer
3334 * (all CPU entries)
3336 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3338 struct ring_buffer_per_cpu *cpu_buffer;
3339 unsigned long overruns = 0;
3340 int cpu;
3342 /* if you care about this being correct, lock the buffer */
3343 for_each_buffer_cpu(buffer, cpu) {
3344 cpu_buffer = buffer->buffers[cpu];
3345 overruns += local_read(&cpu_buffer->overrun);
3348 return overruns;
3350 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3352 static void rb_iter_reset(struct ring_buffer_iter *iter)
3354 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3356 /* Iterator usage is expected to have record disabled */
3357 if (list_empty(&cpu_buffer->reader_page->list)) {
3358 iter->head_page = rb_set_head_page(cpu_buffer);
3359 if (unlikely(!iter->head_page))
3360 return;
3361 iter->head = iter->head_page->read;
3362 } else {
3363 iter->head_page = cpu_buffer->reader_page;
3364 iter->head = cpu_buffer->reader_page->read;
3366 if (iter->head)
3367 iter->read_stamp = cpu_buffer->read_stamp;
3368 else
3369 iter->read_stamp = iter->head_page->page->time_stamp;
3370 iter->cache_reader_page = cpu_buffer->reader_page;
3371 iter->cache_read = cpu_buffer->read;
3375 * ring_buffer_iter_reset - reset an iterator
3376 * @iter: The iterator to reset
3378 * Resets the iterator, so that it will start from the beginning
3379 * again.
3381 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3383 struct ring_buffer_per_cpu *cpu_buffer;
3384 unsigned long flags;
3386 if (!iter)
3387 return;
3389 cpu_buffer = iter->cpu_buffer;
3391 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3392 rb_iter_reset(iter);
3393 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3395 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3398 * ring_buffer_iter_empty - check if an iterator has no more to read
3399 * @iter: The iterator to check
3401 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3403 struct ring_buffer_per_cpu *cpu_buffer;
3405 cpu_buffer = iter->cpu_buffer;
3407 return iter->head_page == cpu_buffer->commit_page &&
3408 iter->head == rb_commit_index(cpu_buffer);
3410 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3412 static void
3413 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3414 struct ring_buffer_event *event)
3416 u64 delta;
3418 switch (event->type_len) {
3419 case RINGBUF_TYPE_PADDING:
3420 return;
3422 case RINGBUF_TYPE_TIME_EXTEND:
3423 delta = event->array[0];
3424 delta <<= TS_SHIFT;
3425 delta += event->time_delta;
3426 cpu_buffer->read_stamp += delta;
3427 return;
3429 case RINGBUF_TYPE_TIME_STAMP:
3430 /* FIXME: not implemented */
3431 return;
3433 case RINGBUF_TYPE_DATA:
3434 cpu_buffer->read_stamp += event->time_delta;
3435 return;
3437 default:
3438 BUG();
3440 return;
3443 static void
3444 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3445 struct ring_buffer_event *event)
3447 u64 delta;
3449 switch (event->type_len) {
3450 case RINGBUF_TYPE_PADDING:
3451 return;
3453 case RINGBUF_TYPE_TIME_EXTEND:
3454 delta = event->array[0];
3455 delta <<= TS_SHIFT;
3456 delta += event->time_delta;
3457 iter->read_stamp += delta;
3458 return;
3460 case RINGBUF_TYPE_TIME_STAMP:
3461 /* FIXME: not implemented */
3462 return;
3464 case RINGBUF_TYPE_DATA:
3465 iter->read_stamp += event->time_delta;
3466 return;
3468 default:
3469 BUG();
3471 return;
3474 static struct buffer_page *
3475 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3477 struct buffer_page *reader = NULL;
3478 unsigned long overwrite;
3479 unsigned long flags;
3480 int nr_loops = 0;
3481 int ret;
3483 local_irq_save(flags);
3484 arch_spin_lock(&cpu_buffer->lock);
3486 again:
3488 * This should normally only loop twice. But because the
3489 * start of the reader inserts an empty page, it causes
3490 * a case where we will loop three times. There should be no
3491 * reason to loop four times (that I know of).
3493 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3494 reader = NULL;
3495 goto out;
3498 reader = cpu_buffer->reader_page;
3500 /* If there's more to read, return this page */
3501 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3502 goto out;
3504 /* Never should we have an index greater than the size */
3505 if (RB_WARN_ON(cpu_buffer,
3506 cpu_buffer->reader_page->read > rb_page_size(reader)))
3507 goto out;
3509 /* check if we caught up to the tail */
3510 reader = NULL;
3511 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3512 goto out;
3514 /* Don't bother swapping if the ring buffer is empty */
3515 if (rb_num_of_entries(cpu_buffer) == 0)
3516 goto out;
3519 * Reset the reader page to size zero.
3521 local_set(&cpu_buffer->reader_page->write, 0);
3522 local_set(&cpu_buffer->reader_page->entries, 0);
3523 local_set(&cpu_buffer->reader_page->page->commit, 0);
3524 cpu_buffer->reader_page->real_end = 0;
3526 spin:
3528 * Splice the empty reader page into the list around the head.
3530 reader = rb_set_head_page(cpu_buffer);
3531 if (!reader)
3532 goto out;
3533 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3534 cpu_buffer->reader_page->list.prev = reader->list.prev;
3537 * cpu_buffer->pages just needs to point to the buffer, it
3538 * has no specific buffer page to point to. Lets move it out
3539 * of our way so we don't accidentally swap it.
