2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
97 #include <net/cls_cgroup.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly
;
111 unsigned int sysctl_net_busy_poll __read_mostly
;
114 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
115 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
116 unsigned long nr_segs
, loff_t pos
);
117 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
118 unsigned long nr_segs
, loff_t pos
);
119 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
121 static int sock_close(struct inode
*inode
, struct file
*file
);
122 static unsigned int sock_poll(struct file
*file
,
123 struct poll_table_struct
*wait
);
124 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
126 static long compat_sock_ioctl(struct file
*file
,
127 unsigned int cmd
, unsigned long arg
);
129 static int sock_fasync(int fd
, struct file
*filp
, int on
);
130 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
131 int offset
, size_t size
, loff_t
*ppos
, int more
);
132 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
133 struct pipe_inode_info
*pipe
, size_t len
,
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops
= {
142 .owner
= THIS_MODULE
,
144 .aio_read
= sock_aio_read
,
145 .aio_write
= sock_aio_write
,
147 .unlocked_ioctl
= sock_ioctl
,
149 .compat_ioctl
= compat_sock_ioctl
,
152 .open
= sock_no_open
, /* special open code to disallow open via /proc */
153 .release
= sock_close
,
154 .fasync
= sock_fasync
,
155 .sendpage
= sock_sendpage
,
156 .splice_write
= generic_splice_sendpage
,
157 .splice_read
= sock_splice_read
,
161 * The protocol list. Each protocol is registered in here.
164 static DEFINE_SPINLOCK(net_family_lock
);
165 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
168 * Statistics counters of the socket lists
171 static DEFINE_PER_CPU(int, sockets_in_use
);
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
192 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
196 if (copy_from_user(kaddr
, uaddr
, ulen
))
198 return audit_sockaddr(ulen
, kaddr
);
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
218 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
219 void __user
*uaddr
, int __user
*ulen
)
224 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
225 err
= get_user(len
, ulen
);
233 if (audit_sockaddr(klen
, kaddr
))
235 if (copy_to_user(uaddr
, kaddr
, len
))
239 * "fromlen shall refer to the value before truncation.."
242 return __put_user(klen
, ulen
);
245 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
247 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
249 struct socket_alloc
*ei
;
250 struct socket_wq
*wq
;
252 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
255 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
257 kmem_cache_free(sock_inode_cachep
, ei
);
260 init_waitqueue_head(&wq
->wait
);
261 wq
->fasync_list
= NULL
;
262 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
264 ei
->socket
.state
= SS_UNCONNECTED
;
265 ei
->socket
.flags
= 0;
266 ei
->socket
.ops
= NULL
;
267 ei
->socket
.sk
= NULL
;
268 ei
->socket
.file
= NULL
;
270 return &ei
->vfs_inode
;
273 static void sock_destroy_inode(struct inode
*inode
)
275 struct socket_alloc
*ei
;
276 struct socket_wq
*wq
;
278 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
279 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
281 kmem_cache_free(sock_inode_cachep
, ei
);
284 static void init_once(void *foo
)
286 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
288 inode_init_once(&ei
->vfs_inode
);
291 static int init_inodecache(void)
293 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc
),
296 (SLAB_HWCACHE_ALIGN
|
297 SLAB_RECLAIM_ACCOUNT
|
300 if (sock_inode_cachep
== NULL
)
305 static const struct super_operations sockfs_ops
= {
306 .alloc_inode
= sock_alloc_inode
,
307 .destroy_inode
= sock_destroy_inode
,
308 .statfs
= simple_statfs
,
312 * sockfs_dname() is called from d_path().
314 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
316 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
317 dentry
->d_inode
->i_ino
);
320 static const struct dentry_operations sockfs_dentry_operations
= {
321 .d_dname
= sockfs_dname
,
324 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
325 int flags
, const char *dev_name
, void *data
)
327 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
328 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
331 static struct vfsmount
*sock_mnt __read_mostly
;
333 static struct file_system_type sock_fs_type
= {
335 .mount
= sockfs_mount
,
336 .kill_sb
= kill_anon_super
,
340 * Obtains the first available file descriptor and sets it up for use.
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
356 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
358 struct qstr name
= { .name
= "" };
364 name
.len
= strlen(name
.name
);
365 } else if (sock
->sk
) {
366 name
.name
= sock
->sk
->sk_prot_creator
->name
;
367 name
.len
= strlen(name
.name
);
369 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
370 if (unlikely(!path
.dentry
))
371 return ERR_PTR(-ENOMEM
);
372 path
.mnt
= mntget(sock_mnt
);
374 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
375 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
377 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
379 if (unlikely(IS_ERR(file
))) {
380 /* drop dentry, keep inode */
381 ihold(path
.dentry
->d_inode
);
387 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
388 file
->private_data
= sock
;
391 EXPORT_SYMBOL(sock_alloc_file
);
393 static int sock_map_fd(struct socket
*sock
, int flags
)
395 struct file
*newfile
;
396 int fd
= get_unused_fd_flags(flags
);
397 if (unlikely(fd
< 0))
400 newfile
= sock_alloc_file(sock
, flags
, NULL
);
401 if (likely(!IS_ERR(newfile
))) {
402 fd_install(fd
, newfile
);
407 return PTR_ERR(newfile
);
410 struct socket
*sock_from_file(struct file
*file
, int *err
)
412 if (file
->f_op
== &socket_file_ops
)
413 return file
->private_data
; /* set in sock_map_fd */
418 EXPORT_SYMBOL(sock_from_file
);
421 * sockfd_lookup - Go from a file number to its socket slot
423 * @err: pointer to an error code return
425 * The file handle passed in is locked and the socket it is bound
426 * too is returned. If an error occurs the err pointer is overwritten
427 * with a negative errno code and NULL is returned. The function checks
428 * for both invalid handles and passing a handle which is not a socket.
430 * On a success the socket object pointer is returned.
433 struct socket
*sockfd_lookup(int fd
, int *err
)
444 sock
= sock_from_file(file
, err
);
449 EXPORT_SYMBOL(sockfd_lookup
);
451 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
453 struct fd f
= fdget(fd
);
458 sock
= sock_from_file(f
.file
, err
);
460 *fput_needed
= f
.flags
;
468 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
469 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
470 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
471 static ssize_t
sockfs_getxattr(struct dentry
*dentry
,
472 const char *name
, void *value
, size_t size
)
474 const char *proto_name
;
479 if (!strncmp(name
, XATTR_NAME_SOCKPROTONAME
, XATTR_NAME_SOCKPROTONAME_LEN
)) {
480 proto_name
= dentry
->d_name
.name
;
481 proto_size
= strlen(proto_name
);
485 if (proto_size
+ 1 > size
)
488 strncpy(value
, proto_name
, proto_size
+ 1);
490 error
= proto_size
+ 1;
497 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
503 len
= security_inode_listsecurity(dentry
->d_inode
, buffer
, size
);
513 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
518 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
525 static const struct inode_operations sockfs_inode_ops
= {
526 .getxattr
= sockfs_getxattr
,
527 .listxattr
= sockfs_listxattr
,
531 * sock_alloc - allocate a socket
533 * Allocate a new inode and socket object. The two are bound together
534 * and initialised. The socket is then returned. If we are out of inodes
538 static struct socket
*sock_alloc(void)
543 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
547 sock
= SOCKET_I(inode
);
549 kmemcheck_annotate_bitfield(sock
, type
);
550 inode
->i_ino
= get_next_ino();
551 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
552 inode
->i_uid
= current_fsuid();
553 inode
->i_gid
= current_fsgid();
554 inode
->i_op
= &sockfs_inode_ops
;
556 this_cpu_add(sockets_in_use
, 1);
561 * In theory you can't get an open on this inode, but /proc provides
562 * a back door. Remember to keep it shut otherwise you'll let the
563 * creepy crawlies in.
566 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
571 const struct file_operations bad_sock_fops
= {
572 .owner
= THIS_MODULE
,
573 .open
= sock_no_open
,
574 .llseek
= noop_llseek
,
578 * sock_release - close a socket
579 * @sock: socket to close
581 * The socket is released from the protocol stack if it has a release
582 * callback, and the inode is then released if the socket is bound to
583 * an inode not a file.
586 void sock_release(struct socket
*sock
)
589 struct module
*owner
= sock
->ops
->owner
;
591 sock
->ops
->release(sock
);
596 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
597 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
599 if (test_bit(SOCK_EXTERNALLY_ALLOCATED
, &sock
->flags
))
602 this_cpu_sub(sockets_in_use
, 1);
604 iput(SOCK_INODE(sock
));
609 EXPORT_SYMBOL(sock_release
);
611 void sock_tx_timestamp(struct sock
*sk
, __u8
*tx_flags
)
614 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
615 *tx_flags
|= SKBTX_HW_TSTAMP
;
616 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
617 *tx_flags
|= SKBTX_SW_TSTAMP
;
618 if (sock_flag(sk
, SOCK_WIFI_STATUS
))
619 *tx_flags
|= SKBTX_WIFI_STATUS
;
621 EXPORT_SYMBOL(sock_tx_timestamp
);
623 static inline int __sock_sendmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
624 struct msghdr
*msg
, size_t size
)
626 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
633 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
636 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
637 struct msghdr
*msg
, size_t size
)
639 int err
= security_socket_sendmsg(sock
, msg
, size
);
641 return err
?: __sock_sendmsg_nosec(iocb
, sock
, msg
, size
);
644 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
647 struct sock_iocb siocb
;
650 init_sync_kiocb(&iocb
, NULL
);
651 iocb
.private = &siocb
;
652 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
653 if (-EIOCBQUEUED
== ret
)
654 ret
= wait_on_sync_kiocb(&iocb
);
657 EXPORT_SYMBOL(sock_sendmsg
);
659 static int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
662 struct sock_iocb siocb
;
665 init_sync_kiocb(&iocb
, NULL
);
666 iocb
.private = &siocb
;
667 ret
= __sock_sendmsg_nosec(&iocb
, sock
, msg
, size
);
668 if (-EIOCBQUEUED
== ret
)
669 ret
= wait_on_sync_kiocb(&iocb
);
673 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
674 struct kvec
*vec
, size_t num
, size_t size
)
676 mm_segment_t oldfs
= get_fs();
681 * the following is safe, since for compiler definitions of kvec and
682 * iovec are identical, yielding the same in-core layout and alignment
684 msg
->msg_iov
= (struct iovec
*)vec
;
685 msg
->msg_iovlen
= num
;
686 result
= sock_sendmsg(sock
, msg
, size
);
690 EXPORT_SYMBOL(kernel_sendmsg
);
693 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
695 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
698 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
699 struct timespec ts
[3];
701 struct skb_shared_hwtstamps
*shhwtstamps
=
704 /* Race occurred between timestamp enabling and packet
705 receiving. Fill in the current time for now. */
706 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
707 __net_timestamp(skb
);
709 if (need_software_tstamp
) {
710 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
712 skb_get_timestamp(skb
, &tv
);
713 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
716 skb_get_timestampns(skb
, &ts
[0]);
717 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
718 sizeof(ts
[0]), &ts
[0]);
723 memset(ts
, 0, sizeof(ts
));
724 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
) &&
725 ktime_to_timespec_cond(skb
->tstamp
, ts
+ 0))
728 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
729 ktime_to_timespec_cond(shhwtstamps
->syststamp
, ts
+ 1))
731 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
732 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, ts
+ 2))
736 put_cmsg(msg
, SOL_SOCKET
,
737 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
739 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
741 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
746 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
748 if (!skb
->wifi_acked_valid
)
751 ack
= skb
->wifi_acked
;
753 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
755 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
757 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
760 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
761 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
762 sizeof(__u32
), &skb
->dropcount
);
765 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
768 sock_recv_timestamp(msg
, sk
, skb
);
769 sock_recv_drops(msg
, sk
, skb
);
771 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
773 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
774 struct msghdr
*msg
, size_t size
, int flags
)
776 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
784 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
787 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
788 struct msghdr
*msg
, size_t size
, int flags
)
790 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
792 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
795 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
796 size_t size
, int flags
)
799 struct sock_iocb siocb
;
802 init_sync_kiocb(&iocb
, NULL
);
803 iocb
.private = &siocb
;
804 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
805 if (-EIOCBQUEUED
== ret
)
806 ret
= wait_on_sync_kiocb(&iocb
);
809 EXPORT_SYMBOL(sock_recvmsg
);
811 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
812 size_t size
, int flags
)
815 struct sock_iocb siocb
;
818 init_sync_kiocb(&iocb
, NULL
);
819 iocb
.private = &siocb
;
820 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
821 if (-EIOCBQUEUED
== ret
)
822 ret
= wait_on_sync_kiocb(&iocb
);
827 * kernel_recvmsg - Receive a message from a socket (kernel space)
828 * @sock: The socket to receive the message from
829 * @msg: Received message
830 * @vec: Input s/g array for message data
831 * @num: Size of input s/g array
832 * @size: Number of bytes to read
833 * @flags: Message flags (MSG_DONTWAIT, etc...)
835 * On return the msg structure contains the scatter/gather array passed in the
836 * vec argument. The array is modified so that it consists of the unfilled
837 * portion of the original array.
839 * The returned value is the total number of bytes received, or an error.
