4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct
*work
);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq
*s
)
39 ret
= trace_seq_puts(s
, "# compressed entry header\n");
40 ret
= trace_seq_puts(s
, "\ttype_len : 5 bits\n");
41 ret
= trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
42 ret
= trace_seq_puts(s
, "\tarray : 32 bits\n");
43 ret
= trace_seq_putc(s
, '\n');
44 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING
);
46 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND
);
48 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
71 * |reader| RING BUFFER
73 * +------+ +---+ +---+ +---+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
100 * +------------------------------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
108 * | New +---+ +---+ +---+
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
152 RB_BUFFERS_ON_BIT
= 0,
153 RB_BUFFERS_DISABLED_BIT
= 1,
157 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
158 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
161 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
169 * tracing_off_permanent - permanently disable ring buffers
171 * This function, once called, will disable all ring buffers
174 void tracing_off_permanent(void)
176 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
198 RB_LEN_TIME_EXTEND
= 8,
199 RB_LEN_TIME_STAMP
= 16,
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
205 static inline int rb_null_event(struct ring_buffer_event
*event
)
207 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
210 static void rb_event_set_padding(struct ring_buffer_event
*event
)
212 /* padding has a NULL time_delta */
213 event
->type_len
= RINGBUF_TYPE_PADDING
;
214 event
->time_delta
= 0;
218 rb_event_data_length(struct ring_buffer_event
*event
)
223 length
= event
->type_len
* RB_ALIGNMENT
;
225 length
= event
->array
[0];
226 return length
+ RB_EVNT_HDR_SIZE
;
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event
*event
)
237 switch (event
->type_len
) {
238 case RINGBUF_TYPE_PADDING
:
239 if (rb_null_event(event
))
242 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
244 case RINGBUF_TYPE_TIME_EXTEND
:
245 return RB_LEN_TIME_EXTEND
;
247 case RINGBUF_TYPE_TIME_STAMP
:
248 return RB_LEN_TIME_STAMP
;
250 case RINGBUF_TYPE_DATA
:
251 return rb_event_data_length(event
);
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event
*event
)
268 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
269 /* time extends include the data event after it */
270 len
= RB_LEN_TIME_EXTEND
;
271 event
= skip_time_extend(event
);
273 return len
+ rb_event_length(event
);
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
286 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
290 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
291 event
= skip_time_extend(event
);
293 length
= rb_event_length(event
);
294 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
296 length
-= RB_EVNT_HDR_SIZE
;
297 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
298 length
-= sizeof(event
->array
[0]);
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
303 /* inline for ring buffer fast paths */
305 rb_event_data(struct ring_buffer_event
*event
)
307 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
308 event
= skip_time_extend(event
);
309 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
310 /* If length is in len field, then array[0] has the data */
312 return (void *)&event
->array
[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event
->array
[1];
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
321 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
323 return rb_event_data(event
);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
339 struct buffer_data_page
{
340 u64 time_stamp
; /* page time stamp */
341 local_t commit
; /* write committed index */
342 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
354 struct list_head list
; /* list of buffer pages */
355 local_t write
; /* index for next write */
356 unsigned read
; /* index for next read */
357 local_t entries
; /* entries on this page */
358 unsigned long real_end
; /* real end of data */
359 struct buffer_data_page
*page
; /* Actual data page */
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
372 * The counter is 20 bits, and the state data is 12.
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
377 static void rb_init_page(struct buffer_data_page
*bpage
)
379 local_set(&bpage
->commit
, 0);
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
386 * Returns the amount of data on the page, including buffer page header.
388 size_t ring_buffer_page_len(void *page
)
390 return local_read(&((struct buffer_data_page
*)page
)->commit
)
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
398 static void free_buffer_page(struct buffer_page
*bpage
)
400 free_page((unsigned long)bpage
->page
);
405 * We need to fit the time_stamp delta into 27 bits.
407 static inline int test_time_stamp(u64 delta
)
409 if (delta
& TS_DELTA_TEST
)
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
419 int ring_buffer_print_page_header(struct trace_seq
*s
)
421 struct buffer_data_page field
;
424 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field
.time_stamp
),
427 (unsigned int)is_signed_type(u64
));
429 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field
), commit
),
432 (unsigned int)sizeof(field
.commit
),
433 (unsigned int)is_signed_type(long));
435 ret
= trace_seq_printf(s
, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field
), commit
),
439 (unsigned int)is_signed_type(long));
441 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field
), data
),
444 (unsigned int)BUF_PAGE_SIZE
,
445 (unsigned int)is_signed_type(char));
451 struct irq_work work
;
452 wait_queue_head_t waiters
;
453 bool waiters_pending
;
457 * head_page == tail_page && head == tail then buffer is empty.
459 struct ring_buffer_per_cpu
{
461 atomic_t record_disabled
;
462 struct ring_buffer
*buffer
;
463 raw_spinlock_t reader_lock
; /* serialize readers */
464 arch_spinlock_t lock
;
465 struct lock_class_key lock_key
;
466 unsigned int nr_pages
;
467 struct list_head
*pages
;
468 struct buffer_page
*head_page
; /* read from head */
469 struct buffer_page
*tail_page
; /* write to tail */
470 struct buffer_page
*commit_page
; /* committed pages */
471 struct buffer_page
*reader_page
;
472 unsigned long lost_events
;
473 unsigned long last_overrun
;
474 local_t entries_bytes
;
477 local_t commit_overrun
;
478 local_t dropped_events
;
482 unsigned long read_bytes
;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update
;
487 struct list_head new_pages
; /* new pages to add */
488 struct work_struct update_pages_work
;
489 struct completion update_done
;
491 struct rb_irq_work irq_work
;
497 atomic_t record_disabled
;
498 atomic_t resize_disabled
;
499 cpumask_var_t cpumask
;
501 struct lock_class_key
*reader_lock_key
;
505 struct ring_buffer_per_cpu
**buffers
;
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify
;
512 struct rb_irq_work irq_work
;
515 struct ring_buffer_iter
{
516 struct ring_buffer_per_cpu
*cpu_buffer
;
518 struct buffer_page
*head_page
;
519 struct buffer_page
*cache_reader_page
;
520 unsigned long cache_read
;
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
530 static void rb_wake_up_waiters(struct irq_work
*work
)
532 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
534 wake_up_all(&rbwork
->waiters
);
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
546 int ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
)
548 struct ring_buffer_per_cpu
*cpu_buffer
;
550 struct rb_irq_work
*work
;
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
557 if (cpu
== RING_BUFFER_ALL_CPUS
)
558 work
= &buffer
->irq_work
;
560 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
562 cpu_buffer
= buffer
->buffers
[cpu
];
563 work
= &cpu_buffer
->irq_work
;
567 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
589 work
->waiters_pending
= true;
591 if ((cpu
== RING_BUFFER_ALL_CPUS
&& ring_buffer_empty(buffer
)) ||
592 (cpu
!= RING_BUFFER_ALL_CPUS
&& ring_buffer_empty_cpu(buffer
, cpu
)))
595 finish_wait(&work
->waiters
, &wait
);
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
613 int ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
614 struct file
*filp
, poll_table
*poll_table
)
616 struct ring_buffer_per_cpu
*cpu_buffer
;
617 struct rb_irq_work
*work
;
619 if (cpu
== RING_BUFFER_ALL_CPUS
)
620 work
= &buffer
->irq_work
;
622 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
625 cpu_buffer
= buffer
->buffers
[cpu
];
626 work
= &cpu_buffer
->irq_work
;
629 work
->waiters_pending
= true;
630 poll_wait(filp
, &work
->waiters
, poll_table
);
632 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
633 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
634 return POLLIN
| POLLRDNORM
;
638 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
639 #define RB_WARN_ON(b, cond) \
641 int _____ret = unlikely(cond); \
643 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
644 struct ring_buffer_per_cpu *__b = \
646 atomic_inc(&__b->buffer->record_disabled); \
648 atomic_inc(&b->record_disabled); \
654 /* Up this if you want to test the TIME_EXTENTS and normalization */
655 #define DEBUG_SHIFT 0
657 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
659 /* shift to debug/test normalization and TIME_EXTENTS */
660 return buffer
->clock() << DEBUG_SHIFT
;
663 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
667 preempt_disable_notrace();
668 time
= rb_time_stamp(buffer
);
669 preempt_enable_no_resched_notrace();
673 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
675 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
678 /* Just stupid testing the normalize function and deltas */
681 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
684 * Making the ring buffer lockless makes things tricky.
685 * Although writes only happen on the CPU that they are on,
686 * and they only need to worry about interrupts. Reads can
689 * The reader page is always off the ring buffer, but when the
690 * reader finishes with a page, it needs to swap its page with
691 * a new one from the buffer. The reader needs to take from
692 * the head (writes go to the tail). But if a writer is in overwrite
693 * mode and wraps, it must push the head page forward.
695 * Here lies the problem.
697 * The reader must be careful to replace only the head page, and
698 * not another one. As described at the top of the file in the
699 * ASCII art, the reader sets its old page to point to the next
700 * page after head. It then sets the page after head to point to
701 * the old reader page. But if the writer moves the head page
702 * during this operation, the reader could end up with the tail.
704 * We use cmpxchg to help prevent this race. We also do something
705 * special with the page before head. We set the LSB to 1.
707 * When the writer must push the page forward, it will clear the
708 * bit that points to the head page, move the head, and then set
709 * the bit that points to the new head page.
711 * We also don't want an interrupt coming in and moving the head
712 * page on another writer. Thus we use the second LSB to catch
715 * head->list->prev->next bit 1 bit 0
718 * Points to head page 0 1
721 * Note we can not trust the prev pointer of the head page, because:
723 * +----+ +-----+ +-----+
724 * | |------>| T |---X--->| N |
726 * +----+ +-----+ +-----+
729 * +----------| R |----------+ |
733 * Key: ---X--> HEAD flag set in pointer
738 * (see __rb_reserve_next() to see where this happens)
740 * What the above shows is that the reader just swapped out
741 * the reader page with a page in the buffer, but before it
742 * could make the new header point back to the new page added
743 * it was preempted by a writer. The writer moved forward onto
744 * the new page added by the reader and is about to move forward
747 * You can see, it is legitimate for the previous pointer of
748 * the head (or any page) not to point back to itself. But only
752 #define RB_PAGE_NORMAL 0UL
753 #define RB_PAGE_HEAD 1UL
754 #define RB_PAGE_UPDATE 2UL
757 #define RB_FLAG_MASK 3UL
759 /* PAGE_MOVED is not part of the mask */
760 #define RB_PAGE_MOVED 4UL
763 * rb_list_head - remove any bit
765 static struct list_head
*rb_list_head(struct list_head
*list
)
767 unsigned long val
= (unsigned long)list
;
769 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
773 * rb_is_head_page - test if the given page is the head page
775 * Because the reader may move the head_page pointer, we can
776 * not trust what the head page is (it may be pointing to
777 * the reader page). But if the next page is a header page,
778 * its flags will be non zero.
781 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
782 struct buffer_page
*page
, struct list_head
*list
)
786 val
= (unsigned long)list
->next
;
788 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
789 return RB_PAGE_MOVED
;
791 return val
& RB_FLAG_MASK
;
797 * The unique thing about the reader page, is that, if the
798 * writer is ever on it, the previous pointer never points
799 * back to the reader page.
801 static int rb_is_reader_page(struct buffer_page
*page
)
803 struct list_head
*list
= page
->list
.prev
;
805 return rb_list_head(list
->next
) != &page
->list
;
809 * rb_set_list_to_head - set a list_head to be pointing to head.
811 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
812 struct list_head
*list
)
816 ptr
= (unsigned long *)&list
->next
;
817 *ptr
|= RB_PAGE_HEAD
;
818 *ptr
&= ~RB_PAGE_UPDATE
;
822 * rb_head_page_activate - sets up head page
824 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
826 struct buffer_page
*head
;
828 head
= cpu_buffer
->head_page
;
833 * Set the previous list pointer to have the HEAD flag.
835 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
838 static void rb_list_head_clear(struct list_head
*list
)
840 unsigned long *ptr
= (unsigned long *)&list
->next
;
842 *ptr
&= ~RB_FLAG_MASK
;
846 * rb_head_page_dactivate - clears head page ptr (for free list)
849 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
851 struct list_head
*hd
;
853 /* Go through the whole list and clear any pointers found. */
854 rb_list_head_clear(cpu_buffer
->pages
);
856 list_for_each(hd
, cpu_buffer
->pages
)
857 rb_list_head_clear(hd
);
860 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
861 struct buffer_page
*head
,
862 struct buffer_page
*prev
,
863 int old_flag
, int new_flag
)
865 struct list_head
*list
;
866 unsigned long val
= (unsigned long)&head
->list
;
871 val
&= ~RB_FLAG_MASK
;
873 ret
= cmpxchg((unsigned long *)&list
->next
,
874 val
| old_flag
, val
| new_flag
);
876 /* check if the reader took the page */
877 if ((ret
& ~RB_FLAG_MASK
) != val
)
878 return RB_PAGE_MOVED
;
880 return ret
& RB_FLAG_MASK
;
883 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
884 struct buffer_page
*head
,
885 struct buffer_page
*prev
,
888 return rb_head_page_set(cpu_buffer
, head
, prev
,
889 old_flag
, RB_PAGE_UPDATE
);
892 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
893 struct buffer_page
*head
,
894 struct buffer_page
*prev
,
897 return rb_head_page_set(cpu_buffer
, head
, prev
,
898 old_flag
, RB_PAGE_HEAD
);
901 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
902 struct buffer_page
*head
,
903 struct buffer_page
*prev
,
906 return rb_head_page_set(cpu_buffer
, head
, prev
,
907 old_flag
, RB_PAGE_NORMAL
);
910 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
911 struct buffer_page
**bpage
)
913 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
915 *bpage
= list_entry(p
, struct buffer_page
, list
);
918 static struct buffer_page
*
919 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
921 struct buffer_page
*head
;
922 struct buffer_page
*page
;
923 struct list_head
*list
;
926 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
930 list
= cpu_buffer
->pages
;
931 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
934 page
= head
= cpu_buffer
->head_page
;
936 * It is possible that the writer moves the header behind
937 * where we started, and we miss in one loop.
938 * A second loop should grab the header, but we'll do
939 * three loops just because I'm paranoid.
941 for (i
= 0; i
< 3; i
++) {
943 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
944 cpu_buffer
->head_page
= page
;
947 rb_inc_page(cpu_buffer
, &page
);
948 } while (page
!= head
);
951 RB_WARN_ON(cpu_buffer
, 1);
956 static int rb_head_page_replace(struct buffer_page
*old
,
957 struct buffer_page
*new)
959 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
963 val
= *ptr
& ~RB_FLAG_MASK
;
966 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
972 * rb_tail_page_update - move the tail page forward
974 * Returns 1 if moved tail page, 0 if someone else did.
976 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
977 struct buffer_page
*tail_page
,
978 struct buffer_page
*next_page
)
980 struct buffer_page
*old_tail
;
981 unsigned long old_entries
;
982 unsigned long old_write
;
986 * The tail page now needs to be moved forward.
988 * We need to reset the tail page, but without messing
989 * with possible erasing of data brought in by interrupts
990 * that have moved the tail page and are currently on it.
992 * We add a counter to the write field to denote this.
994 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
995 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
998 * Just make sure we have seen our old_write and synchronize
999 * with any interrupts that come in.
1004 * If the tail page is still the same as what we think
1005 * it is, then it is up to us to update the tail
1008 if (tail_page
== cpu_buffer
->tail_page
) {
1009 /* Zero the write counter */
1010 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1011 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1014 * This will only succeed if an interrupt did
1015 * not come in and change it. In which case, we
1016 * do not want to modify it.
1018 * We add (void) to let the compiler know that we do not care
1019 * about the return value of these functions. We use the
1020 * cmpxchg to only update if an interrupt did not already
1021 * do it for us. If the cmpxchg fails, we don't care.
1023 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1024 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1027 * No need to worry about races with clearing out the commit.
1028 * it only can increment when a commit takes place. But that
1029 * only happens in the outer most nested commit.
1031 local_set(&next_page
->page
->commit
, 0);
1033 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
1034 tail_page
, next_page
);
1036 if (old_tail
== tail_page
)
1043 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1044 struct buffer_page
*bpage
)
1046 unsigned long val
= (unsigned long)bpage
;
1048 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1055 * rb_check_list - make sure a pointer to a list has the last bits zero
1057 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1058 struct list_head
*list
)
1060 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1062 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1068 * rb_check_pages - integrity check of buffer pages
1069 * @cpu_buffer: CPU buffer with pages to test
1071 * As a safety measure we check to make sure the data pages have not
1074 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1076 struct list_head
*head
= cpu_buffer
->pages
;
1077 struct buffer_page
*bpage
, *tmp
;
1079 /* Reset the head page if it exists */
1080 if (cpu_buffer
->head_page
)
1081 rb_set_head_page(cpu_buffer
);
1083 rb_head_page_deactivate(cpu_buffer
);
1085 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1087 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1090 if (rb_check_list(cpu_buffer
, head
))
1093 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1094 if (RB_WARN_ON(cpu_buffer
,
1095 bpage
->list
.next
->prev
!= &bpage
->list
))
1097 if (RB_WARN_ON(cpu_buffer
,
1098 bpage
->list
.prev
->next
!= &bpage
->list
))
1100 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1104 rb_head_page_activate(cpu_buffer
);
1109 static int __rb_allocate_pages(int nr_pages
, struct list_head
*pages
, int cpu
)
1112 struct buffer_page
*bpage
, *tmp
;
1114 for (i
= 0; i
< nr_pages
; i
++) {
1117 * __GFP_NORETRY flag makes sure that the allocation fails
1118 * gracefully without invoking oom-killer and the system is
1121 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1122 GFP_KERNEL
| __GFP_NORETRY
,
1127 list_add(&bpage
->list
, pages
);
1129 page
= alloc_pages_node(cpu_to_node(cpu
),
1130 GFP_KERNEL
| __GFP_NORETRY
, 0);
1133 bpage
->page
= page_address(page
);
1134 rb_init_page(bpage
->page
);
1140 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1141 list_del_init(&bpage
->list
);
1142 free_buffer_page(bpage
);
1148 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1155 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1159 * The ring buffer page list is a circular list that does not
1160 * start and end with a list head. All page list items point to
1163 cpu_buffer
->pages
= pages
.next
;
1166 cpu_buffer
->nr_pages
= nr_pages
;
1168 rb_check_pages(cpu_buffer
);
1173 static struct ring_buffer_per_cpu
*
1174 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int nr_pages
, int cpu
)
1176 struct ring_buffer_per_cpu
*cpu_buffer
;
1177 struct buffer_page
*bpage
;
1181 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1182 GFP_KERNEL
, cpu_to_node(cpu
));
1186 cpu_buffer
->cpu
= cpu
;
1187 cpu_buffer
->buffer
= buffer
;
1188 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1189 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1190 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1191 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1192 init_completion(&cpu_buffer
->update_done
);
1193 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1194 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1196 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1197 GFP_KERNEL
, cpu_to_node(cpu
));
1199 goto fail_free_buffer
;
1201 rb_check_bpage(cpu_buffer
, bpage
);
1203 cpu_buffer
->reader_page
= bpage
;
1204 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1206 goto fail_free_reader
;
1207 bpage
->page
= page_address(page
);
1208 rb_init_page(bpage
->page
);
1210 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1211 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1213 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1215 goto fail_free_reader
;
1217 cpu_buffer
->head_page
1218 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1219 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1221 rb_head_page_activate(cpu_buffer
);
1226 free_buffer_page(cpu_buffer
->reader_page
);
1233 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1235 struct list_head
*head
= cpu_buffer
->pages
;
1236 struct buffer_page
*bpage
, *tmp
;
1238 free_buffer_page(cpu_buffer
->reader_page
);
1240 rb_head_page_deactivate(cpu_buffer
);
1243 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1244 list_del_init(&bpage
->list
);
1245 free_buffer_page(bpage
);
1247 bpage
= list_entry(head
, struct buffer_page
, list
);
1248 free_buffer_page(bpage
);
1254 #ifdef CONFIG_HOTPLUG_CPU
1255 static int rb_cpu_notify(struct notifier_block
*self
,
1256 unsigned long action
, void *hcpu
);
1260 * __ring_buffer_alloc - allocate a new ring_buffer
1261 * @size: the size in bytes per cpu that is needed.
1262 * @flags: attributes to set for the ring buffer.
1264 * Currently the only flag that is available is the RB_FL_OVERWRITE
1265 * flag. This flag means that the buffer will overwrite old data
1266 * when the buffer wraps. If this flag is not set, the buffer will
1267 * drop data when the tail hits the head.
1269 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1270 struct lock_class_key
*key
)
1272 struct ring_buffer
*buffer
;
1276 /* keep it in its own cache line */
1277 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1282 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1283 goto fail_free_buffer
;
1285 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1286 buffer
->flags
= flags
;
1287 buffer
->clock
= trace_clock_local
;
1288 buffer
->reader_lock_key
= key
;
1290 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1291 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1293 /* need at least two pages */
1298 * In case of non-hotplug cpu, if the ring-buffer is allocated
1299 * in early initcall, it will not be notified of secondary cpus.
1300 * In that off case, we need to allocate for all possible cpus.
1302 #ifdef CONFIG_HOTPLUG_CPU
1304 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1306 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1308 buffer
->cpus
= nr_cpu_ids
;
1310 bsize
= sizeof(void *) * nr_cpu_ids
;
1311 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1313 if (!buffer
->buffers
)
1314 goto fail_free_cpumask
;
1316 for_each_buffer_cpu(buffer
, cpu
) {
1317 buffer
->buffers
[cpu
] =
1318 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1319 if (!buffer
->buffers
[cpu
])
1320 goto fail_free_buffers
;
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1325 buffer
->cpu_notify
.priority
= 0;
1326 register_cpu_notifier(&buffer
->cpu_notify
);
1330 mutex_init(&buffer
->mutex
);
1335 for_each_buffer_cpu(buffer
, cpu
) {
1336 if (buffer
->buffers
[cpu
])
1337 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1339 kfree(buffer
->buffers
);
1342 free_cpumask_var(buffer
->cpumask
);
1349 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1352 * ring_buffer_free - free a ring buffer.
1353 * @buffer: the buffer to free.
1356 ring_buffer_free(struct ring_buffer
*buffer
)
1362 #ifdef CONFIG_HOTPLUG_CPU
1363 unregister_cpu_notifier(&buffer
->cpu_notify
);
1366 for_each_buffer_cpu(buffer
, cpu
)
1367 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1371 kfree(buffer
->buffers
);
1372 free_cpumask_var(buffer
->cpumask
);
1376 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1378 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1381 buffer
->clock
= clock
;
1384 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1386 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1388 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1391 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1393 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1397 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned int nr_pages
)
1399 struct list_head
*tail_page
, *to_remove
, *next_page
;
1400 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1401 struct buffer_page
*last_page
, *first_page
;
1402 unsigned int nr_removed
;
1403 unsigned long head_bit
;
1408 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1409 atomic_inc(&cpu_buffer
->record_disabled
);
1411 * We don't race with the readers since we have acquired the reader
1412 * lock. We also don't race with writers after disabling recording.
1413 * This makes it easy to figure out the first and the last page to be
1414 * removed from the list. We unlink all the pages in between including
1415 * the first and last pages. This is done in a busy loop so that we
1416 * lose the least number of traces.
1417 * The pages are freed after we restart recording and unlock readers.
1419 tail_page
= &cpu_buffer
->tail_page
->list
;
1422 * tail page might be on reader page, we remove the next page
1423 * from the ring buffer
1425 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1426 tail_page
= rb_list_head(tail_page
->next
);
1427 to_remove
= tail_page
;
1429 /* start of pages to remove */
1430 first_page
= list_entry(rb_list_head(to_remove
->next
),
1431 struct buffer_page
, list
);
1433 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1434 to_remove
= rb_list_head(to_remove
)->next
;
1435 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1438 next_page
= rb_list_head(to_remove
)->next
;
1441 * Now we remove all pages between tail_page and next_page.
1442 * Make sure that we have head_bit value preserved for the
1445 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1447 next_page
= rb_list_head(next_page
);
1448 next_page
->prev
= tail_page
;
1450 /* make sure pages points to a valid page in the ring buffer */
1451 cpu_buffer
->pages
= next_page
;
1453 /* update head page */
1455 cpu_buffer
->head_page
= list_entry(next_page
,
1456 struct buffer_page
, list
);
1459 * change read pointer to make sure any read iterators reset
1462 cpu_buffer
->read
= 0;
1464 /* pages are removed, resume tracing and then free the pages */
1465 atomic_dec(&cpu_buffer
->record_disabled
);
1466 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1468 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1470 /* last buffer page to remove */
1471 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1473 tmp_iter_page
= first_page
;
1476 to_remove_page
= tmp_iter_page
;
1477 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1479 /* update the counters */
1480 page_entries
= rb_page_entries(to_remove_page
);
1483 * If something was added to this page, it was full
1484 * since it is not the tail page. So we deduct the
1485 * bytes consumed in ring buffer from here.
1486 * Increment overrun to account for the lost events.
1488 local_add(page_entries
, &cpu_buffer
->overrun
);
1489 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1493 * We have already removed references to this list item, just
1494 * free up the buffer_page and its page
1496 free_buffer_page(to_remove_page
);
1499 } while (to_remove_page
!= last_page
);
1501 RB_WARN_ON(cpu_buffer
, nr_removed
);
1503 return nr_removed
== 0;
1507 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1509 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1510 int retries
, success
;
1512 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1514 * We are holding the reader lock, so the reader page won't be swapped
1515 * in the ring buffer. Now we are racing with the writer trying to
1516 * move head page and the tail page.
1517 * We are going to adapt the reader page update process where:
1518 * 1. We first splice the start and end of list of new pages between
1519 * the head page and its previous page.
1520 * 2. We cmpxchg the prev_page->next to point from head page to the
1521 * start of new pages list.
1522 * 3. Finally, we update the head->prev to the end of new list.
1524 * We will try this process 10 times, to make sure that we don't keep
1530 struct list_head
*head_page
, *prev_page
, *r
;
1531 struct list_head
*last_page
, *first_page
;
1532 struct list_head
*head_page_with_bit
;
1534 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1537 prev_page
= head_page
->prev
;
1539 first_page
= pages
->next
;
1540 last_page
= pages
->prev
;
1542 head_page_with_bit
= (struct list_head
*)
1543 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1545 last_page
->next
= head_page_with_bit
;
1546 first_page
->prev
= prev_page
;
1548 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1550 if (r
== head_page_with_bit
) {
1552 * yay, we replaced the page pointer to our new list,
1553 * now, we just have to update to head page's prev
1554 * pointer to point to end of list
1556 head_page
->prev
= last_page
;
1563 INIT_LIST_HEAD(pages
);
1565 * If we weren't successful in adding in new pages, warn and stop
1568 RB_WARN_ON(cpu_buffer
, !success
);
1569 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1571 /* free pages if they weren't inserted */
1573 struct buffer_page
*bpage
, *tmp
;
1574 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1576 list_del_init(&bpage
->list
);
1577 free_buffer_page(bpage
);
1583 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1587 if (cpu_buffer
->nr_pages_to_update
> 0)
1588 success
= rb_insert_pages(cpu_buffer
);
1590 success
= rb_remove_pages(cpu_buffer
,
1591 -cpu_buffer
->nr_pages_to_update
);
1594 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1597 static void update_pages_handler(struct work_struct
*work
)
1599 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1600 struct ring_buffer_per_cpu
, update_pages_work
);
1601 rb_update_pages(cpu_buffer
);
1602 complete(&cpu_buffer
->update_done
);
1606 * ring_buffer_resize - resize the ring buffer
1607 * @buffer: the buffer to resize.
1608 * @size: the new size.
1609 * @cpu_id: the cpu buffer to resize
1611 * Minimum size is 2 * BUF_PAGE_SIZE.
1613 * Returns 0 on success and < 0 on failure.
1615 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1618 struct ring_buffer_per_cpu
*cpu_buffer
;
1623 * Always succeed at resizing a non-existent buffer:
1628 /* Make sure the requested buffer exists */
1629 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1630 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1633 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1634 size
*= BUF_PAGE_SIZE
;
1636 /* we need a minimum of two pages */
1637 if (size
< BUF_PAGE_SIZE
* 2)
1638 size
= BUF_PAGE_SIZE
* 2;
1640 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1643 * Don't succeed if resizing is disabled, as a reader might be
1644 * manipulating the ring buffer and is expecting a sane state while
1647 if (atomic_read(&buffer
->resize_disabled
))
1650 /* prevent another thread from changing buffer sizes */
1651 mutex_lock(&buffer
->mutex
);
1653 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1654 /* calculate the pages to update */
1655 for_each_buffer_cpu(buffer
, cpu
) {
1656 cpu_buffer
= buffer
->buffers
[cpu
];
1658 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1659 cpu_buffer
->nr_pages
;
1661 * nothing more to do for removing pages or no update
1663 if (cpu_buffer
->nr_pages_to_update
<= 0)
1666 * to add pages, make sure all new pages can be
1667 * allocated without receiving ENOMEM
1669 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1670 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1671 &cpu_buffer
->new_pages
, cpu
)) {
1672 /* not enough memory for new pages */
1680 * Fire off all the required work handlers
1681 * We can't schedule on offline CPUs, but it's not necessary
1682 * since we can change their buffer sizes without any race.
1684 for_each_buffer_cpu(buffer
, cpu
) {
1685 cpu_buffer
= buffer
->buffers
[cpu
];
1686 if (!cpu_buffer
->nr_pages_to_update
)
1689 /* The update must run on the CPU that is being updated. */
1691 if (cpu
== smp_processor_id() || !cpu_online(cpu
)) {
1692 rb_update_pages(cpu_buffer
);
1693 cpu_buffer
->nr_pages_to_update
= 0;
1696 * Can not disable preemption for schedule_work_on()
1700 schedule_work_on(cpu
,
1701 &cpu_buffer
->update_pages_work
);
1707 /* wait for all the updates to complete */
1708 for_each_buffer_cpu(buffer
, cpu
) {
1709 cpu_buffer
= buffer
->buffers
[cpu
];
1710 if (!cpu_buffer
->nr_pages_to_update
)
1713 if (cpu_online(cpu
))
1714 wait_for_completion(&cpu_buffer
->update_done
);
1715 cpu_buffer
->nr_pages_to_update
= 0;
1720 /* Make sure this CPU has been intitialized */
1721 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1724 cpu_buffer
= buffer
->buffers
[cpu_id
];
1726 if (nr_pages
== cpu_buffer
->nr_pages
)
1729 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1730 cpu_buffer
->nr_pages
;
1732 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1733 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1734 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1735 &cpu_buffer
->new_pages
, cpu_id
)) {
1743 /* The update must run on the CPU that is being updated. */
1744 if (cpu_id
== smp_processor_id() || !cpu_online(cpu_id
))
1745 rb_update_pages(cpu_buffer
);
1748 * Can not disable preemption for schedule_work_on()
1752 schedule_work_on(cpu_id
,
1753 &cpu_buffer
->update_pages_work
);
1754 wait_for_completion(&cpu_buffer
->update_done
);
1759 cpu_buffer
->nr_pages_to_update
= 0;
1765 * The ring buffer resize can happen with the ring buffer
1766 * enabled, so that the update disturbs the tracing as little
1767 * as possible. But if the buffer is disabled, we do not need
1768 * to worry about that, and we can take the time to verify
1769 * that the buffer is not corrupt.
1771 if (atomic_read(&buffer
->record_disabled
)) {
1772 atomic_inc(&buffer
->record_disabled
);
1774 * Even though the buffer was disabled, we must make sure
1775 * that it is truly disabled before calling rb_check_pages.
1776 * There could have been a race between checking
1777 * record_disable and incrementing it.
1779 synchronize_sched();
1780 for_each_buffer_cpu(buffer
, cpu
) {
1781 cpu_buffer
= buffer
->buffers
[cpu
];
1782 rb_check_pages(cpu_buffer
);
1784 atomic_dec(&buffer
->record_disabled
);
1787 mutex_unlock(&buffer
->mutex
);
1791 for_each_buffer_cpu(buffer
, cpu
) {
1792 struct buffer_page
*bpage
, *tmp
;
1794 cpu_buffer
= buffer
->buffers
[cpu
];
1795 cpu_buffer
->nr_pages_to_update
= 0;
1797 if (list_empty(&cpu_buffer
->new_pages
))
1800 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1802 list_del_init(&bpage
->list
);
1803 free_buffer_page(bpage
);
1806 mutex_unlock(&buffer
->mutex
);
1809 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1811 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1813 mutex_lock(&buffer
->mutex
);
1815 buffer
->flags
|= RB_FL_OVERWRITE
;
1817 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1818 mutex_unlock(&buffer
->mutex
);
1820 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1822 static inline void *
1823 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1825 return bpage
->data
+ index
;
1828 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1830 return bpage
->page
->data
+ index
;
1833 static inline struct ring_buffer_event
*
1834 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1836 return __rb_page_index(cpu_buffer
->reader_page
,
1837 cpu_buffer
->reader_page
->read
);
1840 static inline struct ring_buffer_event
*
1841 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1843 return __rb_page_index(iter
->head_page
, iter
->head
);
1846 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1848 return local_read(&bpage
->page
->commit
);
1851 /* Size is determined by what has been committed */
1852 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1854 return rb_page_commit(bpage
);
1857 static inline unsigned
1858 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1860 return rb_page_commit(cpu_buffer
->commit_page
);
1863 static inline unsigned
1864 rb_event_index(struct ring_buffer_event
*event
)
1866 unsigned long addr
= (unsigned long)event
;
1868 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1872 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1873 struct ring_buffer_event
*event
)
1875 unsigned long addr
= (unsigned long)event
;
1876 unsigned long index
;
1878 index
= rb_event_index(event
);
1881 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1882 rb_commit_index(cpu_buffer
) == index
;
1886 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1888 unsigned long max_count
;
1891 * We only race with interrupts and NMIs on this CPU.
1892 * If we own the commit event, then we can commit
1893 * all others that interrupted us, since the interruptions
1894 * are in stack format (they finish before they come
1895 * back to us). This allows us to do a simple loop to
1896 * assign the commit to the tail.
1899 max_count
= cpu_buffer
->nr_pages
* 100;
1901 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1902 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1904 if (RB_WARN_ON(cpu_buffer
,
1905 rb_is_reader_page(cpu_buffer
->tail_page
)))
1907 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1908 rb_page_write(cpu_buffer
->commit_page
));
1909 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1910 cpu_buffer
->write_stamp
=
1911 cpu_buffer
->commit_page
->page
->time_stamp
;
1912 /* add barrier to keep gcc from optimizing too much */
1915 while (rb_commit_index(cpu_buffer
) !=
1916 rb_page_write(cpu_buffer
->commit_page
)) {
1918 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1919 rb_page_write(cpu_buffer
->commit_page
));
1920 RB_WARN_ON(cpu_buffer
,
1921 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1926 /* again, keep gcc from optimizing */
1930 * If an interrupt came in just after the first while loop
1931 * and pushed the tail page forward, we will be left with
1932 * a dangling commit that will never go forward.
1934 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1938 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1940 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1941 cpu_buffer
->reader_page
->read
= 0;
1944 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1946 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1949 * The iterator could be on the reader page (it starts there).
1950 * But the head could have moved, since the reader was
1951 * found. Check for this case and assign the iterator
1952 * to the head page instead of next.
1954 if (iter
->head_page
== cpu_buffer
->reader_page
)
1955 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1957 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1959 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1963 /* Slow path, do not inline */
1964 static noinline
struct ring_buffer_event
*
1965 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
1967 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
1969 /* Not the first event on the page? */
1970 if (rb_event_index(event
)) {
1971 event
->time_delta
= delta
& TS_MASK
;
1972 event
->array
[0] = delta
>> TS_SHIFT
;
1974 /* nope, just zero it */
1975 event
->time_delta
= 0;
1976 event
->array
[0] = 0;
1979 return skip_time_extend(event
);
1983 * rb_update_event - update event type and data
1984 * @event: the even to update
1985 * @type: the type of event
1986 * @length: the size of the event field in the ring buffer
1988 * Update the type and data fields of the event. The length
1989 * is the actual size that is written to the ring buffer,
1990 * and with this, we can determine what to place into the
1994 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
1995 struct ring_buffer_event
*event
, unsigned length
,
1996 int add_timestamp
, u64 delta
)
1998 /* Only a commit updates the timestamp */
1999 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2003 * If we need to add a timestamp, then we
2004 * add it to the start of the resevered space.
2006 if (unlikely(add_timestamp
)) {
2007 event
= rb_add_time_stamp(event
, delta
);
2008 length
-= RB_LEN_TIME_EXTEND
;
2012 event
->time_delta
= delta
;
2013 length
-= RB_EVNT_HDR_SIZE
;
2014 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2015 event
->type_len
= 0;
2016 event
->array
[0] = length
;
2018 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2022 * rb_handle_head_page - writer hit the head page
2024 * Returns: +1 to retry page
2029 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
2030 struct buffer_page
*tail_page
,
2031 struct buffer_page
*next_page
)
2033 struct buffer_page
*new_head
;
2038 entries
= rb_page_entries(next_page
);
2041 * The hard part is here. We need to move the head
2042 * forward, and protect against both readers on
2043 * other CPUs and writers coming in via interrupts.
2045 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
2049 * type can be one of four:
2050 * NORMAL - an interrupt already moved it for us
2051 * HEAD - we are the first to get here.
2052 * UPDATE - we are the interrupt interrupting
2054 * MOVED - a reader on another CPU moved the next
2055 * pointer to its reader page. Give up
2062 * We changed the head to UPDATE, thus
2063 * it is our responsibility to update
2066 local_add(entries
, &cpu_buffer
->overrun
);
2067 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
2070 * The entries will be zeroed out when we move the
2074 /* still more to do */
2077 case RB_PAGE_UPDATE
:
2079 * This is an interrupt that interrupt the
2080 * previous update. Still more to do.
2083 case RB_PAGE_NORMAL
:
2085 * An interrupt came in before the update
2086 * and processed this for us.
2087 * Nothing left to do.
2092 * The reader is on another CPU and just did
2093 * a swap with our next_page.
2098 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
2103 * Now that we are here, the old head pointer is
2104 * set to UPDATE. This will keep the reader from
2105 * swapping the head page with the reader page.
2106 * The reader (on another CPU) will spin till
2109 * We just need to protect against interrupts
2110 * doing the job. We will set the next pointer
2111 * to HEAD. After that, we set the old pointer
2112 * to NORMAL, but only if it was HEAD before.
2113 * otherwise we are an interrupt, and only
2114 * want the outer most commit to reset it.
2116 new_head
= next_page
;
2117 rb_inc_page(cpu_buffer
, &new_head
);
2119 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2123 * Valid returns are:
2124 * HEAD - an interrupt came in and already set it.
2125 * NORMAL - One of two things:
2126 * 1) We really set it.
2127 * 2) A bunch of interrupts came in and moved
2128 * the page forward again.
2132 case RB_PAGE_NORMAL
:
2136 RB_WARN_ON(cpu_buffer
, 1);
2141 * It is possible that an interrupt came in,
2142 * set the head up, then more interrupts came in
2143 * and moved it again. When we get back here,
2144 * the page would have been set to NORMAL but we
2145 * just set it back to HEAD.
2147 * How do you detect this? Well, if that happened
2148 * the tail page would have moved.
2150 if (ret
== RB_PAGE_NORMAL
) {
2152 * If the tail had moved passed next, then we need
2153 * to reset the pointer.
2155 if (cpu_buffer
->tail_page
!= tail_page
&&
2156 cpu_buffer
->tail_page
!= next_page
)
2157 rb_head_page_set_normal(cpu_buffer
, new_head
,
2163 * If this was the outer most commit (the one that
2164 * changed the original pointer from HEAD to UPDATE),
2165 * then it is up to us to reset it to NORMAL.
2167 if (type
== RB_PAGE_HEAD
) {
2168 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2171 if (RB_WARN_ON(cpu_buffer
,
2172 ret
!= RB_PAGE_UPDATE
))
2179 static unsigned rb_calculate_event_length(unsigned length
)
2181 struct ring_buffer_event event
; /* Used only for sizeof array */
2183 /* zero length can cause confusions */
2187 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2188 length
+= sizeof(event
.array
[0]);
2190 length
+= RB_EVNT_HDR_SIZE
;
2191 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2197 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2198 struct buffer_page
*tail_page
,
2199 unsigned long tail
, unsigned long length
)
2201 struct ring_buffer_event
*event
;
2204 * Only the event that crossed the page boundary
2205 * must fill the old tail_page with padding.
2207 if (tail
>= BUF_PAGE_SIZE
) {
2209 * If the page was filled, then we still need
2210 * to update the real_end. Reset it to zero
2211 * and the reader will ignore it.
2213 if (tail
== BUF_PAGE_SIZE
)
2214 tail_page
->real_end
= 0;
2216 local_sub(length
, &tail_page
->write
);
2220 event
= __rb_page_index(tail_page
, tail
);
2221 kmemcheck_annotate_bitfield(event
, bitfield
);
2223 /* account for padding bytes */
2224 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2227 * Save the original length to the meta data.
2228 * This will be used by the reader to add lost event
2231 tail_page
->real_end
= tail
;
2234 * If this event is bigger than the minimum size, then
2235 * we need to be careful that we don't subtract the
2236 * write counter enough to allow another writer to slip
2238 * We put in a discarded commit instead, to make sure
2239 * that this space is not used again.
2241 * If we are less than the minimum size, we don't need to
2244 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2245 /* No room for any events */
2247 /* Mark the rest of the page with padding */
2248 rb_event_set_padding(event
);
2250 /* Set the write back to the previous setting */
2251 local_sub(length
, &tail_page
->write
);
2255 /* Put in a discarded event */
2256 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2257 event
->type_len
= RINGBUF_TYPE_PADDING
;
2258 /* time delta must be non zero */
2259 event
->time_delta
= 1;
2261 /* Set write to end of buffer */
2262 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2263 local_sub(length
, &tail_page
->write
);
2267 * This is the slow path, force gcc not to inline it.
2269 static noinline
struct ring_buffer_event
*
2270 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2271 unsigned long length
, unsigned long tail
,
2272 struct buffer_page
*tail_page
, u64 ts
)
2274 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2275 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2276 struct buffer_page
*next_page
;
2279 next_page
= tail_page
;
2281 rb_inc_page(cpu_buffer
, &next_page
);
2284 * If for some reason, we had an interrupt storm that made
2285 * it all the way around the buffer, bail, and warn
2288 if (unlikely(next_page
== commit_page
)) {
2289 local_inc(&cpu_buffer
->commit_overrun
);
2294 * This is where the fun begins!
2296 * We are fighting against races between a reader that
2297 * could be on another CPU trying to swap its reader
2298 * page with the buffer head.
2300 * We are also fighting against interrupts coming in and
2301 * moving the head or tail on us as well.
2303 * If the next page is the head page then we have filled
2304 * the buffer, unless the commit page is still on the
2307 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2310 * If the commit is not on the reader page, then
2311 * move the header page.
2313 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2315 * If we are not in overwrite mode,
2316 * this is easy, just stop here.
2318 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2319 local_inc(&cpu_buffer
->dropped_events
);
2323 ret
= rb_handle_head_page(cpu_buffer
,
2332 * We need to be careful here too. The
2333 * commit page could still be on the reader
2334 * page. We could have a small buffer, and
2335 * have filled up the buffer with events
2336 * from interrupts and such, and wrapped.
2338 * Note, if the tail page is also the on the
2339 * reader_page, we let it move out.
2341 if (unlikely((cpu_buffer
->commit_page
!=
2342 cpu_buffer
->tail_page
) &&
2343 (cpu_buffer
->commit_page
==
2344 cpu_buffer
->reader_page
))) {
2345 local_inc(&cpu_buffer
->commit_overrun
);
2351 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2354 * Nested commits always have zero deltas, so
2355 * just reread the time stamp
2357 ts
= rb_time_stamp(buffer
);
2358 next_page
->page
->time_stamp
= ts
;
2363 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2365 /* fail and let the caller try again */
2366 return ERR_PTR(-EAGAIN
);
2370 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2375 static struct ring_buffer_event
*
2376 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2377 unsigned long length
, u64 ts
,
2378 u64 delta
, int add_timestamp
)
2380 struct buffer_page
*tail_page
;
2381 struct ring_buffer_event
*event
;
2382 unsigned long tail
, write
;
2385 * If the time delta since the last event is too big to
2386 * hold in the time field of the event, then we append a
2387 * TIME EXTEND event ahead of the data event.
2389 if (unlikely(add_timestamp
))
2390 length
+= RB_LEN_TIME_EXTEND
;
2392 tail_page
= cpu_buffer
->tail_page
;
2393 write
= local_add_return(length
, &tail_page
->write
);
2395 /* set write to only the index of the write */
2396 write
&= RB_WRITE_MASK
;
2397 tail
= write
- length
;
2400 * If this is the first commit on the page, then it has the same
2401 * timestamp as the page itself.
2406 /* See if we shot pass the end of this buffer page */
2407 if (unlikely(write
> BUF_PAGE_SIZE
))
2408 return rb_move_tail(cpu_buffer
, length
, tail
,
2411 /* We reserved something on the buffer */
2413 event
= __rb_page_index(tail_page
, tail
);
2414 kmemcheck_annotate_bitfield(event
, bitfield
);
2415 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2417 local_inc(&tail_page
->entries
);
2420 * If this is the first commit on the page, then update
2424 tail_page
->page
->time_stamp
= ts
;
2426 /* account for these added bytes */
2427 local_add(length
, &cpu_buffer
->entries_bytes
);
2433 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2434 struct ring_buffer_event
*event
)
2436 unsigned long new_index
, old_index
;
2437 struct buffer_page
*bpage
;
2438 unsigned long index
;
2441 new_index
= rb_event_index(event
);
2442 old_index
= new_index
+ rb_event_ts_length(event
);
2443 addr
= (unsigned long)event
;
2446 bpage
= cpu_buffer
->tail_page
;
2448 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2449 unsigned long write_mask
=
2450 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2451 unsigned long event_length
= rb_event_length(event
);
2453 * This is on the tail page. It is possible that
2454 * a write could come in and move the tail page
2455 * and write to the next page. That is fine
2456 * because we just shorten what is on this page.
2458 old_index
+= write_mask
;
2459 new_index
+= write_mask
;
2460 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2461 if (index
== old_index
) {
2462 /* update counters */
2463 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2468 /* could not discard */
2472 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2474 local_inc(&cpu_buffer
->committing
);
2475 local_inc(&cpu_buffer
->commits
);
2478 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2480 unsigned long commits
;
2482 if (RB_WARN_ON(cpu_buffer
,
2483 !local_read(&cpu_buffer
->committing
)))
2487 commits
= local_read(&cpu_buffer
->commits
);
2488 /* synchronize with interrupts */
2490 if (local_read(&cpu_buffer
->committing
) == 1)
2491 rb_set_commit_to_write(cpu_buffer
);
2493 local_dec(&cpu_buffer
->committing
);
2495 /* synchronize with interrupts */
2499 * Need to account for interrupts coming in between the
2500 * updating of the commit page and the clearing of the
2501 * committing counter.
2503 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2504 !local_read(&cpu_buffer
->committing
)) {
2505 local_inc(&cpu_buffer
->committing
);
2510 static struct ring_buffer_event
*
2511 rb_reserve_next_event(struct ring_buffer
*buffer
,
2512 struct ring_buffer_per_cpu
*cpu_buffer
,
2513 unsigned long length
)
2515 struct ring_buffer_event
*event
;
2521 rb_start_commit(cpu_buffer
);
2523 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2525 * Due to the ability to swap a cpu buffer from a buffer
2526 * it is possible it was swapped before we committed.
2527 * (committing stops a swap). We check for it here and
2528 * if it happened, we have to fail the write.
2531 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2532 local_dec(&cpu_buffer
->committing
);
2533 local_dec(&cpu_buffer
->commits
);
2538 length
= rb_calculate_event_length(length
);
2544 * We allow for interrupts to reenter here and do a trace.
2545 * If one does, it will cause this original code to loop
2546 * back here. Even with heavy interrupts happening, this
2547 * should only happen a few times in a row. If this happens
2548 * 1000 times in a row, there must be either an interrupt
2549 * storm or we have something buggy.
2552 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2555 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2556 diff
= ts
- cpu_buffer
->write_stamp
;
2558 /* make sure this diff is calculated here */
2561 /* Did the write stamp get updated already? */
2562 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2564 if (unlikely(test_time_stamp(delta
))) {
2565 int local_clock_stable
= 1;
2566 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2567 local_clock_stable
= sched_clock_stable
;
2569 WARN_ONCE(delta
> (1ULL << 59),
2570 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2571 (unsigned long long)delta
,
2572 (unsigned long long)ts
,
2573 (unsigned long long)cpu_buffer
->write_stamp
,
2574 local_clock_stable
? "" :
2575 "If you just came from a suspend/resume,\n"
2576 "please switch to the trace global clock:\n"
2577 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2582 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2583 delta
, add_timestamp
);
2584 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2593 rb_end_commit(cpu_buffer
);
2597 #ifdef CONFIG_TRACING
2600 * The lock and unlock are done within a preempt disable section.
2601 * The current_context per_cpu variable can only be modified
2602 * by the current task between lock and unlock. But it can
2603 * be modified more than once via an interrupt. To pass this
2604 * information from the lock to the unlock without having to
2605 * access the 'in_interrupt()' functions again (which do show
2606 * a bit of overhead in something as critical as function tracing,
2607 * we use a bitmask trick.
2609 * bit 0 = NMI context
2610 * bit 1 = IRQ context
2611 * bit 2 = SoftIRQ context
2612 * bit 3 = normal context.
2614 * This works because this is the order of contexts that can
2615 * preempt other contexts. A SoftIRQ never preempts an IRQ
2618 * When the context is determined, the corresponding bit is
2619 * checked and set (if it was set, then a recursion of that context
2622 * On unlock, we need to clear this bit. To do so, just subtract
2623 * 1 from the current_context and AND it to itself.
2627 * 101 & 100 = 100 (clearing bit zero)
2630 * 1010 & 1001 = 1000 (clearing bit 1)
2632 * The least significant bit can be cleared this way, and it
2633 * just so happens that it is the same bit corresponding to
2634 * the current context.
2636 static DEFINE_PER_CPU(unsigned int, current_context
);
2638 static __always_inline
int trace_recursive_lock(void)
2640 unsigned int val
= this_cpu_read(current_context
);
2643 if (in_interrupt()) {
2653 if (unlikely(val
& (1 << bit
)))
2657 this_cpu_write(current_context
, val
);
2662 static __always_inline
void trace_recursive_unlock(void)
2664 unsigned int val
= this_cpu_read(current_context
);
2667 val
&= this_cpu_read(current_context
);
2668 this_cpu_write(current_context
, val
);
2673 #define trace_recursive_lock() (0)
2674 #define trace_recursive_unlock() do { } while (0)
2679 * ring_buffer_lock_reserve - reserve a part of the buffer
2680 * @buffer: the ring buffer to reserve from
2681 * @length: the length of the data to reserve (excluding event header)
2683 * Returns a reseverd event on the ring buffer to copy directly to.
2684 * The user of this interface will need to get the body to write into
2685 * and can use the ring_buffer_event_data() interface.
2687 * The length is the length of the data needed, not the event length
2688 * which also includes the event header.
2690 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2691 * If NULL is returned, then nothing has been allocated or locked.
2693 struct ring_buffer_event
*
2694 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2696 struct ring_buffer_per_cpu
*cpu_buffer
;
2697 struct ring_buffer_event
*event
;
2700 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2703 /* If we are tracing schedule, we don't want to recurse */
2704 preempt_disable_notrace();
2706 if (atomic_read(&buffer
->record_disabled
))
2709 if (trace_recursive_lock())
2712 cpu
= raw_smp_processor_id();
2714 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2717 cpu_buffer
= buffer
->buffers
[cpu
];
2719 if (atomic_read(&cpu_buffer
->record_disabled
))
2722 if (length
> BUF_MAX_DATA_SIZE
)
2725 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2732 trace_recursive_unlock();
2735 preempt_enable_notrace();
2738 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2741 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2742 struct ring_buffer_event
*event
)
2747 * The event first in the commit queue updates the
2750 if (rb_event_is_commit(cpu_buffer
, event
)) {
2752 * A commit event that is first on a page
2753 * updates the write timestamp with the page stamp
2755 if (!rb_event_index(event
))
2756 cpu_buffer
->write_stamp
=
2757 cpu_buffer
->commit_page
->page
->time_stamp
;
2758 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2759 delta
= event
->array
[0];
2761 delta
+= event
->time_delta
;
2762 cpu_buffer
->write_stamp
+= delta
;
2764 cpu_buffer
->write_stamp
+= event
->time_delta
;
2768 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2769 struct ring_buffer_event
*event
)
2771 local_inc(&cpu_buffer
->entries
);
2772 rb_update_write_stamp(cpu_buffer
, event
);
2773 rb_end_commit(cpu_buffer
);
2776 static __always_inline
void
2777 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2779 if (buffer
->irq_work
.waiters_pending
) {
2780 buffer
->irq_work
.waiters_pending
= false;
2781 /* irq_work_queue() supplies it's own memory barriers */
2782 irq_work_queue(&buffer
->irq_work
.work
);
2785 if (cpu_buffer
->irq_work
.waiters_pending
) {
2786 cpu_buffer
->irq_work
.waiters_pending
= false;
2787 /* irq_work_queue() supplies it's own memory barriers */
2788 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2793 * ring_buffer_unlock_commit - commit a reserved
2794 * @buffer: The buffer to commit to
2795 * @event: The event pointer to commit.
2797 * This commits the data to the ring buffer, and releases any locks held.
2799 * Must be paired with ring_buffer_lock_reserve.
2801 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2802 struct ring_buffer_event
*event
)
2804 struct ring_buffer_per_cpu
*cpu_buffer
;
2805 int cpu
= raw_smp_processor_id();
2807 cpu_buffer
= buffer
->buffers
[cpu
];
2809 rb_commit(cpu_buffer
, event
);
2811 rb_wakeups(buffer
, cpu_buffer
);
2813 trace_recursive_unlock();
2815 preempt_enable_notrace();
2819 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2821 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2823 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2824 event
= skip_time_extend(event
);
2826 /* array[0] holds the actual length for the discarded event */
2827 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2828 event
->type_len
= RINGBUF_TYPE_PADDING
;
2829 /* time delta must be non zero */
2830 if (!event
->time_delta
)
2831 event
->time_delta
= 1;
2835 * Decrement the entries to the page that an event is on.
2836 * The event does not even need to exist, only the pointer
2837 * to the page it is on. This may only be called before the commit
2841 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2842 struct ring_buffer_event
*event
)
2844 unsigned long addr
= (unsigned long)event
;
2845 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2846 struct buffer_page
*start
;
2850 /* Do the likely case first */
2851 if (likely(bpage
->page
== (void *)addr
)) {
2852 local_dec(&bpage
->entries
);
2857 * Because the commit page may be on the reader page we
2858 * start with the next page and check the end loop there.
2860 rb_inc_page(cpu_buffer
, &bpage
);
2863 if (bpage
->page
== (void *)addr
) {
2864 local_dec(&bpage
->entries
);
2867 rb_inc_page(cpu_buffer
, &bpage
);
2868 } while (bpage
!= start
);
2870 /* commit not part of this buffer?? */
2871 RB_WARN_ON(cpu_buffer
, 1);
2875 * ring_buffer_commit_discard - discard an event that has not been committed
2876 * @buffer: the ring buffer
2877 * @event: non committed event to discard
2879 * Sometimes an event that is in the ring buffer needs to be ignored.
2880 * This function lets the user discard an event in the ring buffer
2881 * and then that event will not be read later.
2883 * This function only works if it is called before the the item has been
2884 * committed. It will try to free the event from the ring buffer
2885 * if another event has not been added behind it.
2887 * If another event has been added behind it, it will set the event
2888 * up as discarded, and perform the commit.
2890 * If this function is called, do not call ring_buffer_unlock_commit on
2893 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2894 struct ring_buffer_event
*event
)
2896 struct ring_buffer_per_cpu
*cpu_buffer
;
2899 /* The event is discarded regardless */
2900 rb_event_discard(event
);
2902 cpu
= smp_processor_id();
2903 cpu_buffer
= buffer
->buffers
[cpu
];
2906 * This must only be called if the event has not been
2907 * committed yet. Thus we can assume that preemption
2908 * is still disabled.
2910 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2912 rb_decrement_entry(cpu_buffer
, event
);
2913 if (rb_try_to_discard(cpu_buffer
, event
))
2917 * The commit is still visible by the reader, so we
2918 * must still update the timestamp.
2920 rb_update_write_stamp(cpu_buffer
, event
);
2922 rb_end_commit(cpu_buffer
);
2924 trace_recursive_unlock();
2926 preempt_enable_notrace();
2929 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2932 * ring_buffer_write - write data to the buffer without reserving
2933 * @buffer: The ring buffer to write to.
2934 * @length: The length of the data being written (excluding the event header)
2935 * @data: The data to write to the buffer.
2937 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2938 * one function. If you already have the data to write to the buffer, it
2939 * may be easier to simply call this function.
2941 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2942 * and not the length of the event which would hold the header.
2944 int ring_buffer_write(struct ring_buffer
*buffer
,
2945 unsigned long length
,
2948 struct ring_buffer_per_cpu
*cpu_buffer
;
2949 struct ring_buffer_event
*event
;
2954 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2957 preempt_disable_notrace();
2959 if (atomic_read(&buffer
->record_disabled
))
2962 cpu
= raw_smp_processor_id();
2964 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2967 cpu_buffer
= buffer
->buffers
[cpu
];
2969 if (atomic_read(&cpu_buffer
->record_disabled
))
2972 if (length
> BUF_MAX_DATA_SIZE
)
2975 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2979 body
= rb_event_data(event
);
2981 memcpy(body
, data
, length
);
2983 rb_commit(cpu_buffer
, event
);
2985 rb_wakeups(buffer
, cpu_buffer
);
2989 preempt_enable_notrace();
2993 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2995 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2997 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2998 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2999 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3001 /* In case of error, head will be NULL */
3002 if (unlikely(!head
))
3005 return reader
->read
== rb_page_commit(reader
) &&
3006 (commit
== reader
||
3008 head
->read
== rb_page_commit(commit
)));
3012 * ring_buffer_record_disable - stop all writes into the buffer
3013 * @buffer: The ring buffer to stop writes to.
3015 * This prevents all writes to the buffer. Any attempt to write
3016 * to the buffer after this will fail and return NULL.
3018 * The caller should call synchronize_sched() after this.
3020 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3022 atomic_inc(&buffer
->record_disabled
);
3024 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3027 * ring_buffer_record_enable - enable writes to the buffer
3028 * @buffer: The ring buffer to enable writes
3030 * Note, multiple disables will need the same number of enables
3031 * to truly enable the writing (much like preempt_disable).
3033 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3035 atomic_dec(&buffer
->record_disabled
);
3037 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3040 * ring_buffer_record_off - stop all writes into the buffer
3041 * @buffer: The ring buffer to stop writes to.
3043 * This prevents all writes to the buffer. Any attempt to write
3044 * to the buffer after this will fail and return NULL.
3046 * This is different than ring_buffer_record_disable() as
3047 * it works like an on/off switch, where as the disable() version
3048 * must be paired with a enable().
3050 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3053 unsigned int new_rd
;
3056 rd
= atomic_read(&buffer
->record_disabled
);
3057 new_rd
= rd
| RB_BUFFER_OFF
;
3058 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3060 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3063 * ring_buffer_record_on - restart writes into the buffer
3064 * @buffer: The ring buffer to start writes to.
3066 * This enables all writes to the buffer that was disabled by
3067 * ring_buffer_record_off().
3069 * This is different than ring_buffer_record_enable() as
3070 * it works like an on/off switch, where as the enable() version
3071 * must be paired with a disable().
3073 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3076 unsigned int new_rd
;
3079 rd
= atomic_read(&buffer
->record_disabled
);
3080 new_rd
= rd
& ~RB_BUFFER_OFF
;
3081 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3083 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3086 * ring_buffer_record_is_on - return true if the ring buffer can write
3087 * @buffer: The ring buffer to see if write is enabled
3089 * Returns true if the ring buffer is in a state that it accepts writes.
3091 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3093 return !atomic_read(&buffer
->record_disabled
);
3097 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3098 * @buffer: The ring buffer to stop writes to.
3099 * @cpu: The CPU buffer to stop
3101 * This prevents all writes to the buffer. Any attempt to write
3102 * to the buffer after this will fail and return NULL.
3104 * The caller should call synchronize_sched() after this.
3106 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3108 struct ring_buffer_per_cpu
*cpu_buffer
;
3110 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3113 cpu_buffer
= buffer
->buffers
[cpu
];
3114 atomic_inc(&cpu_buffer
->record_disabled
);
3116 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3119 * ring_buffer_record_enable_cpu - enable writes to the buffer
3120 * @buffer: The ring buffer to enable writes
3121 * @cpu: The CPU to enable.
3123 * Note, multiple disables will need the same number of enables
3124 * to truly enable the writing (much like preempt_disable).
3126 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3128 struct ring_buffer_per_cpu
*cpu_buffer
;
3130 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3133 cpu_buffer
= buffer
->buffers
[cpu
];
3134 atomic_dec(&cpu_buffer
->record_disabled
);
3136 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3139 * The total entries in the ring buffer is the running counter
3140 * of entries entered into the ring buffer, minus the sum of
3141 * the entries read from the ring buffer and the number of
3142 * entries that were overwritten.
3144 static inline unsigned long
3145 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3147 return local_read(&cpu_buffer
->entries
) -
3148 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3152 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3153 * @buffer: The ring buffer
3154 * @cpu: The per CPU buffer to read from.
3156 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3158 unsigned long flags
;
3159 struct ring_buffer_per_cpu
*cpu_buffer
;
3160 struct buffer_page
*bpage
;
3163 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3166 cpu_buffer
= buffer
->buffers
[cpu
];
3167 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3169 * if the tail is on reader_page, oldest time stamp is on the reader
3172 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3173 bpage
= cpu_buffer
->reader_page
;
3175 bpage
= rb_set_head_page(cpu_buffer
);
3177 ret
= bpage
->page
->time_stamp
;
3178 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3182 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3185 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3186 * @buffer: The ring buffer
3187 * @cpu: The per CPU buffer to read from.
3189 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3191 struct ring_buffer_per_cpu
*cpu_buffer
;
3194 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3197 cpu_buffer
= buffer
->buffers
[cpu
];
3198 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3202 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3205 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3206 * @buffer: The ring buffer
3207 * @cpu: The per CPU buffer to get the entries from.
3209 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3211 struct ring_buffer_per_cpu
*cpu_buffer
;
3213 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3216 cpu_buffer
= buffer
->buffers
[cpu
];
3218 return rb_num_of_entries(cpu_buffer
);
3220 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3223 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3224 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3225 * @buffer: The ring buffer
3226 * @cpu: The per CPU buffer to get the number of overruns from
3228 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3230 struct ring_buffer_per_cpu
*cpu_buffer
;
3233 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3236 cpu_buffer
= buffer
->buffers
[cpu
];
3237 ret
= local_read(&cpu_buffer
->overrun
);
3241 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3244 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3245 * commits failing due to the buffer wrapping around while there are uncommitted
3246 * events, such as during an interrupt storm.
3247 * @buffer: The ring buffer
3248 * @cpu: The per CPU buffer to get the number of overruns from
3251 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3253 struct ring_buffer_per_cpu
*cpu_buffer
;
3256 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3259 cpu_buffer
= buffer
->buffers
[cpu
];
3260 ret
= local_read(&cpu_buffer
->commit_overrun
);
3264 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3267 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3268 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3269 * @buffer: The ring buffer
3270 * @cpu: The per CPU buffer to get the number of overruns from
3273 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3275 struct ring_buffer_per_cpu
*cpu_buffer
;
3278 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3281 cpu_buffer
= buffer
->buffers
[cpu
];
3282 ret
= local_read(&cpu_buffer
->dropped_events
);
3286 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3289 * ring_buffer_read_events_cpu - get the number of events successfully read
3290 * @buffer: The ring buffer
3291 * @cpu: The per CPU buffer to get the number of events read
3294 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3296 struct ring_buffer_per_cpu
*cpu_buffer
;
3298 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3301 cpu_buffer
= buffer
->buffers
[cpu
];
3302 return cpu_buffer
->read
;
3304 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3307 * ring_buffer_entries - get the number of entries in a buffer
3308 * @buffer: The ring buffer
3310 * Returns the total number of entries in the ring buffer
3313 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3315 struct ring_buffer_per_cpu
*cpu_buffer
;
3316 unsigned long entries
= 0;
3319 /* if you care about this being correct, lock the buffer */
3320 for_each_buffer_cpu(buffer
, cpu
) {
3321 cpu_buffer
= buffer
->buffers
[cpu
];
3322 entries
+= rb_num_of_entries(cpu_buffer
);
3327 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3330 * ring_buffer_overruns - get the number of overruns in buffer
3331 * @buffer: The ring buffer
3333 * Returns the total number of overruns in the ring buffer
3336 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3338 struct ring_buffer_per_cpu
*cpu_buffer
;
3339 unsigned long overruns
= 0;
3342 /* if you care about this being correct, lock the buffer */
3343 for_each_buffer_cpu(buffer
, cpu
) {
3344 cpu_buffer
= buffer
->buffers
[cpu
];
3345 overruns
+= local_read(&cpu_buffer
->overrun
);
3350 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3352 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3354 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3356 /* Iterator usage is expected to have record disabled */
3357 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
3358 iter
->head_page
= rb_set_head_page(cpu_buffer
);
3359 if (unlikely(!iter
->head_page
))
3361 iter
->head
= iter
->head_page
->read
;
3363 iter
->head_page
= cpu_buffer
->reader_page
;
3364 iter
->head
= cpu_buffer
->reader_page
->read
;
3367 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3369 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3370 iter
->cache_reader_page
= cpu_buffer
->reader_page
;
3371 iter
->cache_read
= cpu_buffer
->read
;
3375 * ring_buffer_iter_reset - reset an iterator
3376 * @iter: The iterator to reset
3378 * Resets the iterator, so that it will start from the beginning
3381 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3383 struct ring_buffer_per_cpu
*cpu_buffer
;
3384 unsigned long flags
;
3389 cpu_buffer
= iter
->cpu_buffer
;
3391 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3392 rb_iter_reset(iter
);
3393 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3395 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3398 * ring_buffer_iter_empty - check if an iterator has no more to read
3399 * @iter: The iterator to check
3401 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3403 struct ring_buffer_per_cpu
*cpu_buffer
;
3405 cpu_buffer
= iter
->cpu_buffer
;
3407 return iter
->head_page
== cpu_buffer
->commit_page
&&
3408 iter
->head
== rb_commit_index(cpu_buffer
);
3410 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3413 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3414 struct ring_buffer_event
*event
)
3418 switch (event
->type_len
) {
3419 case RINGBUF_TYPE_PADDING
:
3422 case RINGBUF_TYPE_TIME_EXTEND
:
3423 delta
= event
->array
[0];
3425 delta
+= event
->time_delta
;
3426 cpu_buffer
->read_stamp
+= delta
;
3429 case RINGBUF_TYPE_TIME_STAMP
:
3430 /* FIXME: not implemented */
3433 case RINGBUF_TYPE_DATA
:
3434 cpu_buffer
->read_stamp
+= event
->time_delta
;
3444 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3445 struct ring_buffer_event
*event
)
3449 switch (event
->type_len
) {
3450 case RINGBUF_TYPE_PADDING
:
3453 case RINGBUF_TYPE_TIME_EXTEND
:
3454 delta
= event
->array
[0];
3456 delta
+= event
->time_delta
;
3457 iter
->read_stamp
+= delta
;
3460 case RINGBUF_TYPE_TIME_STAMP
:
3461 /* FIXME: not implemented */
3464 case RINGBUF_TYPE_DATA
:
3465 iter
->read_stamp
+= event
->time_delta
;
3474 static struct buffer_page
*
3475 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3477 struct buffer_page
*reader
= NULL
;
3478 unsigned long overwrite
;
3479 unsigned long flags
;
3483 local_irq_save(flags
);
3484 arch_spin_lock(&cpu_buffer
->lock
);
3488 * This should normally only loop twice. But because the
3489 * start of the reader inserts an empty page, it causes
3490 * a case where we will loop three times. There should be no
3491 * reason to loop four times (that I know of).
3493 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3498 reader
= cpu_buffer
->reader_page
;
3500 /* If there's more to read, return this page */
3501 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3504 /* Never should we have an index greater than the size */
3505 if (RB_WARN_ON(cpu_buffer
,
3506 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3509 /* check if we caught up to the tail */
3511 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3514 /* Don't bother swapping if the ring buffer is empty */
3515 if (rb_num_of_entries(cpu_buffer
) == 0)
3519 * Reset the reader page to size zero.
3521 local_set(&cpu_buffer
->reader_page
->write
, 0);
3522 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3523 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3524 cpu_buffer
->reader_page
->real_end
= 0;
3528 * Splice the empty reader page into the list around the head.
3530 reader
= rb_set_head_page(cpu_buffer
);
3533 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3534 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3537 * cpu_buffer->pages just needs to point to the buffer, it
3538 * has no specific buffer page to point to. Lets move it out
3539 * of our way so we don't accidentally swap it.
3541 cpu_buffer
->pages
= reader
->list
.prev
;
3543 /* The reader page will be pointing to the new head */
3544 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3547 * We want to make sure we read the overruns after we set up our
3548 * pointers to the next object. The writer side does a
3549 * cmpxchg to cross pages which acts as the mb on the writer
3550 * side. Note, the reader will constantly fail the swap
3551 * while the writer is updating the pointers, so this
3552 * guarantees that the overwrite recorded here is the one we
3553 * want to compare with the last_overrun.
3556 overwrite
= local_read(&(cpu_buffer
->overrun
));
3559 * Here's the tricky part.
3561 * We need to move the pointer past the header page.
3562 * But we can only do that if a writer is not currently
3563 * moving it. The page before the header page has the
3564 * flag bit '1' set if it is pointing to the page we want.
3565 * but if the writer is in the process of moving it
3566 * than it will be '2' or already moved '0'.
3569 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3572 * If we did not convert it, then we must try again.
3578 * Yeah! We succeeded in replacing the page.
3580 * Now make the new head point back to the reader page.
3582 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3583 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3585 /* Finally update the reader page to the new head */
3586 cpu_buffer
->reader_page
= reader
;
3587 rb_reset_reader_page(cpu_buffer
);
3589 if (overwrite
!= cpu_buffer
->last_overrun
) {
3590 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3591 cpu_buffer
->last_overrun
= overwrite
;
3597 arch_spin_unlock(&cpu_buffer
->lock
);
3598 local_irq_restore(flags
);
3603 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3605 struct ring_buffer_event
*event
;
3606 struct buffer_page
*reader
;
3609 reader
= rb_get_reader_page(cpu_buffer
);
3611 /* This function should not be called when buffer is empty */
3612 if (RB_WARN_ON(cpu_buffer
, !reader
))
3615 event
= rb_reader_event(cpu_buffer
);
3617 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3620 rb_update_read_stamp(cpu_buffer
, event
);
3622 length
= rb_event_length(event
);
3623 cpu_buffer
->reader_page
->read
+= length
;
3626 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3628 struct ring_buffer_per_cpu
*cpu_buffer
;
3629 struct ring_buffer_event
*event
;
3632 cpu_buffer
= iter
->cpu_buffer
;
3635 * Check if we are at the end of the buffer.
3637 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3638 /* discarded commits can make the page empty */
3639 if (iter
->head_page
== cpu_buffer
->commit_page
)
3645 event
= rb_iter_head_event(iter
);
3647 length
= rb_event_length(event
);
3650 * This should not be called to advance the header if we are
3651 * at the tail of the buffer.
3653 if (RB_WARN_ON(cpu_buffer
,
3654 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3655 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3658 rb_update_iter_read_stamp(iter
, event
);
3660 iter
->head
+= length
;
3662 /* check for end of page padding */
3663 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3664 (iter
->head_page
!= cpu_buffer
->commit_page
))
3668 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3670 return cpu_buffer
->lost_events
;
3673 static struct ring_buffer_event
*
3674 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3675 unsigned long *lost_events
)
3677 struct ring_buffer_event
*event
;
3678 struct buffer_page
*reader
;
3683 * We repeat when a time extend is encountered.
3684 * Since the time extend is always attached to a data event,
3685 * we should never loop more than once.
3686 * (We never hit the following condition more than twice).
3688 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3691 reader
= rb_get_reader_page(cpu_buffer
);
3695 event
= rb_reader_event(cpu_buffer
);
3697 switch (event
->type_len
) {
3698 case RINGBUF_TYPE_PADDING
:
3699 if (rb_null_event(event
))
3700 RB_WARN_ON(cpu_buffer
, 1);
3702 * Because the writer could be discarding every
3703 * event it creates (which would probably be bad)
3704 * if we were to go back to "again" then we may never
3705 * catch up, and will trigger the warn on, or lock
3706 * the box. Return the padding, and we will release
3707 * the current locks, and try again.
3711 case RINGBUF_TYPE_TIME_EXTEND
:
3712 /* Internal data, OK to advance */
3713 rb_advance_reader(cpu_buffer
);
3716 case RINGBUF_TYPE_TIME_STAMP
:
3717 /* FIXME: not implemented */
3718 rb_advance_reader(cpu_buffer
);
3721 case RINGBUF_TYPE_DATA
:
3723 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3724 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3725 cpu_buffer
->cpu
, ts
);
3728 *lost_events
= rb_lost_events(cpu_buffer
);
3737 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3739 static struct ring_buffer_event
*
3740 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3742 struct ring_buffer
*buffer
;
3743 struct ring_buffer_per_cpu
*cpu_buffer
;
3744 struct ring_buffer_event
*event
;
3747 cpu_buffer
= iter
->cpu_buffer
;
3748 buffer
= cpu_buffer
->buffer
;
3751 * Check if someone performed a consuming read to
3752 * the buffer. A consuming read invalidates the iterator
3753 * and we need to reset the iterator in this case.
3755 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3756 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3757 rb_iter_reset(iter
);
3760 if (ring_buffer_iter_empty(iter
))
3764 * We repeat when a time extend is encountered.
3765 * Since the time extend is always attached to a data event,
3766 * we should never loop more than once.
3767 * (We never hit the following condition more than twice).
3769 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3772 if (rb_per_cpu_empty(cpu_buffer
))
3775 if (iter
->head
>= local_read(&iter
->head_page
->page
->commit
)) {
3780 event
= rb_iter_head_event(iter
);
3782 switch (event
->type_len
) {
3783 case RINGBUF_TYPE_PADDING
:
3784 if (rb_null_event(event
)) {
3788 rb_advance_iter(iter
);
3791 case RINGBUF_TYPE_TIME_EXTEND
:
3792 /* Internal data, OK to advance */
3793 rb_advance_iter(iter
);
3796 case RINGBUF_TYPE_TIME_STAMP
:
3797 /* FIXME: not implemented */
3798 rb_advance_iter(iter
);
3801 case RINGBUF_TYPE_DATA
:
3803 *ts
= iter
->read_stamp
+ event
->time_delta
;
3804 ring_buffer_normalize_time_stamp(buffer
,
3805 cpu_buffer
->cpu
, ts
);
3815 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3817 static inline int rb_ok_to_lock(void)
3820 * If an NMI die dumps out the content of the ring buffer
3821 * do not grab locks. We also permanently disable the ring
3822 * buffer too. A one time deal is all you get from reading
3823 * the ring buffer from an NMI.
3825 if (likely(!in_nmi()))
3828 tracing_off_permanent();
3833 * ring_buffer_peek - peek at the next event to be read
3834 * @buffer: The ring buffer to read
3835 * @cpu: The cpu to peak at
3836 * @ts: The timestamp counter of this event.
3837 * @lost_events: a variable to store if events were lost (may be NULL)
3839 * This will return the event that will be read next, but does
3840 * not consume the data.
3842 struct ring_buffer_event
*
3843 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3844 unsigned long *lost_events
)
3846 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3847 struct ring_buffer_event
*event
;
3848 unsigned long flags
;
3851 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3854 dolock
= rb_ok_to_lock();
3856 local_irq_save(flags
);
3858 raw_spin_lock(&cpu_buffer
->reader_lock
);
3859 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3860 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3861 rb_advance_reader(cpu_buffer
);
3863 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3864 local_irq_restore(flags
);
3866 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3873 * ring_buffer_iter_peek - peek at the next event to be read
3874 * @iter: The ring buffer iterator
3875 * @ts: The timestamp counter of this event.
3877 * This will return the event that will be read next, but does
3878 * not increment the iterator.
3880 struct ring_buffer_event
*
3881 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3883 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3884 struct ring_buffer_event
*event
;
3885 unsigned long flags
;
3888 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3889 event
= rb_iter_peek(iter
, ts
);
3890 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3892 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3899 * ring_buffer_consume - return an event and consume it
3900 * @buffer: The ring buffer to get the next event from
3901 * @cpu: the cpu to read the buffer from
3902 * @ts: a variable to store the timestamp (may be NULL)
3903 * @lost_events: a variable to store if events were lost (may be NULL)
3905 * Returns the next event in the ring buffer, and that event is consumed.
3906 * Meaning, that sequential reads will keep returning a different event,
3907 * and eventually empty the ring buffer if the producer is slower.
3909 struct ring_buffer_event
*
3910 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3911 unsigned long *lost_events
)
3913 struct ring_buffer_per_cpu
*cpu_buffer
;
3914 struct ring_buffer_event
*event
= NULL
;
3915 unsigned long flags
;
3918 dolock
= rb_ok_to_lock();
3921 /* might be called in atomic */
3924 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3927 cpu_buffer
= buffer
->buffers
[cpu
];
3928 local_irq_save(flags
);
3930 raw_spin_lock(&cpu_buffer
->reader_lock
);
3932 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3934 cpu_buffer
->lost_events
= 0;
3935 rb_advance_reader(cpu_buffer
);
3939 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3940 local_irq_restore(flags
);
3945 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3950 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3953 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3954 * @buffer: The ring buffer to read from
3955 * @cpu: The cpu buffer to iterate over
3957 * This performs the initial preparations necessary to iterate
3958 * through the buffer. Memory is allocated, buffer recording
3959 * is disabled, and the iterator pointer is returned to the caller.
3961 * Disabling buffer recordng prevents the reading from being
3962 * corrupted. This is not a consuming read, so a producer is not
3965 * After a sequence of ring_buffer_read_prepare calls, the user is
3966 * expected to make at least one call to ring_buffer_read_prepare_sync.
3967 * Afterwards, ring_buffer_read_start is invoked to get things going
3970 * This overall must be paired with ring_buffer_read_finish.
3972 struct ring_buffer_iter
*
3973 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3975 struct ring_buffer_per_cpu
*cpu_buffer
;
3976 struct ring_buffer_iter
*iter
;
3978 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3981 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3985 cpu_buffer
= buffer
->buffers
[cpu
];
3987 iter
->cpu_buffer
= cpu_buffer
;
3989 atomic_inc(&buffer
->resize_disabled
);
3990 atomic_inc(&cpu_buffer
->record_disabled
);
3994 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
3997 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3999 * All previously invoked ring_buffer_read_prepare calls to prepare
4000 * iterators will be synchronized. Afterwards, read_buffer_read_start
4001 * calls on those iterators are allowed.
4004 ring_buffer_read_prepare_sync(void)
4006 synchronize_sched();
4008 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4011 * ring_buffer_read_start - start a non consuming read of the buffer
4012 * @iter: The iterator returned by ring_buffer_read_prepare
4014 * This finalizes the startup of an iteration through the buffer.
4015 * The iterator comes from a call to ring_buffer_read_prepare and
4016 * an intervening ring_buffer_read_prepare_sync must have been
4019 * Must be paired with ring_buffer_read_finish.
4022 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4024 struct ring_buffer_per_cpu
*cpu_buffer
;
4025 unsigned long flags
;
4030 cpu_buffer
= iter
->cpu_buffer
;
4032 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4033 arch_spin_lock(&cpu_buffer
->lock
);
4034 rb_iter_reset(iter
);
4035 arch_spin_unlock(&cpu_buffer
->lock
);
4036 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4038 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4041 * ring_buffer_read_finish - finish reading the iterator of the buffer
4042 * @iter: The iterator retrieved by ring_buffer_start
4044 * This re-enables the recording to the buffer, and frees the
4048 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4050 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4051 unsigned long flags
;
4054 * Ring buffer is disabled from recording, here's a good place
4055 * to check the integrity of the ring buffer.
4056 * Must prevent readers from trying to read, as the check
4057 * clears the HEAD page and readers require it.
4059 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4060 rb_check_pages(cpu_buffer
);
4061 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4063 atomic_dec(&cpu_buffer
->record_disabled
);
4064 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4067 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4070 * ring_buffer_read - read the next item in the ring buffer by the iterator
4071 * @iter: The ring buffer iterator
4072 * @ts: The time stamp of the event read.
4074 * This reads the next event in the ring buffer and increments the iterator.
4076 struct ring_buffer_event
*
4077 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4079 struct ring_buffer_event
*event
;
4080 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4081 unsigned long flags
;
4083 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4085 event
= rb_iter_peek(iter
, ts
);
4089 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4092 rb_advance_iter(iter
);
4094 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4098 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4101 * ring_buffer_size - return the size of the ring buffer (in bytes)
4102 * @buffer: The ring buffer.
4104 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4107 * Earlier, this method returned
4108 * BUF_PAGE_SIZE * buffer->nr_pages
4109 * Since the nr_pages field is now removed, we have converted this to
4110 * return the per cpu buffer value.
4112 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4115 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4117 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4120 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4122 rb_head_page_deactivate(cpu_buffer
);
4124 cpu_buffer
->head_page
4125 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4126 local_set(&cpu_buffer
->head_page
->write
, 0);
4127 local_set(&cpu_buffer
->head_page
->entries
, 0);
4128 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4130 cpu_buffer
->head_page
->read
= 0;
4132 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4133 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4135 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4136 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4137 local_set(&cpu_buffer
->reader_page
->write
, 0);
4138 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4139 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4140 cpu_buffer
->reader_page
->read
= 0;
4142 local_set(&cpu_buffer
->entries_bytes
, 0);
4143 local_set(&cpu_buffer
->overrun
, 0);
4144 local_set(&cpu_buffer
->commit_overrun
, 0);
4145 local_set(&cpu_buffer
->dropped_events
, 0);
4146 local_set(&cpu_buffer
->entries
, 0);
4147 local_set(&cpu_buffer
->committing
, 0);
4148 local_set(&cpu_buffer
->commits
, 0);
4149 cpu_buffer
->read
= 0;
4150 cpu_buffer
->read_bytes
= 0;
4152 cpu_buffer
->write_stamp
= 0;
4153 cpu_buffer
->read_stamp
= 0;
4155 cpu_buffer
->lost_events
= 0;
4156 cpu_buffer
->last_overrun
= 0;
4158 rb_head_page_activate(cpu_buffer
);
4162 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4163 * @buffer: The ring buffer to reset a per cpu buffer of
4164 * @cpu: The CPU buffer to be reset
4166 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4168 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4169 unsigned long flags
;
4171 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4174 atomic_inc(&buffer
->resize_disabled
);
4175 atomic_inc(&cpu_buffer
->record_disabled
);
4177 /* Make sure all commits have finished */
4178 synchronize_sched();
4180 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4182 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4185 arch_spin_lock(&cpu_buffer
->lock
);
4187 rb_reset_cpu(cpu_buffer
);
4189 arch_spin_unlock(&cpu_buffer
->lock
);
4192 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4194 atomic_dec(&cpu_buffer
->record_disabled
);
4195 atomic_dec(&buffer
->resize_disabled
);
4197 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4200 * ring_buffer_reset - reset a ring buffer
4201 * @buffer: The ring buffer to reset all cpu buffers
4203 void ring_buffer_reset(struct ring_buffer
*buffer
)
4207 for_each_buffer_cpu(buffer
, cpu
)
4208 ring_buffer_reset_cpu(buffer
, cpu
);
4210 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4213 * rind_buffer_empty - is the ring buffer empty?
4214 * @buffer: The ring buffer to test
4216 int ring_buffer_empty(struct ring_buffer
*buffer
)
4218 struct ring_buffer_per_cpu
*cpu_buffer
;
4219 unsigned long flags
;
4224 dolock
= rb_ok_to_lock();
4226 /* yes this is racy, but if you don't like the race, lock the buffer */
4227 for_each_buffer_cpu(buffer
, cpu
) {
4228 cpu_buffer
= buffer
->buffers
[cpu
];
4229 local_irq_save(flags
);
4231 raw_spin_lock(&cpu_buffer
->reader_lock
);
4232 ret
= rb_per_cpu_empty(cpu_buffer
);
4234 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4235 local_irq_restore(flags
);
4243 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4246 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4247 * @buffer: The ring buffer
4248 * @cpu: The CPU buffer to test
4250 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4252 struct ring_buffer_per_cpu
*cpu_buffer
;
4253 unsigned long flags
;
4257 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4260 dolock
= rb_ok_to_lock();
4262 cpu_buffer
= buffer
->buffers
[cpu
];
4263 local_irq_save(flags
);
4265 raw_spin_lock(&cpu_buffer
->reader_lock
);
4266 ret
= rb_per_cpu_empty(cpu_buffer
);
4268 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4269 local_irq_restore(flags
);
4273 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4275 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4277 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4278 * @buffer_a: One buffer to swap with
4279 * @buffer_b: The other buffer to swap with
4281 * This function is useful for tracers that want to take a "snapshot"
4282 * of a CPU buffer and has another back up buffer lying around.
4283 * it is expected that the tracer handles the cpu buffer not being
4284 * used at the moment.
4286 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4287 struct ring_buffer
*buffer_b
, int cpu
)
4289 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4290 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4293 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4294 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4297 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4298 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4300 /* At least make sure the two buffers are somewhat the same */
4301 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4306 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
4309 if (atomic_read(&buffer_a
->record_disabled
))
4312 if (atomic_read(&buffer_b
->record_disabled
))
4315 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4318 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4322 * We can't do a synchronize_sched here because this
4323 * function can be called in atomic context.
4324 * Normally this will be called from the same CPU as cpu.
4325 * If not it's up to the caller to protect this.
4327 atomic_inc(&cpu_buffer_a
->record_disabled
);
4328 atomic_inc(&cpu_buffer_b
->record_disabled
);
4331 if (local_read(&cpu_buffer_a
->committing
))
4333 if (local_read(&cpu_buffer_b
->committing
))
4336 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4337 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4339 cpu_buffer_b
->buffer
= buffer_a
;
4340 cpu_buffer_a
->buffer
= buffer_b
;
4345 atomic_dec(&cpu_buffer_a
->record_disabled
);
4346 atomic_dec(&cpu_buffer_b
->record_disabled
);
4350 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4351 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4354 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4355 * @buffer: the buffer to allocate for.
4356 * @cpu: the cpu buffer to allocate.
4358 * This function is used in conjunction with ring_buffer_read_page.
4359 * When reading a full page from the ring buffer, these functions
4360 * can be used to speed up the process. The calling function should
4361 * allocate a few pages first with this function. Then when it
4362 * needs to get pages from the ring buffer, it passes the result
4363 * of this function into ring_buffer_read_page, which will swap
4364 * the page that was allocated, with the read page of the buffer.
4367 * The page allocated, or NULL on error.
4369 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4371 struct buffer_data_page
*bpage
;
4374 page
= alloc_pages_node(cpu_to_node(cpu
),
4375 GFP_KERNEL
| __GFP_NORETRY
, 0);
4379 bpage
= page_address(page
);
4381 rb_init_page(bpage
);
4385 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4388 * ring_buffer_free_read_page - free an allocated read page
4389 * @buffer: the buffer the page was allocate for
4390 * @data: the page to free
4392 * Free a page allocated from ring_buffer_alloc_read_page.
4394 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
4396 free_page((unsigned long)data
);
4398 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4401 * ring_buffer_read_page - extract a page from the ring buffer
4402 * @buffer: buffer to extract from
4403 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4404 * @len: amount to extract
4405 * @cpu: the cpu of the buffer to extract
4406 * @full: should the extraction only happen when the page is full.
4408 * This function will pull out a page from the ring buffer and consume it.
4409 * @data_page must be the address of the variable that was returned
4410 * from ring_buffer_alloc_read_page. This is because the page might be used
4411 * to swap with a page in the ring buffer.
4414 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4417 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4419 * process_page(rpage, ret);
4421 * When @full is set, the function will not return true unless
4422 * the writer is off the reader page.
4424 * Note: it is up to the calling functions to handle sleeps and wakeups.
4425 * The ring buffer can be used anywhere in the kernel and can not
4426 * blindly call wake_up. The layer that uses the ring buffer must be
4427 * responsible for that.
4430 * >=0 if data has been transferred, returns the offset of consumed data.
4431 * <0 if no data has been transferred.
4433 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4434 void **data_page
, size_t len
, int cpu
, int full
)
4436 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4437 struct ring_buffer_event
*event
;
4438 struct buffer_data_page
*bpage
;
4439 struct buffer_page
*reader
;
4440 unsigned long missed_events
;
4441 unsigned long flags
;
4442 unsigned int commit
;
4447 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4451 * If len is not big enough to hold the page header, then
4452 * we can not copy anything.
4454 if (len
<= BUF_PAGE_HDR_SIZE
)
4457 len
-= BUF_PAGE_HDR_SIZE
;
4466 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4468 reader
= rb_get_reader_page(cpu_buffer
);
4472 event
= rb_reader_event(cpu_buffer
);
4474 read
= reader
->read
;
4475 commit
= rb_page_commit(reader
);
4477 /* Check if any events were dropped */
4478 missed_events
= cpu_buffer
->lost_events
;
4481 * If this page has been partially read or
4482 * if len is not big enough to read the rest of the page or
4483 * a writer is still on the page, then
4484 * we must copy the data from the page to the buffer.
4485 * Otherwise, we can simply swap the page with the one passed in.
4487 if (read
|| (len
< (commit
- read
)) ||
4488 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4489 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4490 unsigned int rpos
= read
;
4491 unsigned int pos
= 0;
4497 if (len
> (commit
- read
))
4498 len
= (commit
- read
);
4500 /* Always keep the time extend and data together */
4501 size
= rb_event_ts_length(event
);
4506 /* save the current timestamp, since the user will need it */
4507 save_timestamp
= cpu_buffer
->read_stamp
;
4509 /* Need to copy one event at a time */
4511 /* We need the size of one event, because
4512 * rb_advance_reader only advances by one event,
4513 * whereas rb_event_ts_length may include the size of
4514 * one or two events.
4515 * We have already ensured there's enough space if this
4516 * is a time extend. */
4517 size
= rb_event_length(event
);
4518 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4522 rb_advance_reader(cpu_buffer
);
4523 rpos
= reader
->read
;
4529 event
= rb_reader_event(cpu_buffer
);
4530 /* Always keep the time extend and data together */
4531 size
= rb_event_ts_length(event
);
4532 } while (len
>= size
);
4535 local_set(&bpage
->commit
, pos
);
4536 bpage
->time_stamp
= save_timestamp
;
4538 /* we copied everything to the beginning */
4541 /* update the entry counter */
4542 cpu_buffer
->read
+= rb_page_entries(reader
);
4543 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4545 /* swap the pages */
4546 rb_init_page(bpage
);
4547 bpage
= reader
->page
;
4548 reader
->page
= *data_page
;
4549 local_set(&reader
->write
, 0);
4550 local_set(&reader
->entries
, 0);
4555 * Use the real_end for the data size,
4556 * This gives us a chance to store the lost events
4559 if (reader
->real_end
)
4560 local_set(&bpage
->commit
, reader
->real_end
);
4564 cpu_buffer
->lost_events
= 0;
4566 commit
= local_read(&bpage
->commit
);
4568 * Set a flag in the commit field if we lost events
4570 if (missed_events
) {
4571 /* If there is room at the end of the page to save the
4572 * missed events, then record it there.
4574 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4575 memcpy(&bpage
->data
[commit
], &missed_events
,
4576 sizeof(missed_events
));
4577 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4578 commit
+= sizeof(missed_events
);
4580 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4584 * This page may be off to user land. Zero it out here.
4586 if (commit
< BUF_PAGE_SIZE
)
4587 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4590 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4595 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4597 #ifdef CONFIG_HOTPLUG_CPU
4598 static int rb_cpu_notify(struct notifier_block
*self
,
4599 unsigned long action
, void *hcpu
)
4601 struct ring_buffer
*buffer
=
4602 container_of(self
, struct ring_buffer
, cpu_notify
);
4603 long cpu
= (long)hcpu
;
4604 int cpu_i
, nr_pages_same
;
4605 unsigned int nr_pages
;
4608 case CPU_UP_PREPARE
:
4609 case CPU_UP_PREPARE_FROZEN
:
4610 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4615 /* check if all cpu sizes are same */
4616 for_each_buffer_cpu(buffer
, cpu_i
) {
4617 /* fill in the size from first enabled cpu */
4619 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4620 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4625 /* allocate minimum pages, user can later expand it */
4628 buffer
->buffers
[cpu
] =
4629 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4630 if (!buffer
->buffers
[cpu
]) {
4631 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4636 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4638 case CPU_DOWN_PREPARE
:
4639 case CPU_DOWN_PREPARE_FROZEN
:
4642 * If we were to free the buffer, then the user would
4643 * lose any trace that was in the buffer.
4653 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4655 * This is a basic integrity check of the ring buffer.
4656 * Late in the boot cycle this test will run when configured in.
4657 * It will kick off a thread per CPU that will go into a loop
4658 * writing to the per cpu ring buffer various sizes of data.
4659 * Some of the data will be large items, some small.
4661 * Another thread is created that goes into a spin, sending out
4662 * IPIs to the other CPUs to also write into the ring buffer.
4663 * this is to test the nesting ability of the buffer.
4665 * Basic stats are recorded and reported. If something in the
4666 * ring buffer should happen that's not expected, a big warning
4667 * is displayed and all ring buffers are disabled.
4669 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4671 struct rb_test_data
{
4672 struct ring_buffer
*buffer
;
4673 unsigned long events
;
4674 unsigned long bytes_written
;
4675 unsigned long bytes_alloc
;
4676 unsigned long bytes_dropped
;
4677 unsigned long events_nested
;
4678 unsigned long bytes_written_nested
;
4679 unsigned long bytes_alloc_nested
;
4680 unsigned long bytes_dropped_nested
;
4681 int min_size_nested
;
4682 int max_size_nested
;
4689 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4692 #define RB_TEST_BUFFER_SIZE 1048576
4694 static char rb_string
[] __initdata
=
4695 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4696 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4697 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4699 static bool rb_test_started __initdata
;
4706 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4708 struct ring_buffer_event
*event
;
4709 struct rb_item
*item
;
4716 /* Have nested writes different that what is written */
4717 cnt
= data
->cnt
+ (nested
? 27 : 0);
4719 /* Multiply cnt by ~e, to make some unique increment */
4720 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4722 len
= size
+ sizeof(struct rb_item
);
4724 started
= rb_test_started
;
4725 /* read rb_test_started before checking buffer enabled */
4728 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4730 /* Ignore dropped events before test starts. */
4733 data
->bytes_dropped
+= len
;
4735 data
->bytes_dropped_nested
+= len
;
4740 event_len
= ring_buffer_event_length(event
);
4742 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4745 item
= ring_buffer_event_data(event
);
4747 memcpy(item
->str
, rb_string
, size
);
4750 data
->bytes_alloc_nested
+= event_len
;
4751 data
->bytes_written_nested
+= len
;
4752 data
->events_nested
++;
4753 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4754 data
->min_size_nested
= len
;
4755 if (len
> data
->max_size_nested
)
4756 data
->max_size_nested
= len
;
4758 data
->bytes_alloc
+= event_len
;
4759 data
->bytes_written
+= len
;
4761 if (!data
->min_size
|| len
< data
->min_size
)
4762 data
->max_size
= len
;
4763 if (len
> data
->max_size
)
4764 data
->max_size
= len
;
4768 ring_buffer_unlock_commit(data
->buffer
, event
);
4773 static __init
int rb_test(void *arg
)
4775 struct rb_test_data
*data
= arg
;
4777 while (!kthread_should_stop()) {
4778 rb_write_something(data
, false);
4781 set_current_state(TASK_INTERRUPTIBLE
);
4782 /* Now sleep between a min of 100-300us and a max of 1ms */
4783 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4789 static __init
void rb_ipi(void *ignore
)
4791 struct rb_test_data
*data
;
4792 int cpu
= smp_processor_id();
4794 data
= &rb_data
[cpu
];
4795 rb_write_something(data
, true);
4798 static __init
int rb_hammer_test(void *arg
)
4800 while (!kthread_should_stop()) {
4802 /* Send an IPI to all cpus to write data! */
4803 smp_call_function(rb_ipi
, NULL
, 1);
4804 /* No sleep, but for non preempt, let others run */
4811 static __init
int test_ringbuffer(void)
4813 struct task_struct
*rb_hammer
;
4814 struct ring_buffer
*buffer
;
4818 pr_info("Running ring buffer tests...\n");
4820 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
4821 if (WARN_ON(!buffer
))
4824 /* Disable buffer so that threads can't write to it yet */
4825 ring_buffer_record_off(buffer
);
4827 for_each_online_cpu(cpu
) {
4828 rb_data
[cpu
].buffer
= buffer
;
4829 rb_data
[cpu
].cpu
= cpu
;
4830 rb_data
[cpu
].cnt
= cpu
;
4831 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
4832 "rbtester/%d", cpu
);
4833 if (WARN_ON(!rb_threads
[cpu
])) {
4834 pr_cont("FAILED\n");
4839 kthread_bind(rb_threads
[cpu
], cpu
);
4840 wake_up_process(rb_threads
[cpu
]);
4843 /* Now create the rb hammer! */
4844 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
4845 if (WARN_ON(!rb_hammer
)) {
4846 pr_cont("FAILED\n");
4851 ring_buffer_record_on(buffer
);
4853 * Show buffer is enabled before setting rb_test_started.
4854 * Yes there's a small race window where events could be
4855 * dropped and the thread wont catch it. But when a ring
4856 * buffer gets enabled, there will always be some kind of
4857 * delay before other CPUs see it. Thus, we don't care about
4858 * those dropped events. We care about events dropped after
4859 * the threads see that the buffer is active.
4862 rb_test_started
= true;
4864 set_current_state(TASK_INTERRUPTIBLE
);
4865 /* Just run for 10 seconds */;
4866 schedule_timeout(10 * HZ
);
4868 kthread_stop(rb_hammer
);
4871 for_each_online_cpu(cpu
) {
4872 if (!rb_threads
[cpu
])
4874 kthread_stop(rb_threads
[cpu
]);
4877 ring_buffer_free(buffer
);
4882 pr_info("finished\n");
4883 for_each_online_cpu(cpu
) {
4884 struct ring_buffer_event
*event
;
4885 struct rb_test_data
*data
= &rb_data
[cpu
];
4886 struct rb_item
*item
;
4887 unsigned long total_events
;
4888 unsigned long total_dropped
;
4889 unsigned long total_written
;
4890 unsigned long total_alloc
;
4891 unsigned long total_read
= 0;
4892 unsigned long total_size
= 0;
4893 unsigned long total_len
= 0;
4894 unsigned long total_lost
= 0;
4897 int small_event_size
;
4901 total_events
= data
->events
+ data
->events_nested
;
4902 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
4903 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
4904 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
4906 big_event_size
= data
->max_size
+ data
->max_size_nested
;
4907 small_event_size
= data
->min_size
+ data
->min_size_nested
;
4909 pr_info("CPU %d:\n", cpu
);
4910 pr_info(" events: %ld\n", total_events
);
4911 pr_info(" dropped bytes: %ld\n", total_dropped
);
4912 pr_info(" alloced bytes: %ld\n", total_alloc
);
4913 pr_info(" written bytes: %ld\n", total_written
);
4914 pr_info(" biggest event: %d\n", big_event_size
);
4915 pr_info(" smallest event: %d\n", small_event_size
);
4917 if (RB_WARN_ON(buffer
, total_dropped
))
4922 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
4924 item
= ring_buffer_event_data(event
);
4925 total_len
+= ring_buffer_event_length(event
);
4926 total_size
+= item
->size
+ sizeof(struct rb_item
);
4927 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
4928 pr_info("FAILED!\n");
4929 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
4930 pr_info("expected: %.*s\n", item
->size
, rb_string
);
4931 RB_WARN_ON(buffer
, 1);
4942 pr_info(" read events: %ld\n", total_read
);
4943 pr_info(" lost events: %ld\n", total_lost
);
4944 pr_info(" total events: %ld\n", total_lost
+ total_read
);
4945 pr_info(" recorded len bytes: %ld\n", total_len
);
4946 pr_info(" recorded size bytes: %ld\n", total_size
);
4948 pr_info(" With dropped events, record len and size may not match\n"
4949 " alloced and written from above\n");
4951 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
4952 total_size
!= total_written
))
4955 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
4961 pr_info("Ring buffer PASSED!\n");
4963 ring_buffer_free(buffer
);
4967 late_initcall(test_ringbuffer
);
4968 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */