cfg80211: avoid mem leak on driver hint set
[linux/fpc-iii.git] / mm / swap.c
blobc8048d71c6429234f9a6fc165cbbaa0932ebb5a7
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
35 #include "internal.h"
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
40 /* How many pages do we try to swap or page in/out together? */
41 int page_cluster;
43 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
45 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
51 static void __page_cache_release(struct page *page)
53 if (PageLRU(page)) {
54 struct zone *zone = page_zone(page);
55 struct lruvec *lruvec;
56 unsigned long flags;
58 spin_lock_irqsave(&zone->lru_lock, flags);
59 lruvec = mem_cgroup_page_lruvec(page, zone);
60 VM_BUG_ON_PAGE(!PageLRU(page), page);
61 __ClearPageLRU(page);
62 del_page_from_lru_list(page, lruvec, page_off_lru(page));
63 spin_unlock_irqrestore(&zone->lru_lock, flags);
67 static void __put_single_page(struct page *page)
69 __page_cache_release(page);
70 free_hot_cold_page(page, 0);
73 static void __put_compound_page(struct page *page)
75 compound_page_dtor *dtor;
77 __page_cache_release(page);
78 dtor = get_compound_page_dtor(page);
79 (*dtor)(page);
82 static void put_compound_page(struct page *page)
84 struct page *page_head;
86 if (likely(!PageTail(page))) {
87 if (put_page_testzero(page)) {
89 * By the time all refcounts have been released
90 * split_huge_page cannot run anymore from under us.
92 if (PageHead(page))
93 __put_compound_page(page);
94 else
95 __put_single_page(page);
97 return;
100 /* __split_huge_page_refcount can run under us */
101 page_head = compound_head(page);
104 * THP can not break up slab pages so avoid taking
105 * compound_lock() and skip the tail page refcounting (in
106 * _mapcount) too. Slab performs non-atomic bit ops on
107 * page->flags for better performance. In particular
108 * slab_unlock() in slub used to be a hot path. It is still
109 * hot on arches that do not support
110 * this_cpu_cmpxchg_double().
112 * If "page" is part of a slab or hugetlbfs page it cannot be
113 * splitted and the head page cannot change from under us. And
114 * if "page" is part of a THP page under splitting, if the
115 * head page pointed by the THP tail isn't a THP head anymore,
116 * we'll find PageTail clear after smp_rmb() and we'll treat
117 * it as a single page.
119 if (!__compound_tail_refcounted(page_head)) {
121 * If "page" is a THP tail, we must read the tail page
122 * flags after the head page flags. The
123 * split_huge_page side enforces write memory barriers
124 * between clearing PageTail and before the head page
125 * can be freed and reallocated.
127 smp_rmb();
128 if (likely(PageTail(page))) {
130 * __split_huge_page_refcount cannot race
131 * here.
133 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
134 VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
135 if (put_page_testzero(page_head)) {
137 * If this is the tail of a slab
138 * compound page, the tail pin must
139 * not be the last reference held on
140 * the page, because the PG_slab
141 * cannot be cleared before all tail
142 * pins (which skips the _mapcount
143 * tail refcounting) have been
144 * released. For hugetlbfs the tail
145 * pin may be the last reference on
146 * the page instead, because
147 * PageHeadHuge will not go away until
148 * the compound page enters the buddy
149 * allocator.
151 VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
152 __put_compound_page(page_head);
154 return;
155 } else
157 * __split_huge_page_refcount run before us,
158 * "page" was a THP tail. The split page_head
159 * has been freed and reallocated as slab or
160 * hugetlbfs page of smaller order (only
161 * possible if reallocated as slab on x86).
163 goto out_put_single;
166 if (likely(page != page_head && get_page_unless_zero(page_head))) {
167 unsigned long flags;
170 * page_head wasn't a dangling pointer but it may not
171 * be a head page anymore by the time we obtain the
172 * lock. That is ok as long as it can't be freed from
173 * under us.
175 flags = compound_lock_irqsave(page_head);
176 if (unlikely(!PageTail(page))) {
177 /* __split_huge_page_refcount run before us */
178 compound_unlock_irqrestore(page_head, flags);
179 if (put_page_testzero(page_head)) {
181 * The head page may have been freed
182 * and reallocated as a compound page
183 * of smaller order and then freed
184 * again. All we know is that it
185 * cannot have become: a THP page, a
186 * compound page of higher order, a
187 * tail page. That is because we
188 * still hold the refcount of the
189 * split THP tail and page_head was
190 * the THP head before the split.
192 if (PageHead(page_head))
193 __put_compound_page(page_head);
194 else
195 __put_single_page(page_head);
197 out_put_single:
198 if (put_page_testzero(page))
199 __put_single_page(page);
200 return;
202 VM_BUG_ON_PAGE(page_head != page->first_page, page);
204 * We can release the refcount taken by
205 * get_page_unless_zero() now that
206 * __split_huge_page_refcount() is blocked on the
207 * compound_lock.
209 if (put_page_testzero(page_head))
210 VM_BUG_ON_PAGE(1, page_head);
211 /* __split_huge_page_refcount will wait now */
212 VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
213 atomic_dec(&page->_mapcount);
214 VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
215 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
216 compound_unlock_irqrestore(page_head, flags);
218 if (put_page_testzero(page_head)) {
219 if (PageHead(page_head))
220 __put_compound_page(page_head);
221 else
222 __put_single_page(page_head);
224 } else {
225 /* page_head is a dangling pointer */
226 VM_BUG_ON_PAGE(PageTail(page), page);
227 goto out_put_single;
231 void put_page(struct page *page)
233 if (unlikely(PageCompound(page)))
234 put_compound_page(page);
235 else if (put_page_testzero(page))
236 __put_single_page(page);
238 EXPORT_SYMBOL(put_page);
241 * This function is exported but must not be called by anything other
242 * than get_page(). It implements the slow path of get_page().
244 bool __get_page_tail(struct page *page)
247 * This takes care of get_page() if run on a tail page
248 * returned by one of the get_user_pages/follow_page variants.
249 * get_user_pages/follow_page itself doesn't need the compound
250 * lock because it runs __get_page_tail_foll() under the
251 * proper PT lock that already serializes against
252 * split_huge_page().
254 unsigned long flags;
255 bool got;
256 struct page *page_head = compound_head(page);
258 /* Ref to put_compound_page() comment. */
259 if (!__compound_tail_refcounted(page_head)) {
260 smp_rmb();
261 if (likely(PageTail(page))) {
263 * This is a hugetlbfs page or a slab
264 * page. __split_huge_page_refcount
265 * cannot race here.
267 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
268 __get_page_tail_foll(page, true);
269 return true;
270 } else {
272 * __split_huge_page_refcount run
273 * before us, "page" was a THP
274 * tail. The split page_head has been
275 * freed and reallocated as slab or
276 * hugetlbfs page of smaller order
277 * (only possible if reallocated as
278 * slab on x86).
280 return false;
284 got = false;
285 if (likely(page != page_head && get_page_unless_zero(page_head))) {
287 * page_head wasn't a dangling pointer but it
288 * may not be a head page anymore by the time
289 * we obtain the lock. That is ok as long as it
290 * can't be freed from under us.
292 flags = compound_lock_irqsave(page_head);
293 /* here __split_huge_page_refcount won't run anymore */
294 if (likely(PageTail(page))) {
295 __get_page_tail_foll(page, false);
296 got = true;
298 compound_unlock_irqrestore(page_head, flags);
299 if (unlikely(!got))
300 put_page(page_head);
302 return got;
304 EXPORT_SYMBOL(__get_page_tail);
307 * put_pages_list() - release a list of pages
308 * @pages: list of pages threaded on page->lru
310 * Release a list of pages which are strung together on page.lru. Currently
311 * used by read_cache_pages() and related error recovery code.
313 void put_pages_list(struct list_head *pages)
315 while (!list_empty(pages)) {
316 struct page *victim;
318 victim = list_entry(pages->prev, struct page, lru);
319 list_del(&victim->lru);
320 page_cache_release(victim);
323 EXPORT_SYMBOL(put_pages_list);
326 * get_kernel_pages() - pin kernel pages in memory
327 * @kiov: An array of struct kvec structures
328 * @nr_segs: number of segments to pin
329 * @write: pinning for read/write, currently ignored
330 * @pages: array that receives pointers to the pages pinned.
331 * Should be at least nr_segs long.
333 * Returns number of pages pinned. This may be fewer than the number
334 * requested. If nr_pages is 0 or negative, returns 0. If no pages
335 * were pinned, returns -errno. Each page returned must be released
336 * with a put_page() call when it is finished with.
338 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
339 struct page **pages)
341 int seg;
343 for (seg = 0; seg < nr_segs; seg++) {
344 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
345 return seg;
347 pages[seg] = kmap_to_page(kiov[seg].iov_base);
348 page_cache_get(pages[seg]);
351 return seg;
353 EXPORT_SYMBOL_GPL(get_kernel_pages);
356 * get_kernel_page() - pin a kernel page in memory
357 * @start: starting kernel address
358 * @write: pinning for read/write, currently ignored
359 * @pages: array that receives pointer to the page pinned.
360 * Must be at least nr_segs long.
362 * Returns 1 if page is pinned. If the page was not pinned, returns
363 * -errno. The page returned must be released with a put_page() call
364 * when it is finished with.
366 int get_kernel_page(unsigned long start, int write, struct page **pages)
368 const struct kvec kiov = {
369 .iov_base = (void *)start,
370 .iov_len = PAGE_SIZE
373 return get_kernel_pages(&kiov, 1, write, pages);
375 EXPORT_SYMBOL_GPL(get_kernel_page);
377 static void pagevec_lru_move_fn(struct pagevec *pvec,
378 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
379 void *arg)
381 int i;
382 struct zone *zone = NULL;
383 struct lruvec *lruvec;
384 unsigned long flags = 0;
386 for (i = 0; i < pagevec_count(pvec); i++) {
387 struct page *page = pvec->pages[i];
388 struct zone *pagezone = page_zone(page);
390 if (pagezone != zone) {
391 if (zone)
392 spin_unlock_irqrestore(&zone->lru_lock, flags);
393 zone = pagezone;
394 spin_lock_irqsave(&zone->lru_lock, flags);
397 lruvec = mem_cgroup_page_lruvec(page, zone);
398 (*move_fn)(page, lruvec, arg);
400 if (zone)
401 spin_unlock_irqrestore(&zone->lru_lock, flags);
402 release_pages(pvec->pages, pvec->nr, pvec->cold);
403 pagevec_reinit(pvec);
406 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
407 void *arg)
409 int *pgmoved = arg;
411 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
412 enum lru_list lru = page_lru_base_type(page);
413 list_move_tail(&page->lru, &lruvec->lists[lru]);
414 (*pgmoved)++;
419 * pagevec_move_tail() must be called with IRQ disabled.
420 * Otherwise this may cause nasty races.
422 static void pagevec_move_tail(struct pagevec *pvec)
424 int pgmoved = 0;
426 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
427 __count_vm_events(PGROTATED, pgmoved);
431 * Writeback is about to end against a page which has been marked for immediate
432 * reclaim. If it still appears to be reclaimable, move it to the tail of the
433 * inactive list.
435 void rotate_reclaimable_page(struct page *page)
437 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
438 !PageUnevictable(page) && PageLRU(page)) {
439 struct pagevec *pvec;
440 unsigned long flags;
442 page_cache_get(page);
443 local_irq_save(flags);
444 pvec = &__get_cpu_var(lru_rotate_pvecs);
445 if (!pagevec_add(pvec, page))
446 pagevec_move_tail(pvec);
447 local_irq_restore(flags);
451 static void update_page_reclaim_stat(struct lruvec *lruvec,
452 int file, int rotated)
454 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
456 reclaim_stat->recent_scanned[file]++;
457 if (rotated)
458 reclaim_stat->recent_rotated[file]++;
461 static void __activate_page(struct page *page, struct lruvec *lruvec,
462 void *arg)
464 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
465 int file = page_is_file_cache(page);
466 int lru = page_lru_base_type(page);
468 del_page_from_lru_list(page, lruvec, lru);
469 SetPageActive(page);
470 lru += LRU_ACTIVE;
471 add_page_to_lru_list(page, lruvec, lru);
472 trace_mm_lru_activate(page, page_to_pfn(page));
474 __count_vm_event(PGACTIVATE);
475 update_page_reclaim_stat(lruvec, file, 1);
479 #ifdef CONFIG_SMP
480 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
482 static void activate_page_drain(int cpu)
484 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
486 if (pagevec_count(pvec))
487 pagevec_lru_move_fn(pvec, __activate_page, NULL);
490 static bool need_activate_page_drain(int cpu)
492 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
495 void activate_page(struct page *page)
497 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
498 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
500 page_cache_get(page);
501 if (!pagevec_add(pvec, page))
502 pagevec_lru_move_fn(pvec, __activate_page, NULL);
503 put_cpu_var(activate_page_pvecs);
507 #else
508 static inline void activate_page_drain(int cpu)
512 static bool need_activate_page_drain(int cpu)
514 return false;
517 void activate_page(struct page *page)
519 struct zone *zone = page_zone(page);
521 spin_lock_irq(&zone->lru_lock);
522 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
523 spin_unlock_irq(&zone->lru_lock);
525 #endif
527 static void __lru_cache_activate_page(struct page *page)
529 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
530 int i;
533 * Search backwards on the optimistic assumption that the page being
534 * activated has just been added to this pagevec. Note that only
535 * the local pagevec is examined as a !PageLRU page could be in the
536 * process of being released, reclaimed, migrated or on a remote
537 * pagevec that is currently being drained. Furthermore, marking
538 * a remote pagevec's page PageActive potentially hits a race where
539 * a page is marked PageActive just after it is added to the inactive
540 * list causing accounting errors and BUG_ON checks to trigger.
542 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
543 struct page *pagevec_page = pvec->pages[i];
545 if (pagevec_page == page) {
546 SetPageActive(page);
547 break;
551 put_cpu_var(lru_add_pvec);
555 * Mark a page as having seen activity.
557 * inactive,unreferenced -> inactive,referenced
558 * inactive,referenced -> active,unreferenced
559 * active,unreferenced -> active,referenced
561 void mark_page_accessed(struct page *page)
563 if (!PageActive(page) && !PageUnevictable(page) &&
564 PageReferenced(page)) {
567 * If the page is on the LRU, queue it for activation via
568 * activate_page_pvecs. Otherwise, assume the page is on a
569 * pagevec, mark it active and it'll be moved to the active
570 * LRU on the next drain.
572 if (PageLRU(page))
573 activate_page(page);
574 else
575 __lru_cache_activate_page(page);
576 ClearPageReferenced(page);
577 } else if (!PageReferenced(page)) {
578 SetPageReferenced(page);
581 EXPORT_SYMBOL(mark_page_accessed);
584 * Queue the page for addition to the LRU via pagevec. The decision on whether
585 * to add the page to the [in]active [file|anon] list is deferred until the
586 * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
587 * have the page added to the active list using mark_page_accessed().
589 void __lru_cache_add(struct page *page)
591 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
593 page_cache_get(page);
594 if (!pagevec_space(pvec))
595 __pagevec_lru_add(pvec);
596 pagevec_add(pvec, page);
597 put_cpu_var(lru_add_pvec);
599 EXPORT_SYMBOL(__lru_cache_add);
602 * lru_cache_add - add a page to a page list
603 * @page: the page to be added to the LRU.
605 void lru_cache_add(struct page *page)
607 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
608 VM_BUG_ON_PAGE(PageLRU(page), page);
609 __lru_cache_add(page);
613 * add_page_to_unevictable_list - add a page to the unevictable list
614 * @page: the page to be added to the unevictable list
616 * Add page directly to its zone's unevictable list. To avoid races with
617 * tasks that might be making the page evictable, through eg. munlock,
618 * munmap or exit, while it's not on the lru, we want to add the page
619 * while it's locked or otherwise "invisible" to other tasks. This is
620 * difficult to do when using the pagevec cache, so bypass that.
622 void add_page_to_unevictable_list(struct page *page)
624 struct zone *zone = page_zone(page);
625 struct lruvec *lruvec;
627 spin_lock_irq(&zone->lru_lock);
628 lruvec = mem_cgroup_page_lruvec(page, zone);
629 ClearPageActive(page);
630 SetPageUnevictable(page);
631 SetPageLRU(page);
632 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
633 spin_unlock_irq(&zone->lru_lock);
637 * If the page can not be invalidated, it is moved to the
638 * inactive list to speed up its reclaim. It is moved to the
639 * head of the list, rather than the tail, to give the flusher
640 * threads some time to write it out, as this is much more
641 * effective than the single-page writeout from reclaim.
643 * If the page isn't page_mapped and dirty/writeback, the page
644 * could reclaim asap using PG_reclaim.
646 * 1. active, mapped page -> none
647 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
648 * 3. inactive, mapped page -> none
649 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
650 * 5. inactive, clean -> inactive, tail
651 * 6. Others -> none
653 * In 4, why it moves inactive's head, the VM expects the page would
654 * be write it out by flusher threads as this is much more effective
655 * than the single-page writeout from reclaim.
657 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
658 void *arg)
660 int lru, file;
661 bool active;
663 if (!PageLRU(page))
664 return;
666 if (PageUnevictable(page))
667 return;
669 /* Some processes are using the page */
670 if (page_mapped(page))
671 return;
673 active = PageActive(page);
674 file = page_is_file_cache(page);
675 lru = page_lru_base_type(page);
677 del_page_from_lru_list(page, lruvec, lru + active);
678 ClearPageActive(page);
679 ClearPageReferenced(page);
680 add_page_to_lru_list(page, lruvec, lru);
682 if (PageWriteback(page) || PageDirty(page)) {
684 * PG_reclaim could be raced with end_page_writeback
685 * It can make readahead confusing. But race window
686 * is _really_ small and it's non-critical problem.
688 SetPageReclaim(page);
689 } else {
691 * The page's writeback ends up during pagevec
692 * We moves tha page into tail of inactive.
694 list_move_tail(&page->lru, &lruvec->lists[lru]);
695 __count_vm_event(PGROTATED);
698 if (active)
699 __count_vm_event(PGDEACTIVATE);
700 update_page_reclaim_stat(lruvec, file, 0);
704 * Drain pages out of the cpu's pagevecs.
705 * Either "cpu" is the current CPU, and preemption has already been
706 * disabled; or "cpu" is being hot-unplugged, and is already dead.
708 void lru_add_drain_cpu(int cpu)
710 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
712 if (pagevec_count(pvec))
713 __pagevec_lru_add(pvec);
715 pvec = &per_cpu(lru_rotate_pvecs, cpu);
716 if (pagevec_count(pvec)) {
717 unsigned long flags;
719 /* No harm done if a racing interrupt already did this */
720 local_irq_save(flags);
721 pagevec_move_tail(pvec);
722 local_irq_restore(flags);
725 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
726 if (pagevec_count(pvec))
727 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
729 activate_page_drain(cpu);
733 * deactivate_page - forcefully deactivate a page
734 * @page: page to deactivate
736 * This function hints the VM that @page is a good reclaim candidate,
737 * for example if its invalidation fails due to the page being dirty
738 * or under writeback.
740 void deactivate_page(struct page *page)
743 * In a workload with many unevictable page such as mprotect, unevictable
744 * page deactivation for accelerating reclaim is pointless.
746 if (PageUnevictable(page))
747 return;
749 if (likely(get_page_unless_zero(page))) {
750 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
752 if (!pagevec_add(pvec, page))
753 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
754 put_cpu_var(lru_deactivate_pvecs);
758 void lru_add_drain(void)
760 lru_add_drain_cpu(get_cpu());
761 put_cpu();
764 static void lru_add_drain_per_cpu(struct work_struct *dummy)
766 lru_add_drain();
769 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
771 void lru_add_drain_all(void)
773 static DEFINE_MUTEX(lock);
774 static struct cpumask has_work;
775 int cpu;
777 mutex_lock(&lock);
778 get_online_cpus();
779 cpumask_clear(&has_work);
781 for_each_online_cpu(cpu) {
782 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
784 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
785 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
786 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
787 need_activate_page_drain(cpu)) {
788 INIT_WORK(work, lru_add_drain_per_cpu);
789 schedule_work_on(cpu, work);
790 cpumask_set_cpu(cpu, &has_work);
794 for_each_cpu(cpu, &has_work)
795 flush_work(&per_cpu(lru_add_drain_work, cpu));
797 put_online_cpus();
798 mutex_unlock(&lock);
802 * Batched page_cache_release(). Decrement the reference count on all the
803 * passed pages. If it fell to zero then remove the page from the LRU and
804 * free it.
806 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
807 * for the remainder of the operation.
809 * The locking in this function is against shrink_inactive_list(): we recheck
810 * the page count inside the lock to see whether shrink_inactive_list()
811 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
812 * will free it.
814 void release_pages(struct page **pages, int nr, int cold)
816 int i;
817 LIST_HEAD(pages_to_free);
818 struct zone *zone = NULL;
819 struct lruvec *lruvec;
820 unsigned long uninitialized_var(flags);
822 for (i = 0; i < nr; i++) {
823 struct page *page = pages[i];
825 if (unlikely(PageCompound(page))) {
826 if (zone) {
827 spin_unlock_irqrestore(&zone->lru_lock, flags);
828 zone = NULL;
830 put_compound_page(page);
831 continue;
834 if (!put_page_testzero(page))
835 continue;
837 if (PageLRU(page)) {
838 struct zone *pagezone = page_zone(page);
840 if (pagezone != zone) {
841 if (zone)
842 spin_unlock_irqrestore(&zone->lru_lock,
843 flags);
844 zone = pagezone;
845 spin_lock_irqsave(&zone->lru_lock, flags);
848 lruvec = mem_cgroup_page_lruvec(page, zone);
849 VM_BUG_ON_PAGE(!PageLRU(page), page);
850 __ClearPageLRU(page);
851 del_page_from_lru_list(page, lruvec, page_off_lru(page));
854 /* Clear Active bit in case of parallel mark_page_accessed */
855 ClearPageActive(page);
857 list_add(&page->lru, &pages_to_free);
859 if (zone)
860 spin_unlock_irqrestore(&zone->lru_lock, flags);
862 free_hot_cold_page_list(&pages_to_free, cold);
864 EXPORT_SYMBOL(release_pages);
867 * The pages which we're about to release may be in the deferred lru-addition
868 * queues. That would prevent them from really being freed right now. That's
869 * OK from a correctness point of view but is inefficient - those pages may be
870 * cache-warm and we want to give them back to the page allocator ASAP.
872 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
873 * and __pagevec_lru_add_active() call release_pages() directly to avoid
874 * mutual recursion.
876 void __pagevec_release(struct pagevec *pvec)
878 lru_add_drain();
879 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
880 pagevec_reinit(pvec);
882 EXPORT_SYMBOL(__pagevec_release);
884 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
885 /* used by __split_huge_page_refcount() */
886 void lru_add_page_tail(struct page *page, struct page *page_tail,
887 struct lruvec *lruvec, struct list_head *list)
889 const int file = 0;
891 VM_BUG_ON_PAGE(!PageHead(page), page);
892 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
893 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
894 VM_BUG_ON(NR_CPUS != 1 &&
895 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
897 if (!list)
898 SetPageLRU(page_tail);
900 if (likely(PageLRU(page)))
901 list_add_tail(&page_tail->lru, &page->lru);
902 else if (list) {
903 /* page reclaim is reclaiming a huge page */
904 get_page(page_tail);
905 list_add_tail(&page_tail->lru, list);
906 } else {
907 struct list_head *list_head;
909 * Head page has not yet been counted, as an hpage,
910 * so we must account for each subpage individually.
912 * Use the standard add function to put page_tail on the list,
913 * but then correct its position so they all end up in order.
915 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
916 list_head = page_tail->lru.prev;
917 list_move_tail(&page_tail->lru, list_head);
920 if (!PageUnevictable(page))
921 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
923 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
925 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
926 void *arg)
928 int file = page_is_file_cache(page);
929 int active = PageActive(page);
930 enum lru_list lru = page_lru(page);
932 VM_BUG_ON_PAGE(PageLRU(page), page);
934 SetPageLRU(page);
935 add_page_to_lru_list(page, lruvec, lru);
936 update_page_reclaim_stat(lruvec, file, active);
937 trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
941 * Add the passed pages to the LRU, then drop the caller's refcount
942 * on them. Reinitialises the caller's pagevec.
944 void __pagevec_lru_add(struct pagevec *pvec)
946 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
948 EXPORT_SYMBOL(__pagevec_lru_add);
951 * pagevec_lookup_entries - gang pagecache lookup
952 * @pvec: Where the resulting entries are placed
953 * @mapping: The address_space to search
954 * @start: The starting entry index
955 * @nr_entries: The maximum number of entries
956 * @indices: The cache indices corresponding to the entries in @pvec
958 * pagevec_lookup_entries() will search for and return a group of up
959 * to @nr_entries pages and shadow entries in the mapping. All
960 * entries are placed in @pvec. pagevec_lookup_entries() takes a
961 * reference against actual pages in @pvec.
963 * The search returns a group of mapping-contiguous entries with
964 * ascending indexes. There may be holes in the indices due to
965 * not-present entries.
967 * pagevec_lookup_entries() returns the number of entries which were
968 * found.
970 unsigned pagevec_lookup_entries(struct pagevec *pvec,
971 struct address_space *mapping,
972 pgoff_t start, unsigned nr_pages,
973 pgoff_t *indices)
975 pvec->nr = find_get_entries(mapping, start, nr_pages,
976 pvec->pages, indices);
977 return pagevec_count(pvec);
981 * pagevec_remove_exceptionals - pagevec exceptionals pruning
982 * @pvec: The pagevec to prune
984 * pagevec_lookup_entries() fills both pages and exceptional radix
985 * tree entries into the pagevec. This function prunes all
986 * exceptionals from @pvec without leaving holes, so that it can be
987 * passed on to page-only pagevec operations.
989 void pagevec_remove_exceptionals(struct pagevec *pvec)
991 int i, j;
993 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
994 struct page *page = pvec->pages[i];
995 if (!radix_tree_exceptional_entry(page))
996 pvec->pages[j++] = page;
998 pvec->nr = j;
1002 * pagevec_lookup - gang pagecache lookup
1003 * @pvec: Where the resulting pages are placed
1004 * @mapping: The address_space to search
1005 * @start: The starting page index
1006 * @nr_pages: The maximum number of pages
1008 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1009 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1010 * reference against the pages in @pvec.
1012 * The search returns a group of mapping-contiguous pages with ascending
1013 * indexes. There may be holes in the indices due to not-present pages.
1015 * pagevec_lookup() returns the number of pages which were found.
1017 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1018 pgoff_t start, unsigned nr_pages)
1020 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1021 return pagevec_count(pvec);
1023 EXPORT_SYMBOL(pagevec_lookup);
1025 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1026 pgoff_t *index, int tag, unsigned nr_pages)
1028 pvec->nr = find_get_pages_tag(mapping, index, tag,
1029 nr_pages, pvec->pages);
1030 return pagevec_count(pvec);
1032 EXPORT_SYMBOL(pagevec_lookup_tag);
1035 * Perform any setup for the swap system
1037 void __init swap_setup(void)
1039 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1040 #ifdef CONFIG_SWAP
1041 int i;
1043 if (bdi_init(swapper_spaces[0].backing_dev_info))
1044 panic("Failed to init swap bdi");
1045 for (i = 0; i < MAX_SWAPFILES; i++) {
1046 spin_lock_init(&swapper_spaces[i].tree_lock);
1047 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1049 #endif
1051 /* Use a smaller cluster for small-memory machines */
1052 if (megs < 16)
1053 page_cluster = 2;
1054 else
1055 page_cluster = 3;
1057 * Right now other parts of the system means that we
1058 * _really_ don't want to cluster much more