841 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
842 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
844 mm_segment_t oldfs
= get_fs();
849 * the following is safe, since for compiler definitions of kvec and
850 * iovec are identical, yielding the same in-core layout and alignment
852 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
853 result
= sock_recvmsg(sock
, msg
, size
, flags
);
857 EXPORT_SYMBOL(kernel_recvmsg
);
859 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
860 int offset
, size_t size
, loff_t
*ppos
, int more
)
865 sock
= file
->private_data
;
867 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
868 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
871 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
874 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
875 struct pipe_inode_info
*pipe
, size_t len
,
878 struct socket
*sock
= file
->private_data
;
880 if (unlikely(!sock
->ops
->splice_read
))
883 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
886 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
887 struct sock_iocb
*siocb
)
889 if (!is_sync_kiocb(iocb
))
893 iocb
->private = siocb
;
897 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
898 struct file
*file
, const struct iovec
*iov
,
899 unsigned long nr_segs
)
901 struct socket
*sock
= file
->private_data
;
905 for (i
= 0; i
< nr_segs
; i
++)
906 size
+= iov
[i
].iov_len
;
908 msg
->msg_name
= NULL
;
909 msg
->msg_namelen
= 0;
910 msg
->msg_control
= NULL
;
911 msg
->msg_controllen
= 0;
912 msg
->msg_iov
= (struct iovec
*)iov
;
913 msg
->msg_iovlen
= nr_segs
;
914 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
916 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
919 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
920 unsigned long nr_segs
, loff_t pos
)
922 struct sock_iocb siocb
, *x
;
927 if (iocb
->ki_nbytes
== 0) /* Match SYS5 behaviour */
931 x
= alloc_sock_iocb(iocb
, &siocb
);
934 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
937 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
938 struct file
*file
, const struct iovec
*iov
,
939 unsigned long nr_segs
)
941 struct socket
*sock
= file
->private_data
;
945 for (i
= 0; i
< nr_segs
; i
++)
946 size
+= iov
[i
].iov_len
;
948 msg
->msg_name
= NULL
;
949 msg
->msg_namelen
= 0;
950 msg
->msg_control
= NULL
;
951 msg
->msg_controllen
= 0;
952 msg
->msg_iov
= (struct iovec
*)iov
;
953 msg
->msg_iovlen
= nr_segs
;
954 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
955 if (sock
->type
== SOCK_SEQPACKET
)
956 msg
->msg_flags
|= MSG_EOR
;
958 return __sock_sendmsg(iocb
, sock
, msg
, size
);
961 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
962 unsigned long nr_segs
, loff_t pos
)
964 struct sock_iocb siocb
, *x
;
969 x
= alloc_sock_iocb(iocb
, &siocb
);
973 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
977 * Atomic setting of ioctl hooks to avoid race
978 * with module unload.
981 static DEFINE_MUTEX(br_ioctl_mutex
);
982 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
984 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
986 mutex_lock(&br_ioctl_mutex
);
987 br_ioctl_hook
= hook
;
988 mutex_unlock(&br_ioctl_mutex
);
990 EXPORT_SYMBOL(brioctl_set
);
992 static DEFINE_MUTEX(vlan_ioctl_mutex
);
993 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
995 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
997 mutex_lock(&vlan_ioctl_mutex
);
998 vlan_ioctl_hook
= hook
;
999 mutex_unlock(&vlan_ioctl_mutex
);
1001 EXPORT_SYMBOL(vlan_ioctl_set
);
1003 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1004 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1006 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1008 mutex_lock(&dlci_ioctl_mutex
);
1009 dlci_ioctl_hook
= hook
;
1010 mutex_unlock(&dlci_ioctl_mutex
);
1012 EXPORT_SYMBOL(dlci_ioctl_set
);
1014 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1015 unsigned int cmd
, unsigned long arg
)
1018 void __user
*argp
= (void __user
*)arg
;
1020 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1023 * If this ioctl is unknown try to hand it down
1024 * to the NIC driver.
1026 if (err
== -ENOIOCTLCMD
)
1027 err
= dev_ioctl(net
, cmd
, argp
);
1033 * With an ioctl, arg may well be a user mode pointer, but we don't know
1034 * what to do with it - that's up to the protocol still.
1037 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1039 struct socket
*sock
;
1041 void __user
*argp
= (void __user
*)arg
;
1045 sock
= file
->private_data
;
1048 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
1049 err
= dev_ioctl(net
, cmd
, argp
);
1051 #ifdef CONFIG_WEXT_CORE
1052 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1053 err
= dev_ioctl(net
, cmd
, argp
);
1060 if (get_user(pid
, (int __user
*)argp
))
1062 err
= f_setown(sock
->file
, pid
, 1);
1066 err
= put_user(f_getown(sock
->file
),
1067 (int __user
*)argp
);
1075 request_module("bridge");
1077 mutex_lock(&br_ioctl_mutex
);
1079 err
= br_ioctl_hook(net
, cmd
, argp
);
1080 mutex_unlock(&br_ioctl_mutex
);
1085 if (!vlan_ioctl_hook
)
1086 request_module("8021q");
1088 mutex_lock(&vlan_ioctl_mutex
);
1089 if (vlan_ioctl_hook
)
1090 err
= vlan_ioctl_hook(net
, argp
);
1091 mutex_unlock(&vlan_ioctl_mutex
);
1096 if (!dlci_ioctl_hook
)
1097 request_module("dlci");
1099 mutex_lock(&dlci_ioctl_mutex
);
1100 if (dlci_ioctl_hook
)
1101 err
= dlci_ioctl_hook(cmd
, argp
);
1102 mutex_unlock(&dlci_ioctl_mutex
);
1105 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1111 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1114 struct socket
*sock
= NULL
;
1116 err
= security_socket_create(family
, type
, protocol
, 1);
1120 sock
= sock_alloc();
1127 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1139 EXPORT_SYMBOL(sock_create_lite
);
1141 /* No kernel lock held - perfect */
1142 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1144 unsigned int busy_flag
= 0;
1145 struct socket
*sock
;
1148 * We can't return errors to poll, so it's either yes or no.
1150 sock
= file
->private_data
;
1152 if (sk_can_busy_loop(sock
->sk
)) {
1153 /* this socket can poll_ll so tell the system call */
1154 busy_flag
= POLL_BUSY_LOOP
;
1156 /* once, only if requested by syscall */
1157 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1158 sk_busy_loop(sock
->sk
, 1);
1161 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1164 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1166 struct socket
*sock
= file
->private_data
;
1168 return sock
->ops
->mmap(file
, sock
, vma
);
1171 static int sock_close(struct inode
*inode
, struct file
*filp
)
1173 sock_release(SOCKET_I(inode
));
1178 * Update the socket async list
1180 * Fasync_list locking strategy.
1182 * 1. fasync_list is modified only under process context socket lock
1183 * i.e. under semaphore.
1184 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1185 * or under socket lock
1188 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1190 struct socket
*sock
= filp
->private_data
;
1191 struct sock
*sk
= sock
->sk
;
1192 struct socket_wq
*wq
;
1198 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1199 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1201 if (!wq
->fasync_list
)
1202 sock_reset_flag(sk
, SOCK_FASYNC
);
1204 sock_set_flag(sk
, SOCK_FASYNC
);
1210 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1212 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1214 struct socket_wq
*wq
;
1219 wq
= rcu_dereference(sock
->wq
);
1220 if (!wq
|| !wq
->fasync_list
) {
1225 case SOCK_WAKE_WAITD
:
1226 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1229 case SOCK_WAKE_SPACE
:
1230 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1235 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1238 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1243 EXPORT_SYMBOL(sock_wake_async
);
1245 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1246 struct socket
**res
, int kern
)
1249 struct socket
*sock
;
1250 const struct net_proto_family
*pf
;
1253 * Check protocol is in range
1255 if (family
< 0 || family
>= NPROTO
)
1256 return -EAFNOSUPPORT
;
1257 if (type
< 0 || type
>= SOCK_MAX
)
1262 This uglymoron is moved from INET layer to here to avoid
1263 deadlock in module load.
1265 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1269 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1275 err
= security_socket_create(family
, type
, protocol
, kern
);
1280 * Allocate the socket and allow the family to set things up. if
1281 * the protocol is 0, the family is instructed to select an appropriate
1284 sock
= sock_alloc();
1286 net_warn_ratelimited("socket: no more sockets\n");
1287 return -ENFILE
; /* Not exactly a match, but its the
1288 closest posix thing */
1293 #ifdef CONFIG_MODULES
1294 /* Attempt to load a protocol module if the find failed.
1296 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1297 * requested real, full-featured networking support upon configuration.
1298 * Otherwise module support will break!
1300 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1301 request_module("net-pf-%d", family
);
1305 pf
= rcu_dereference(net_families
[family
]);
1306 err
= -EAFNOSUPPORT
;
1311 * We will call the ->create function, that possibly is in a loadable
1312 * module, so we have to bump that loadable module refcnt first.
1314 if (!try_module_get(pf
->owner
))
1317 /* Now protected by module ref count */
1320 err
= pf
->create(net
, sock
, protocol
, kern
);
1322 goto out_module_put
;
1325 * Now to bump the refcnt of the [loadable] module that owns this
1326 * socket at sock_release time we decrement its refcnt.
1328 if (!try_module_get(sock
->ops
->owner
))
1329 goto out_module_busy
;
1332 * Now that we're done with the ->create function, the [loadable]
1333 * module can have its refcnt decremented
1335 module_put(pf
->owner
);
1336 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1338 goto out_sock_release
;
1344 err
= -EAFNOSUPPORT
;
1347 module_put(pf
->owner
);
1354 goto out_sock_release
;
1356 EXPORT_SYMBOL(__sock_create
);
1358 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1360 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1362 EXPORT_SYMBOL(sock_create
);
1364 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1366 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1368 EXPORT_SYMBOL(sock_create_kern
);
1370 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1373 struct socket
*sock
;
1376 /* Check the SOCK_* constants for consistency. */
1377 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1378 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1379 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1380 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1382 flags
= type
& ~SOCK_TYPE_MASK
;
1383 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1385 type
&= SOCK_TYPE_MASK
;
1387 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1388 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1390 retval
= sock_create(family
, type
, protocol
, &sock
);
1394 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1399 /* It may be already another descriptor 8) Not kernel problem. */
1408 * Create a pair of connected sockets.
1411 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1412 int __user
*, usockvec
)
1414 struct socket
*sock1
, *sock2
;
1416 struct file
*newfile1
, *newfile2
;
1419 flags
= type
& ~SOCK_TYPE_MASK
;
1420 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1422 type
&= SOCK_TYPE_MASK
;
1424 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1425 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1428 * Obtain the first socket and check if the underlying protocol
1429 * supports the socketpair call.
1432 err
= sock_create(family
, type
, protocol
, &sock1
);
1436 err
= sock_create(family
, type
, protocol
, &sock2
);
1440 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1442 goto out_release_both
;
1444 fd1
= get_unused_fd_flags(flags
);
1445 if (unlikely(fd1
< 0)) {
1447 goto out_release_both
;
1450 fd2
= get_unused_fd_flags(flags
);
1451 if (unlikely(fd2
< 0)) {
1453 goto out_put_unused_1
;
1456 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1457 if (unlikely(IS_ERR(newfile1
))) {
1458 err
= PTR_ERR(newfile1
);
1459 goto out_put_unused_both
;
1462 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1463 if (IS_ERR(newfile2
)) {
1464 err
= PTR_ERR(newfile2
);
1468 err
= put_user(fd1
, &usockvec
[0]);
1472 err
= put_user(fd2
, &usockvec
[1]);
1476 audit_fd_pair(fd1
, fd2
);
1478 fd_install(fd1
, newfile1
);
1479 fd_install(fd2
, newfile2
);
1480 /* fd1 and fd2 may be already another descriptors.
1481 * Not kernel problem.
1497 sock_release(sock2
);
1500 out_put_unused_both
:
1505 sock_release(sock2
);
1507 sock_release(sock1
);
1513 * Bind a name to a socket. Nothing much to do here since it's
1514 * the protocol's responsibility to handle the local address.
1516 * We move the socket address to kernel space before we call
1517 * the protocol layer (having also checked the address is ok).
1520 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1522 struct socket
*sock
;
1523 struct sockaddr_storage address
;
1524 int err
, fput_needed
;
1526 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1528 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1530 err
= security_socket_bind(sock
,
1531 (struct sockaddr
*)&address
,
1534 err
= sock
->ops
->bind(sock
,
1538 fput_light(sock
->file
, fput_needed
);
1544 * Perform a listen. Basically, we allow the protocol to do anything
1545 * necessary for a listen, and if that works, we mark the socket as
1546 * ready for listening.
1549 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1551 struct socket
*sock
;
1552 int err
, fput_needed
;
1555 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1557 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1558 if ((unsigned int)backlog
> somaxconn
)
1559 backlog
= somaxconn
;
1561 err
= security_socket_listen(sock
, backlog
);
1563 err
= sock
->ops
->listen(sock
, backlog
);
1565 fput_light(sock
->file
, fput_needed
);
1571 * For accept, we attempt to create a new socket, set up the link
1572 * with the client, wake up the client, then return the new
1573 * connected fd. We collect the address of the connector in kernel
1574 * space and move it to user at the very end. This is unclean because
1575 * we open the socket then return an error.
1577 * 1003.1g adds the ability to recvmsg() to query connection pending
1578 * status to recvmsg. We need to add that support in a way thats
1579 * clean when we restucture accept also.
1582 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1583 int __user
*, upeer_addrlen
, int, flags
)
1585 struct socket
*sock
, *newsock
;
1586 struct file
*newfile
;
1587 int err
, len
, newfd
, fput_needed
;
1588 struct sockaddr_storage address
;
1590 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1593 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1594 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1596 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1601 newsock
= sock_alloc();
1605 newsock
->type
= sock
->type
;
1606 newsock
->ops
= sock
->ops
;
1609 * We don't need try_module_get here, as the listening socket (sock)
1610 * has the protocol module (sock->ops->owner) held.
1612 __module_get(newsock
->ops
->owner
);
1614 newfd
= get_unused_fd_flags(flags
);
1615 if (unlikely(newfd
< 0)) {
1617 sock_release(newsock
);
1620 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1621 if (unlikely(IS_ERR(newfile
))) {
1622 err
= PTR_ERR(newfile
);
1623 put_unused_fd(newfd
);
1624 sock_release(newsock
);
1628 err
= security_socket_accept(sock
, newsock
);
1632 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1636 if (upeer_sockaddr
) {
1637 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1639 err
= -ECONNABORTED
;
1642 err
= move_addr_to_user(&address
,
1643 len
, upeer_sockaddr
, upeer_addrlen
);
1648 /* File flags are not inherited via accept() unlike another OSes. */
1650 fd_install(newfd
, newfile
);
1654 fput_light(sock
->file
, fput_needed
);
1659 put_unused_fd(newfd
);
1663 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1664 int __user
*, upeer_addrlen
)
1666 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1670 * Attempt to connect to a socket with the server address. The address
1671 * is in user space so we verify it is OK and move it to kernel space.
1673 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1676 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1677 * other SEQPACKET protocols that take time to connect() as it doesn't
1678 * include the -EINPROGRESS status for such sockets.
1681 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1684 struct socket
*sock
;
1685 struct sockaddr_storage address
;
1686 int err
, fput_needed
;
1688 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1691 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1696 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1700 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1701 sock
->file
->f_flags
);
1703 fput_light(sock
->file
, fput_needed
);
1709 * Get the local address ('name') of a socket object. Move the obtained
1710 * name to user space.
1713 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1714 int __user
*, usockaddr_len
)
1716 struct socket
*sock
;
1717 struct sockaddr_storage address
;
1718 int len
, err
, fput_needed
;
1720 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1724 err
= security_socket_getsockname(sock
);
1728 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1731 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1734 fput_light(sock
->file
, fput_needed
);
1740 * Get the remote address ('name') of a socket object. Move the obtained
1741 * name to user space.
1744 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1745 int __user
*, usockaddr_len
)
1747 struct socket
*sock
;
1748 struct sockaddr_storage address
;
1749 int len
, err
, fput_needed
;
1751 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1753 err
= security_socket_getpeername(sock
);
1755 fput_light(sock
->file
, fput_needed
);
1760 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1763 err
= move_addr_to_user(&address
, len
, usockaddr
,
1765 fput_light(sock
->file
, fput_needed
);
1771 * Send a datagram to a given address. We move the address into kernel
1772 * space and check the user space data area is readable before invoking
1776 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1777 unsigned int, flags
, struct sockaddr __user
*, addr
,
1780 struct socket
*sock
;
1781 struct sockaddr_storage address
;
1789 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1793 iov
.iov_base
= buff
;
1795 msg
.msg_name
= NULL
;
1798 msg
.msg_control
= NULL
;
1799 msg
.msg_controllen
= 0;
1800 msg
.msg_namelen
= 0;
1802 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1805 msg
.msg_name
= (struct sockaddr
*)&address
;
1806 msg
.msg_namelen
= addr_len
;
1808 if (sock
->file
->f_flags
& O_NONBLOCK
)
1809 flags
|= MSG_DONTWAIT
;
1810 msg
.msg_flags
= flags
;
1811 err
= sock_sendmsg(sock
, &msg
, len
);
1814 fput_light(sock
->file
, fput_needed
);
1820 * Send a datagram down a socket.
1823 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1824 unsigned int, flags
)
1826 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1830 * Receive a frame from the socket and optionally record the address of the
1831 * sender. We verify the buffers are writable and if needed move the
1832 * sender address from kernel to user space.
1835 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1836 unsigned int, flags
, struct sockaddr __user
*, addr
,
1837 int __user
*, addr_len
)
1839 struct socket
*sock
;
1842 struct sockaddr_storage address
;
1848 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1852 msg
.msg_control
= NULL
;
1853 msg
.msg_controllen
= 0;
1857 iov
.iov_base
= ubuf
;
1858 /* Save some cycles and don't copy the address if not needed */
1859 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1860 /* We assume all kernel code knows the size of sockaddr_storage */
1861 msg
.msg_namelen
= 0;
1862 if (sock
->file
->f_flags
& O_NONBLOCK
)
1863 flags
|= MSG_DONTWAIT
;
1864 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1866 if (err
>= 0 && addr
!= NULL
) {
1867 err2
= move_addr_to_user(&address
,
1868 msg
.msg_namelen
, addr
, addr_len
);
1873 fput_light(sock
->file
, fput_needed
);
1879 * Receive a datagram from a socket.
1882 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1885 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1889 * Set a socket option. Because we don't know the option lengths we have
1890 * to pass the user mode parameter for the protocols to sort out.
1893 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1894 char __user
*, optval
, int, optlen
)
1896 int err
, fput_needed
;
1897 struct socket
*sock
;
1902 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1904 err
= security_socket_setsockopt(sock
, level
, optname
);
1908 if (level
== SOL_SOCKET
)
1910 sock_setsockopt(sock
, level
, optname
, optval
,
1914 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1917 fput_light(sock
->file
, fput_needed
);
1923 * Get a socket option. Because we don't know the option lengths we have
1924 * to pass a user mode parameter for the protocols to sort out.
1927 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1928 char __user
*, optval
, int __user
*, optlen
)
1930 int err
, fput_needed
;
1931 struct socket
*sock
;
1933 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1935 err
= security_socket_getsockopt(sock
, level
, optname
);
1939 if (level
== SOL_SOCKET
)
1941 sock_getsockopt(sock
, level
, optname
, optval
,
1945 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1948 fput_light(sock
->file
, fput_needed
);
1954 * Shutdown a socket.
1957 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1959 int err
, fput_needed
;
1960 struct socket
*sock
;
1962 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1964 err
= security_socket_shutdown(sock
, how
);
1966 err
= sock
->ops
->shutdown(sock
, how
);
1967 fput_light(sock
->file
, fput_needed
);
1972 /* A couple of helpful macros for getting the address of the 32/64 bit
1973 * fields which are the same type (int / unsigned) on our platforms.
1975 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1976 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1977 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1979 struct used_address
{
1980 struct sockaddr_storage name
;
1981 unsigned int name_len
;
1984 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1985 struct msghdr __user
*umsg
)
1987 if (copy_from_user(kmsg
, umsg
, sizeof(struct msghdr
)))
1990 if (kmsg
->msg_namelen
< 0)
1993 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1994 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1998 static int ___sys_sendmsg(struct socket
*sock
, struct msghdr __user
*msg
,
1999 struct msghdr
*msg_sys
, unsigned int flags
,
2000 struct used_address
*used_address
)
2002 struct compat_msghdr __user
*msg_compat
=
2003 (struct compat_msghdr __user
*)msg
;
2004 struct sockaddr_storage address
;
2005 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2006 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2007 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
2008 /* 20 is size of ipv6_pktinfo */
2009 unsigned char *ctl_buf
= ctl
;
2010 int err
, ctl_len
, total_len
;
2013 if (MSG_CMSG_COMPAT
& flags
) {
2014 if (get_compat_msghdr(msg_sys
, msg_compat
))
2017 err
= copy_msghdr_from_user(msg_sys
, msg
);
2022 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2024 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2027 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2033 /* This will also move the address data into kernel space */
2034 if (MSG_CMSG_COMPAT
& flags
) {
2035 err
= verify_compat_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2037 err
= verify_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2044 if (msg_sys
->msg_controllen
> INT_MAX
)
2046 ctl_len
= msg_sys
->msg_controllen
;
2047 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2049 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2053 ctl_buf
= msg_sys
->msg_control
;
2054 ctl_len
= msg_sys
->msg_controllen
;
2055 } else if (ctl_len
) {
2056 if (ctl_len
> sizeof(ctl
)) {
2057 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2058 if (ctl_buf
== NULL
)
2063 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2064 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2065 * checking falls down on this.
2067 if (copy_from_user(ctl_buf
,
2068 (void __user __force
*)msg_sys
->msg_control
,
2071 msg_sys
->msg_control
= ctl_buf
;
2073 msg_sys
->msg_flags
= flags
;
2075 if (sock
->file
->f_flags
& O_NONBLOCK
)
2076 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2078 * If this is sendmmsg() and current destination address is same as
2079 * previously succeeded address, omit asking LSM's decision.
2080 * used_address->name_len is initialized to UINT_MAX so that the first
2081 * destination address never matches.
2083 if (used_address
&& msg_sys
->msg_name
&&
2084 used_address
->name_len
== msg_sys
->msg_namelen
&&
2085 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2086 used_address
->name_len
)) {
2087 err
= sock_sendmsg_nosec(sock
, msg_sys
, total_len
);
2090 err
= sock_sendmsg(sock
, msg_sys
, total_len
);
2092 * If this is sendmmsg() and sending to current destination address was
2093 * successful, remember it.
2095 if (used_address
&& err
>= 0) {
2096 used_address
->name_len
= msg_sys
->msg_namelen
;
2097 if (msg_sys
->msg_name
)
2098 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2099 used_address
->name_len
);
2104 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2106 if (iov
!= iovstack
)
2113 * BSD sendmsg interface
2116 long __sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2118 int fput_needed
, err
;
2119 struct msghdr msg_sys
;
2120 struct socket
*sock
;
2122 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2126 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
);
2128 fput_light(sock
->file
, fput_needed
);
2133 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned int, flags
)
2135 if (flags
& MSG_CMSG_COMPAT
)
2137 return __sys_sendmsg(fd
, msg
, flags
);
2141 * Linux sendmmsg interface
2144 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2147 int fput_needed
, err
, datagrams
;
2148 struct socket
*sock
;
2149 struct mmsghdr __user
*entry
;
2150 struct compat_mmsghdr __user
*compat_entry
;
2151 struct msghdr msg_sys
;
2152 struct used_address used_address
;
2154 if (vlen
> UIO_MAXIOV
)
2159 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2163 used_address
.name_len
= UINT_MAX
;
2165 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2168 while (datagrams
< vlen
) {
2169 if (MSG_CMSG_COMPAT
& flags
) {
2170 err
= ___sys_sendmsg(sock
, (struct msghdr __user
*)compat_entry
,
2171 &msg_sys
, flags
, &used_address
);
2174 err
= __put_user(err
, &compat_entry
->msg_len
);
2177 err
= ___sys_sendmsg(sock
,
2178 (struct msghdr __user
*)entry
,
2179 &msg_sys
, flags
, &used_address
);
2182 err
= put_user(err
, &entry
->msg_len
);
2191 fput_light(sock
->file
, fput_needed
);
2193 /* We only return an error if no datagrams were able to be sent */
2200 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2201 unsigned int, vlen
, unsigned int, flags
)
2203 if (flags
& MSG_CMSG_COMPAT
)
2205 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2208 static int ___sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
2209 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2211 struct compat_msghdr __user
*msg_compat
=
2212 (struct compat_msghdr __user
*)msg
;
2213 struct iovec iovstack
[UIO_FASTIOV
];
2214 struct iovec
*iov
= iovstack
;
2215 unsigned long cmsg_ptr
;
2216 int err
, total_len
, len
;
2218 /* kernel mode address */
2219 struct sockaddr_storage addr
;
2221 /* user mode address pointers */
2222 struct sockaddr __user
*uaddr
;
2223 int __user
*uaddr_len
;
2225 if (MSG_CMSG_COMPAT
& flags
) {
2226 if (get_compat_msghdr(msg_sys
, msg_compat
))
2229 err
= copy_msghdr_from_user(msg_sys
, msg
);
2234 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2236 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2239 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2245 /* Save the user-mode address (verify_iovec will change the
2246 * kernel msghdr to use the kernel address space)
2248 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2249 uaddr_len
= COMPAT_NAMELEN(msg
);
2250 if (MSG_CMSG_COMPAT
& flags
)
2251 err
= verify_compat_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2253 err
= verify_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2258 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2259 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2261 /* We assume all kernel code knows the size of sockaddr_storage */
2262 msg_sys
->msg_namelen
= 0;
2264 if (sock
->file
->f_flags
& O_NONBLOCK
)
2265 flags
|= MSG_DONTWAIT
;
2266 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2272 if (uaddr
!= NULL
) {
2273 err
= move_addr_to_user(&addr
,
2274 msg_sys
->msg_namelen
, uaddr
,
2279 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2283 if (MSG_CMSG_COMPAT
& flags
)
2284 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2285 &msg_compat
->msg_controllen
);
2287 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2288 &msg
->msg_controllen
);
2294 if (iov
!= iovstack
)
2301 * BSD recvmsg interface
2304 long __sys_recvmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2306 int fput_needed
, err
;
2307 struct msghdr msg_sys
;
2308 struct socket
*sock
;
2310 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2314 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2316 fput_light(sock
->file
, fput_needed
);
2321 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2322 unsigned int, flags
)
2324 if (flags
& MSG_CMSG_COMPAT
)
2326 return __sys_recvmsg(fd
, msg
, flags
);
2330 * Linux recvmmsg interface
2333 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2334 unsigned int flags
, struct timespec
*timeout
)
2336 int fput_needed
, err
, datagrams
;
2337 struct socket
*sock
;
2338 struct mmsghdr __user
*entry
;
2339 struct compat_mmsghdr __user
*compat_entry
;
2340 struct msghdr msg_sys
;
2341 struct timespec end_time
;
2344 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2350 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2354 err
= sock_error(sock
->sk
);
2359 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2361 while (datagrams
< vlen
) {
2363 * No need to ask LSM for more than the first datagram.
2365 if (MSG_CMSG_COMPAT
& flags
) {
2366 err
= ___sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2367 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2371 err
= __put_user(err
, &compat_entry
->msg_len
);
2374 err
= ___sys_recvmsg(sock
,
2375 (struct msghdr __user
*)entry
,
2376 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2380 err
= put_user(err
, &entry
->msg_len
);
2388 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2389 if (flags
& MSG_WAITFORONE
)
2390 flags
|= MSG_DONTWAIT
;
2393 ktime_get_ts(timeout
);
2394 *timeout
= timespec_sub(end_time
, *timeout
);
2395 if (timeout
->tv_sec
< 0) {
2396 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2400 /* Timeout, return less than vlen datagrams */
2401 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2405 /* Out of band data, return right away */
2406 if (msg_sys
.msg_flags
& MSG_OOB
)
2411 fput_light(sock
->file
, fput_needed
);
2416 if (datagrams
!= 0) {
2418 * We may return less entries than requested (vlen) if the
2419 * sock is non block and there aren't enough datagrams...
2421 if (err
!= -EAGAIN
) {
2423 * ... or if recvmsg returns an error after we
2424 * received some datagrams, where we record the
2425 * error to return on the next call or if the
2426 * app asks about it using getsockopt(SO_ERROR).
2428 sock
->sk
->sk_err
= -err
;
2437 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2438 unsigned int, vlen
, unsigned int, flags
,
2439 struct timespec __user
*, timeout
)
2442 struct timespec timeout_sys
;
2444 if (flags
& MSG_CMSG_COMPAT
)
2448 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2450 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2453 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2455 if (datagrams
> 0 &&
2456 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2457 datagrams
= -EFAULT
;
2462 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2463 /* Argument list sizes for sys_socketcall */
2464 #define AL(x) ((x) * sizeof(unsigned long))
2465 static const unsigned char nargs
[21] = {
2466 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2467 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2468 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2475 * System call vectors.
2477 * Argument checking cleaned up. Saved 20% in size.
2478 * This function doesn't need to set the kernel lock because
2479 * it is set by the callees.
2482 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2484 unsigned long a
[AUDITSC_ARGS
];
2485 unsigned long a0
, a1
;
2489 if (call
< 1 || call
> SYS_SENDMMSG
)
2493 if (len
> sizeof(a
))
2496 /* copy_from_user should be SMP safe. */
2497 if (copy_from_user(a
, args
, len
))
2500 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2509 err
= sys_socket(a0
, a1
, a
[2]);
2512 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2515 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2518 err
= sys_listen(a0
, a1
);
2521 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2522 (int __user
*)a
[2], 0);
2524 case SYS_GETSOCKNAME
:
2526 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2527 (int __user
*)a
[2]);
2529 case SYS_GETPEERNAME
:
2531 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2532 (int __user
*)a
[2]);
2534 case SYS_SOCKETPAIR
:
2535 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2538 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2541 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2542 (struct sockaddr __user
*)a
[4], a
[5]);
2545 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2548 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2549 (struct sockaddr __user
*)a
[4],
2550 (int __user
*)a
[5]);
2553 err
= sys_shutdown(a0
, a1
);
2555 case SYS_SETSOCKOPT
:
2556 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2558 case SYS_GETSOCKOPT
:
2560 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2561 (int __user
*)a
[4]);
2564 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2567 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2570 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2573 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2574 (struct timespec __user
*)a
[4]);
2577 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2578 (int __user
*)a
[2], a
[3]);
2587 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2590 * sock_register - add a socket protocol handler
2591 * @ops: description of protocol
2593 * This function is called by a protocol handler that wants to
2594 * advertise its address family, and have it linked into the
2595 * socket interface. The value ops->family coresponds to the
2596 * socket system call protocol family.
2598 int sock_register(const struct net_proto_family
*ops
)
2602 if (ops
->family
>= NPROTO
) {
2603 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2608 spin_lock(&net_family_lock
);
2609 if (rcu_dereference_protected(net_families
[ops
->family
],
2610 lockdep_is_held(&net_family_lock
)))
2613 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2616 spin_unlock(&net_family_lock
);
2618 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2621 EXPORT_SYMBOL(sock_register
);
2624 * sock_unregister - remove a protocol handler
2625 * @family: protocol family to remove
2627 * This function is called by a protocol handler that wants to
2628 * remove its address family, and have it unlinked from the
2629 * new socket creation.
2631 * If protocol handler is a module, then it can use module reference
2632 * counts to protect against new references. If protocol handler is not
2633 * a module then it needs to provide its own protection in
2634 * the ops->create routine.
2636 void sock_unregister(int family
)
2638 BUG_ON(family
< 0 || family
>= NPROTO
);
2640 spin_lock(&net_family_lock
);
2641 RCU_INIT_POINTER(net_families
[family
], NULL
);
2642 spin_unlock(&net_family_lock
);
2646 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2648 EXPORT_SYMBOL(sock_unregister
);
2650 static int __init
sock_init(void)
2654 * Initialize the network sysctl infrastructure.
2656 err
= net_sysctl_init();
2661 * Initialize skbuff SLAB cache
2666 * Initialize the protocols module.
2671 err
= register_filesystem(&sock_fs_type
);
2674 sock_mnt
= kern_mount(&sock_fs_type
);
2675 if (IS_ERR(sock_mnt
)) {
2676 err
= PTR_ERR(sock_mnt
);
2680 /* The real protocol initialization is performed in later initcalls.
2683 #ifdef CONFIG_NETFILTER
2684 err
= netfilter_init();
2689 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2690 skb_timestamping_init();
2697 unregister_filesystem(&sock_fs_type
);
2702 core_initcall(sock_init
); /* early initcall */
2704 #ifdef CONFIG_PROC_FS
2705 void socket_seq_show(struct seq_file
*seq
)
2710 for_each_possible_cpu(cpu
)
2711 counter
+= per_cpu(sockets_in_use
, cpu
);
2713 /* It can be negative, by the way. 8) */
2717 seq_printf(seq
, "sockets: used %d\n", counter
);
2719 #endif /* CONFIG_PROC_FS */
2721 #ifdef CONFIG_COMPAT
2722 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2723 unsigned int cmd
, void __user
*up
)
2725 mm_segment_t old_fs
= get_fs();
2730 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2733 err
= compat_put_timeval(&ktv
, up
);
2738 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2739 unsigned int cmd
, void __user
*up
)
2741 mm_segment_t old_fs
= get_fs();
2742 struct timespec kts
;
2746 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2749 err
= compat_put_timespec(&kts
, up
);
2754 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2756 struct ifreq __user
*uifr
;
2759 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2760 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2763 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2767 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2773 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2775 struct compat_ifconf ifc32
;
2777 struct ifconf __user
*uifc
;
2778 struct compat_ifreq __user
*ifr32
;
2779 struct ifreq __user
*ifr
;
2783 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2786 memset(&ifc
, 0, sizeof(ifc
));
2787 if (ifc32
.ifcbuf
== 0) {
2791 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2793 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2794 sizeof(struct ifreq
);
2795 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2797 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2798 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2799 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2800 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2806 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2809 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2813 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2817 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2819 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2820 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2821 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2827 if (ifc32
.ifcbuf
== 0) {
2828 /* Translate from 64-bit structure multiple to
2832 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2837 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2843 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2845 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2846 bool convert_in
= false, convert_out
= false;
2847 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2848 struct ethtool_rxnfc __user
*rxnfc
;
2849 struct ifreq __user
*ifr
;
2850 u32 rule_cnt
= 0, actual_rule_cnt
;
2855 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2858 compat_rxnfc
= compat_ptr(data
);
2860 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2863 /* Most ethtool structures are defined without padding.
2864 * Unfortunately struct ethtool_rxnfc is an exception.
2869 case ETHTOOL_GRXCLSRLALL
:
2870 /* Buffer size is variable */
2871 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2873 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2875 buf_size
+= rule_cnt
* sizeof(u32
);
2877 case ETHTOOL_GRXRINGS
:
2878 case ETHTOOL_GRXCLSRLCNT
:
2879 case ETHTOOL_GRXCLSRULE
:
2880 case ETHTOOL_SRXCLSRLINS
:
2883 case ETHTOOL_SRXCLSRLDEL
:
2884 buf_size
+= sizeof(struct ethtool_rxnfc
);
2889 ifr
= compat_alloc_user_space(buf_size
);
2890 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2892 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2895 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2896 &ifr
->ifr_ifru
.ifru_data
))
2900 /* We expect there to be holes between fs.m_ext and
2901 * fs.ring_cookie and at the end of fs, but nowhere else.
2903 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2904 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2905 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2906 sizeof(rxnfc
->fs
.m_ext
));
2908 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2909 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2910 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2911 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2913 if (copy_in_user(rxnfc
, compat_rxnfc
,
2914 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2915 (void __user
*)rxnfc
) ||
2916 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2917 &compat_rxnfc
->fs
.ring_cookie
,
2918 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2919 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2920 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2921 sizeof(rxnfc
->rule_cnt
)))
2925 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2930 if (copy_in_user(compat_rxnfc
, rxnfc
,
2931 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2932 (const void __user
*)rxnfc
) ||
2933 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2934 &rxnfc
->fs
.ring_cookie
,
2935 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2936 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2937 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2938 sizeof(rxnfc
->rule_cnt
)))
2941 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2942 /* As an optimisation, we only copy the actual
2943 * number of rules that the underlying
2944 * function returned. Since Mallory might
2945 * change the rule count in user memory, we
2946 * check that it is less than the rule count
2947 * originally given (as the user buffer size),
2948 * which has been range-checked.
2950 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2952 if (actual_rule_cnt
< rule_cnt
)
2953 rule_cnt
= actual_rule_cnt
;
2954 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2955 &rxnfc
->rule_locs
[0],
2956 rule_cnt
* sizeof(u32
)))
2964 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2967 compat_uptr_t uptr32
;
2968 struct ifreq __user
*uifr
;
2970 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2971 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2974 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2977 uptr
= compat_ptr(uptr32
);
2979 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2982 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2985 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2986 struct compat_ifreq __user
*ifr32
)
2989 mm_segment_t old_fs
;
2993 case SIOCBONDENSLAVE
:
2994 case SIOCBONDRELEASE
:
2995 case SIOCBONDSETHWADDR
:
2996 case SIOCBONDCHANGEACTIVE
:
2997 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
3002 err
= dev_ioctl(net
, cmd
,
3003 (struct ifreq __user __force
*) &kifr
);
3008 return -ENOIOCTLCMD
;
3012 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3013 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
3014 struct compat_ifreq __user
*u_ifreq32
)
3016 struct ifreq __user
*u_ifreq64
;
3017 char tmp_buf
[IFNAMSIZ
];
3018 void __user
*data64
;
3021 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
3024 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
3026 data64
= compat_ptr(data32
);
3028 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
3030 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
3033 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
3036 return dev_ioctl(net
, cmd
, u_ifreq64
);
3039 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
3040 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
3042 struct ifreq __user
*uifr
;
3045 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3046 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3049 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3060 case SIOCGIFBRDADDR
:
3061 case SIOCGIFDSTADDR
:
3062 case SIOCGIFNETMASK
:
3067 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3075 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3076 struct compat_ifreq __user
*uifr32
)
3079 struct compat_ifmap __user
*uifmap32
;
3080 mm_segment_t old_fs
;
3083 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3084 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3085 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3086 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3087 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3088 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3089 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3090 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3096 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
3099 if (cmd
== SIOCGIFMAP
&& !err
) {
3100 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3101 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3102 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3103 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3104 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3105 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3106 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3115 struct sockaddr rt_dst
; /* target address */
3116 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3117 struct sockaddr rt_genmask
; /* target network mask (IP) */
3118 unsigned short rt_flags
;
3121 unsigned char rt_tos
;
3122 unsigned char rt_class
;
3124 short rt_metric
; /* +1 for binary compatibility! */
3125 /* char * */ u32 rt_dev
; /* forcing the device at add */
3126 u32 rt_mtu
; /* per route MTU/Window */
3127 u32 rt_window
; /* Window clamping */
3128 unsigned short rt_irtt
; /* Initial RTT */
3131 struct in6_rtmsg32
{
3132 struct in6_addr rtmsg_dst
;
3133 struct in6_addr rtmsg_src
;
3134 struct in6_addr rtmsg_gateway
;
3144 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3145 unsigned int cmd
, void __user
*argp
)
3149 struct in6_rtmsg r6
;
3153 mm_segment_t old_fs
= get_fs();
3155 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3156 struct in6_rtmsg32 __user
*ur6
= argp
;
3157 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3158 3 * sizeof(struct in6_addr
));
3159 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3160 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3161 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3162 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3163 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3164 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3165 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3169 struct rtentry32 __user
*ur4
= argp
;
3170 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3171 3 * sizeof(struct sockaddr
));
3172 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3173 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3174 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3175 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3176 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3177 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3179 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3180 r4
.rt_dev
= (char __user __force
*)devname
;
3194 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3201 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3202 * for some operations; this forces use of the newer bridge-utils that
3203 * use compatible ioctls
3205 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3209 if (get_user(tmp
, argp
))
3211 if (tmp
== BRCTL_GET_VERSION
)
3212 return BRCTL_VERSION
+ 1;
3216 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3217 unsigned int cmd
, unsigned long arg
)
3219 void __user
*argp
= compat_ptr(arg
);
3220 struct sock
*sk
= sock
->sk
;
3221 struct net
*net
= sock_net(sk
);
3223 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3224 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3229 return old_bridge_ioctl(argp
);
3231 return dev_ifname32(net
, argp
);
3233 return dev_ifconf(net
, argp
);
3235 return ethtool_ioctl(net
, argp
);
3237 return compat_siocwandev(net
, argp
);
3240 return compat_sioc_ifmap(net
, cmd
, argp
);
3241 case SIOCBONDENSLAVE
:
3242 case SIOCBONDRELEASE
:
3243 case SIOCBONDSETHWADDR
:
3244 case SIOCBONDCHANGEACTIVE
:
3245 return bond_ioctl(net
, cmd
, argp
);
3248 return routing_ioctl(net
, sock
, cmd
, argp
);
3250 return do_siocgstamp(net
, sock
, cmd
, argp
);
3252 return do_siocgstampns(net
, sock
, cmd
, argp
);
3253 case SIOCBONDSLAVEINFOQUERY
:
3254 case SIOCBONDINFOQUERY
:
3257 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3269 return sock_ioctl(file
, cmd
, arg
);
3286 case SIOCSIFHWBROADCAST
:
3288 case SIOCGIFBRDADDR
:
3289 case SIOCSIFBRDADDR
:
3290 case SIOCGIFDSTADDR
:
3291 case SIOCSIFDSTADDR
:
3292 case SIOCGIFNETMASK
:
3293 case SIOCSIFNETMASK
:
3304 return dev_ifsioc(net
, sock
, cmd
, argp
);
3310 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3313 return -ENOIOCTLCMD
;
3316 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3319 struct socket
*sock
= file
->private_data
;
3320 int ret
= -ENOIOCTLCMD
;
3327 if (sock
->ops
->compat_ioctl
)
3328 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3330 if (ret
== -ENOIOCTLCMD
&&
3331 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3332 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3334 if (ret
== -ENOIOCTLCMD
)
3335 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3341 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3343 return sock
->ops
->bind(sock
, addr
, addrlen
);
3345 EXPORT_SYMBOL(kernel_bind
);
3347 int kernel_listen(struct socket
*sock
, int backlog
)
3349 return sock
->ops
->listen(sock
, backlog
);
3351 EXPORT_SYMBOL(kernel_listen
);
3353 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3355 struct sock
*sk
= sock
->sk
;
3358 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3363 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3365 sock_release(*newsock
);
3370 (*newsock
)->ops
= sock
->ops
;
3371 __module_get((*newsock
)->ops
->owner
);
3376 EXPORT_SYMBOL(kernel_accept
);
3378 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3381 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3383 EXPORT_SYMBOL(kernel_connect
);
3385 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3388 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3390 EXPORT_SYMBOL(kernel_getsockname
);
3392 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3395 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3397 EXPORT_SYMBOL(kernel_getpeername
);
3399 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3400 char *optval
, int *optlen
)
3402 mm_segment_t oldfs
= get_fs();
3403 char __user
*uoptval
;
3404 int __user
*uoptlen
;
3407 uoptval
= (char __user __force
*) optval
;
3408 uoptlen
= (int __user __force
*) optlen
;
3411 if (level
== SOL_SOCKET
)
3412 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3414 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3419 EXPORT_SYMBOL(kernel_getsockopt
);
3421 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3422 char *optval
, unsigned int optlen
)
3424 mm_segment_t oldfs
= get_fs();
3425 char __user
*uoptval
;
3428 uoptval
= (char __user __force
*) optval
;
3431 if (level
== SOL_SOCKET
)
3432 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3434 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3439 EXPORT_SYMBOL(kernel_setsockopt
);
3441 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3442 size_t size
, int flags
)
3444 if (sock
->ops
->sendpage
)
3445 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3447 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3449 EXPORT_SYMBOL(kernel_sendpage
);
3451 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3453 mm_segment_t oldfs
= get_fs();
3457 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3462 EXPORT_SYMBOL(kernel_sock_ioctl
);
3464 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3466 return sock
->ops
->shutdown(sock
, how
);
3468 EXPORT_SYMBOL(kernel_sock_shutdown
);