ath9k_hw: clean up defines and variables from the ANI implementation split
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath6kl / sdio.c
blob05b95405f7b56131b4cbf49a66d165a8f661861e
1 /*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/module.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/mmc/host.h>
22 #include <linux/mmc/sdio_func.h>
23 #include <linux/mmc/sdio_ids.h>
24 #include <linux/mmc/sdio.h>
25 #include <linux/mmc/sd.h>
26 #include "hif.h"
27 #include "hif-ops.h"
28 #include "target.h"
29 #include "debug.h"
30 #include "cfg80211.h"
32 struct ath6kl_sdio {
33 struct sdio_func *func;
35 /* protects access to bus_req_freeq */
36 spinlock_t lock;
38 /* free list */
39 struct list_head bus_req_freeq;
41 /* available bus requests */
42 struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
44 struct ath6kl *ar;
46 u8 *dma_buffer;
48 /* protects access to dma_buffer */
49 struct mutex dma_buffer_mutex;
51 /* scatter request list head */
52 struct list_head scat_req;
54 atomic_t irq_handling;
55 wait_queue_head_t irq_wq;
57 /* protects access to scat_req */
58 spinlock_t scat_lock;
60 bool scatter_enabled;
62 bool is_disabled;
63 const struct sdio_device_id *id;
64 struct work_struct wr_async_work;
65 struct list_head wr_asyncq;
67 /* protects access to wr_asyncq */
68 spinlock_t wr_async_lock;
71 #define CMD53_ARG_READ 0
72 #define CMD53_ARG_WRITE 1
73 #define CMD53_ARG_BLOCK_BASIS 1
74 #define CMD53_ARG_FIXED_ADDRESS 0
75 #define CMD53_ARG_INCR_ADDRESS 1
77 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
79 return ar->hif_priv;
83 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
84 * Most host controllers assume the buffer is DMA'able and will
85 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
86 * check fails on stack memory.
88 static inline bool buf_needs_bounce(u8 *buf)
90 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
93 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
95 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
97 /* EP1 has an extended range */
98 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
99 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
100 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
101 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
102 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
103 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
106 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
107 u8 mode, u8 opcode, u32 addr,
108 u16 blksz)
110 *arg = (((rw & 1) << 31) |
111 ((func & 0x7) << 28) |
112 ((mode & 1) << 27) |
113 ((opcode & 1) << 26) |
114 ((addr & 0x1FFFF) << 9) |
115 (blksz & 0x1FF));
118 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
119 unsigned int address,
120 unsigned char val)
122 const u8 func = 0;
124 *arg = ((write & 1) << 31) |
125 ((func & 0x7) << 28) |
126 ((raw & 1) << 27) |
127 (1 << 26) |
128 ((address & 0x1FFFF) << 9) |
129 (1 << 8) |
130 (val & 0xFF);
133 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
134 unsigned int address,
135 unsigned char byte)
137 struct mmc_command io_cmd;
139 memset(&io_cmd, 0, sizeof(io_cmd));
140 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
141 io_cmd.opcode = SD_IO_RW_DIRECT;
142 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
144 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
147 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
148 u8 *buf, u32 len)
150 int ret = 0;
152 sdio_claim_host(func);
154 if (request & HIF_WRITE) {
155 /* FIXME: looks like ugly workaround for something */
156 if (addr >= HIF_MBOX_BASE_ADDR &&
157 addr <= HIF_MBOX_END_ADDR)
158 addr += (HIF_MBOX_WIDTH - len);
160 /* FIXME: this also looks like ugly workaround */
161 if (addr == HIF_MBOX0_EXT_BASE_ADDR)
162 addr += HIF_MBOX0_EXT_WIDTH - len;
164 if (request & HIF_FIXED_ADDRESS)
165 ret = sdio_writesb(func, addr, buf, len);
166 else
167 ret = sdio_memcpy_toio(func, addr, buf, len);
168 } else {
169 if (request & HIF_FIXED_ADDRESS)
170 ret = sdio_readsb(func, buf, addr, len);
171 else
172 ret = sdio_memcpy_fromio(func, buf, addr, len);
175 sdio_release_host(func);
177 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
178 request & HIF_WRITE ? "wr" : "rd", addr,
