4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
84 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr
;
91 EXPORT_SYMBOL(max_mapnr
);
94 EXPORT_SYMBOL(mem_map
);
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 EXPORT_SYMBOL(high_memory
);
108 * Randomize the address space (stacks, mmaps, brk, etc.).
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
113 int randomize_va_space __read_mostly
=
114 #ifdef CONFIG_COMPAT_BRK
120 static int __init
disable_randmaps(char *s
)
122 randomize_va_space
= 0;
125 __setup("norandmaps", disable_randmaps
);
127 unsigned long zero_pfn __read_mostly
;
128 EXPORT_SYMBOL(zero_pfn
);
130 unsigned long highest_memmap_pfn __read_mostly
;
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 static int __init
init_zero_pfn(void)
137 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
140 core_initcall(init_zero_pfn
);
143 #if defined(SPLIT_RSS_COUNTING)
145 void sync_mm_rss(struct mm_struct
*mm
)
149 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
150 if (current
->rss_stat
.count
[i
]) {
151 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
152 current
->rss_stat
.count
[i
] = 0;
155 current
->rss_stat
.events
= 0;
158 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
160 struct task_struct
*task
= current
;
162 if (likely(task
->mm
== mm
))
163 task
->rss_stat
.count
[member
] += val
;
165 add_mm_counter(mm
, member
, val
);
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct
*task
)
174 if (unlikely(task
!= current
))
176 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
177 sync_mm_rss(task
->mm
);
179 #else /* SPLIT_RSS_COUNTING */
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 static void check_sync_rss_stat(struct task_struct
*task
)
188 #endif /* SPLIT_RSS_COUNTING */
190 #ifdef HAVE_GENERIC_MMU_GATHER
192 static bool tlb_next_batch(struct mmu_gather
*tlb
)
194 struct mmu_gather_batch
*batch
;
198 tlb
->active
= batch
->next
;
202 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
205 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
212 batch
->max
= MAX_GATHER_BATCH
;
214 tlb
->active
->next
= batch
;
220 void arch_tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
,
221 unsigned long start
, unsigned long end
)
225 /* Is it from 0 to ~0? */
226 tlb
->fullmm
= !(start
| (end
+1));
227 tlb
->need_flush_all
= 0;
228 tlb
->local
.next
= NULL
;
230 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
231 tlb
->active
= &tlb
->local
;
232 tlb
->batch_count
= 0;
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
239 __tlb_reset_range(tlb
);
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
248 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 tlb_table_flush(tlb
);
252 __tlb_reset_range(tlb
);
255 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
257 struct mmu_gather_batch
*batch
;
259 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
260 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
263 tlb
->active
= &tlb
->local
;
266 void tlb_flush_mmu(struct mmu_gather
*tlb
)
268 tlb_flush_mmu_tlbonly(tlb
);
269 tlb_flush_mmu_free(tlb
);
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
276 void arch_tlb_finish_mmu(struct mmu_gather
*tlb
,
277 unsigned long start
, unsigned long end
, bool force
)
279 struct mmu_gather_batch
*batch
, *next
;
282 __tlb_adjust_range(tlb
, start
, end
- start
);
286 /* keep the page table cache within bounds */
289 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
291 free_pages((unsigned long)batch
, 0);
293 tlb
->local
.next
= NULL
;
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
303 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
305 struct mmu_gather_batch
*batch
;
307 VM_BUG_ON(!tlb
->end
);
308 VM_WARN_ON(tlb
->page_size
!= page_size
);
312 * Add the page and check if we are full. If so
315 batch
->pages
[batch
->nr
++] = page
;
316 if (batch
->nr
== batch
->max
) {
317 if (!tlb_next_batch(tlb
))
321 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
326 #endif /* HAVE_GENERIC_MMU_GATHER */
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
331 * See the comment near struct mmu_table_batch.
334 static void tlb_remove_table_smp_sync(void *arg
)
336 /* Simply deliver the interrupt */
339 static void tlb_remove_table_one(void *table
)
342 * This isn't an RCU grace period and hence the page-tables cannot be
343 * assumed to be actually RCU-freed.
345 * It is however sufficient for software page-table walkers that rely on
346 * IRQ disabling. See the comment near struct mmu_table_batch.
348 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
349 __tlb_remove_table(table
);
352 static void tlb_remove_table_rcu(struct rcu_head
*head
)
354 struct mmu_table_batch
*batch
;
357 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
359 for (i
= 0; i
< batch
->nr
; i
++)
360 __tlb_remove_table(batch
->tables
[i
]);
362 free_page((unsigned long)batch
);
365 void tlb_table_flush(struct mmu_gather
*tlb
)
367 struct mmu_table_batch
**batch
= &tlb
->batch
;
370 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
375 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
377 struct mmu_table_batch
**batch
= &tlb
->batch
;
380 * When there's less then two users of this mm there cannot be a
381 * concurrent page-table walk.
383 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
384 __tlb_remove_table(table
);
388 if (*batch
== NULL
) {
389 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
390 if (*batch
== NULL
) {
391 tlb_remove_table_one(table
);
396 (*batch
)->tables
[(*batch
)->nr
++] = table
;
397 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
398 tlb_table_flush(tlb
);
401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
404 * Called to initialize an (on-stack) mmu_gather structure for page-table
405 * tear-down from @mm. The @fullmm argument is used when @mm is without
406 * users and we're going to destroy the full address space (exit/execve).
408 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
,
409 unsigned long start
, unsigned long end
)
411 arch_tlb_gather_mmu(tlb
, mm
, start
, end
);
412 inc_tlb_flush_pending(tlb
->mm
);
415 void tlb_finish_mmu(struct mmu_gather
*tlb
,
416 unsigned long start
, unsigned long end
)
419 * If there are parallel threads are doing PTE changes on same range
420 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
421 * flush by batching, a thread has stable TLB entry can fail to flush
422 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
423 * forcefully if we detect parallel PTE batching threads.
425 bool force
= mm_tlb_flush_nested(tlb
->mm
);
427 arch_tlb_finish_mmu(tlb
, start
, end
, force
);
428 dec_tlb_flush_pending(tlb
->mm
);
432 * Note: this doesn't free the actual pages themselves. That
433 * has been handled earlier when unmapping all the memory regions.
435 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
438 pgtable_t token
= pmd_pgtable(*pmd
);
440 pte_free_tlb(tlb
, token
, addr
);
441 mm_dec_nr_ptes(tlb
->mm
);
444 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
445 unsigned long addr
, unsigned long end
,
446 unsigned long floor
, unsigned long ceiling
)
453 pmd
= pmd_offset(pud
, addr
);
455 next
= pmd_addr_end(addr
, end
);
456 if (pmd_none_or_clear_bad(pmd
))
458 free_pte_range(tlb
, pmd
, addr
);
459 } while (pmd
++, addr
= next
, addr
!= end
);
469 if (end
- 1 > ceiling
- 1)
472 pmd
= pmd_offset(pud
, start
);
474 pmd_free_tlb(tlb
, pmd
, start
);
475 mm_dec_nr_pmds(tlb
->mm
);
478 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
479 unsigned long addr
, unsigned long end
,
480 unsigned long floor
, unsigned long ceiling
)
487 pud
= pud_offset(p4d
, addr
);
489 next
= pud_addr_end(addr
, end
);
490 if (pud_none_or_clear_bad(pud
))
492 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
493 } while (pud
++, addr
= next
, addr
!= end
);
503 if (end
- 1 > ceiling
- 1)
506 pud
= pud_offset(p4d
, start
);
508 pud_free_tlb(tlb
, pud
, start
);
509 mm_dec_nr_puds(tlb
->mm
);
512 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
513 unsigned long addr
, unsigned long end
,
514 unsigned long floor
, unsigned long ceiling
)
521 p4d
= p4d_offset(pgd
, addr
);
523 next
= p4d_addr_end(addr
, end
);
524 if (p4d_none_or_clear_bad(p4d
))
526 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
527 } while (p4d
++, addr
= next
, addr
!= end
);
533 ceiling
&= PGDIR_MASK
;
537 if (end
- 1 > ceiling
- 1)
540 p4d
= p4d_offset(pgd
, start
);
542 p4d_free_tlb(tlb
, p4d
, start
);
546 * This function frees user-level page tables of a process.
548 void free_pgd_range(struct mmu_gather
*tlb
,
549 unsigned long addr
, unsigned long end
,
550 unsigned long floor
, unsigned long ceiling
)
556 * The next few lines have given us lots of grief...
558 * Why are we testing PMD* at this top level? Because often
559 * there will be no work to do at all, and we'd prefer not to
560 * go all the way down to the bottom just to discover that.
562 * Why all these "- 1"s? Because 0 represents both the bottom
563 * of the address space and the top of it (using -1 for the
564 * top wouldn't help much: the masks would do the wrong thing).
565 * The rule is that addr 0 and floor 0 refer to the bottom of
566 * the address space, but end 0 and ceiling 0 refer to the top
567 * Comparisons need to use "end - 1" and "ceiling - 1" (though
568 * that end 0 case should be mythical).
570 * Wherever addr is brought up or ceiling brought down, we must
571 * be careful to reject "the opposite 0" before it confuses the
572 * subsequent tests. But what about where end is brought down
573 * by PMD_SIZE below? no, end can't go down to 0 there.
575 * Whereas we round start (addr) and ceiling down, by different
576 * masks at different levels, in order to test whether a table
577 * now has no other vmas using it, so can be freed, we don't
578 * bother to round floor or end up - the tests don't need that.
592 if (end
- 1 > ceiling
- 1)
597 * We add page table cache pages with PAGE_SIZE,
598 * (see pte_free_tlb()), flush the tlb if we need
600 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
601 pgd
= pgd_offset(tlb
->mm
, addr
);
603 next
= pgd_addr_end(addr
, end
);
604 if (pgd_none_or_clear_bad(pgd
))
606 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
607 } while (pgd
++, addr
= next
, addr
!= end
);
610 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
611 unsigned long floor
, unsigned long ceiling
)
614 struct vm_area_struct
*next
= vma
->vm_next
;
615 unsigned long addr
= vma
->vm_start
;
618 * Hide vma from rmap and truncate_pagecache before freeing
621 unlink_anon_vmas(vma
);
622 unlink_file_vma(vma
);
624 if (is_vm_hugetlb_page(vma
)) {
625 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
626 floor
, next
? next
->vm_start
: ceiling
);
629 * Optimization: gather nearby vmas into one call down
631 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
632 && !is_vm_hugetlb_page(next
)) {
635 unlink_anon_vmas(vma
);
636 unlink_file_vma(vma
);
638 free_pgd_range(tlb
, addr
, vma
->vm_end
,
639 floor
, next
? next
->vm_start
: ceiling
);
645 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
648 pgtable_t
new = pte_alloc_one(mm
, address
);
653 * Ensure all pte setup (eg. pte page lock and page clearing) are
654 * visible before the pte is made visible to other CPUs by being
655 * put into page tables.
657 * The other side of the story is the pointer chasing in the page
658 * table walking code (when walking the page table without locking;
659 * ie. most of the time). Fortunately, these data accesses consist
660 * of a chain of data-dependent loads, meaning most CPUs (alpha
661 * being the notable exception) will already guarantee loads are
662 * seen in-order. See the alpha page table accessors for the
663 * smp_read_barrier_depends() barriers in page table walking code.
665 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
667 ptl
= pmd_lock(mm
, pmd
);
668 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
670 pmd_populate(mm
, pmd
, new);
679 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
681 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
685 smp_wmb(); /* See comment in __pte_alloc */
687 spin_lock(&init_mm
.page_table_lock
);
688 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
689 pmd_populate_kernel(&init_mm
, pmd
, new);
692 spin_unlock(&init_mm
.page_table_lock
);
694 pte_free_kernel(&init_mm
, new);
698 static inline void init_rss_vec(int *rss
)
700 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
703 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
707 if (current
->mm
== mm
)
709 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
711 add_mm_counter(mm
, i
, rss
[i
]);
715 * This function is called to print an error when a bad pte
716 * is found. For example, we might have a PFN-mapped pte in
717 * a region that doesn't allow it.
719 * The calling function must still handle the error.
721 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
722 pte_t pte
, struct page
*page
)
724 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
725 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
726 pud_t
*pud
= pud_offset(p4d
, addr
);
727 pmd_t
*pmd
= pmd_offset(pud
, addr
);
728 struct address_space
*mapping
;
730 static unsigned long resume
;
731 static unsigned long nr_shown
;
732 static unsigned long nr_unshown
;
735 * Allow a burst of 60 reports, then keep quiet for that minute;
736 * or allow a steady drip of one report per second.
738 if (nr_shown
== 60) {
739 if (time_before(jiffies
, resume
)) {
744 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 resume
= jiffies
+ 60 * HZ
;
753 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
754 index
= linear_page_index(vma
, addr
);
756 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
758 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
760 dump_page(page
, "bad pte");
761 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
762 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
764 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
766 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
768 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
769 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
770 mapping
? mapping
->a_ops
->readpage
: NULL
);
772 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
776 * vm_normal_page -- This function gets the "struct page" associated with a pte.
778 * "Special" mappings do not wish to be associated with a "struct page" (either
779 * it doesn't exist, or it exists but they don't want to touch it). In this
780 * case, NULL is returned here. "Normal" mappings do have a struct page.
782 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
783 * pte bit, in which case this function is trivial. Secondly, an architecture
784 * may not have a spare pte bit, which requires a more complicated scheme,
787 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
788 * special mapping (even if there are underlying and valid "struct pages").
789 * COWed pages of a VM_PFNMAP are always normal.
791 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
792 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
793 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
794 * mapping will always honor the rule
796 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
798 * And for normal mappings this is false.
800 * This restricts such mappings to be a linear translation from virtual address
801 * to pfn. To get around this restriction, we allow arbitrary mappings so long
802 * as the vma is not a COW mapping; in that case, we know that all ptes are
803 * special (because none can have been COWed).
806 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
808 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
809 * page" backing, however the difference is that _all_ pages with a struct
810 * page (that is, those where pfn_valid is true) are refcounted and considered
811 * normal pages by the VM. The disadvantage is that pages are refcounted
812 * (which can be slower and simply not an option for some PFNMAP users). The
813 * advantage is that we don't have to follow the strict linearity rule of
814 * PFNMAP mappings in order to support COWable mappings.
817 #ifdef __HAVE_ARCH_PTE_SPECIAL
818 # define HAVE_PTE_SPECIAL 1
820 # define HAVE_PTE_SPECIAL 0
822 struct page
*_vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
823 pte_t pte
, bool with_public_device
)
825 unsigned long pfn
= pte_pfn(pte
);
827 if (HAVE_PTE_SPECIAL
) {
828 if (likely(!pte_special(pte
)))
830 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
831 return vma
->vm_ops
->find_special_page(vma
, addr
);
832 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
834 if (is_zero_pfn(pfn
))
838 * Device public pages are special pages (they are ZONE_DEVICE
839 * pages but different from persistent memory). They behave
840 * allmost like normal pages. The difference is that they are
841 * not on the lru and thus should never be involve with any-
842 * thing that involve lru manipulation (mlock, numa balancing,
845 * This is why we still want to return NULL for such page from
846 * vm_normal_page() so that we do not have to special case all
847 * call site of vm_normal_page().
849 if (likely(pfn
<= highest_memmap_pfn
)) {
850 struct page
*page
= pfn_to_page(pfn
);
852 if (is_device_public_page(page
)) {
853 if (with_public_device
)
858 print_bad_pte(vma
, addr
, pte
, NULL
);
862 /* !HAVE_PTE_SPECIAL case follows: */
864 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
865 if (vma
->vm_flags
& VM_MIXEDMAP
) {
871 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
872 if (pfn
== vma
->vm_pgoff
+ off
)
874 if (!is_cow_mapping(vma
->vm_flags
))
879 if (is_zero_pfn(pfn
))
882 if (unlikely(pfn
> highest_memmap_pfn
)) {
883 print_bad_pte(vma
, addr
, pte
, NULL
);
888 * NOTE! We still have PageReserved() pages in the page tables.
889 * eg. VDSO mappings can cause them to exist.
892 return pfn_to_page(pfn
);
895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
896 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
899 unsigned long pfn
= pmd_pfn(pmd
);
902 * There is no pmd_special() but there may be special pmds, e.g.
903 * in a direct-access (dax) mapping, so let's just replicate the
904 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
906 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
907 if (vma
->vm_flags
& VM_MIXEDMAP
) {
913 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
914 if (pfn
== vma
->vm_pgoff
+ off
)
916 if (!is_cow_mapping(vma
->vm_flags
))
921 if (is_zero_pfn(pfn
))
923 if (unlikely(pfn
> highest_memmap_pfn
))
927 * NOTE! We still have PageReserved() pages in the page tables.
928 * eg. VDSO mappings can cause them to exist.
931 return pfn_to_page(pfn
);
936 * copy one vm_area from one task to the other. Assumes the page tables
937 * already present in the new task to be cleared in the whole range
938 * covered by this vma.
941 static inline unsigned long
942 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
943 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
944 unsigned long addr
, int *rss
)
946 unsigned long vm_flags
= vma
->vm_flags
;
947 pte_t pte
= *src_pte
;
950 /* pte contains position in swap or file, so copy. */
951 if (unlikely(!pte_present(pte
))) {
952 swp_entry_t entry
= pte_to_swp_entry(pte
);
954 if (likely(!non_swap_entry(entry
))) {
955 if (swap_duplicate(entry
) < 0)
958 /* make sure dst_mm is on swapoff's mmlist. */
959 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
960 spin_lock(&mmlist_lock
);
961 if (list_empty(&dst_mm
->mmlist
))
962 list_add(&dst_mm
->mmlist
,
964 spin_unlock(&mmlist_lock
);
967 } else if (is_migration_entry(entry
)) {
968 page
= migration_entry_to_page(entry
);
970 rss
[mm_counter(page
)]++;
972 if (is_write_migration_entry(entry
) &&
973 is_cow_mapping(vm_flags
)) {
975 * COW mappings require pages in both
976 * parent and child to be set to read.
978 make_migration_entry_read(&entry
);
979 pte
= swp_entry_to_pte(entry
);
980 if (pte_swp_soft_dirty(*src_pte
))
981 pte
= pte_swp_mksoft_dirty(pte
);
982 set_pte_at(src_mm
, addr
, src_pte
, pte
);
984 } else if (is_device_private_entry(entry
)) {
985 page
= device_private_entry_to_page(entry
);
988 * Update rss count even for unaddressable pages, as
989 * they should treated just like normal pages in this
992 * We will likely want to have some new rss counters
993 * for unaddressable pages, at some point. But for now
994 * keep things as they are.
997 rss
[mm_counter(page
)]++;
998 page_dup_rmap(page
, false);
1001 * We do not preserve soft-dirty information, because so
1002 * far, checkpoint/restore is the only feature that
1003 * requires that. And checkpoint/restore does not work
1004 * when a device driver is involved (you cannot easily
1005 * save and restore device driver state).
1007 if (is_write_device_private_entry(entry
) &&
1008 is_cow_mapping(vm_flags
)) {
1009 make_device_private_entry_read(&entry
);
1010 pte
= swp_entry_to_pte(entry
);
1011 set_pte_at(src_mm
, addr
, src_pte
, pte
);
1018 * If it's a COW mapping, write protect it both
1019 * in the parent and the child
1021 if (is_cow_mapping(vm_flags
)) {
1022 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
1023 pte
= pte_wrprotect(pte
);
1027 * If it's a shared mapping, mark it clean in
1030 if (vm_flags
& VM_SHARED
)
1031 pte
= pte_mkclean(pte
);
1032 pte
= pte_mkold(pte
);
1034 page
= vm_normal_page(vma
, addr
, pte
);
1037 page_dup_rmap(page
, false);
1038 rss
[mm_counter(page
)]++;
1039 } else if (pte_devmap(pte
)) {
1040 page
= pte_page(pte
);
1043 * Cache coherent device memory behave like regular page and
1044 * not like persistent memory page. For more informations see
1045 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1047 if (is_device_public_page(page
)) {
1049 page_dup_rmap(page
, false);
1050 rss
[mm_counter(page
)]++;
1055 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
1059 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1060 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
1061 unsigned long addr
, unsigned long end
)
1063 pte_t
*orig_src_pte
, *orig_dst_pte
;
1064 pte_t
*src_pte
, *dst_pte
;
1065 spinlock_t
*src_ptl
, *dst_ptl
;
1067 int rss
[NR_MM_COUNTERS
];
1068 swp_entry_t entry
= (swp_entry_t
){0};
1073 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
1076 src_pte
= pte_offset_map(src_pmd
, addr
);
1077 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
1078 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1079 orig_src_pte
= src_pte
;
1080 orig_dst_pte
= dst_pte
;
1081 arch_enter_lazy_mmu_mode();
1085 * We are holding two locks at this point - either of them
1086 * could generate latencies in another task on another CPU.
1088 if (progress
>= 32) {
1090 if (need_resched() ||
1091 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
1094 if (pte_none(*src_pte
)) {
1098 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
1103 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1105 arch_leave_lazy_mmu_mode();
1106 spin_unlock(src_ptl
);
1107 pte_unmap(orig_src_pte
);
1108 add_mm_rss_vec(dst_mm
, rss
);
1109 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
1113 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
1122 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1123 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
1124 unsigned long addr
, unsigned long end
)
1126 pmd_t
*src_pmd
, *dst_pmd
;
1129 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1132 src_pmd
= pmd_offset(src_pud
, addr
);
1134 next
= pmd_addr_end(addr
, end
);
1135 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
1136 || pmd_devmap(*src_pmd
)) {
1138 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
1139 err
= copy_huge_pmd(dst_mm
, src_mm
,
1140 dst_pmd
, src_pmd
, addr
, vma
);
1147 if (pmd_none_or_clear_bad(src_pmd
))
1149 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1152 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1156 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1157 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
1158 unsigned long addr
, unsigned long end
)
1160 pud_t
*src_pud
, *dst_pud
;
1163 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
1166 src_pud
= pud_offset(src_p4d
, addr
);
1168 next
= pud_addr_end(addr
, end
);
1169 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
1172 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
1173 err
= copy_huge_pud(dst_mm
, src_mm
,
1174 dst_pud
, src_pud
, addr
, vma
);
1181 if (pud_none_or_clear_bad(src_pud
))
1183 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1186 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1190 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1191 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1192 unsigned long addr
, unsigned long end
)
1194 p4d_t
*src_p4d
, *dst_p4d
;
1197 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
1200 src_p4d
= p4d_offset(src_pgd
, addr
);
1202 next
= p4d_addr_end(addr
, end
);
1203 if (p4d_none_or_clear_bad(src_p4d
))
1205 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
1208 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
1212 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1213 struct vm_area_struct
*vma
)
1215 pgd_t
*src_pgd
, *dst_pgd
;
1217 unsigned long addr
= vma
->vm_start
;
1218 unsigned long end
= vma
->vm_end
;
1219 unsigned long mmun_start
; /* For mmu_notifiers */
1220 unsigned long mmun_end
; /* For mmu_notifiers */
1225 * Don't copy ptes where a page fault will fill them correctly.
1226 * Fork becomes much lighter when there are big shared or private
1227 * readonly mappings. The tradeoff is that copy_page_range is more
1228 * efficient than faulting.
1230 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1234 if (is_vm_hugetlb_page(vma
))
1235 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1237 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1239 * We do not free on error cases below as remove_vma
1240 * gets called on error from higher level routine
1242 ret
= track_pfn_copy(vma
);
1248 * We need to invalidate the secondary MMU mappings only when
1249 * there could be a permission downgrade on the ptes of the
1250 * parent mm. And a permission downgrade will only happen if
1251 * is_cow_mapping() returns true.
1253 is_cow
= is_cow_mapping(vma
->vm_flags
);
1257 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1261 dst_pgd
= pgd_offset(dst_mm
, addr
);
1262 src_pgd
= pgd_offset(src_mm
, addr
);
1264 next
= pgd_addr_end(addr
, end
);
1265 if (pgd_none_or_clear_bad(src_pgd
))
1267 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1268 vma
, addr
, next
))) {
1272 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1275 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1279 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1280 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1281 unsigned long addr
, unsigned long end
,
1282 struct zap_details
*details
)
1284 struct mm_struct
*mm
= tlb
->mm
;
1285 int force_flush
= 0;
1286 int rss
[NR_MM_COUNTERS
];
1292 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1295 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1297 flush_tlb_batched_pending(mm
);
1298 arch_enter_lazy_mmu_mode();
1301 if (pte_none(ptent
))
1304 if (pte_present(ptent
)) {
1307 page
= _vm_normal_page(vma
, addr
, ptent
, true);
1308 if (unlikely(details
) && page
) {
1310 * unmap_shared_mapping_pages() wants to
1311 * invalidate cache without truncating:
1312 * unmap shared but keep private pages.
1314 if (details
->check_mapping
&&
1315 details
->check_mapping
!= page_rmapping(page
))
1318 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1320 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1321 if (unlikely(!page
))
1324 if (!PageAnon(page
)) {
1325 if (pte_dirty(ptent
)) {
1327 set_page_dirty(page
);
1329 if (pte_young(ptent
) &&
1330 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1331 mark_page_accessed(page
);
1333 rss
[mm_counter(page
)]--;
1334 page_remove_rmap(page
, false);
1335 if (unlikely(page_mapcount(page
) < 0))
1336 print_bad_pte(vma
, addr
, ptent
, page
);
1337 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1345 entry
= pte_to_swp_entry(ptent
);
1346 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1347 struct page
*page
= device_private_entry_to_page(entry
);
1349 if (unlikely(details
&& details
->check_mapping
)) {
1351 * unmap_shared_mapping_pages() wants to
1352 * invalidate cache without truncating:
1353 * unmap shared but keep private pages.
1355 if (details
->check_mapping
!=
1356 page_rmapping(page
))
1360 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1361 rss
[mm_counter(page
)]--;
1362 page_remove_rmap(page
, false);
1367 /* If details->check_mapping, we leave swap entries. */
1368 if (unlikely(details
))
1371 entry
= pte_to_swp_entry(ptent
);
1372 if (!non_swap_entry(entry
))
1374 else if (is_migration_entry(entry
)) {
1377 page
= migration_entry_to_page(entry
);
1378 rss
[mm_counter(page
)]--;
1380 if (unlikely(!free_swap_and_cache(entry
)))
1381 print_bad_pte(vma
, addr
, ptent
, NULL
);
1382 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1383 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1385 add_mm_rss_vec(mm
, rss
);
1386 arch_leave_lazy_mmu_mode();
1388 /* Do the actual TLB flush before dropping ptl */
1390 tlb_flush_mmu_tlbonly(tlb
);
1391 pte_unmap_unlock(start_pte
, ptl
);
1394 * If we forced a TLB flush (either due to running out of
1395 * batch buffers or because we needed to flush dirty TLB
1396 * entries before releasing the ptl), free the batched
1397 * memory too. Restart if we didn't do everything.
1401 tlb_flush_mmu_free(tlb
);
1409 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1410 struct vm_area_struct
*vma
, pud_t
*pud
,
1411 unsigned long addr
, unsigned long end
,
1412 struct zap_details
*details
)
1417 pmd
= pmd_offset(pud
, addr
);
1419 next
= pmd_addr_end(addr
, end
);
1420 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1421 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1422 VM_BUG_ON_VMA(vma_is_anonymous(vma
) &&
1423 !rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1424 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1425 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1430 * Here there can be other concurrent MADV_DONTNEED or
1431 * trans huge page faults running, and if the pmd is
1432 * none or trans huge it can change under us. This is
1433 * because MADV_DONTNEED holds the mmap_sem in read
1436 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1438 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1441 } while (pmd
++, addr
= next
, addr
!= end
);
1446 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1447 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1448 unsigned long addr
, unsigned long end
,
1449 struct zap_details
*details
)
1454 pud
= pud_offset(p4d
, addr
);
1456 next
= pud_addr_end(addr
, end
);
1457 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1458 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1459 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1460 split_huge_pud(vma
, pud
, addr
);
1461 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1465 if (pud_none_or_clear_bad(pud
))
1467 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1470 } while (pud
++, addr
= next
, addr
!= end
);
1475 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1476 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1477 unsigned long addr
, unsigned long end
,
1478 struct zap_details
*details
)
1483 p4d
= p4d_offset(pgd
, addr
);
1485 next
= p4d_addr_end(addr
, end
);
1486 if (p4d_none_or_clear_bad(p4d
))
1488 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1489 } while (p4d
++, addr
= next
, addr
!= end
);
1494 void unmap_page_range(struct mmu_gather
*tlb
,
1495 struct vm_area_struct
*vma
,
1496 unsigned long addr
, unsigned long end
,
1497 struct zap_details
*details
)
1502 BUG_ON(addr
>= end
);
1503 tlb_start_vma(tlb
, vma
);
1504 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1506 next
= pgd_addr_end(addr
, end
);
1507 if (pgd_none_or_clear_bad(pgd
))
1509 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1510 } while (pgd
++, addr
= next
, addr
!= end
);
1511 tlb_end_vma(tlb
, vma
);
1515 static void unmap_single_vma(struct mmu_gather
*tlb
,
1516 struct vm_area_struct
*vma
, unsigned long start_addr
,
1517 unsigned long end_addr
,
1518 struct zap_details
*details
)
1520 unsigned long start
= max(vma
->vm_start
, start_addr
);
1523 if (start
>= vma
->vm_end
)
1525 end
= min(vma
->vm_end
, end_addr
);
1526 if (end
<= vma
->vm_start
)
1530 uprobe_munmap(vma
, start
, end
);
1532 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1533 untrack_pfn(vma
, 0, 0);
1536 if (unlikely(is_vm_hugetlb_page(vma
))) {
1538 * It is undesirable to test vma->vm_file as it
1539 * should be non-null for valid hugetlb area.
1540 * However, vm_file will be NULL in the error
1541 * cleanup path of mmap_region. When
1542 * hugetlbfs ->mmap method fails,
1543 * mmap_region() nullifies vma->vm_file
1544 * before calling this function to clean up.
1545 * Since no pte has actually been setup, it is
1546 * safe to do nothing in this case.
1549 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1550 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1551 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1554 unmap_page_range(tlb
, vma
, start
, end
, details
);
1559 * unmap_vmas - unmap a range of memory covered by a list of vma's
1560 * @tlb: address of the caller's struct mmu_gather
1561 * @vma: the starting vma
1562 * @start_addr: virtual address at which to start unmapping
1563 * @end_addr: virtual address at which to end unmapping
1565 * Unmap all pages in the vma list.
1567 * Only addresses between `start' and `end' will be unmapped.
1569 * The VMA list must be sorted in ascending virtual address order.
1571 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1572 * range after unmap_vmas() returns. So the only responsibility here is to
1573 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1574 * drops the lock and schedules.
1576 void unmap_vmas(struct mmu_gather
*tlb
,
1577 struct vm_area_struct
*vma
, unsigned long start_addr
,
1578 unsigned long end_addr
)
1580 struct mm_struct
*mm
= vma
->vm_mm
;
1582 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1583 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1584 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1585 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1589 * zap_page_range - remove user pages in a given range
1590 * @vma: vm_area_struct holding the applicable pages
1591 * @start: starting address of pages to zap
1592 * @size: number of bytes to zap
1594 * Caller must protect the VMA list
1596 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1599 struct mm_struct
*mm
= vma
->vm_mm
;
1600 struct mmu_gather tlb
;
1601 unsigned long end
= start
+ size
;
1604 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1605 update_hiwater_rss(mm
);
1606 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1607 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
1608 unmap_single_vma(&tlb
, vma
, start
, end
, NULL
);
1611 * zap_page_range does not specify whether mmap_sem should be
1612 * held for read or write. That allows parallel zap_page_range
1613 * operations to unmap a PTE and defer a flush meaning that
1614 * this call observes pte_none and fails to flush the TLB.
1615 * Rather than adding a complex API, ensure that no stale
1616 * TLB entries exist when this call returns.
1618 flush_tlb_range(vma
, start
, end
);
1621 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1622 tlb_finish_mmu(&tlb
, start
, end
);
1626 * zap_page_range_single - remove user pages in a given range
1627 * @vma: vm_area_struct holding the applicable pages
1628 * @address: starting address of pages to zap
1629 * @size: number of bytes to zap
1630 * @details: details of shared cache invalidation
1632 * The range must fit into one VMA.
1634 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1635 unsigned long size
, struct zap_details
*details
)
1637 struct mm_struct
*mm
= vma
->vm_mm
;
1638 struct mmu_gather tlb
;
1639 unsigned long end
= address
+ size
;
1642 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1643 update_hiwater_rss(mm
);
1644 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1645 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1646 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1647 tlb_finish_mmu(&tlb
, address
, end
);
1651 * zap_vma_ptes - remove ptes mapping the vma
1652 * @vma: vm_area_struct holding ptes to be zapped
1653 * @address: starting address of pages to zap
1654 * @size: number of bytes to zap
1656 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1658 * The entire address range must be fully contained within the vma.
1660 * Returns 0 if successful.
1662 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1665 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1666 !(vma
->vm_flags
& VM_PFNMAP
))
1668 zap_page_range_single(vma
, address
, size
, NULL
);
1671 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1673 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1681 pgd
= pgd_offset(mm
, addr
);
1682 p4d
= p4d_alloc(mm
, pgd
, addr
);
1685 pud
= pud_alloc(mm
, p4d
, addr
);
1688 pmd
= pmd_alloc(mm
, pud
, addr
);
1692 VM_BUG_ON(pmd_trans_huge(*pmd
));
1693 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1697 * This is the old fallback for page remapping.
1699 * For historical reasons, it only allows reserved pages. Only
1700 * old drivers should use this, and they needed to mark their
1701 * pages reserved for the old functions anyway.
1703 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1704 struct page
*page
, pgprot_t prot
)
1706 struct mm_struct
*mm
= vma
->vm_mm
;
1715 flush_dcache_page(page
);
1716 pte
= get_locked_pte(mm
, addr
, &ptl
);
1720 if (!pte_none(*pte
))
1723 /* Ok, finally just insert the thing.. */
1725 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1726 page_add_file_rmap(page
, false);
1727 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1730 pte_unmap_unlock(pte
, ptl
);
1733 pte_unmap_unlock(pte
, ptl
);
1739 * vm_insert_page - insert single page into user vma
1740 * @vma: user vma to map to
1741 * @addr: target user address of this page
1742 * @page: source kernel page
1744 * This allows drivers to insert individual pages they've allocated
1747 * The page has to be a nice clean _individual_ kernel allocation.
1748 * If you allocate a compound page, you need to have marked it as
1749 * such (__GFP_COMP), or manually just split the page up yourself
1750 * (see split_page()).
1752 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1753 * took an arbitrary page protection parameter. This doesn't allow
1754 * that. Your vma protection will have to be set up correctly, which
1755 * means that if you want a shared writable mapping, you'd better
1756 * ask for a shared writable mapping!
1758 * The page does not need to be reserved.
1760 * Usually this function is called from f_op->mmap() handler
1761 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1762 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1763 * function from other places, for example from page-fault handler.
1765 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1768 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1770 if (!page_count(page
))
1772 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1773 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1774 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1775 vma
->vm_flags
|= VM_MIXEDMAP
;
1777 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1779 EXPORT_SYMBOL(vm_insert_page
);
1781 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1782 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1784 struct mm_struct
*mm
= vma
->vm_mm
;
1790 pte
= get_locked_pte(mm
, addr
, &ptl
);
1794 if (!pte_none(*pte
)) {
1797 * For read faults on private mappings the PFN passed
1798 * in may not match the PFN we have mapped if the
1799 * mapped PFN is a writeable COW page. In the mkwrite
1800 * case we are creating a writable PTE for a shared
1801 * mapping and we expect the PFNs to match.
1803 if (WARN_ON_ONCE(pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)))
1811 /* Ok, finally just insert the thing.. */
1812 if (pfn_t_devmap(pfn
))
1813 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1815 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1819 entry
= pte_mkyoung(entry
);
1820 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1823 set_pte_at(mm
, addr
, pte
, entry
);
1824 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1828 pte_unmap_unlock(pte
, ptl
);
1834 * vm_insert_pfn - insert single pfn into user vma
1835 * @vma: user vma to map to
1836 * @addr: target user address of this page
1837 * @pfn: source kernel pfn
1839 * Similar to vm_insert_page, this allows drivers to insert individual pages
1840 * they've allocated into a user vma. Same comments apply.
1842 * This function should only be called from a vm_ops->fault handler, and
1843 * in that case the handler should return NULL.
1845 * vma cannot be a COW mapping.
1847 * As this is called only for pages that do not currently exist, we
1848 * do not need to flush old virtual caches or the TLB.
1850 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1853 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1855 EXPORT_SYMBOL(vm_insert_pfn
);
1858 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1859 * @vma: user vma to map to
1860 * @addr: target user address of this page
1861 * @pfn: source kernel pfn
1862 * @pgprot: pgprot flags for the inserted page
1864 * This is exactly like vm_insert_pfn, except that it allows drivers to
1865 * to override pgprot on a per-page basis.
1867 * This only makes sense for IO mappings, and it makes no sense for
1868 * cow mappings. In general, using multiple vmas is preferable;
1869 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1872 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1873 unsigned long pfn
, pgprot_t pgprot
)
1877 * Technically, architectures with pte_special can avoid all these
1878 * restrictions (same for remap_pfn_range). However we would like
1879 * consistency in testing and feature parity among all, so we should
1880 * try to keep these invariants in place for everybody.
1882 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1883 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1884 (VM_PFNMAP
|VM_MIXEDMAP
));
1885 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1886 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1888 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1891 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1893 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1898 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1900 static int __vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1901 pfn_t pfn
, bool mkwrite
)
1903 pgprot_t pgprot
= vma
->vm_page_prot
;
1905 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1907 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1910 track_pfn_insert(vma
, &pgprot
, pfn
);
1913 * If we don't have pte special, then we have to use the pfn_valid()
1914 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1915 * refcount the page if pfn_valid is true (hence insert_page rather
1916 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1917 * without pte special, it would there be refcounted as a normal page.
1919 if (!HAVE_PTE_SPECIAL
&& !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1923 * At this point we are committed to insert_page()
1924 * regardless of whether the caller specified flags that
1925 * result in pfn_t_has_page() == false.
1927 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1928 return insert_page(vma
, addr
, page
, pgprot
);
1930 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1933 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1936 return __vm_insert_mixed(vma
, addr
, pfn
, false);
1939 EXPORT_SYMBOL(vm_insert_mixed
);
1941 int vm_insert_mixed_mkwrite(struct vm_area_struct
*vma
, unsigned long addr
,
1944 return __vm_insert_mixed(vma
, addr
, pfn
, true);
1946 EXPORT_SYMBOL(vm_insert_mixed_mkwrite
);
1949 * maps a range of physical memory into the requested pages. the old
1950 * mappings are removed. any references to nonexistent pages results
1951 * in null mappings (currently treated as "copy-on-access")
1953 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1954 unsigned long addr
, unsigned long end
,
1955 unsigned long pfn
, pgprot_t prot
)
1960 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1963 arch_enter_lazy_mmu_mode();
1965 BUG_ON(!pte_none(*pte
));
1966 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1968 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1969 arch_leave_lazy_mmu_mode();
1970 pte_unmap_unlock(pte
- 1, ptl
);
1974 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1975 unsigned long addr
, unsigned long end
,
1976 unsigned long pfn
, pgprot_t prot
)
1981 pfn
-= addr
>> PAGE_SHIFT
;
1982 pmd
= pmd_alloc(mm
, pud
, addr
);
1985 VM_BUG_ON(pmd_trans_huge(*pmd
));
1987 next
= pmd_addr_end(addr
, end
);
1988 if (remap_pte_range(mm
, pmd
, addr
, next
,
1989 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1991 } while (pmd
++, addr
= next
, addr
!= end
);
1995 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
1996 unsigned long addr
, unsigned long end
,
1997 unsigned long pfn
, pgprot_t prot
)
2002 pfn
-= addr
>> PAGE_SHIFT
;
2003 pud
= pud_alloc(mm
, p4d
, addr
);
2007 next
= pud_addr_end(addr
, end
);
2008 if (remap_pmd_range(mm
, pud
, addr
, next
,
2009 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2011 } while (pud
++, addr
= next
, addr
!= end
);
2015 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2016 unsigned long addr
, unsigned long end
,
2017 unsigned long pfn
, pgprot_t prot
)
2022 pfn
-= addr
>> PAGE_SHIFT
;
2023 p4d
= p4d_alloc(mm
, pgd
, addr
);
2027 next
= p4d_addr_end(addr
, end
);
2028 if (remap_pud_range(mm
, p4d
, addr
, next
,
2029 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2031 } while (p4d
++, addr
= next
, addr
!= end
);
2036 * remap_pfn_range - remap kernel memory to userspace
2037 * @vma: user vma to map to
2038 * @addr: target user address to start at
2039 * @pfn: physical address of kernel memory
2040 * @size: size of map area
2041 * @prot: page protection flags for this mapping
2043 * Note: this is only safe if the mm semaphore is held when called.
2045 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2046 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2050 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2051 struct mm_struct
*mm
= vma
->vm_mm
;
2052 unsigned long remap_pfn
= pfn
;
2056 * Physically remapped pages are special. Tell the
2057 * rest of the world about it:
2058 * VM_IO tells people not to look at these pages
2059 * (accesses can have side effects).
2060 * VM_PFNMAP tells the core MM that the base pages are just
2061 * raw PFN mappings, and do not have a "struct page" associated
2064 * Disable vma merging and expanding with mremap().
2066 * Omit vma from core dump, even when VM_IO turned off.
2068 * There's a horrible special case to handle copy-on-write
2069 * behaviour that some programs depend on. We mark the "original"
2070 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2071 * See vm_normal_page() for details.
2073 if (is_cow_mapping(vma
->vm_flags
)) {
2074 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2076 vma
->vm_pgoff
= pfn
;
2079 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
2083 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2085 BUG_ON(addr
>= end
);
2086 pfn
-= addr
>> PAGE_SHIFT
;
2087 pgd
= pgd_offset(mm
, addr
);
2088 flush_cache_range(vma
, addr
, end
);
2090 next
= pgd_addr_end(addr
, end
);
2091 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
2092 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2095 } while (pgd
++, addr
= next
, addr
!= end
);
2098 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
2102 EXPORT_SYMBOL(remap_pfn_range
);
2105 * vm_iomap_memory - remap memory to userspace
2106 * @vma: user vma to map to
2107 * @start: start of area
2108 * @len: size of area
2110 * This is a simplified io_remap_pfn_range() for common driver use. The
2111 * driver just needs to give us the physical memory range to be mapped,
2112 * we'll figure out the rest from the vma information.
2114 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2115 * whatever write-combining details or similar.
2117 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2119 unsigned long vm_len
, pfn
, pages
;
2121 /* Check that the physical memory area passed in looks valid */
2122 if (start
+ len
< start
)
2125 * You *really* shouldn't map things that aren't page-aligned,
2126 * but we've historically allowed it because IO memory might
2127 * just have smaller alignment.
2129 len
+= start
& ~PAGE_MASK
;
2130 pfn
= start
>> PAGE_SHIFT
;
2131 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2132 if (pfn
+ pages
< pfn
)
2135 /* We start the mapping 'vm_pgoff' pages into the area */
2136 if (vma
->vm_pgoff
> pages
)
2138 pfn
+= vma
->vm_pgoff
;
2139 pages
-= vma
->vm_pgoff
;
2141 /* Can we fit all of the mapping? */
2142 vm_len
= vma
->vm_end
- vma
->vm_start
;
2143 if (vm_len
>> PAGE_SHIFT
> pages
)
2146 /* Ok, let it rip */
2147 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2149 EXPORT_SYMBOL(vm_iomap_memory
);
2151 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2152 unsigned long addr
, unsigned long end
,
2153 pte_fn_t fn
, void *data
)
2158 spinlock_t
*uninitialized_var(ptl
);
2160 pte
= (mm
== &init_mm
) ?
2161 pte_alloc_kernel(pmd
, addr
) :
2162 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2166 BUG_ON(pmd_huge(*pmd
));
2168 arch_enter_lazy_mmu_mode();
2170 token
= pmd_pgtable(*pmd
);
2173 err
= fn(pte
++, token
, addr
, data
);
2176 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2178 arch_leave_lazy_mmu_mode();
2181 pte_unmap_unlock(pte
-1, ptl
);
2185 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2186 unsigned long addr
, unsigned long end
,
2187 pte_fn_t fn
, void *data
)
2193 BUG_ON(pud_huge(*pud
));
2195 pmd
= pmd_alloc(mm
, pud
, addr
);
2199 next
= pmd_addr_end(addr
, end
);
2200 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2203 } while (pmd
++, addr
= next
, addr
!= end
);
2207 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2208 unsigned long addr
, unsigned long end
,
2209 pte_fn_t fn
, void *data
)
2215 pud
= pud_alloc(mm
, p4d
, addr
);
2219 next
= pud_addr_end(addr
, end
);
2220 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2223 } while (pud
++, addr
= next
, addr
!= end
);
2227 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2228 unsigned long addr
, unsigned long end
,
2229 pte_fn_t fn
, void *data
)
2235 p4d
= p4d_alloc(mm
, pgd
, addr
);
2239 next
= p4d_addr_end(addr
, end
);
2240 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
);
2243 } while (p4d
++, addr
= next
, addr
!= end
);
2248 * Scan a region of virtual memory, filling in page tables as necessary
2249 * and calling a provided function on each leaf page table.
2251 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2252 unsigned long size
, pte_fn_t fn
, void *data
)
2256 unsigned long end
= addr
+ size
;
2259 if (WARN_ON(addr
>= end
))
2262 pgd
= pgd_offset(mm
, addr
);
2264 next
= pgd_addr_end(addr
, end
);
2265 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
);
2268 } while (pgd
++, addr
= next
, addr
!= end
);
2272 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2275 * handle_pte_fault chooses page fault handler according to an entry which was
2276 * read non-atomically. Before making any commitment, on those architectures
2277 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2278 * parts, do_swap_page must check under lock before unmapping the pte and
2279 * proceeding (but do_wp_page is only called after already making such a check;
2280 * and do_anonymous_page can safely check later on).
2282 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2283 pte_t
*page_table
, pte_t orig_pte
)
2286 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2287 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2288 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2290 same
= pte_same(*page_table
, orig_pte
);
2294 pte_unmap(page_table
);
2298 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2300 debug_dma_assert_idle(src
);
2303 * If the source page was a PFN mapping, we don't have
2304 * a "struct page" for it. We do a best-effort copy by
2305 * just copying from the original user address. If that
2306 * fails, we just zero-fill it. Live with it.
2308 if (unlikely(!src
)) {
2309 void *kaddr
= kmap_atomic(dst
);
2310 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2313 * This really shouldn't fail, because the page is there
2314 * in the page tables. But it might just be unreadable,
2315 * in which case we just give up and fill the result with
2318 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2320 kunmap_atomic(kaddr
);
2321 flush_dcache_page(dst
);
2323 copy_user_highpage(dst
, src
, va
, vma
);
2326 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2328 struct file
*vm_file
= vma
->vm_file
;
2331 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2334 * Special mappings (e.g. VDSO) do not have any file so fake
2335 * a default GFP_KERNEL for them.
2341 * Notify the address space that the page is about to become writable so that
2342 * it can prohibit this or wait for the page to get into an appropriate state.
2344 * We do this without the lock held, so that it can sleep if it needs to.
2346 static int do_page_mkwrite(struct vm_fault
*vmf
)
2349 struct page
*page
= vmf
->page
;
2350 unsigned int old_flags
= vmf
->flags
;
2352 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2354 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2355 /* Restore original flags so that caller is not surprised */
2356 vmf
->flags
= old_flags
;
2357 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2359 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2361 if (!page
->mapping
) {
2363 return 0; /* retry */
2365 ret
|= VM_FAULT_LOCKED
;
2367 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2372 * Handle dirtying of a page in shared file mapping on a write fault.
2374 * The function expects the page to be locked and unlocks it.
2376 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2379 struct address_space
*mapping
;
2381 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2383 dirtied
= set_page_dirty(page
);
2384 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2386 * Take a local copy of the address_space - page.mapping may be zeroed
2387 * by truncate after unlock_page(). The address_space itself remains
2388 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2389 * release semantics to prevent the compiler from undoing this copying.
2391 mapping
= page_rmapping(page
);
2394 if ((dirtied
|| page_mkwrite
) && mapping
) {
2396 * Some device drivers do not set page.mapping
2397 * but still dirty their pages
2399 balance_dirty_pages_ratelimited(mapping
);
2403 file_update_time(vma
->vm_file
);
2407 * Handle write page faults for pages that can be reused in the current vma
2409 * This can happen either due to the mapping being with the VM_SHARED flag,
2410 * or due to us being the last reference standing to the page. In either
2411 * case, all we need to do here is to mark the page as writable and update
2412 * any related book-keeping.
2414 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2415 __releases(vmf
->ptl
)
2417 struct vm_area_struct
*vma
= vmf
->vma
;
2418 struct page
*page
= vmf
->page
;
2421 * Clear the pages cpupid information as the existing
2422 * information potentially belongs to a now completely
2423 * unrelated process.
2426 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2428 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2429 entry
= pte_mkyoung(vmf
->orig_pte
);
2430 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2431 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2432 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2433 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2437 * Handle the case of a page which we actually need to copy to a new page.
2439 * Called with mmap_sem locked and the old page referenced, but
2440 * without the ptl held.
2442 * High level logic flow:
2444 * - Allocate a page, copy the content of the old page to the new one.
2445 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2446 * - Take the PTL. If the pte changed, bail out and release the allocated page
2447 * - If the pte is still the way we remember it, update the page table and all
2448 * relevant references. This includes dropping the reference the page-table
2449 * held to the old page, as well as updating the rmap.
2450 * - In any case, unlock the PTL and drop the reference we took to the old page.
2452 static int wp_page_copy(struct vm_fault
*vmf
)
2454 struct vm_area_struct
*vma
= vmf
->vma
;
2455 struct mm_struct
*mm
= vma
->vm_mm
;
2456 struct page
*old_page
= vmf
->page
;
2457 struct page
*new_page
= NULL
;
2459 int page_copied
= 0;
2460 const unsigned long mmun_start
= vmf
->address
& PAGE_MASK
;
2461 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2462 struct mem_cgroup
*memcg
;
2464 if (unlikely(anon_vma_prepare(vma
)))
2467 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2468 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2473 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2477 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2480 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2483 __SetPageUptodate(new_page
);
2485 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2488 * Re-check the pte - we dropped the lock
2490 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2491 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2493 if (!PageAnon(old_page
)) {
2494 dec_mm_counter_fast(mm
,
2495 mm_counter_file(old_page
));
2496 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2499 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2501 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2502 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2503 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2505 * Clear the pte entry and flush it first, before updating the
2506 * pte with the new entry. This will avoid a race condition
2507 * seen in the presence of one thread doing SMC and another
2510 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2511 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2512 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2513 lru_cache_add_active_or_unevictable(new_page
, vma
);
2515 * We call the notify macro here because, when using secondary
2516 * mmu page tables (such as kvm shadow page tables), we want the
2517 * new page to be mapped directly into the secondary page table.
2519 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2520 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2523 * Only after switching the pte to the new page may
2524 * we remove the mapcount here. Otherwise another
2525 * process may come and find the rmap count decremented
2526 * before the pte is switched to the new page, and
2527 * "reuse" the old page writing into it while our pte
2528 * here still points into it and can be read by other
2531 * The critical issue is to order this
2532 * page_remove_rmap with the ptp_clear_flush above.
2533 * Those stores are ordered by (if nothing else,)
2534 * the barrier present in the atomic_add_negative
2535 * in page_remove_rmap.
2537 * Then the TLB flush in ptep_clear_flush ensures that
2538 * no process can access the old page before the
2539 * decremented mapcount is visible. And the old page
2540 * cannot be reused until after the decremented
2541 * mapcount is visible. So transitively, TLBs to
2542 * old page will be flushed before it can be reused.
2544 page_remove_rmap(old_page
, false);
2547 /* Free the old page.. */
2548 new_page
= old_page
;
2551 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2557 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2559 * No need to double call mmu_notifier->invalidate_range() callback as
2560 * the above ptep_clear_flush_notify() did already call it.
2562 mmu_notifier_invalidate_range_only_end(mm
, mmun_start
, mmun_end
);
2565 * Don't let another task, with possibly unlocked vma,
2566 * keep the mlocked page.
2568 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2569 lock_page(old_page
); /* LRU manipulation */
2570 if (PageMlocked(old_page
))
2571 munlock_vma_page(old_page
);
2572 unlock_page(old_page
);
2576 return page_copied
? VM_FAULT_WRITE
: 0;
2582 return VM_FAULT_OOM
;
2586 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2587 * writeable once the page is prepared
2589 * @vmf: structure describing the fault
2591 * This function handles all that is needed to finish a write page fault in a
2592 * shared mapping due to PTE being read-only once the mapped page is prepared.
2593 * It handles locking of PTE and modifying it. The function returns
2594 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2597 * The function expects the page to be locked or other protection against
2598 * concurrent faults / writeback (such as DAX radix tree locks).
2600 int finish_mkwrite_fault(struct vm_fault
*vmf
)
2602 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2603 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2606 * We might have raced with another page fault while we released the
2607 * pte_offset_map_lock.
2609 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2610 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2611 return VM_FAULT_NOPAGE
;
2618 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2621 static int wp_pfn_shared(struct vm_fault
*vmf
)
2623 struct vm_area_struct
*vma
= vmf
->vma
;
2625 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2628 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2629 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2630 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2631 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2633 return finish_mkwrite_fault(vmf
);
2636 return VM_FAULT_WRITE
;
2639 static int wp_page_shared(struct vm_fault
*vmf
)
2640 __releases(vmf
->ptl
)
2642 struct vm_area_struct
*vma
= vmf
->vma
;
2644 get_page(vmf
->page
);
2646 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2649 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2650 tmp
= do_page_mkwrite(vmf
);
2651 if (unlikely(!tmp
|| (tmp
&
2652 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2653 put_page(vmf
->page
);
2656 tmp
= finish_mkwrite_fault(vmf
);
2657 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2658 unlock_page(vmf
->page
);
2659 put_page(vmf
->page
);
2664 lock_page(vmf
->page
);
2666 fault_dirty_shared_page(vma
, vmf
->page
);
2667 put_page(vmf
->page
);
2669 return VM_FAULT_WRITE
;
2673 * This routine handles present pages, when users try to write
2674 * to a shared page. It is done by copying the page to a new address
2675 * and decrementing the shared-page counter for the old page.
2677 * Note that this routine assumes that the protection checks have been
2678 * done by the caller (the low-level page fault routine in most cases).
2679 * Thus we can safely just mark it writable once we've done any necessary
2682 * We also mark the page dirty at this point even though the page will
2683 * change only once the write actually happens. This avoids a few races,
2684 * and potentially makes it more efficient.
2686 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687 * but allow concurrent faults), with pte both mapped and locked.
2688 * We return with mmap_sem still held, but pte unmapped and unlocked.
2690 static int do_wp_page(struct vm_fault
*vmf
)
2691 __releases(vmf
->ptl
)
2693 struct vm_area_struct
*vma
= vmf
->vma
;
2695 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2698 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2701 * We should not cow pages in a shared writeable mapping.
2702 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2704 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2705 (VM_WRITE
|VM_SHARED
))
2706 return wp_pfn_shared(vmf
);
2708 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2709 return wp_page_copy(vmf
);
2713 * Take out anonymous pages first, anonymous shared vmas are
2714 * not dirty accountable.
2716 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2717 int total_map_swapcount
;
2718 if (!trylock_page(vmf
->page
)) {
2719 get_page(vmf
->page
);
2720 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2721 lock_page(vmf
->page
);
2722 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2723 vmf
->address
, &vmf
->ptl
);
2724 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2725 unlock_page(vmf
->page
);
2726 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2727 put_page(vmf
->page
);
2730 put_page(vmf
->page
);
2732 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2733 if (total_map_swapcount
== 1) {
2735 * The page is all ours. Move it to
2736 * our anon_vma so the rmap code will
2737 * not search our parent or siblings.
2738 * Protected against the rmap code by
2741 page_move_anon_rmap(vmf
->page
, vma
);
2743 unlock_page(vmf
->page
);
2745 return VM_FAULT_WRITE
;
2747 unlock_page(vmf
->page
);
2748 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2749 (VM_WRITE
|VM_SHARED
))) {
2750 return wp_page_shared(vmf
);
2754 * Ok, we need to copy. Oh, well..
2756 get_page(vmf
->page
);
2758 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2759 return wp_page_copy(vmf
);
2762 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2763 unsigned long start_addr
, unsigned long end_addr
,
2764 struct zap_details
*details
)
2766 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2769 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2770 struct zap_details
*details
)
2772 struct vm_area_struct
*vma
;
2773 pgoff_t vba
, vea
, zba
, zea
;
2775 vma_interval_tree_foreach(vma
, root
,
2776 details
->first_index
, details
->last_index
) {
2778 vba
= vma
->vm_pgoff
;
2779 vea
= vba
+ vma_pages(vma
) - 1;
2780 zba
= details
->first_index
;
2783 zea
= details
->last_index
;
2787 unmap_mapping_range_vma(vma
,
2788 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2789 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2795 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2796 * address_space corresponding to the specified page range in the underlying
2799 * @mapping: the address space containing mmaps to be unmapped.
2800 * @holebegin: byte in first page to unmap, relative to the start of
2801 * the underlying file. This will be rounded down to a PAGE_SIZE
2802 * boundary. Note that this is different from truncate_pagecache(), which
2803 * must keep the partial page. In contrast, we must get rid of
2805 * @holelen: size of prospective hole in bytes. This will be rounded
2806 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2808 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2809 * but 0 when invalidating pagecache, don't throw away private data.
2811 void unmap_mapping_range(struct address_space
*mapping
,
2812 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2814 struct zap_details details
= { };
2815 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2816 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2818 /* Check for overflow. */
2819 if (sizeof(holelen
) > sizeof(hlen
)) {
2821 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2822 if (holeend
& ~(long long)ULONG_MAX
)
2823 hlen
= ULONG_MAX
- hba
+ 1;
2826 details
.check_mapping
= even_cows
? NULL
: mapping
;
2827 details
.first_index
= hba
;
2828 details
.last_index
= hba
+ hlen
- 1;
2829 if (details
.last_index
< details
.first_index
)
2830 details
.last_index
= ULONG_MAX
;
2832 i_mmap_lock_write(mapping
);
2833 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
2834 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2835 i_mmap_unlock_write(mapping
);
2837 EXPORT_SYMBOL(unmap_mapping_range
);
2840 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2841 * but allow concurrent faults), and pte mapped but not yet locked.
2842 * We return with pte unmapped and unlocked.
2844 * We return with the mmap_sem locked or unlocked in the same cases
2845 * as does filemap_fault().
2847 int do_swap_page(struct vm_fault
*vmf
)
2849 struct vm_area_struct
*vma
= vmf
->vma
;
2850 struct page
*page
= NULL
, *swapcache
= NULL
;
2851 struct mem_cgroup
*memcg
;
2852 struct vma_swap_readahead swap_ra
;
2858 bool vma_readahead
= swap_use_vma_readahead();
2860 if (vma_readahead
) {
2861 page
= swap_readahead_detect(vmf
, &swap_ra
);
2865 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
)) {
2871 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2872 if (unlikely(non_swap_entry(entry
))) {
2873 if (is_migration_entry(entry
)) {
2874 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2876 } else if (is_device_private_entry(entry
)) {
2878 * For un-addressable device memory we call the pgmap
2879 * fault handler callback. The callback must migrate
2880 * the page back to some CPU accessible page.
2882 ret
= device_private_entry_fault(vma
, vmf
->address
, entry
,
2883 vmf
->flags
, vmf
->pmd
);
2884 } else if (is_hwpoison_entry(entry
)) {
2885 ret
= VM_FAULT_HWPOISON
;
2887 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2888 ret
= VM_FAULT_SIGBUS
;
2894 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2896 page
= lookup_swap_cache(entry
, vma_readahead
? vma
: NULL
,
2902 struct swap_info_struct
*si
= swp_swap_info(entry
);
2904 if (si
->flags
& SWP_SYNCHRONOUS_IO
&&
2905 __swap_count(si
, entry
) == 1) {
2906 /* skip swapcache */
2907 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
2909 __SetPageLocked(page
);
2910 __SetPageSwapBacked(page
);
2911 set_page_private(page
, entry
.val
);
2912 lru_cache_add_anon(page
);
2913 swap_readpage(page
, true);
2917 page
= do_swap_page_readahead(entry
,
2918 GFP_HIGHUSER_MOVABLE
, vmf
, &swap_ra
);
2920 page
= swapin_readahead(entry
,
2921 GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
2927 * Back out if somebody else faulted in this pte
2928 * while we released the pte lock.
2930 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2931 vmf
->address
, &vmf
->ptl
);
2932 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2934 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2938 /* Had to read the page from swap area: Major fault */
2939 ret
= VM_FAULT_MAJOR
;
2940 count_vm_event(PGMAJFAULT
);
2941 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
2942 } else if (PageHWPoison(page
)) {
2944 * hwpoisoned dirty swapcache pages are kept for killing
2945 * owner processes (which may be unknown at hwpoison time)
2947 ret
= VM_FAULT_HWPOISON
;
2948 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2953 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2955 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2957 ret
|= VM_FAULT_RETRY
;
2962 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2963 * release the swapcache from under us. The page pin, and pte_same
2964 * test below, are not enough to exclude that. Even if it is still
2965 * swapcache, we need to check that the page's swap has not changed.
2967 if (unlikely((!PageSwapCache(page
) ||
2968 page_private(page
) != entry
.val
)) && swapcache
)
2971 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2972 if (unlikely(!page
)) {
2978 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
2985 * Back out if somebody else already faulted in this pte.
2987 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2989 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2992 if (unlikely(!PageUptodate(page
))) {
2993 ret
= VM_FAULT_SIGBUS
;
2998 * The page isn't present yet, go ahead with the fault.
3000 * Be careful about the sequence of operations here.
3001 * To get its accounting right, reuse_swap_page() must be called
3002 * while the page is counted on swap but not yet in mapcount i.e.
3003 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3004 * must be called after the swap_free(), or it will never succeed.
3007 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3008 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
3009 pte
= mk_pte(page
, vma
->vm_page_prot
);
3010 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
3011 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3012 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
3013 ret
|= VM_FAULT_WRITE
;
3014 exclusive
= RMAP_EXCLUSIVE
;
3016 flush_icache_page(vma
, page
);
3017 if (pte_swp_soft_dirty(vmf
->orig_pte
))
3018 pte
= pte_mksoft_dirty(pte
);
3019 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3020 vmf
->orig_pte
= pte
;
3022 /* ksm created a completely new copy */
3023 if (unlikely(page
!= swapcache
&& swapcache
)) {
3024 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3025 mem_cgroup_commit_charge(page
, memcg
, false, false);
3026 lru_cache_add_active_or_unevictable(page
, vma
);
3028 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
3029 mem_cgroup_commit_charge(page
, memcg
, true, false);
3030 activate_page(page
);
3034 if (mem_cgroup_swap_full(page
) ||
3035 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3036 try_to_free_swap(page
);
3038 if (page
!= swapcache
&& swapcache
) {
3040 * Hold the lock to avoid the swap entry to be reused
3041 * until we take the PT lock for the pte_same() check
3042 * (to avoid false positives from pte_same). For
3043 * further safety release the lock after the swap_free
3044 * so that the swap count won't change under a
3045 * parallel locked swapcache.
3047 unlock_page(swapcache
);
3048 put_page(swapcache
);
3051 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3052 ret
|= do_wp_page(vmf
);
3053 if (ret
& VM_FAULT_ERROR
)
3054 ret
&= VM_FAULT_ERROR
;
3058 /* No need to invalidate - it was non-present before */
3059 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3061 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3065 mem_cgroup_cancel_charge(page
, memcg
, false);
3066 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3071 if (page
!= swapcache
&& swapcache
) {
3072 unlock_page(swapcache
);
3073 put_page(swapcache
);
3079 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3080 * but allow concurrent faults), and pte mapped but not yet locked.
3081 * We return with mmap_sem still held, but pte unmapped and unlocked.
3083 static int do_anonymous_page(struct vm_fault
*vmf
)
3085 struct vm_area_struct
*vma
= vmf
->vma
;
3086 struct mem_cgroup
*memcg
;
3091 /* File mapping without ->vm_ops ? */
3092 if (vma
->vm_flags
& VM_SHARED
)
3093 return VM_FAULT_SIGBUS
;
3096 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3097 * pte_offset_map() on pmds where a huge pmd might be created
3098 * from a different thread.
3100 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3101 * parallel threads are excluded by other means.
3103 * Here we only have down_read(mmap_sem).
3105 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))
3106 return VM_FAULT_OOM
;
3108 /* See the comment in pte_alloc_one_map() */
3109 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
3112 /* Use the zero-page for reads */
3113 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
3114 !mm_forbids_zeropage(vma
->vm_mm
)) {
3115 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
3116 vma
->vm_page_prot
));
3117 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3118 vmf
->address
, &vmf
->ptl
);
3119 if (!pte_none(*vmf
->pte
))
3121 ret
= check_stable_address_space(vma
->vm_mm
);
3124 /* Deliver the page fault to userland, check inside PT lock */
3125 if (userfaultfd_missing(vma
)) {
3126 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3127 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3132 /* Allocate our own private page. */
3133 if (unlikely(anon_vma_prepare(vma
)))
3135 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
3139 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
3143 * The memory barrier inside __SetPageUptodate makes sure that
3144 * preceeding stores to the page contents become visible before
3145 * the set_pte_at() write.
3147 __SetPageUptodate(page
);
3149 entry
= mk_pte(page
, vma
->vm_page_prot
);
3150 if (vma
->vm_flags
& VM_WRITE
)
3151 entry
= pte_mkwrite(pte_mkdirty(entry
));
3153 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3155 if (!pte_none(*vmf
->pte
))
3158 ret
= check_stable_address_space(vma
->vm_mm
);
3162 /* Deliver the page fault to userland, check inside PT lock */
3163 if (userfaultfd_missing(vma
)) {
3164 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3165 mem_cgroup_cancel_charge(page
, memcg
, false);
3167 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3170 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3171 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3172 mem_cgroup_commit_charge(page
, memcg
, false, false);
3173 lru_cache_add_active_or_unevictable(page
, vma
);
3175 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3177 /* No need to invalidate - it was non-present before */
3178 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3180 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3183 mem_cgroup_cancel_charge(page
, memcg
, false);
3189 return VM_FAULT_OOM
;
3193 * The mmap_sem must have been held on entry, and may have been
3194 * released depending on flags and vma->vm_ops->fault() return value.
3195 * See filemap_fault() and __lock_page_retry().
3197 static int __do_fault(struct vm_fault
*vmf
)
3199 struct vm_area_struct
*vma
= vmf
->vma
;
3202 ret
= vma
->vm_ops
->fault(vmf
);
3203 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3204 VM_FAULT_DONE_COW
)))
3207 if (unlikely(PageHWPoison(vmf
->page
))) {
3208 if (ret
& VM_FAULT_LOCKED
)
3209 unlock_page(vmf
->page
);
3210 put_page(vmf
->page
);
3212 return VM_FAULT_HWPOISON
;
3215 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3216 lock_page(vmf
->page
);
3218 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3224 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3225 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3226 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3227 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3229 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3231 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3234 static int pte_alloc_one_map(struct vm_fault
*vmf
)
3236 struct vm_area_struct
*vma
= vmf
->vma
;
3238 if (!pmd_none(*vmf
->pmd
))
3240 if (vmf
->prealloc_pte
) {
3241 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3242 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3243 spin_unlock(vmf
->ptl
);
3247 mm_inc_nr_ptes(vma
->vm_mm
);
3248 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3249 spin_unlock(vmf
->ptl
);
3250 vmf
->prealloc_pte
= NULL
;
3251 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))) {
3252 return VM_FAULT_OOM
;
3256 * If a huge pmd materialized under us just retry later. Use
3257 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3258 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3259 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3260 * running immediately after a huge pmd fault in a different thread of
3261 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3262 * All we have to ensure is that it is a regular pmd that we can walk
3263 * with pte_offset_map() and we can do that through an atomic read in
3264 * C, which is what pmd_trans_unstable() provides.
3266 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3267 return VM_FAULT_NOPAGE
;
3270 * At this point we know that our vmf->pmd points to a page of ptes
3271 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3272 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3273 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3274 * be valid and we will re-check to make sure the vmf->pte isn't
3275 * pte_none() under vmf->ptl protection when we return to
3278 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3283 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3285 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3286 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
3287 unsigned long haddr
)
3289 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
3290 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
3292 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
3297 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3299 struct vm_area_struct
*vma
= vmf
->vma
;
3301 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3303 * We are going to consume the prealloc table,
3304 * count that as nr_ptes.
3306 mm_inc_nr_ptes(vma
->vm_mm
);
3307 vmf
->prealloc_pte
= NULL
;
3310 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3312 struct vm_area_struct
*vma
= vmf
->vma
;
3313 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3314 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3318 if (!transhuge_vma_suitable(vma
, haddr
))
3319 return VM_FAULT_FALLBACK
;
3321 ret
= VM_FAULT_FALLBACK
;
3322 page
= compound_head(page
);
3325 * Archs like ppc64 need additonal space to store information
3326 * related to pte entry. Use the preallocated table for that.
3328 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3329 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, vmf
->address
);
3330 if (!vmf
->prealloc_pte
)
3331 return VM_FAULT_OOM
;
3332 smp_wmb(); /* See comment in __pte_alloc() */
3335 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3336 if (unlikely(!pmd_none(*vmf
->pmd
)))
3339 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3340 flush_icache_page(vma
, page
+ i
);
3342 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3344 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3346 add_mm_counter(vma
->vm_mm
, MM_FILEPAGES
, HPAGE_PMD_NR
);
3347 page_add_file_rmap(page
, true);
3349 * deposit and withdraw with pmd lock held
3351 if (arch_needs_pgtable_deposit())
3352 deposit_prealloc_pte(vmf
);
3354 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3356 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3358 /* fault is handled */
3360 count_vm_event(THP_FILE_MAPPED
);
3362 spin_unlock(vmf
->ptl
);
3366 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3374 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3375 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3377 * @vmf: fault environment
3378 * @memcg: memcg to charge page (only for private mappings)
3379 * @page: page to map
3381 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3384 * Target users are page handler itself and implementations of
3385 * vm_ops->map_pages.
3387 int alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3390 struct vm_area_struct
*vma
= vmf
->vma
;
3391 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3395 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3396 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3398 VM_BUG_ON_PAGE(memcg
, page
);
3400 ret
= do_set_pmd(vmf
, page
);
3401 if (ret
!= VM_FAULT_FALLBACK
)
3406 ret
= pte_alloc_one_map(vmf
);
3411 /* Re-check under ptl */
3412 if (unlikely(!pte_none(*vmf
->pte
)))
3413 return VM_FAULT_NOPAGE
;
3415 flush_icache_page(vma
, page
);
3416 entry
= mk_pte(page
, vma
->vm_page_prot
);
3418 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3419 /* copy-on-write page */
3420 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3421 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3422 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3423 mem_cgroup_commit_charge(page
, memcg
, false, false);
3424 lru_cache_add_active_or_unevictable(page
, vma
);
3426 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3427 page_add_file_rmap(page
, false);
3429 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3431 /* no need to invalidate: a not-present page won't be cached */
3432 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3439 * finish_fault - finish page fault once we have prepared the page to fault
3441 * @vmf: structure describing the fault
3443 * This function handles all that is needed to finish a page fault once the
3444 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3445 * given page, adds reverse page mapping, handles memcg charges and LRU
3446 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3449 * The function expects the page to be locked and on success it consumes a
3450 * reference of a page being mapped (for the PTE which maps it).
3452 int finish_fault(struct vm_fault
*vmf
)
3457 /* Did we COW the page? */
3458 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3459 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3460 page
= vmf
->cow_page
;
3465 * check even for read faults because we might have lost our CoWed
3468 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3469 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3471 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3473 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3477 static unsigned long fault_around_bytes __read_mostly
=
3478 rounddown_pow_of_two(65536);
3480 #ifdef CONFIG_DEBUG_FS
3481 static int fault_around_bytes_get(void *data
, u64
*val
)
3483 *val
= fault_around_bytes
;
3488 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3489 * rounded down to nearest page order. It's what do_fault_around() expects to
3492 static int fault_around_bytes_set(void *data
, u64 val
)
3494 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3496 if (val
> PAGE_SIZE
)
3497 fault_around_bytes
= rounddown_pow_of_two(val
);
3499 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3502 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3503 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3505 static int __init
fault_around_debugfs(void)
3509 ret
= debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3510 &fault_around_bytes_fops
);
3512 pr_warn("Failed to create fault_around_bytes in debugfs");
3515 late_initcall(fault_around_debugfs
);
3519 * do_fault_around() tries to map few pages around the fault address. The hope
3520 * is that the pages will be needed soon and this will lower the number of
3523 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3524 * not ready to be mapped: not up-to-date, locked, etc.
3526 * This function is called with the page table lock taken. In the split ptlock
3527 * case the page table lock only protects only those entries which belong to
3528 * the page table corresponding to the fault address.
3530 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3533 * fault_around_pages() defines how many pages we'll try to map.
3534 * do_fault_around() expects it to return a power of two less than or equal to
3537 * The virtual address of the area that we map is naturally aligned to the
3538 * fault_around_pages() value (and therefore to page order). This way it's
3539 * easier to guarantee that we don't cross page table boundaries.
3541 static int do_fault_around(struct vm_fault
*vmf
)
3543 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3544 pgoff_t start_pgoff
= vmf
->pgoff
;
3548 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3549 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3551 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3552 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3556 * end_pgoff is either end of page table or end of vma
3557 * or fault_around_pages() from start_pgoff, depending what is nearest.
3559 end_pgoff
= start_pgoff
-
3560 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3562 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3563 start_pgoff
+ nr_pages
- 1);
3565 if (pmd_none(*vmf
->pmd
)) {
3566 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3568 if (!vmf
->prealloc_pte
)
3570 smp_wmb(); /* See comment in __pte_alloc() */
3573 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3575 /* Huge page is mapped? Page fault is solved */
3576 if (pmd_trans_huge(*vmf
->pmd
)) {
3577 ret
= VM_FAULT_NOPAGE
;
3581 /* ->map_pages() haven't done anything useful. Cold page cache? */
3585 /* check if the page fault is solved */
3586 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3587 if (!pte_none(*vmf
->pte
))
3588 ret
= VM_FAULT_NOPAGE
;
3589 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3591 vmf
->address
= address
;
3596 static int do_read_fault(struct vm_fault
*vmf
)
3598 struct vm_area_struct
*vma
= vmf
->vma
;
3602 * Let's call ->map_pages() first and use ->fault() as fallback
3603 * if page by the offset is not ready to be mapped (cold cache or
3606 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3607 ret
= do_fault_around(vmf
);
3612 ret
= __do_fault(vmf
);
3613 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3616 ret
|= finish_fault(vmf
);
3617 unlock_page(vmf
->page
);
3618 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3619 put_page(vmf
->page
);
3623 static int do_cow_fault(struct vm_fault
*vmf
)
3625 struct vm_area_struct
*vma
= vmf
->vma
;
3628 if (unlikely(anon_vma_prepare(vma
)))
3629 return VM_FAULT_OOM
;
3631 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3633 return VM_FAULT_OOM
;
3635 if (mem_cgroup_try_charge(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3636 &vmf
->memcg
, false)) {
3637 put_page(vmf
->cow_page
);
3638 return VM_FAULT_OOM
;
3641 ret
= __do_fault(vmf
);
3642 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3644 if (ret
& VM_FAULT_DONE_COW
)
3647 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3648 __SetPageUptodate(vmf
->cow_page
);
3650 ret
|= finish_fault(vmf
);
3651 unlock_page(vmf
->page
);
3652 put_page(vmf
->page
);
3653 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3657 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3658 put_page(vmf
->cow_page
);
3662 static int do_shared_fault(struct vm_fault
*vmf
)
3664 struct vm_area_struct
*vma
= vmf
->vma
;
3667 ret
= __do_fault(vmf
);
3668 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3672 * Check if the backing address space wants to know that the page is
3673 * about to become writable
3675 if (vma
->vm_ops
->page_mkwrite
) {
3676 unlock_page(vmf
->page
);
3677 tmp
= do_page_mkwrite(vmf
);
3678 if (unlikely(!tmp
||
3679 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3680 put_page(vmf
->page
);
3685 ret
|= finish_fault(vmf
);
3686 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3688 unlock_page(vmf
->page
);
3689 put_page(vmf
->page
);
3693 fault_dirty_shared_page(vma
, vmf
->page
);
3698 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3699 * but allow concurrent faults).
3700 * The mmap_sem may have been released depending on flags and our
3701 * return value. See filemap_fault() and __lock_page_or_retry().
3703 static int do_fault(struct vm_fault
*vmf
)
3705 struct vm_area_struct
*vma
= vmf
->vma
;
3708 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3709 if (!vma
->vm_ops
->fault
)
3710 ret
= VM_FAULT_SIGBUS
;
3711 else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3712 ret
= do_read_fault(vmf
);
3713 else if (!(vma
->vm_flags
& VM_SHARED
))
3714 ret
= do_cow_fault(vmf
);
3716 ret
= do_shared_fault(vmf
);
3718 /* preallocated pagetable is unused: free it */
3719 if (vmf
->prealloc_pte
) {
3720 pte_free(vma
->vm_mm
, vmf
->prealloc_pte
);
3721 vmf
->prealloc_pte
= NULL
;
3726 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3727 unsigned long addr
, int page_nid
,
3732 count_vm_numa_event(NUMA_HINT_FAULTS
);
3733 if (page_nid
== numa_node_id()) {
3734 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3735 *flags
|= TNF_FAULT_LOCAL
;
3738 return mpol_misplaced(page
, vma
, addr
);
3741 static int do_numa_page(struct vm_fault
*vmf
)
3743 struct vm_area_struct
*vma
= vmf
->vma
;
3744 struct page
*page
= NULL
;
3748 bool migrated
= false;
3750 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3754 * The "pte" at this point cannot be used safely without
3755 * validation through pte_unmap_same(). It's of NUMA type but
3756 * the pfn may be screwed if the read is non atomic.
3758 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3759 spin_lock(vmf
->ptl
);
3760 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3761 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3766 * Make it present again, Depending on how arch implementes non
3767 * accessible ptes, some can allow access by kernel mode.
3769 pte
= ptep_modify_prot_start(vma
->vm_mm
, vmf
->address
, vmf
->pte
);
3770 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3771 pte
= pte_mkyoung(pte
);
3773 pte
= pte_mkwrite(pte
);
3774 ptep_modify_prot_commit(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3775 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3777 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3779 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3783 /* TODO: handle PTE-mapped THP */
3784 if (PageCompound(page
)) {
3785 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3790 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3791 * much anyway since they can be in shared cache state. This misses
3792 * the case where a mapping is writable but the process never writes
3793 * to it but pte_write gets cleared during protection updates and
3794 * pte_dirty has unpredictable behaviour between PTE scan updates,
3795 * background writeback, dirty balancing and application behaviour.
3797 if (!pte_write(pte
))
3798 flags
|= TNF_NO_GROUP
;
3801 * Flag if the page is shared between multiple address spaces. This
3802 * is later used when determining whether to group tasks together
3804 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3805 flags
|= TNF_SHARED
;
3807 last_cpupid
= page_cpupid_last(page
);
3808 page_nid
= page_to_nid(page
);
3809 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3811 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3812 if (target_nid
== -1) {
3817 /* Migrate to the requested node */
3818 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3820 page_nid
= target_nid
;
3821 flags
|= TNF_MIGRATED
;
3823 flags
|= TNF_MIGRATE_FAIL
;
3827 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3831 static inline int create_huge_pmd(struct vm_fault
*vmf
)
3833 if (vma_is_anonymous(vmf
->vma
))
3834 return do_huge_pmd_anonymous_page(vmf
);
3835 if (vmf
->vma
->vm_ops
->huge_fault
)
3836 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3837 return VM_FAULT_FALLBACK
;
3840 /* `inline' is required to avoid gcc 4.1.2 build error */
3841 static inline int wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3843 if (vma_is_anonymous(vmf
->vma
))
3844 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3845 if (vmf
->vma
->vm_ops
->huge_fault
)
3846 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3848 /* COW handled on pte level: split pmd */
3849 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3850 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3852 return VM_FAULT_FALLBACK
;
3855 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3857 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3860 static int create_huge_pud(struct vm_fault
*vmf
)
3862 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3863 /* No support for anonymous transparent PUD pages yet */
3864 if (vma_is_anonymous(vmf
->vma
))
3865 return VM_FAULT_FALLBACK
;
3866 if (vmf
->vma
->vm_ops
->huge_fault
)
3867 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3869 return VM_FAULT_FALLBACK
;
3872 static int wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3874 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3875 /* No support for anonymous transparent PUD pages yet */
3876 if (vma_is_anonymous(vmf
->vma
))
3877 return VM_FAULT_FALLBACK
;
3878 if (vmf
->vma
->vm_ops
->huge_fault
)
3879 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3880 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3881 return VM_FAULT_FALLBACK
;
3885 * These routines also need to handle stuff like marking pages dirty
3886 * and/or accessed for architectures that don't do it in hardware (most
3887 * RISC architectures). The early dirtying is also good on the i386.
3889 * There is also a hook called "update_mmu_cache()" that architectures
3890 * with external mmu caches can use to update those (ie the Sparc or
3891 * PowerPC hashed page tables that act as extended TLBs).
3893 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3894 * concurrent faults).
3896 * The mmap_sem may have been released depending on flags and our return value.
3897 * See filemap_fault() and __lock_page_or_retry().
3899 static int handle_pte_fault(struct vm_fault
*vmf
)
3903 if (unlikely(pmd_none(*vmf
->pmd
))) {
3905 * Leave __pte_alloc() until later: because vm_ops->fault may
3906 * want to allocate huge page, and if we expose page table
3907 * for an instant, it will be difficult to retract from
3908 * concurrent faults and from rmap lookups.
3912 /* See comment in pte_alloc_one_map() */
3913 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3916 * A regular pmd is established and it can't morph into a huge
3917 * pmd from under us anymore at this point because we hold the
3918 * mmap_sem read mode and khugepaged takes it in write mode.
3919 * So now it's safe to run pte_offset_map().
3921 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3922 vmf
->orig_pte
= *vmf
->pte
;
3925 * some architectures can have larger ptes than wordsize,
3926 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3927 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3928 * accesses. The code below just needs a consistent view
3929 * for the ifs and we later double check anyway with the
3930 * ptl lock held. So here a barrier will do.
3933 if (pte_none(vmf
->orig_pte
)) {
3934 pte_unmap(vmf
->pte
);
3940 if (vma_is_anonymous(vmf
->vma
))
3941 return do_anonymous_page(vmf
);
3943 return do_fault(vmf
);
3946 if (!pte_present(vmf
->orig_pte
))
3947 return do_swap_page(vmf
);
3949 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3950 return do_numa_page(vmf
);
3952 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3953 spin_lock(vmf
->ptl
);
3954 entry
= vmf
->orig_pte
;
3955 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3957 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3958 if (!pte_write(entry
))
3959 return do_wp_page(vmf
);
3960 entry
= pte_mkdirty(entry
);
3962 entry
= pte_mkyoung(entry
);
3963 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
3964 vmf
->flags
& FAULT_FLAG_WRITE
)) {
3965 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
3968 * This is needed only for protection faults but the arch code
3969 * is not yet telling us if this is a protection fault or not.
3970 * This still avoids useless tlb flushes for .text page faults
3973 if (vmf
->flags
& FAULT_FLAG_WRITE
)
3974 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
3977 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3982 * By the time we get here, we already hold the mm semaphore
3984 * The mmap_sem may have been released depending on flags and our
3985 * return value. See filemap_fault() and __lock_page_or_retry().
3987 static int __handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3990 struct vm_fault vmf
= {
3992 .address
= address
& PAGE_MASK
,
3994 .pgoff
= linear_page_index(vma
, address
),
3995 .gfp_mask
= __get_fault_gfp_mask(vma
),
3997 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3998 struct mm_struct
*mm
= vma
->vm_mm
;
4003 pgd
= pgd_offset(mm
, address
);
4004 p4d
= p4d_alloc(mm
, pgd
, address
);
4006 return VM_FAULT_OOM
;
4008 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
4010 return VM_FAULT_OOM
;
4011 if (pud_none(*vmf
.pud
) && transparent_hugepage_enabled(vma
)) {
4012 ret
= create_huge_pud(&vmf
);
4013 if (!(ret
& VM_FAULT_FALLBACK
))
4016 pud_t orig_pud
= *vmf
.pud
;
4019 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
4021 /* NUMA case for anonymous PUDs would go here */
4023 if (dirty
&& !pud_write(orig_pud
)) {
4024 ret
= wp_huge_pud(&vmf
, orig_pud
);
4025 if (!(ret
& VM_FAULT_FALLBACK
))
4028 huge_pud_set_accessed(&vmf
, orig_pud
);
4034 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
4036 return VM_FAULT_OOM
;
4037 if (pmd_none(*vmf
.pmd
) && transparent_hugepage_enabled(vma
)) {
4038 ret
= create_huge_pmd(&vmf
);
4039 if (!(ret
& VM_FAULT_FALLBACK
))
4042 pmd_t orig_pmd
= *vmf
.pmd
;
4045 if (unlikely(is_swap_pmd(orig_pmd
))) {
4046 VM_BUG_ON(thp_migration_supported() &&
4047 !is_pmd_migration_entry(orig_pmd
));
4048 if (is_pmd_migration_entry(orig_pmd
))
4049 pmd_migration_entry_wait(mm
, vmf
.pmd
);
4052 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
4053 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
4054 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
4056 if (dirty
&& !pmd_write(orig_pmd
)) {
4057 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
4058 if (!(ret
& VM_FAULT_FALLBACK
))
4061 huge_pmd_set_accessed(&vmf
, orig_pmd
);
4067 return handle_pte_fault(&vmf
);
4071 * By the time we get here, we already hold the mm semaphore
4073 * The mmap_sem may have been released depending on flags and our
4074 * return value. See filemap_fault() and __lock_page_or_retry().
4076 int handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4081 __set_current_state(TASK_RUNNING
);
4083 count_vm_event(PGFAULT
);
4084 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
4086 /* do counter updates before entering really critical section. */
4087 check_sync_rss_stat(current
);
4089 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
4090 flags
& FAULT_FLAG_INSTRUCTION
,
4091 flags
& FAULT_FLAG_REMOTE
))
4092 return VM_FAULT_SIGSEGV
;
4095 * Enable the memcg OOM handling for faults triggered in user
4096 * space. Kernel faults are handled more gracefully.
4098 if (flags
& FAULT_FLAG_USER
)
4099 mem_cgroup_oom_enable();
4101 if (unlikely(is_vm_hugetlb_page(vma
)))
4102 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4104 ret
= __handle_mm_fault(vma
, address
, flags
);
4106 if (flags
& FAULT_FLAG_USER
) {
4107 mem_cgroup_oom_disable();
4109 * The task may have entered a memcg OOM situation but
4110 * if the allocation error was handled gracefully (no
4111 * VM_FAULT_OOM), there is no need to kill anything.
4112 * Just clean up the OOM state peacefully.
4114 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4115 mem_cgroup_oom_synchronize(false);
4120 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4122 #ifndef __PAGETABLE_P4D_FOLDED
4124 * Allocate p4d page table.
4125 * We've already handled the fast-path in-line.
4127 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4129 p4d_t
*new = p4d_alloc_one(mm
, address
);
4133 smp_wmb(); /* See comment in __pte_alloc */
4135 spin_lock(&mm
->page_table_lock
);
4136 if (pgd_present(*pgd
)) /* Another has populated it */
4139 pgd_populate(mm
, pgd
, new);
4140 spin_unlock(&mm
->page_table_lock
);
4143 #endif /* __PAGETABLE_P4D_FOLDED */
4145 #ifndef __PAGETABLE_PUD_FOLDED
4147 * Allocate page upper directory.
4148 * We've already handled the fast-path in-line.
4150 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4152 pud_t
*new = pud_alloc_one(mm
, address
);
4156 smp_wmb(); /* See comment in __pte_alloc */
4158 spin_lock(&mm
->page_table_lock
);
4159 #ifndef __ARCH_HAS_5LEVEL_HACK
4160 if (!p4d_present(*p4d
)) {
4162 p4d_populate(mm
, p4d
, new);
4163 } else /* Another has populated it */
4166 if (!pgd_present(*p4d
)) {
4168 pgd_populate(mm
, p4d
, new);
4169 } else /* Another has populated it */
4171 #endif /* __ARCH_HAS_5LEVEL_HACK */
4172 spin_unlock(&mm
->page_table_lock
);
4175 #endif /* __PAGETABLE_PUD_FOLDED */
4177 #ifndef __PAGETABLE_PMD_FOLDED
4179 * Allocate page middle directory.
4180 * We've already handled the fast-path in-line.
4182 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4185 pmd_t
*new = pmd_alloc_one(mm
, address
);
4189 smp_wmb(); /* See comment in __pte_alloc */
4191 ptl
= pud_lock(mm
, pud
);
4192 #ifndef __ARCH_HAS_4LEVEL_HACK
4193 if (!pud_present(*pud
)) {
4195 pud_populate(mm
, pud
, new);
4196 } else /* Another has populated it */
4199 if (!pgd_present(*pud
)) {
4201 pgd_populate(mm
, pud
, new);
4202 } else /* Another has populated it */
4204 #endif /* __ARCH_HAS_4LEVEL_HACK */
4208 #endif /* __PAGETABLE_PMD_FOLDED */
4210 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4211 unsigned long *start
, unsigned long *end
,
4212 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4220 pgd
= pgd_offset(mm
, address
);
4221 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4224 p4d
= p4d_offset(pgd
, address
);
4225 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4228 pud
= pud_offset(p4d
, address
);
4229 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4232 pmd
= pmd_offset(pud
, address
);
4233 VM_BUG_ON(pmd_trans_huge(*pmd
));
4235 if (pmd_huge(*pmd
)) {
4240 *start
= address
& PMD_MASK
;
4241 *end
= *start
+ PMD_SIZE
;
4242 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4244 *ptlp
= pmd_lock(mm
, pmd
);
4245 if (pmd_huge(*pmd
)) {
4251 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4254 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4258 *start
= address
& PAGE_MASK
;
4259 *end
= *start
+ PAGE_SIZE
;
4260 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4262 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4263 if (!pte_present(*ptep
))
4268 pte_unmap_unlock(ptep
, *ptlp
);
4270 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4275 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4276 pte_t
**ptepp
, spinlock_t
**ptlp
)
4280 /* (void) is needed to make gcc happy */
4281 (void) __cond_lock(*ptlp
,
4282 !(res
= __follow_pte_pmd(mm
, address
, NULL
, NULL
,
4283 ptepp
, NULL
, ptlp
)));
4287 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4288 unsigned long *start
, unsigned long *end
,
4289 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4293 /* (void) is needed to make gcc happy */
4294 (void) __cond_lock(*ptlp
,
4295 !(res
= __follow_pte_pmd(mm
, address
, start
, end
,
4296 ptepp
, pmdpp
, ptlp
)));
4299 EXPORT_SYMBOL(follow_pte_pmd
);
4302 * follow_pfn - look up PFN at a user virtual address
4303 * @vma: memory mapping
4304 * @address: user virtual address
4305 * @pfn: location to store found PFN
4307 * Only IO mappings and raw PFN mappings are allowed.
4309 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4311 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4318 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4321 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4324 *pfn
= pte_pfn(*ptep
);
4325 pte_unmap_unlock(ptep
, ptl
);
4328 EXPORT_SYMBOL(follow_pfn
);
4330 #ifdef CONFIG_HAVE_IOREMAP_PROT
4331 int follow_phys(struct vm_area_struct
*vma
,
4332 unsigned long address
, unsigned int flags
,
4333 unsigned long *prot
, resource_size_t
*phys
)
4339 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4342 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4346 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4349 *prot
= pgprot_val(pte_pgprot(pte
));
4350 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4354 pte_unmap_unlock(ptep
, ptl
);
4359 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4360 void *buf
, int len
, int write
)
4362 resource_size_t phys_addr
;
4363 unsigned long prot
= 0;
4364 void __iomem
*maddr
;
4365 int offset
= addr
& (PAGE_SIZE
-1);
4367 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4370 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4372 memcpy_toio(maddr
+ offset
, buf
, len
);
4374 memcpy_fromio(buf
, maddr
+ offset
, len
);
4379 EXPORT_SYMBOL_GPL(generic_access_phys
);
4383 * Access another process' address space as given in mm. If non-NULL, use the
4384 * given task for page fault accounting.
4386 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4387 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4389 struct vm_area_struct
*vma
;
4390 void *old_buf
= buf
;
4391 int write
= gup_flags
& FOLL_WRITE
;
4393 down_read(&mm
->mmap_sem
);
4394 /* ignore errors, just check how much was successfully transferred */
4396 int bytes
, ret
, offset
;
4398 struct page
*page
= NULL
;
4400 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4401 gup_flags
, &page
, &vma
, NULL
);
4403 #ifndef CONFIG_HAVE_IOREMAP_PROT
4407 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4408 * we can access using slightly different code.
4410 vma
= find_vma(mm
, addr
);
4411 if (!vma
|| vma
->vm_start
> addr
)
4413 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4414 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4422 offset
= addr
& (PAGE_SIZE
-1);
4423 if (bytes
> PAGE_SIZE
-offset
)
4424 bytes
= PAGE_SIZE
-offset
;
4428 copy_to_user_page(vma
, page
, addr
,
4429 maddr
+ offset
, buf
, bytes
);
4430 set_page_dirty_lock(page
);
4432 copy_from_user_page(vma
, page
, addr
,
4433 buf
, maddr
+ offset
, bytes
);
4442 up_read(&mm
->mmap_sem
);
4444 return buf
- old_buf
;
4448 * access_remote_vm - access another process' address space
4449 * @mm: the mm_struct of the target address space
4450 * @addr: start address to access
4451 * @buf: source or destination buffer
4452 * @len: number of bytes to transfer
4453 * @gup_flags: flags modifying lookup behaviour
4455 * The caller must hold a reference on @mm.
4457 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4458 void *buf
, int len
, unsigned int gup_flags
)
4460 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4464 * Access another process' address space.
4465 * Source/target buffer must be kernel space,
4466 * Do not walk the page table directly, use get_user_pages
4468 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4469 void *buf
, int len
, unsigned int gup_flags
)
4471 struct mm_struct
*mm
;
4474 mm
= get_task_mm(tsk
);
4478 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4484 EXPORT_SYMBOL_GPL(access_process_vm
);
4487 * Print the name of a VMA.
4489 void print_vma_addr(char *prefix
, unsigned long ip
)
4491 struct mm_struct
*mm
= current
->mm
;
4492 struct vm_area_struct
*vma
;
4495 * we might be running from an atomic context so we cannot sleep
4497 if (!down_read_trylock(&mm
->mmap_sem
))
4500 vma
= find_vma(mm
, ip
);
4501 if (vma
&& vma
->vm_file
) {
4502 struct file
*f
= vma
->vm_file
;
4503 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4507 p
= file_path(f
, buf
, PAGE_SIZE
);
4510 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4512 vma
->vm_end
- vma
->vm_start
);
4513 free_page((unsigned long)buf
);
4516 up_read(&mm
->mmap_sem
);
4519 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4520 void __might_fault(const char *file
, int line
)
4523 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4524 * holding the mmap_sem, this is safe because kernel memory doesn't
4525 * get paged out, therefore we'll never actually fault, and the
4526 * below annotations will generate false positives.
4528 if (uaccess_kernel())
4530 if (pagefault_disabled())
4532 __might_sleep(file
, line
, 0);
4533 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4535 might_lock_read(¤t
->mm
->mmap_sem
);
4538 EXPORT_SYMBOL(__might_fault
);
4541 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4542 static void clear_gigantic_page(struct page
*page
,
4544 unsigned int pages_per_huge_page
)
4547 struct page
*p
= page
;
4550 for (i
= 0; i
< pages_per_huge_page
;
4551 i
++, p
= mem_map_next(p
, page
, i
)) {
4553 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4556 void clear_huge_page(struct page
*page
,
4557 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4560 unsigned long addr
= addr_hint
&
4561 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4563 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4564 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4568 /* Clear sub-page to access last to keep its cache lines hot */
4570 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4571 if (2 * n
<= pages_per_huge_page
) {
4572 /* If sub-page to access in first half of huge page */
4575 /* Clear sub-pages at the end of huge page */
4576 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4578 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4581 /* If sub-page to access in second half of huge page */
4582 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4583 l
= pages_per_huge_page
- n
;
4584 /* Clear sub-pages at the begin of huge page */
4585 for (i
= 0; i
< base
; i
++) {
4587 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4591 * Clear remaining sub-pages in left-right-left-right pattern
4592 * towards the sub-page to access
4594 for (i
= 0; i
< l
; i
++) {
4595 int left_idx
= base
+ i
;
4596 int right_idx
= base
+ 2 * l
- 1 - i
;
4599 clear_user_highpage(page
+ left_idx
,
4600 addr
+ left_idx
* PAGE_SIZE
);
4602 clear_user_highpage(page
+ right_idx
,
4603 addr
+ right_idx
* PAGE_SIZE
);
4607 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4609 struct vm_area_struct
*vma
,
4610 unsigned int pages_per_huge_page
)
4613 struct page
*dst_base
= dst
;
4614 struct page
*src_base
= src
;
4616 for (i
= 0; i
< pages_per_huge_page
; ) {
4618 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4621 dst
= mem_map_next(dst
, dst_base
, i
);
4622 src
= mem_map_next(src
, src_base
, i
);
4626 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4627 unsigned long addr
, struct vm_area_struct
*vma
,
4628 unsigned int pages_per_huge_page
)
4632 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4633 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4634 pages_per_huge_page
);
4639 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4641 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4645 long copy_huge_page_from_user(struct page
*dst_page
,
4646 const void __user
*usr_src
,
4647 unsigned int pages_per_huge_page
,
4648 bool allow_pagefault
)
4650 void *src
= (void *)usr_src
;
4652 unsigned long i
, rc
= 0;
4653 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4655 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4656 if (allow_pagefault
)
4657 page_kaddr
= kmap(dst_page
+ i
);
4659 page_kaddr
= kmap_atomic(dst_page
+ i
);
4660 rc
= copy_from_user(page_kaddr
,
4661 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4663 if (allow_pagefault
)
4664 kunmap(dst_page
+ i
);
4666 kunmap_atomic(page_kaddr
);
4668 ret_val
-= (PAGE_SIZE
- rc
);
4676 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4678 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4680 static struct kmem_cache
*page_ptl_cachep
;
4682 void __init
ptlock_cache_init(void)
4684 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4688 bool ptlock_alloc(struct page
*page
)
4692 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4699 void ptlock_free(struct page
*page
)
4701 kmem_cache_free(page_ptl_cachep
, page
->ptl
);