3541 cpu_buffer->pages = reader->list.prev;
3543 /* The reader page will be pointing to the new head */
3544 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3547 * We want to make sure we read the overruns after we set up our
3548 * pointers to the next object. The writer side does a
3549 * cmpxchg to cross pages which acts as the mb on the writer
3550 * side. Note, the reader will constantly fail the swap
3551 * while the writer is updating the pointers, so this
3552 * guarantees that the overwrite recorded here is the one we
3553 * want to compare with the last_overrun.
3555 smp_mb();
3556 overwrite = local_read(&(cpu_buffer->overrun));
3559 * Here's the tricky part.
3561 * We need to move the pointer past the header page.
3562 * But we can only do that if a writer is not currently
3563 * moving it. The page before the header page has the
3564 * flag bit '1' set if it is pointing to the page we want.
3565 * but if the writer is in the process of moving it
3566 * than it will be '2' or already moved '0'.
3569 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3572 * If we did not convert it, then we must try again.
3574 if (!ret)
3575 goto spin;
3578 * Yeah! We succeeded in replacing the page.
3580 * Now make the new head point back to the reader page.
3582 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3583 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3585 /* Finally update the reader page to the new head */
3586 cpu_buffer->reader_page = reader;
3587 rb_reset_reader_page(cpu_buffer);
3589 if (overwrite != cpu_buffer->last_overrun) {
3590 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3591 cpu_buffer->last_overrun = overwrite;
3594 goto again;
3596 out:
3597 arch_spin_unlock(&cpu_buffer->lock);
3598 local_irq_restore(flags);
3600 return reader;
3603 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3605 struct ring_buffer_event *event;
3606 struct buffer_page *reader;
3607 unsigned length;
3609 reader = rb_get_reader_page(cpu_buffer);
3611 /* This function should not be called when buffer is empty */
3612 if (RB_WARN_ON(cpu_buffer, !reader))
3613 return;
3615 event = rb_reader_event(cpu_buffer);
3617 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3618 cpu_buffer->read++;
3620 rb_update_read_stamp(cpu_buffer, event);
3622 length = rb_event_length(event);
3623 cpu_buffer->reader_page->read += length;
3626 static void rb_advance_iter(struct ring_buffer_iter *iter)
3628 struct ring_buffer_per_cpu *cpu_buffer;
3629 struct ring_buffer_event *event;
3630 unsigned length;
3632 cpu_buffer = iter->cpu_buffer;
3635 * Check if we are at the end of the buffer.
3637 if (iter->head >= rb_page_size(iter->head_page)) {
3638 /* discarded commits can make the page empty */
3639 if (iter->head_page == cpu_buffer->commit_page)
3640 return;
3641 rb_inc_iter(iter);
3642 return;
3645 event = rb_iter_head_event(iter);
3647 length = rb_event_length(event);
3650 * This should not be called to advance the header if we are
3651 * at the tail of the buffer.
3653 if (RB_WARN_ON(cpu_buffer,
3654 (iter->head_page == cpu_buffer->commit_page) &&
3655 (iter->head + length > rb_commit_index(cpu_buffer))))
3656 return;
3658 rb_update_iter_read_stamp(iter, event);
3660 iter->head += length;
3662 /* check for end of page padding */
3663 if ((iter->head >= rb_page_size(iter->head_page)) &&
3664 (iter->head_page != cpu_buffer->commit_page))
3665 rb_inc_iter(iter);
3668 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3670 return cpu_buffer->lost_events;
3673 static struct ring_buffer_event *
3674 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3675 unsigned long *lost_events)
3677 struct ring_buffer_event *event;
3678 struct buffer_page *reader;
3679 int nr_loops = 0;
3681 again:
3683 * We repeat when a time extend is encountered.
3684 * Since the time extend is always attached to a data event,
3685 * we should never loop more than once.
3686 * (We never hit the following condition more than twice).
3688 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3689 return NULL;
3691 reader = rb_get_reader_page(cpu_buffer);
3692 if (!reader)
3693 return NULL;
3695 event = rb_reader_event(cpu_buffer);
3697 switch (event->type_len) {
3698 case RINGBUF_TYPE_PADDING:
3699 if (rb_null_event(event))
3700 RB_WARN_ON(cpu_buffer, 1);
3702 * Because the writer could be discarding every
3703 * event it creates (which would probably be bad)
3704 * if we were to go back to "again" then we may never
3705 * catch up, and will trigger the warn on, or lock
3706 * the box. Return the padding, and we will release
3707 * the current locks, and try again.
3709 return event;
3711 case RINGBUF_TYPE_TIME_EXTEND:
3712 /* Internal data, OK to advance */
3713 rb_advance_reader(cpu_buffer);
3714 goto again;
3716 case RINGBUF_TYPE_TIME_STAMP:
3717 /* FIXME: not implemented */
3718 rb_advance_reader(cpu_buffer);
3719 goto again;
3721 case RINGBUF_TYPE_DATA:
3722 if (ts) {
3723 *ts = cpu_buffer->read_stamp + event->time_delta;
3724 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3725 cpu_buffer->cpu, ts);
3727 if (lost_events)
3728 *lost_events = rb_lost_events(cpu_buffer);
3729 return event;
3731 default:
3732 BUG();
3735 return NULL;
3737 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3739 static struct ring_buffer_event *
3740 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3742 struct ring_buffer *buffer;
3743 struct ring_buffer_per_cpu *cpu_buffer;
3744 struct ring_buffer_event *event;
3745 int nr_loops = 0;
3747 cpu_buffer = iter->cpu_buffer;
3748 buffer = cpu_buffer->buffer;
3751 * Check if someone performed a consuming read to
3752 * the buffer. A consuming read invalidates the iterator
3753 * and we need to reset the iterator in this case.