179 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
180 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
182 return ret;
185 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
187 struct bus_request *bus_req;
189 spin_lock_bh(&ar_sdio->lock);
191 if (list_empty(&ar_sdio->bus_req_freeq)) {
192 spin_unlock_bh(&ar_sdio->lock);
193 return NULL;
196 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
197 struct bus_request, list);
198 list_del(&bus_req->list);
200 spin_unlock_bh(&ar_sdio->lock);
201 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
202 __func__, bus_req);
204 return bus_req;
207 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
208 struct bus_request *bus_req)
210 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
211 __func__, bus_req);
213 spin_lock_bh(&ar_sdio->lock);
214 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
215 spin_unlock_bh(&ar_sdio->lock);
218 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
219 struct mmc_data *data)
221 struct scatterlist *sg;
222 int i;
224 data->blksz = HIF_MBOX_BLOCK_SIZE;
225 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
227 ath6kl_dbg(ATH6KL_DBG_SCATTER,
228 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
229 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
230 data->blksz, data->blocks, scat_req->len,
231 scat_req->scat_entries);
233 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
234 MMC_DATA_READ;
236 /* fill SG entries */
237 sg = scat_req->sgentries;
238 sg_init_table(sg, scat_req->scat_entries);
240 /* assemble SG list */
241 for (i = 0; i < scat_req->scat_entries; i++, sg++) {
242 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
243 i, scat_req->scat_list[i].buf,
244 scat_req->scat_list[i].len);
246 sg_set_buf(sg, scat_req->scat_list[i].buf,
247 scat_req->scat_list[i].len);
250 /* set scatter-gather table for request */
251 data->sg = scat_req->sgentries;
252 data->sg_len = scat_req->scat_entries;
255 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
256 struct bus_request *req)
258 struct mmc_request mmc_req;
259 struct mmc_command cmd;
260 struct mmc_data data;
261 struct hif_scatter_req *scat_req;
262 u8 opcode, rw;
263 int status, len;
265 scat_req = req->scat_req;
267 if (scat_req->virt_scat) {
268 len = scat_req->len;
269 if (scat_req->req & HIF_BLOCK_BASIS)
270 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
272 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
273 scat_req->addr, scat_req->virt_dma_buf,
274 len);
275 goto scat_complete;
278 memset(&mmc_req, 0, sizeof(struct mmc_request));
279 memset(&cmd, 0, sizeof(struct mmc_command));
280 memset(&data, 0, sizeof(struct mmc_data));
282 ath6kl_sdio_setup_scat_data(scat_req, &data);
284 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
285 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
287 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
289 /* Fixup the address so that the last byte will fall on MBOX EOM */
290 if (scat_req->req & HIF_WRITE) {
291 if (scat_req->addr == HIF_MBOX_BASE_ADDR)
292 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
293 else
294 /* Uses extended address range */
295 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
298 /* set command argument */
299 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
300 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
301 data.blocks);
303 cmd.opcode = SD_IO_RW_EXTENDED;
304 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
306 mmc_req.cmd = &cmd;
307 mmc_req.data = &data;
309 sdio_claim_host(ar_sdio->func);
311 mmc_set_data_timeout(&data, ar_sdio->func->card);
312 /* synchronous call to process request */
313 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
315 sdio_release_host(ar_sdio->func);
317 status = cmd.error ? cmd.error : data.error;
319 scat_complete:
320 scat_req->status = status;
322 if (scat_req->status)
323 ath6kl_err("Scatter write request failed:%d\n",
324 scat_req->status);
326 if (scat_req->req & HIF_ASYNCHRONOUS)
327 scat_req->complete(ar_sdio->ar->htc_target, scat_req);
329 return status;
332 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
333 int n_scat_entry, int n_scat_req,
334 bool virt_scat)
336 struct hif_scatter_req *s_req;
337 struct bus_request *bus_req;
338 int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz;
339 u8 *virt_buf;
341 scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
342 scat_req_sz = sizeof(*s_req) + scat_list_sz;
344 if (!virt_scat)
345 sg_sz = sizeof(struct scatterlist) * n_scat_entry;
346 else
347 buf_sz = 2 * L1_CACHE_BYTES +
348 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
350 for (i = 0; i < n_scat_req; i++) {
351 /* allocate the scatter request */
352 s_req = kzalloc(scat_req_sz, GFP_KERNEL);
353 if (!s_req)
354 return -ENOMEM;
356 if (virt_scat) {
357 virt_buf = kzalloc(buf_sz, GFP_KERNEL);
358 if (!virt_buf) {
359 kfree(s_req);
360 return -ENOMEM;
363 s_req->virt_dma_buf =
364 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
365 } else {
366 /* allocate sglist */
367 s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
369 if (!s_req->sgentries) {
370 kfree(s_req);
371 return -ENOMEM;
375 /* allocate a bus request for this scatter request */
376 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
377 if (!bus_req) {
378 kfree(s_req->sgentries);
379 kfree(s_req->virt_dma_buf);
380 kfree(s_req);
381 return -ENOMEM;
384 /* assign the scatter request to this bus request */
385 bus_req->scat_req = s_req;
386 s_req->busrequest = bus_req;
388 s_req->virt_scat = virt_scat;
390 /* add it to the scatter pool */
391 hif_scatter_req_add(ar_sdio->ar, s_req);
394 return 0;
397 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
398 u32 len, u32 request)
400 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
401 u8 *tbuf = NULL;
402 int ret;
403 bool bounced = false;
405 if (request & HIF_BLOCK_BASIS)
406 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
408 if (buf_needs_bounce(buf)) {
409 if (!ar_sdio->dma_buffer)
410 return -ENOMEM;
411 mutex_lock(&ar_sdio->dma_buffer_mutex);
412 tbuf = ar_sdio->dma_buffer;
414 if (request & HIF_WRITE)
415 memcpy(tbuf, buf, len);
417 bounced = true;
418 } else
419 tbuf = buf;
421 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
422 if ((request & HIF_READ) && bounced)
423 memcpy(buf, tbuf, len);
425 if (bounced)
426 mutex_unlock(&ar_sdio->dma_buffer_mutex);
428 return ret;
431 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
432 struct bus_request *req)
434 if (req->scat_req)
435 ath6kl_sdio_scat_rw(ar_sdio, req);
436 else {
437 void *context;
438 int status;
440 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
441 req->buffer, req->length,
442 req->request);
443 context = req->packet;
444 ath6kl_sdio_free_bus_req(ar_sdio, req);
445 ath6kl_hif_rw_comp_handler(context, status);
449 static void ath6kl_sdio_write_async_work(struct work_struct *work)
451 struct ath6kl_sdio *ar_sdio;
452 struct bus_request *req, *tmp_req;
454 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
456 spin_lock_bh(&ar_sdio->wr_async_lock);
457 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
458 list_del(&req->list);
459 spin_unlock_bh(&ar_sdio->wr_async_lock);
460 __ath6kl_sdio_write_async(ar_sdio, req);
461 spin_lock_bh(&ar_sdio->wr_async_lock);
463 spin_unlock_bh(&ar_sdio->wr_async_lock);
466 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
468 int status;
469 struct ath6kl_sdio *ar_sdio;
471 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
473 ar_sdio = sdio_get_drvdata(func);
474 atomic_set(&ar_sdio->irq_handling, 1);
476 * Release the host during interrups so we can pick it back up when
477 * we process commands.
479 sdio_release_host(ar_sdio->func);
481 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
482 sdio_claim_host(ar_sdio->func);
484 atomic_set(&ar_sdio->irq_handling, 0);
485 wake_up(&ar_sdio->irq_wq);
487 WARN_ON(status && status != -ECANCELED);
490 static int ath6kl_sdio_power_on(struct ath6kl *ar)
492 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
493 struct sdio_func *func = ar_sdio->func;
494 int ret = 0;
496 if (!ar_sdio->is_disabled)
497 return 0;
499 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
501 sdio_claim_host(func);
503 ret = sdio_enable_func(func);
504 if (ret) {
505 ath6kl_err("Unable to enable sdio func: %d)\n", ret);
506 sdio_release_host(func);
507 return ret;
510 sdio_release_host(func);
513 * Wait for hardware to initialise. It should take a lot less than
514 * 10 ms but let's be conservative here.
516 msleep(10);
518 ar_sdio->is_disabled = false;
520 return ret;
523 static int ath6kl_sdio_power_off(struct ath6kl *ar)
525 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
526 int ret;
528 if (ar_sdio->is_disabled)
529 return 0;
531 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
533 /* Disable the card */
534 sdio_claim_host(ar_sdio->func);
535 ret = sdio_disable_func(ar_sdio->func);
536 sdio_release_host(ar_sdio->func);
538 if (ret)
539 return ret;
541 ar_sdio->is_disabled = true;
543 return ret;
546 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
547 u32 length, u32 request,
548 struct htc_packet *packet)
550 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
551 struct bus_request *bus_req;
553 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
555 if (WARN_ON_ONCE(!bus_req))
556 return -ENOMEM;
558 bus_req->address = address;
559 bus_req->buffer = buffer;
560 bus_req->length = length;
561 bus_req->request = request;
562 bus_req->packet = packet;
564 spin_lock_bh(&ar_sdio->wr_async_lock);
565 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
566 spin_unlock_bh(&ar_sdio->wr_async_lock);
567 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
569 return 0;
572 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
574 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
575 int ret;
577 sdio_claim_host(ar_sdio->func);
579 /* Register the isr */
580 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
581 if (ret)
582 ath6kl_err("Failed to claim sdio irq: %d\n", ret);
584 sdio_release_host(ar_sdio->func);
587 static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
589 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
591 return !atomic_read(&ar_sdio->irq_handling);
594 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
596 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
597 int ret;
599 sdio_claim_host(ar_sdio->func);
601 if (atomic_read(&ar_sdio->irq_handling)) {
602 sdio_release_host(ar_sdio->func);
604 ret = wait_event_interruptible(ar_sdio->irq_wq,
605 ath6kl_sdio_is_on_irq(ar));
606 if (ret)
607 return;
609 sdio_claim_host(ar_sdio->func);
612 ret = sdio_release_irq(ar_sdio->func);
613 if (ret)
614 ath6kl_err("Failed to release sdio irq: %d\n", ret);
616 sdio_release_host(ar_sdio->func);
619 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
621 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
622 struct hif_scatter_req *node = NULL;
624 spin_lock_bh(&ar_sdio->scat_lock);
626 if (!list_empty(&ar_sdio->scat_req)) {
627 node = list_first_entry(&ar_sdio->scat_req,
628 struct hif_scatter_req, list);
629 list_del(&node->list);
631 node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
634 spin_unlock_bh(&ar_sdio->scat_lock);
636 return node;
639 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
640 struct hif_scatter_req *s_req)
642 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
644 spin_lock_bh(&ar_sdio->scat_lock);
646 list_add_tail(&s_req->list, &ar_sdio->scat_req);
648 spin_unlock_bh(&ar_sdio->scat_lock);
652 /* scatter gather read write request */
653 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
654 struct hif_scatter_req *scat_req)
656 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
657 u32 request = scat_req->req;
658 int status = 0;
660 if (!scat_req->len)
661 return -EINVAL;
663 ath6kl_dbg(ATH6KL_DBG_SCATTER,
664 "hif-scatter: total len: %d scatter entries: %d\n",
665 scat_req->len, scat_req->scat_entries);
667 if (request & HIF_SYNCHRONOUS)
668 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
669 else {
670 spin_lock_bh(&ar_sdio->wr_async_lock);
671 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
672 spin_unlock_bh(&ar_sdio->wr_async_lock);
673 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
676 return status;
679 /* clean up scatter support */
680 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
682 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
683 struct hif_scatter_req *s_req, *tmp_req;
685 /* empty the free list */
686 spin_lock_bh(&ar_sdio->scat_lock);
687 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
688 list_del(&s_req->list);
689 spin_unlock_bh(&ar_sdio->scat_lock);
692 * FIXME: should we also call completion handler with
693 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
694 * that the packet is properly freed?
696 if (s_req->busrequest)
697 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
698 kfree(s_req->virt_dma_buf);
699 kfree(s_req->sgentries);
700 kfree(s_req);
702 spin_lock_bh(&ar_sdio->scat_lock);
704 spin_unlock_bh(&ar_sdio->scat_lock);
707 /* setup of HIF scatter resources */
708 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
710 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
711 struct htc_target *target = ar->htc_target;
712 int ret;
713 bool virt_scat = false;
715 if (ar_sdio->scatter_enabled)
716 return 0;
718 ar_sdio->scatter_enabled = true;
720 /* check if host supports scatter and it meets our requirements */
721 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
722 ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
723 ar_sdio->func->card->host->max_segs,
724 MAX_SCATTER_ENTRIES_PER_REQ);
725 virt_scat = true;
728 if (!virt_scat) {
729 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
730 MAX_SCATTER_ENTRIES_PER_REQ,
731 MAX_SCATTER_REQUESTS, virt_scat);
733 if (!ret) {
734 ath6kl_dbg(ATH6KL_DBG_BOOT,
735 "hif-scatter enabled requests %d entries %d\n",
736 MAX_SCATTER_REQUESTS,
737 MAX_SCATTER_ENTRIES_PER_REQ);
739 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
740 target->max_xfer_szper_scatreq =
741 MAX_SCATTER_REQ_TRANSFER_SIZE;
742 } else {
743 ath6kl_sdio_cleanup_scatter(ar);
744 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
748 if (virt_scat || ret) {
749 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
750 ATH6KL_SCATTER_ENTRIES_PER_REQ,
751 ATH6KL_SCATTER_REQS, virt_scat);
753 if (ret) {
754 ath6kl_err("failed to alloc virtual scatter resources !\n");
755 ath6kl_sdio_cleanup_scatter(ar);
756 return ret;
759 ath6kl_dbg(ATH6KL_DBG_BOOT,
760 "virtual scatter enabled requests %d entries %d\n",
761 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
763 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
764 target->max_xfer_szper_scatreq =
765 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
768 return 0;
771 static int ath6kl_sdio_config(struct ath6kl *ar)
773 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
774 struct sdio_func *func = ar_sdio->func;
775 int ret;
777 sdio_claim_host(func);
779 if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
780 MANUFACTURER_ID_AR6003_BASE) {
781 /* enable 4-bit ASYNC interrupt on AR6003 or later */
782 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
783 CCCR_SDIO_IRQ_MODE_REG,
784 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
785 if (ret) {
786 ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
787 ret);
788 goto out;
791 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
794 /* give us some time to enable, in ms */
795 func->enable_timeout = 100;
797 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
798 if (ret) {
799 ath6kl_err("Set sdio block size %d failed: %d)\n",
800 HIF_MBOX_BLOCK_SIZE, ret);
801 goto out;
804 out:
805 sdio_release_host(func);
807 return ret;
810 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
812 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
813 struct sdio_func *func = ar_sdio->func;
814 mmc_pm_flag_t flags;
815 int ret;
817 flags = sdio_get_host_pm_caps(func);
819 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
821 if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
822 !(flags & MMC_PM_KEEP_POWER))
823 return -EINVAL;
825 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
826 if (ret) {
827 ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
828 return ret;
831 /* sdio irq wakes up host */
832 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
833 if (ret)
834 ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
836 return ret;
839 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
841 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
842 struct sdio_func *func = ar_sdio->func;
843 mmc_pm_flag_t flags;
844 bool try_deepsleep = false;
845 int ret;
847 if (ar->state == ATH6KL_STATE_SCHED_SCAN) {
848 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sched scan is in progress\n");
850 ret = ath6kl_set_sdio_pm_caps(ar);
851 if (ret)
852 goto cut_pwr;
854 ret = ath6kl_cfg80211_suspend(ar,
855 ATH6KL_CFG_SUSPEND_SCHED_SCAN,
856 NULL);
857 if (ret)
858 goto cut_pwr;
860 return 0;
863 if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
864 (!ar->suspend_mode && wow)) {
866 ret = ath6kl_set_sdio_pm_caps(ar);
867 if (ret)
868 goto cut_pwr;
870 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
871 if (ret && ret != -ENOTCONN)
872 ath6kl_err("wow suspend failed: %d\n", ret);
874 if (ret &&
875 (!ar->wow_suspend_mode ||
876 ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
877 try_deepsleep = true;
878 else if (ret &&
879 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
880 goto cut_pwr;
881 if (!ret)
882 return 0;
885 if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
886 !ar->suspend_mode || try_deepsleep) {
888 flags = sdio_get_host_pm_caps(func);
889 if (!(flags & MMC_PM_KEEP_POWER))
890 goto cut_pwr;
892 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
893 if (ret)
894 goto cut_pwr;
897 * Workaround to support Deep Sleep with MSM, set the host pm
898 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
899 * the sdc2_clock and internally allows MSM to enter
900 * TCXO shutdown properly.
902 if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
903 ret = sdio_set_host_pm_flags(func,
904 MMC_PM_WAKE_SDIO_IRQ);
905 if (ret)
906 goto cut_pwr;
909 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
910 NULL);
911 if (ret)
912 goto cut_pwr;
914 return 0;
917 cut_pwr:
918 if (func->card && func->card->host)
919 func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
921 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
924 static int ath6kl_sdio_resume(struct ath6kl *ar)
926 switch (ar->state) {
927 case ATH6KL_STATE_OFF:
928 case ATH6KL_STATE_CUTPOWER:
929 ath6kl_dbg(ATH6KL_DBG_SUSPEND,
930 "sdio resume configuring sdio\n");
932 /* need to set sdio settings after power is cut from sdio */
933 ath6kl_sdio_config(ar);
934 break;
936 case ATH6KL_STATE_ON:
937 break;
939 case ATH6KL_STATE_DEEPSLEEP:
940 break;
942 case ATH6KL_STATE_WOW:
943 break;
945 case ATH6KL_STATE_SCHED_SCAN:
946 break;
948 case ATH6KL_STATE_SUSPENDING:
949 break;
951 case ATH6KL_STATE_RESUMING:
952 break;
955 ath6kl_cfg80211_resume(ar);
957 return 0;
960 /* set the window address register (using 4-byte register access ). */
961 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
963 int status;
964 u8 addr_val[4];
965 s32 i;
968 * Write bytes 1,2,3 of the register to set the upper address bytes,
969 * the LSB is written last to initiate the access cycle
972 for (i = 1; i <= 3; i++) {
974 * Fill the buffer with the address byte value we want to
975 * hit 4 times.
977 memset(addr_val, ((u8 *)&addr)[i], 4);
980 * Hit each byte of the register address with a 4-byte
981 * write operation to the same address, this is a harmless
982 * operation.
984 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
985 4, HIF_WR_SYNC_BYTE_FIX);
986 if (status)
987 break;
990 if (status) {
991 ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
992 __func__, addr, reg_addr);
993 return status;
997 * Write the address register again, this time write the whole
998 * 4-byte value. The effect here is that the LSB write causes the
999 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
1000 * effect since we are writing the same values again
1002 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
1003 4, HIF_WR_SYNC_BYTE_INC);
1005 if (status) {
1006 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1007 __func__, addr, reg_addr);
1008 return status;
1011 return 0;
1014 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1016 int status;
1018 /* set window register to start read cycle */
1019 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1020 address);
1022 if (status)
1023 return status;
1025 /* read the data */
1026 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1027 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1028 if (status) {
1029 ath6kl_err("%s: failed to read from window data addr\n",
1030 __func__);
1031 return status;
1034 return status;
1037 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1038 __le32 data)
1040 int status;
1041 u32 val = (__force u32) data;
1043 /* set write data */
1044 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1045 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1046 if (status) {
1047 ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1048 __func__, data);
1049 return status;
1052 /* set window register, which starts the write cycle */
1053 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1054 address);
1057 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1059 u32 addr;
1060 unsigned long timeout;
1061 int ret;
1063 ar->bmi.cmd_credits = 0;
1065 /* Read the counter register to get the command credits */
1066 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1068 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1069 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1072 * Hit the credit counter with a 4-byte access, the first byte
1073 * read will hit the counter and cause a decrement, while the
1074 * remaining 3 bytes has no effect. The rationale behind this
1075 * is to make all HIF accesses 4-byte aligned.
1077 ret = ath6kl_sdio_read_write_sync(ar, addr,
1078 (u8 *)&ar->bmi.cmd_credits, 4,
1079 HIF_RD_SYNC_BYTE_INC);
1080 if (ret) {
1081 ath6kl_err("Unable to decrement the command credit count register: %d\n",
1082 ret);
1083 return ret;
1086 /* The counter is only 8 bits.
1087 * Ignore anything in the upper 3 bytes
1089 ar->bmi.cmd_credits &= 0xFF;
1092 if (!ar->bmi.cmd_credits) {
1093 ath6kl_err("bmi communication timeout\n");
1094 return -ETIMEDOUT;
1097 return 0;
1100 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1102 unsigned long timeout;
1103 u32 rx_word = 0;
1104 int ret = 0;
1106 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1107 while ((time_before(jiffies, timeout)) && !rx_word) {
1108 ret = ath6kl_sdio_read_write_sync(ar,
1109 RX_LOOKAHEAD_VALID_ADDRESS,
1110 (u8 *)&rx_word, sizeof(rx_word),
1111 HIF_RD_SYNC_BYTE_INC);
1112 if (ret) {
1113 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1114 return ret;
1117 /* all we really want is one bit */
1118 rx_word &= (1 << ENDPOINT1);
1121 if (!rx_word) {
1122 ath6kl_err("bmi_recv_buf FIFO empty\n");
1123 return -EINVAL;
1126 return ret;
1129 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1131 int ret;
1132 u32 addr;
1134 ret = ath6kl_sdio_bmi_credits(ar);
1135 if (ret)
1136 return ret;
1138 addr = ar->mbox_info.htc_addr;
1140 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1141 HIF_WR_SYNC_BYTE_INC);
1142 if (ret)
1143 ath6kl_err("unable to send the bmi data to the device\n");
1145 return ret;
1148 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1150 int ret;
1151 u32 addr;
1154 * During normal bootup, small reads may be required.
1155 * Rather than issue an HIF Read and then wait as the Target
1156 * adds successive bytes to the FIFO, we wait here until
1157 * we know that response data is available.
1159 * This allows us to cleanly timeout on an unexpected
1160 * Target failure rather than risk problems at the HIF level.
1161 * In particular, this avoids SDIO timeouts and possibly garbage
1162 * data on some host controllers. And on an interconnect
1163 * such as Compact Flash (as well as some SDIO masters) which
1164 * does not provide any indication on data timeout, it avoids
1165 * a potential hang or garbage response.
1167 * Synchronization is more difficult for reads larger than the
1168 * size of the MBOX FIFO (128B), because the Target is unable
1169 * to push the 129th byte of data until AFTER the Host posts an
1170 * HIF Read and removes some FIFO data. So for large reads the
1171 * Host proceeds to post an HIF Read BEFORE all the data is
1172 * actually available to read. Fortunately, large BMI reads do
1173 * not occur in practice -- they're supported for debug/development.
1175 * So Host/Target BMI synchronization is divided into these cases:
1176 * CASE 1: length < 4
1177 * Should not happen
1179 * CASE 2: 4 <= length <= 128
1180 * Wait for first 4 bytes to be in FIFO
1181 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1182 * a BMI command credit, which indicates that the ENTIRE
1183 * response is available in the the FIFO
1185 * CASE 3: length > 128
1186 * Wait for the first 4 bytes to be in FIFO
1188 * For most uses, a small timeout should be sufficient and we will
1189 * usually see a response quickly; but there may be some unusual
1190 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1191 * For now, we use an unbounded busy loop while waiting for
1192 * BMI_EXECUTE.
1194 * If BMI_EXECUTE ever needs to support longer-latency execution,
1195 * especially in production, this code needs to be enhanced to sleep
1196 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1197 * a function of Host processor speed.
1199 if (len >= 4) { /* NB: Currently, always true */
1200 ret = ath6kl_bmi_get_rx_lkahd(ar);
1201 if (ret)
1202 return ret;
1205 addr = ar->mbox_info.htc_addr;
1206 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1207 HIF_RD_SYNC_BYTE_INC);
1208 if (ret) {
1209 ath6kl_err("Unable to read the bmi data from the device: %d\n",
1210 ret);
1211 return ret;
1214 return 0;
1217 static void ath6kl_sdio_stop(struct ath6kl *ar)
1219 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1220 struct bus_request *req, *tmp_req;
1221 void *context;
1223 /* FIXME: make sure that wq is not queued again */
1225 cancel_work_sync(&ar_sdio->wr_async_work);
1227 spin_lock_bh(&ar_sdio->wr_async_lock);
1229 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1230 list_del(&req->list);
1232 if (req->scat_req) {
1233 /* this is a scatter gather request */
1234 req->scat_req->status = -ECANCELED;
1235 req->scat_req->complete(ar_sdio->ar->htc_target,
1236 req->scat_req);
1237 } else {
1238 context = req->packet;
1239 ath6kl_sdio_free_bus_req(ar_sdio, req);
1240 ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1244 spin_unlock_bh(&ar_sdio->wr_async_lock);
1246 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1249 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1250 .read_write_sync = ath6kl_sdio_read_write_sync,
1251 .write_async = ath6kl_sdio_write_async,
1252 .irq_enable = ath6kl_sdio_irq_enable,
1253 .irq_disable = ath6kl_sdio_irq_disable,
1254 .scatter_req_get = ath6kl_sdio_scatter_req_get,
1255 .scatter_req_add = ath6kl_sdio_scatter_req_add,
1256 .enable_scatter = ath6kl_sdio_enable_scatter,
1257 .scat_req_rw = ath6kl_sdio_async_rw_scatter,
1258 .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1259 .suspend = ath6kl_sdio_suspend,
1260 .resume = ath6kl_sdio_resume,
1261 .diag_read32 = ath6kl_sdio_diag_read32,
1262 .diag_write32 = ath6kl_sdio_diag_write32,
1263 .bmi_read = ath6kl_sdio_bmi_read,
1264 .bmi_write = ath6kl_sdio_bmi_write,
1265 .power_on = ath6kl_sdio_power_on,
1266 .power_off = ath6kl_sdio_power_off,
1267 .stop = ath6kl_sdio_stop,
1270 #ifdef CONFIG_PM_SLEEP
1273 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1274 * suspend. We instead follow cfg80211 suspend/resume handlers.
1276 static int ath6kl_sdio_pm_suspend(struct device *device)
1278 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1280 return 0;
1283 static int ath6kl_sdio_pm_resume(struct device *device)
1285 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1287 return 0;
1290 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1291 ath6kl_sdio_pm_resume);
1293 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1295 #else
1297 #define ATH6KL_SDIO_PM_OPS NULL
1299 #endif /* CONFIG_PM_SLEEP */
1301 static int ath6kl_sdio_probe(struct sdio_func *func,
1302 const struct sdio_device_id *id)
1304 int ret;
1305 struct ath6kl_sdio *ar_sdio;
1306 struct ath6kl *ar;
1307 int count;
1309 ath6kl_dbg(ATH6KL_DBG_BOOT,
1310 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1311 func->num, func->vendor, func->device,
1312 func->max_blksize, func->cur_blksize);
1314 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1315 if (!ar_sdio)
1316 return -ENOMEM;
1318 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1319 if (!ar_sdio->dma_buffer) {
1320 ret = -ENOMEM;
1321 goto err_hif;
1324 ar_sdio->func = func;
1325 sdio_set_drvdata(func, ar_sdio);
1327 ar_sdio->id = id;
1328 ar_sdio->is_disabled = true;
1330 spin_lock_init(&ar_sdio->lock);
1331 spin_lock_init(&ar_sdio->scat_lock);
1332 spin_lock_init(&ar_sdio->wr_async_lock);
1333 mutex_init(&ar_sdio->dma_buffer_mutex);
1335 INIT_LIST_HEAD(&ar_sdio->scat_req);
1336 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1337 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1339 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1341 init_waitqueue_head(&ar_sdio->irq_wq);
1343 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1344 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1346 ar = ath6kl_core_create(&ar_sdio->func->dev);
1347 if (!ar) {
1348 ath6kl_err("Failed to alloc ath6kl core\n");
1349 ret = -ENOMEM;
1350 goto err_dma;
1353 ar_sdio->ar = ar;
1354 ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1355 ar->hif_priv = ar_sdio;
1356 ar->hif_ops = &ath6kl_sdio_ops;
1357 ar->bmi.max_data_size = 256;
1359 ath6kl_sdio_set_mbox_info(ar);
1361 ret = ath6kl_sdio_config(ar);
1362 if (ret) {
1363 ath6kl_err("Failed to config sdio: %d\n", ret);
1364 goto err_core_alloc;
1367 ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1368 if (ret) {
1369 ath6kl_err("Failed to init ath6kl core\n");
1370 goto err_core_alloc;
1373 return ret;
1375 err_core_alloc:
1376 ath6kl_core_destroy(ar_sdio->ar);
1377 err_dma:
1378 kfree(ar_sdio->dma_buffer);
1379 err_hif:
1380 kfree(ar_sdio);
1382 return ret;
1385 static void ath6kl_sdio_remove(struct sdio_func *func)
1387 struct ath6kl_sdio *ar_sdio;
1389 ath6kl_dbg(ATH6KL_DBG_BOOT,
1390 "sdio removed func %d vendor 0x%x device 0x%x\n",
1391 func->num, func->vendor, func->device);
1393 ar_sdio = sdio_get_drvdata(func);
1395 ath6kl_stop_txrx(ar_sdio->ar);
1396 cancel_work_sync(&ar_sdio->wr_async_work);
1398 ath6kl_core_cleanup(ar_sdio->ar);
1399 ath6kl_core_destroy(ar_sdio->ar);
1401 kfree(ar_sdio->dma_buffer);
1402 kfree(ar_sdio);
1405 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1406 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1407 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1408 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1409 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1413 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1415 static struct sdio_driver ath6kl_sdio_driver = {
1416 .name = "ath6kl_sdio",
1417 .id_table = ath6kl_sdio_devices,
1418 .probe = ath6kl_sdio_probe,
1419 .remove = ath6kl_sdio_remove,
1420 .drv.pm = ATH6KL_SDIO_PM_OPS,
1423 static int __init ath6kl_sdio_init(void)
1425 int ret;
1427 ret = sdio_register_driver(&ath6kl_sdio_driver);
1428 if (ret)
1429 ath6kl_err("sdio driver registration failed: %d\n", ret);
1431 return ret;
1434 static void __exit ath6kl_sdio_exit(void)
1436 sdio_unregister_driver(&ath6kl_sdio_driver);
1439 module_init(ath6kl_sdio_init);
1440 module_exit(ath6kl_sdio_exit);
1442 MODULE_AUTHOR("Atheros Communications, Inc.");
1443 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1444 MODULE_LICENSE("Dual BSD/GPL");
1446 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1447 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1448 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1449 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1450 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1451 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1452 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1453 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1454 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1455 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1456 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1457 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1458 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1459 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1460 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1461 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1462 MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1463 MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1464 MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);