3755 if (unlikely(iter->cache_read != cpu_buffer->read ||
3756 iter->cache_reader_page != cpu_buffer->reader_page))
3757 rb_iter_reset(iter);
3759 again:
3760 if (ring_buffer_iter_empty(iter))
3761 return NULL;
3764 * We repeat when a time extend is encountered.
3765 * Since the time extend is always attached to a data event,
3766 * we should never loop more than once.
3767 * (We never hit the following condition more than twice).
3769 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3770 return NULL;
3772 if (rb_per_cpu_empty(cpu_buffer))
3773 return NULL;
3775 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3776 rb_inc_iter(iter);
3777 goto again;
3780 event = rb_iter_head_event(iter);
3782 switch (event->type_len) {
3783 case RINGBUF_TYPE_PADDING:
3784 if (rb_null_event(event)) {
3785 rb_inc_iter(iter);
3786 goto again;
3788 rb_advance_iter(iter);
3789 return event;
3791 case RINGBUF_TYPE_TIME_EXTEND:
3792 /* Internal data, OK to advance */
3793 rb_advance_iter(iter);
3794 goto again;
3796 case RINGBUF_TYPE_TIME_STAMP:
3797 /* FIXME: not implemented */
3798 rb_advance_iter(iter);
3799 goto again;
3801 case RINGBUF_TYPE_DATA:
3802 if (ts) {
3803 *ts = iter->read_stamp + event->time_delta;
3804 ring_buffer_normalize_time_stamp(buffer,
3805 cpu_buffer->cpu, ts);
3807 return event;
3809 default:
3810 BUG();
3813 return NULL;
3815 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3817 static inline int rb_ok_to_lock(void)
3820 * If an NMI die dumps out the content of the ring buffer
3821 * do not grab locks. We also permanently disable the ring
3822 * buffer too. A one time deal is all you get from reading
3823 * the ring buffer from an NMI.
3825 if (likely(!in_nmi()))
3826 return 1;
3828 tracing_off_permanent();
3829 return 0;
3833 * ring_buffer_peek - peek at the next event to be read
3834 * @buffer: The ring buffer to read
3835 * @cpu: The cpu to peak at
3836 * @ts: The timestamp counter of this event.
3837 * @lost_events: a variable to store if events were lost (may be NULL)
3839 * This will return the event that will be read next, but does
3840 * not consume the data.
3842 struct ring_buffer_event *
3843 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3844 unsigned long *lost_events)
3846 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3847 struct ring_buffer_event *event;
3848 unsigned long flags;
3849 int dolock;
3851 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3852 return NULL;
3854 dolock = rb_ok_to_lock();
3855 again:
3856 local_irq_save(flags);
3857 if (dolock)
3858 raw_spin_lock(&cpu_buffer->reader_lock);
3859 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3860 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3861 rb_advance_reader(cpu_buffer);
3862 if (dolock)
3863 raw_spin_unlock(&cpu_buffer->reader_lock);
3864 local_irq_restore(flags);
3866 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3867 goto again;
3869 return event;
3873 * ring_buffer_iter_peek - peek at the next event to be read
3874 * @iter: The ring buffer iterator
3875 * @ts: The timestamp counter of this event.
3877 * This will return the event that will be read next, but does
3878 * not increment the iterator.
3880 struct ring_buffer_event *
3881 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3883 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3884 struct ring_buffer_event *event;
3885 unsigned long flags;
3887 again:
3888 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3889 event = rb_iter_peek(iter, ts);
3890 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3892 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3893 goto again;
3895 return event;
3899 * ring_buffer_consume - return an event and consume it
3900 * @buffer: The ring buffer to get the next event from
3901 * @cpu: the cpu to read the buffer from
3902 * @ts: a variable to store the timestamp (may be NULL)
3903 * @lost_events: a variable to store if events were lost (may be NULL)
3905 * Returns the next event in the ring buffer, and that event is consumed.
3906 * Meaning, that sequential reads will keep returning a different event,
3907 * and eventually empty the ring buffer if the producer is slower.
3909 struct ring_buffer_event *
3910 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3911 unsigned long *lost_events)
3913 struct ring_buffer_per_cpu *cpu_buffer;
3914 struct ring_buffer_event *event = NULL;
3915 unsigned long flags;
3916 int dolock;
3918 dolock = rb_ok_to_lock();
3920 again:
3921 /* might be called in atomic */
3922 preempt_disable();
3924 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3925 goto out;
3927 cpu_buffer = buffer->buffers[cpu];
3928 local_irq_save(flags);
3929 if (dolock)
3930 raw_spin_lock(&cpu_buffer->reader_lock);
3932 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3933 if (event) {
3934 cpu_buffer->lost_events = 0;
3935 rb_advance_reader(cpu_buffer);
3938 if (dolock)
3939 raw_spin_unlock(&cpu_buffer->reader_lock);
3940 local_irq_restore(flags);
3942 out:
3943 preempt_enable();
3945 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3946 goto again;
3948 return event;
3950 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3953 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3954 * @buffer: The ring buffer to read from
3955 * @cpu: The cpu buffer to iterate over
3957 * This performs the initial preparations necessary to iterate
3958 * through the buffer. Memory is allocated, buffer recording
3959 * is disabled, and the iterator pointer is returned to the caller.
3961 * Disabling buffer recordng prevents the reading from being
3962 * corrupted. This is not a consuming read, so a producer is not
3963 * expected.
3965 * After a sequence of ring_buffer_read_prepare calls, the user is
3966 * expected to make at least one call to ring_buffer_read_prepare_sync.
3967 * Afterwards, ring_buffer_read_start is invoked to get things going
3968 * for real.
3970 * This overall must be paired with ring_buffer_read_finish.
3972 struct ring_buffer_iter *
3973 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3975 struct ring_buffer_per_cpu *cpu_buffer;
3976 struct ring_buffer_iter *iter;
3978 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3979 return NULL;
3981 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3982 if (!iter)
3983 return NULL;
3985 cpu_buffer = buffer->buffers[cpu];
3987 iter->cpu_buffer = cpu_buffer;
3989 atomic_inc(&buffer->resize_disabled);
3990 atomic_inc(&cpu_buffer->record_disabled);
3992 return iter;
3994 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3997 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3999 * All previously invoked ring_buffer_read_prepare calls to prepare
4000 * iterators will be synchronized. Afterwards, read_buffer_read_start
4001 * calls on those iterators are allowed.
4003 void
4004 ring_buffer_read_prepare_sync(void)
4006 synchronize_sched();
4008 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4011 * ring_buffer_read_start - start a non consuming read of the buffer
4012 * @iter: The iterator returned by ring_buffer_read_prepare
4014 * This finalizes the startup of an iteration through the buffer.
4015 * The iterator comes from a call to ring_buffer_read_prepare and
4016 * an intervening ring_buffer_read_prepare_sync must have been
4017 * performed.
4019 * Must be paired with ring_buffer_read_finish.
4021 void
4022 ring_buffer_read_start(struct ring_buffer_iter *iter)
4024 struct ring_buffer_per_cpu *cpu_buffer;
4025 unsigned long flags;
4027 if (!iter)
4028 return;
4030 cpu_buffer = iter->cpu_buffer;
4032 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4033 arch_spin_lock(&cpu_buffer->lock);
4034 rb_iter_reset(iter);
4035 arch_spin_unlock(&cpu_buffer->lock);
4036 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4038 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4041 * ring_buffer_read_finish - finish reading the iterator of the buffer
4042 * @iter: The iterator retrieved by ring_buffer_start
4044 * This re-enables the recording to the buffer, and frees the
4045 * iterator.
4047 void
4048 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4050 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4051 unsigned long flags;
4054 * Ring buffer is disabled from recording, here's a good place
4055 * to check the integrity of the ring buffer.
4056 * Must prevent readers from trying to read, as the check
4057 * clears the HEAD page and readers require it.
4059 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4060 rb_check_pages(cpu_buffer);
4061 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4063 atomic_dec(&cpu_buffer->record_disabled);
4064 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4065 kfree(iter);
4067 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4070 * ring_buffer_read - read the next item in the ring buffer by the iterator
4071 * @iter: The ring buffer iterator
4072 * @ts: The time stamp of the event read.
4074 * This reads the next event in the ring buffer and increments the iterator.
4076 struct ring_buffer_event *
4077 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4079 struct ring_buffer_event *event;
4080 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4081 unsigned long flags;
4083 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4084 again:
4085 event = rb_iter_peek(iter, ts);
4086 if (!event)
4087 goto out;
4089 if (event->type_len == RINGBUF_TYPE_PADDING)
4090 goto again;
4092 rb_advance_iter(iter);
4093 out:
4094 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4096 return event;
4098 EXPORT_SYMBOL_GPL(ring_buffer_read);
4101 * ring_buffer_size - return the size of the ring buffer (in bytes)
4102 * @buffer: The ring buffer.
4104 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4107 * Earlier, this method returned
4108 * BUF_PAGE_SIZE * buffer->nr_pages
4109 * Since the nr_pages field is now removed, we have converted this to
4110 * return the per cpu buffer value.
4112 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4113 return 0;
4115 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4117 EXPORT_SYMBOL_GPL(ring_buffer_size);
4119 static void
4120 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4122 rb_head_page_deactivate(cpu_buffer);
4124 cpu_buffer->head_page
4125 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4126 local_set(&cpu_buffer->head_page->write, 0);
4127 local_set(&cpu_buffer->head_page->entries, 0);
4128 local_set(&cpu_buffer->head_page->page->commit, 0);
4130 cpu_buffer->head_page->read = 0;
4132 cpu_buffer->tail_page = cpu_buffer->head_page;
4133 cpu_buffer->commit_page = cpu_buffer->head_page;
4135 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4136 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4137 local_set(&cpu_buffer->reader_page->write, 0);
4138 local_set(&cpu_buffer->reader_page->entries, 0);
4139 local_set(&cpu_buffer->reader_page->page->commit, 0);
4140 cpu_buffer->reader_page->read = 0;
4142 local_set(&cpu_buffer->entries_bytes, 0);
4143 local_set(&cpu_buffer->overrun, 0);
4144 local_set(&cpu_buffer->commit_overrun, 0);
4145 local_set(&cpu_buffer->dropped_events, 0);
4146 local_set(&cpu_buffer->entries, 0);
4147 local_set(&cpu_buffer->committing, 0);
4148 local_set(&cpu_buffer->commits, 0);
4149 cpu_buffer->read = 0;
4150 cpu_buffer->read_bytes = 0;
4152 cpu_buffer->write_stamp = 0;
4153 cpu_buffer->read_stamp = 0;
4155 cpu_buffer->lost_events = 0;
4156 cpu_buffer->last_overrun = 0;
4158 rb_head_page_activate(cpu_buffer);
4162 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4163 * @buffer: The ring buffer to reset a per cpu buffer of
4164 * @cpu: The CPU buffer to be reset
4166 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4168 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4169 unsigned long flags;
4171 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4172 return;
4174 atomic_inc(&buffer->resize_disabled);
4175 atomic_inc(&cpu_buffer->record_disabled);
4177 /* Make sure all commits have finished */
4178 synchronize_sched();
4180 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4182 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4183 goto out;
4185 arch_spin_lock(&cpu_buffer->lock);
4187 rb_reset_cpu(cpu_buffer);
4189 arch_spin_unlock(&cpu_buffer->lock);
4191 out:
4192 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4194 atomic_dec(&cpu_buffer->record_disabled);
4195 atomic_dec(&buffer->resize_disabled);
4197 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4200 * ring_buffer_reset - reset a ring buffer
4201 * @buffer: The ring buffer to reset all cpu buffers
4203 void ring_buffer_reset(struct ring_buffer *buffer)
4205 int cpu;
4207 for_each_buffer_cpu(buffer, cpu)
4208 ring_buffer_reset_cpu(buffer, cpu);
4210 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4213 * rind_buffer_empty - is the ring buffer empty?
4214 * @buffer: The ring buffer to test
4216 int ring_buffer_empty(struct ring_buffer *buffer)
4218 struct ring_buffer_per_cpu *cpu_buffer;
4219 unsigned long flags;
4220 int dolock;
4221 int cpu;
4222 int ret;
4224 dolock = rb_ok_to_lock();
4226 /* yes this is racy, but if you don't like the race, lock the buffer */
4227 for_each_buffer_cpu(buffer, cpu) {
4228 cpu_buffer = buffer->buffers[cpu];
4229 local_irq_save(flags);
4230 if (dolock)
4231 raw_spin_lock(&cpu_buffer->reader_lock);
4232 ret = rb_per_cpu_empty(cpu_buffer);
4233 if (dolock)
4234 raw_spin_unlock(&cpu_buffer->reader_lock);
4235 local_irq_restore(flags);
4237 if (!ret)
4238 return 0;
4241 return 1;
4243 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4246 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4247 * @buffer: The ring buffer
4248 * @cpu: The CPU buffer to test
4250 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4252 struct ring_buffer_per_cpu *cpu_buffer;
4253 unsigned long flags;
4254 int dolock;
4255 int ret;
4257 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4258 return 1;
4260 dolock = rb_ok_to_lock();
4262 cpu_buffer = buffer->buffers[cpu];
4263 local_irq_save(flags);
4264 if (dolock)
4265 raw_spin_lock(&cpu_buffer->reader_lock);
4266 ret = rb_per_cpu_empty(cpu_buffer);
4267 if (dolock)
4268 raw_spin_unlock(&cpu_buffer->reader_lock);
4269 local_irq_restore(flags);
4271 return ret;
4273 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4275 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4277 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4278 * @buffer_a: One buffer to swap with
4279 * @buffer_b: The other buffer to swap with
4281 * This function is useful for tracers that want to take a "snapshot"
4282 * of a CPU buffer and has another back up buffer lying around.
4283 * it is expected that the tracer handles the cpu buffer not being
4284 * used at the moment.
4286 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4287 struct ring_buffer *buffer_b, int cpu)
4289 struct ring_buffer_per_cpu *cpu_buffer_a;
4290 struct ring_buffer_per_cpu *cpu_buffer_b;
4291 int ret = -EINVAL;
4293 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4294 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4295 goto out;
4297 cpu_buffer_a = buffer_a->buffers[cpu];
4298 cpu_buffer_b = buffer_b->buffers[cpu];
4300 /* At least make sure the two buffers are somewhat the same */
4301 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4302 goto out;
4304 ret = -EAGAIN;
4306 if (ring_buffer_flags != RB_BUFFERS_ON)
4307 goto out;
4309 if (atomic_read(&buffer_a->record_disabled))
4310 goto out;
4312 if (atomic_read(&buffer_b->record_disabled))
4313 goto out;
4315 if (atomic_read(&cpu_buffer_a->record_disabled))
4316 goto out;
4318 if (atomic_read(&cpu_buffer_b->record_disabled))
4319 goto out;
4322 * We can't do a synchronize_sched here because this
4323 * function can be called in atomic context.
4324 * Normally this will be called from the same CPU as cpu.
4325 * If not it's up to the caller to protect this.
4327 atomic_inc(&cpu_buffer_a->record_disabled);
4328 atomic_inc(&cpu_buffer_b->record_disabled);
4330 ret = -EBUSY;
4331 if (local_read(&cpu_buffer_a->committing))
4332 goto out_dec;
4333 if (local_read(&cpu_buffer_b->committing))
4334 goto out_dec;
4336 buffer_a->buffers[cpu] = cpu_buffer_b;
4337 buffer_b->buffers[cpu] = cpu_buffer_a;
4339 cpu_buffer_b->buffer = buffer_a;
4340 cpu_buffer_a->buffer = buffer_b;
4342 ret = 0;
4344 out_dec:
4345 atomic_dec(&cpu_buffer_a->record_disabled);
4346 atomic_dec(&cpu_buffer_b->record_disabled);
4347 out:
4348 return ret;
4350 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4351 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4354 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4355 * @buffer: the buffer to allocate for.
4356 * @cpu: the cpu buffer to allocate.
4358 * This function is used in conjunction with ring_buffer_read_page.
4359 * When reading a full page from the ring buffer, these functions
4360 * can be used to speed up the process. The calling function should
4361 * allocate a few pages first with this function. Then when it
4362 * needs to get pages from the ring buffer, it passes the result
4363 * of this function into ring_buffer_read_page, which will swap
4364 * the page that was allocated, with the read page of the buffer.
4366 * Returns:
4367 * The page allocated, or NULL on error.
4369 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4371 struct buffer_data_page *bpage;
4372 struct page *page;
4374 page = alloc_pages_node(cpu_to_node(cpu),
4375 GFP_KERNEL | __GFP_NORETRY, 0);
4376 if (!page)
4377 return NULL;
4379 bpage = page_address(page);
4381 rb_init_page(bpage);
4383 return bpage;
4385 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4388 * ring_buffer_free_read_page - free an allocated read page
4389 * @buffer: the buffer the page was allocate for
4390 * @data: the page to free
4392 * Free a page allocated from ring_buffer_alloc_read_page.
4394 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4396 free_page((unsigned long)data);
4398 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4401 * ring_buffer_read_page - extract a page from the ring buffer
4402 * @buffer: buffer to extract from
4403 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4404 * @len: amount to extract
4405 * @cpu: the cpu of the buffer to extract
4406 * @full: should the extraction only happen when the page is full.
4408 * This function will pull out a page from the ring buffer and consume it.
4409 * @data_page must be the address of the variable that was returned
4410 * from ring_buffer_alloc_read_page. This is because the page might be used
4411 * to swap with a page in the ring buffer.
4413 * for example:
4414 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4415 * if (!rpage)
4416 * return error;
4417 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4418 * if (ret >= 0)
4419 * process_page(rpage, ret);
4421 * When @full is set, the function will not return true unless
4422 * the writer is off the reader page.
4424 * Note: it is up to the calling functions to handle sleeps and wakeups.
4425 * The ring buffer can be used anywhere in the kernel and can not
4426 * blindly call wake_up. The layer that uses the ring buffer must be
4427 * responsible for that.
4429 * Returns:
4430 * >=0 if data has been transferred, returns the offset of consumed data.
4431 * <0 if no data has been transferred.
4433 int ring_buffer_read_page(struct ring_buffer *buffer,
4434 void **data_page, size_t len, int cpu, int full)
4436 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4437 struct ring_buffer_event *event;
4438 struct buffer_data_page *bpage;
4439 struct buffer_page *reader;
4440 unsigned long missed_events;
4441 unsigned long flags;
4442 unsigned int commit;
4443 unsigned int read;
4444 u64 save_timestamp;
4445 int ret = -1;
4447 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4448 goto out;
4451 * If len is not big enough to hold the page header, then
4452 * we can not copy anything.
4454 if (len <= BUF_PAGE_HDR_SIZE)
4455 goto out;
4457 len -= BUF_PAGE_HDR_SIZE;
4459 if (!data_page)
4460 goto out;
4462 bpage = *data_page;
4463 if (!bpage)
4464 goto out;
4466 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4468 reader = rb_get_reader_page(cpu_buffer);
4469 if (!reader)
4470 goto out_unlock;
4472 event = rb_reader_event(cpu_buffer);
4474 read = reader->read;
4475 commit = rb_page_commit(reader);
4477 /* Check if any events were dropped */
4478 missed_events = cpu_buffer->lost_events;
4481 * If this page has been partially read or
4482 * if len is not big enough to read the rest of the page or
4483 * a writer is still on the page, then
4484 * we must copy the data from the page to the buffer.
4485 * Otherwise, we can simply swap the page with the one passed in.
4487 if (read || (len < (commit - read)) ||
4488 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4489 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4490 unsigned int rpos = read;
4491 unsigned int pos = 0;
4492 unsigned int size;
4494 if (full)
4495 goto out_unlock;
4497 if (len > (commit - read))
4498 len = (commit - read);
4500 /* Always keep the time extend and data together */
4501 size = rb_event_ts_length(event);
4503 if (len < size)
4504 goto out_unlock;
4506 /* save the current timestamp, since the user will need it */
4507 save_timestamp = cpu_buffer->read_stamp;
4509 /* Need to copy one event at a time */
4510 do {
4511 /* We need the size of one event, because
4512 * rb_advance_reader only advances by one event,
4513 * whereas rb_event_ts_length may include the size of
4514 * one or two events.
4515 * We have already ensured there's enough space if this
4516 * is a time extend. */
4517 size = rb_event_length(event);
4518 memcpy(bpage->data + pos, rpage->data + rpos, size);
4520 len -= size;
4522 rb_advance_reader(cpu_buffer);
4523 rpos = reader->read;
4524 pos += size;
4526 if (rpos >= commit)
4527 break;
4529 event = rb_reader_event(cpu_buffer);
4530 /* Always keep the time extend and data together */
4531 size = rb_event_ts_length(event);
4532 } while (len >= size);
4534 /* update bpage */
4535 local_set(&bpage->commit, pos);
4536 bpage->time_stamp = save_timestamp;
4538 /* we copied everything to the beginning */
4539 read = 0;
4540 } else {
4541 /* update the entry counter */
4542 cpu_buffer->read += rb_page_entries(reader);
4543 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4545 /* swap the pages */
4546 rb_init_page(bpage);
4547 bpage = reader->page;
4548 reader->page = *data_page;
4549 local_set(&reader->write, 0);
4550 local_set(&reader->entries, 0);
4551 reader->read = 0;
4552 *data_page = bpage;
4555 * Use the real_end for the data size,
4556 * This gives us a chance to store the lost events
4557 * on the page.
4559 if (reader->real_end)
4560 local_set(&bpage->commit, reader->real_end);
4562 ret = read;
4564 cpu_buffer->lost_events = 0;
4566 commit = local_read(&bpage->commit);
4568 * Set a flag in the commit field if we lost events
4570 if (missed_events) {
4571 /* If there is room at the end of the page to save the
4572 * missed events, then record it there.
4574 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4575 memcpy(&bpage->data[commit], &missed_events,
4576 sizeof(missed_events));
4577 local_add(RB_MISSED_STORED, &bpage->commit);
4578 commit += sizeof(missed_events);
4580 local_add(RB_MISSED_EVENTS, &bpage->commit);
4584 * This page may be off to user land. Zero it out here.
4586 if (commit < BUF_PAGE_SIZE)
4587 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4589 out_unlock:
4590 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4592 out:
4593 return ret;
4595 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4597 #ifdef CONFIG_HOTPLUG_CPU
4598 static int rb_cpu_notify(struct notifier_block *self,
4599 unsigned long action, void *hcpu)
4601 struct ring_buffer *buffer =
4602 container_of(self, struct ring_buffer, cpu_notify);
4603 long cpu = (long)hcpu;
4604 int cpu_i, nr_pages_same;
4605 unsigned int nr_pages;
4607 switch (action) {
4608 case CPU_UP_PREPARE:
4609 case CPU_UP_PREPARE_FROZEN:
4610 if (cpumask_test_cpu(cpu, buffer->cpumask))
4611 return NOTIFY_OK;
4613 nr_pages = 0;
4614 nr_pages_same = 1;
4615 /* check if all cpu sizes are same */
4616 for_each_buffer_cpu(buffer, cpu_i) {
4617 /* fill in the size from first enabled cpu */
4618 if (nr_pages == 0)
4619 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4620 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4621 nr_pages_same = 0;
4622 break;
4625 /* allocate minimum pages, user can later expand it */
4626 if (!nr_pages_same)
4627 nr_pages = 2;
4628 buffer->buffers[cpu] =
4629 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4630 if (!buffer->buffers[cpu]) {
4631 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4632 cpu);
4633 return NOTIFY_OK;
4635 smp_wmb();
4636 cpumask_set_cpu(cpu, buffer->cpumask);
4637 break;
4638 case CPU_DOWN_PREPARE:
4639 case CPU_DOWN_PREPARE_FROZEN:
4641 * Do nothing.
4642 * If we were to free the buffer, then the user would
4643 * lose any trace that was in the buffer.
4645 break;
4646 default:
4647 break;
4649 return NOTIFY_OK;
4651 #endif
4653 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4655 * This is a basic integrity check of the ring buffer.
4656 * Late in the boot cycle this test will run when configured in.
4657 * It will kick off a thread per CPU that will go into a loop
4658 * writing to the per cpu ring buffer various sizes of data.
4659 * Some of the data will be large items, some small.
4661 * Another thread is created that goes into a spin, sending out
4662 * IPIs to the other CPUs to also write into the ring buffer.
4663 * this is to test the nesting ability of the buffer.
4665 * Basic stats are recorded and reported. If something in the
4666 * ring buffer should happen that's not expected, a big warning
4667 * is displayed and all ring buffers are disabled.
4669 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4671 struct rb_test_data {
4672 struct ring_buffer *buffer;
4673 unsigned long events;
4674 unsigned long bytes_written;
4675 unsigned long bytes_alloc;
4676 unsigned long bytes_dropped;
4677 unsigned long events_nested;
4678 unsigned long bytes_written_nested;
4679 unsigned long bytes_alloc_nested;
4680 unsigned long bytes_dropped_nested;
4681 int min_size_nested;
4682 int max_size_nested;
4683 int max_size;
4684 int min_size;
4685 int cpu;
4686 int cnt;
4689 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4691 /* 1 meg per cpu */
4692 #define RB_TEST_BUFFER_SIZE 1048576
4694 static char rb_string[] __initdata =
4695 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4696 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4697 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4699 static bool rb_test_started __initdata;
4701 struct rb_item {
4702 int size;
4703 char str[];
4706 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4708 struct ring_buffer_event *event;
4709 struct rb_item *item;
4710 bool started;
4711 int event_len;
4712 int size;
4713 int len;
4714 int cnt;
4716 /* Have nested writes different that what is written */
4717 cnt = data->cnt + (nested ? 27 : 0);
4719 /* Multiply cnt by ~e, to make some unique increment */
4720 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4722 len = size + sizeof(struct rb_item);
4724 started = rb_test_started;
4725 /* read rb_test_started before checking buffer enabled */
4726 smp_rmb();
4728 event = ring_buffer_lock_reserve(data->buffer, len);
4729 if (!event) {
4730 /* Ignore dropped events before test starts. */
4731 if (started) {
4732 if (nested)
4733 data->bytes_dropped += len;
4734 else
4735 data->bytes_dropped_nested += len;
4737 return len;
4740 event_len = ring_buffer_event_length(event);
4742 if (RB_WARN_ON(data->buffer, event_len < len))
4743 goto out;
4745 item = ring_buffer_event_data(event);
4746 item->size = size;
4747 memcpy(item->str, rb_string, size);
4749 if (nested) {
4750 data->bytes_alloc_nested += event_len;
4751 data->bytes_written_nested += len;
4752 data->events_nested++;
4753 if (!data->min_size_nested || len < data->min_size_nested)
4754 data->min_size_nested = len;
4755 if (len > data->max_size_nested)
4756 data->max_size_nested = len;
4757 } else {
4758 data->bytes_alloc += event_len;
4759 data->bytes_written += len;
4760 data->events++;
4761 if (!data->min_size || len < data->min_size)
4762 data->max_size = len;
4763 if (len > data->max_size)
4764 data->max_size = len;
4767 out:
4768 ring_buffer_unlock_commit(data->buffer, event);
4770 return 0;
4773 static __init int rb_test(void *arg)
4775 struct rb_test_data *data = arg;
4777 while (!kthread_should_stop()) {
4778 rb_write_something(data, false);
4779 data->cnt++;
4781 set_current_state(TASK_INTERRUPTIBLE);
4782 /* Now sleep between a min of 100-300us and a max of 1ms */
4783 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4786 return 0;
4789 static __init void rb_ipi(void *ignore)
4791 struct rb_test_data *data;
4792 int cpu = smp_processor_id();
4794 data = &rb_data[cpu];
4795 rb_write_something(data, true);
4798 static __init int rb_hammer_test(void *arg)
4800 while (!kthread_should_stop()) {
4802 /* Send an IPI to all cpus to write data! */
4803 smp_call_function(rb_ipi, NULL, 1);
4804 /* No sleep, but for non preempt, let others run */
4805 schedule();
4808 return 0;
4811 static __init int test_ringbuffer(void)
4813 struct task_struct *rb_hammer;
4814 struct ring_buffer *buffer;
4815 int cpu;
4816 int ret = 0;
4818 pr_info("Running ring buffer tests...\n");
4820 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4821 if (WARN_ON(!buffer))
4822 return 0;
4824 /* Disable buffer so that threads can't write to it yet */
4825 ring_buffer_record_off(buffer);
4827 for_each_online_cpu(cpu) {
4828 rb_data[cpu].buffer = buffer;
4829 rb_data[cpu].cpu = cpu;
4830 rb_data[cpu].cnt = cpu;
4831 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4832 "rbtester/%d", cpu);
4833 if (WARN_ON(!rb_threads[cpu])) {
4834 pr_cont("FAILED\n");
4835 ret = -1;
4836 goto out_free;
4839 kthread_bind(rb_threads[cpu], cpu);
4840 wake_up_process(rb_threads[cpu]);
4843 /* Now create the rb hammer! */
4844 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4845 if (WARN_ON(!rb_hammer)) {
4846 pr_cont("FAILED\n");
4847 ret = -1;
4848 goto out_free;
4851 ring_buffer_record_on(buffer);
4853 * Show buffer is enabled before setting rb_test_started.
4854 * Yes there's a small race window where events could be
4855 * dropped and the thread wont catch it. But when a ring
4856 * buffer gets enabled, there will always be some kind of
4857 * delay before other CPUs see it. Thus, we don't care about
4858 * those dropped events. We care about events dropped after
4859 * the threads see that the buffer is active.
4861 smp_wmb();
4862 rb_test_started = true;
4864 set_current_state(TASK_INTERRUPTIBLE);
4865 /* Just run for 10 seconds */;
4866 schedule_timeout(10 * HZ);
4868 kthread_stop(rb_hammer);
4870 out_free:
4871 for_each_online_cpu(cpu) {
4872 if (!rb_threads[cpu])
4873 break;
4874 kthread_stop(rb_threads[cpu]);
4876 if (ret) {
4877 ring_buffer_free(buffer);
4878 return ret;
4881 /* Report! */
4882 pr_info("finished\n");
4883 for_each_online_cpu(cpu) {
4884 struct ring_buffer_event *event;
4885 struct rb_test_data *data = &rb_data[cpu];
4886 struct rb_item *item;
4887 unsigned long total_events;
4888 unsigned long total_dropped;
4889 unsigned long total_written;
4890 unsigned long total_alloc;
4891 unsigned long total_read = 0;
4892 unsigned long total_size = 0;
4893 unsigned long total_len = 0;
4894 unsigned long total_lost = 0;
4895 unsigned long lost;
4896 int big_event_size;
4897 int small_event_size;
4899 ret = -1;
4901 total_events = data->events + data->events_nested;
4902 total_written = data->bytes_written + data->bytes_written_nested;
4903 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4904 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4906 big_event_size = data->max_size + data->max_size_nested;
4907 small_event_size = data->min_size + data->min_size_nested;
4909 pr_info("CPU %d:\n", cpu);
4910 pr_info(" events: %ld\n", total_events);
4911 pr_info(" dropped bytes: %ld\n", total_dropped);
4912 pr_info(" alloced bytes: %ld\n", total_alloc);
4913 pr_info(" written bytes: %ld\n", total_written);
4914 pr_info(" biggest event: %d\n", big_event_size);
4915 pr_info(" smallest event: %d\n", small_event_size);
4917 if (RB_WARN_ON(buffer, total_dropped))
4918 break;
4920 ret = 0;
4922 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4923 total_lost += lost;
4924 item = ring_buffer_event_data(event);
4925 total_len += ring_buffer_event_length(event);
4926 total_size += item->size + sizeof(struct rb_item);
4927 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4928 pr_info("FAILED!\n");
4929 pr_info("buffer had: %.*s\n", item->size, item->str);
4930 pr_info("expected: %.*s\n", item->size, rb_string);
4931 RB_WARN_ON(buffer, 1);
4932 ret = -1;
4933 break;
4935 total_read++;
4937 if (ret)
4938 break;
4940 ret = -1;
4942 pr_info(" read events: %ld\n", total_read);
4943 pr_info(" lost events: %ld\n", total_lost);
4944 pr_info(" total events: %ld\n", total_lost + total_read);
4945 pr_info(" recorded len bytes: %ld\n", total_len);
4946 pr_info(" recorded size bytes: %ld\n", total_size);
4947 if (total_lost)
4948 pr_info(" With dropped events, record len and size may not match\n"
4949 " alloced and written from above\n");
4950 if (!total_lost) {
4951 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4952 total_size != total_written))
4953 break;
4955 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4956 break;
4958 ret = 0;
4960 if (!ret)
4961 pr_info("Ring buffer PASSED!\n");
4963 ring_buffer_free(buffer);
4964 return 0;
4967 late_initcall(test_ringbuffer);
4968 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */