2 # SPDX-License-Identifier: GPL-2.0
4 # This code is taken from the OpenSSL project but the author (Andy Polyakov)
5 # has relicensed it under the GPLv2. Therefore this program is free software;
6 # you can redistribute it and/or modify it under the terms of the GNU General
7 # Public License version 2 as published by the Free Software Foundation.
9 # The original headers, including the original license headers, are
10 # included below for completeness.
12 # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
14 # Licensed under the OpenSSL license (the "License"). You may not use
15 # this file except in compliance with the License. You can obtain a copy
16 # in the file LICENSE in the source distribution or at
17 # https://www.openssl.org/source/license.html
19 # ====================================================================
20 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
21 # project. The module is, however, dual licensed under OpenSSL and
22 # CRYPTOGAMS licenses depending on where you obtain it. For further
23 # details see http://www.openssl.org/~appro/cryptogams/.
24 # ====================================================================
26 # SHA256/512 for ARMv8.
28 # Performance in cycles per processed byte and improvement coefficient
29 # over code generated with "default" compiler:
31 # SHA256-hw SHA256(*) SHA512
32 # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
33 # Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
34 # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
35 # Denver 2.01 10.5 (+26%) 6.70 (+8%)
36 # X-Gene 20.0 (+100%) 12.8 (+300%(***))
37 # Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
39 # (*) Software SHA256 results are of lesser relevance, presented
40 # mostly for informational purposes.
41 # (**) The result is a trade-off: it's possible to improve it by
42 # 10% (or by 1 cycle per round), but at the cost of 20% loss
43 # on Cortex-A53 (or by 4 cycles per round).
44 # (***) Super-impressive coefficients over gcc-generated code are
45 # indication of some compiler "pathology", most notably code
46 # generated with -mgeneral-regs-only is significanty faster
47 # and the gap is only 40-90%.
51 # Originally it was reckoned that it makes no sense to implement NEON
52 # version of SHA256 for 64-bit processors. This is because performance
53 # improvement on most wide-spread Cortex-A5x processors was observed
54 # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
55 # observed that 32-bit NEON SHA256 performs significantly better than
56 # 64-bit scalar version on *some* of the more recent processors. As
57 # result 64-bit NEON version of SHA256 was added to provide best
58 # all-round performance. For example it executes ~30% faster on X-Gene
59 # and Mongoose. [For reference, NEON version of SHA512 is bound to
60 # deliver much less improvement, likely *negative* on Cortex-A5x.
61 # Which is why NEON support is limited to SHA256.]
66 if ($flavour && $flavour ne "void") {
67 $0 =~ m/(.*[\/\\])[^\
/\\]+$/; $dir=$1;
68 ( $xlate="${dir}arm-xlate.pl" and -f
$xlate ) or
69 ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f
$xlate) or
70 die "can't locate arm-xlate.pl";
72 open OUT
,"| \"$^X\" $xlate $flavour $output";
75 open STDOUT
,">$output";
78 if ($output =~ /512/) {
98 $func="sha${BITS}_block_data_order";
100 ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
102 @X=map("$reg_t$_",(3..15,0..2));
103 @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
104 ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
107 my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
109 my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
110 $T0=@X[$i+3] if ($i<11);
112 $code.=<<___
if ($i<16);
113 #ifndef __AARCH64EB__
114 rev
@X[$i],@X[$i] // $i
117 $code.=<<___
if ($i<13 && ($i&1));
118 ldp
@X[$i+1],@X[$i+2],[$inp],#2*$SZ
120 $code.=<<___
if ($i==13);
121 ldp
@X[14],@X[15],[$inp]
123 $code.=<<___
if ($i>=14);
124 ldr
@X[($i-11)&15],[sp
,#`$SZ*(($i-11)%4)`]
126 $code.=<<___
if ($i>0 && $i<16);
127 add
$a,$a,$t1 // h
+=Sigma0
(a
)
129 $code.=<<___
if ($i>=11);
130 str
@X[($i-8)&15],[sp
,#`$SZ*(($i-8)%4)`]
132 # While ARMv8 specifies merged rotate-n-logical operation such as
133 # 'eor x,y,z,ror#n', it was found to negatively affect performance
134 # on Apple A7. The reason seems to be that it requires even 'y' to
135 # be available earlier. This means that such merged instruction is
136 # not necessarily best choice on critical path... On the other hand
137 # Cortex-A5x handles merged instructions much better than disjoint
138 # rotate and logical... See (**) footnote above.
139 $code.=<<___
if ($i<15);
140 ror
$t0,$e,#$Sigma1[0]
141 add
$h,$h,$t2 // h
+=K
[i
]
142 eor
$T0,$e,$e,ror
#`$Sigma1[2]-$Sigma1[1]`
145 add
$h,$h,@X[$i&15] // h
+=X
[i
]
146 orr
$t1,$t1,$t2 // Ch
(e
,f
,g
)
147 eor
$t2,$a,$b // a
^b
, b
^c
in next round
148 eor
$t0,$t0,$T0,ror
#$Sigma1[1] // Sigma1(e)
149 ror
$T0,$a,#$Sigma0[0]
150 add
$h,$h,$t1 // h
+=Ch
(e
,f
,g
)
151 eor
$t1,$a,$a,ror
#`$Sigma0[2]-$Sigma0[1]`
152 add
$h,$h,$t0 // h
+=Sigma1
(e
)
153 and $t3,$t3,$t2 // (b
^c
)&=(a
^b
)
155 eor
$t3,$t3,$b // Maj
(a
,b
,c
)
156 eor
$t1,$T0,$t1,ror
#$Sigma0[1] // Sigma0(a)
157 add
$h,$h,$t3 // h
+=Maj
(a
,b
,c
)
158 ldr
$t3,[$Ktbl],#$SZ // *K++, $t2 in next round
159 //add $h,$h,$t1 // h
+=Sigma0
(a
)
161 $code.=<<___
if ($i>=15);
162 ror
$t0,$e,#$Sigma1[0]
163 add
$h,$h,$t2 // h
+=K
[i
]
164 ror
$T1,@X[($j+1)&15],#$sigma0[0]
166 ror
$T2,@X[($j+14)&15],#$sigma1[0]
168 ror
$T0,$a,#$Sigma0[0]
169 add
$h,$h,@X[$i&15] // h
+=X
[i
]
170 eor
$t0,$t0,$e,ror
#$Sigma1[1]
171 eor
$T1,$T1,@X[($j+1)&15],ror
#$sigma0[1]
172 orr
$t1,$t1,$t2 // Ch
(e
,f
,g
)
173 eor
$t2,$a,$b // a
^b
, b
^c
in next round
174 eor
$t0,$t0,$e,ror
#$Sigma1[2] // Sigma1(e)
175 eor
$T0,$T0,$a,ror
#$Sigma0[1]
176 add
$h,$h,$t1 // h
+=Ch
(e
,f
,g
)
177 and $t3,$t3,$t2 // (b
^c
)&=(a
^b
)
178 eor
$T2,$T2,@X[($j+14)&15],ror
#$sigma1[1]
179 eor
$T1,$T1,@X[($j+1)&15],lsr
#$sigma0[2] // sigma0(X[i+1])
180 add
$h,$h,$t0 // h
+=Sigma1
(e
)
181 eor
$t3,$t3,$b // Maj
(a
,b
,c
)
182 eor
$t1,$T0,$a,ror
#$Sigma0[2] // Sigma0(a)
183 eor
$T2,$T2,@X[($j+14)&15],lsr
#$sigma1[2] // sigma1(X[i+14])
184 add
@X[$j],@X[$j],@X[($j+9)&15]
186 add
$h,$h,$t3 // h
+=Maj
(a
,b
,c
)
187 ldr
$t3,[$Ktbl],#$SZ // *K++, $t2 in next round
188 add
@X[$j],@X[$j],$T1
189 add
$h,$h,$t1 // h
+=Sigma0
(a
)
190 add
@X[$j],@X[$j],$T2
197 # include "arm_arch.h"
202 .extern OPENSSL_armcap_P
204 .type
$func,%function
208 $code.=<<___
if ($SZ==4);
211 ldrsw x16
,.LOPENSSL_armcap_P
213 ldr x16
,.LOPENSSL_armcap_P
215 adr x17
,.LOPENSSL_armcap_P
218 tst w16
,#ARMV8_SHA256
225 stp x29
,x30
,[sp
,#-128]!
235 ldp
$A,$B,[$ctx] // load context
236 ldp
$C,$D,[$ctx,#2*$SZ]
237 ldp
$E,$F,[$ctx,#4*$SZ]
238 add
$num,$inp,$num,lsl
#`log(16*$SZ)/log(2)` // end of input
239 ldp
$G,$H,[$ctx,#6*$SZ]
241 stp
$ctx,$num,[x29
,#96]
244 ldp
@X[0],@X[1],[$inp],#2*$SZ
245 ldr
$t2,[$Ktbl],#$SZ // *K++
246 eor
$t3,$B,$C // magic seed
249 for ($i=0;$i<16;$i++) { &BODY_00_xx
($i,@V); unshift(@V,pop(@V)); }
250 $code.=".Loop_16_xx:\n";
251 for (;$i<32;$i++) { &BODY_00_xx
($i,@V); unshift(@V,pop(@V)); }
255 ldp
$ctx,$num,[x29
,#96]
257 sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
259 ldp
@X[0],@X[1],[$ctx]
260 ldp
@X[2],@X[3],[$ctx,#2*$SZ]
261 add
$inp,$inp,#14*$SZ // advance input pointer
262 ldp
@X[4],@X[5],[$ctx,#4*$SZ]
264 ldp
@X[6],@X[7],[$ctx,#6*$SZ]
271 stp
$C,$D,[$ctx,#2*$SZ]
275 stp
$E,$F,[$ctx,#4*$SZ]
276 stp
$G,$H,[$ctx,#6*$SZ]
279 ldp x19
,x20
,[x29
,#16]
281 ldp x21
,x22
,[x29
,#32]
282 ldp x23
,x24
,[x29
,#48]
283 ldp x25
,x26
,[x29
,#64]
284 ldp x27
,x28
,[x29
,#80]
285 ldp x29
,x30
,[sp
],#128
290 .type
.LK
$BITS,%object
293 $code.=<<___
if ($SZ==8);
294 .quad
0x428a2f98d728ae22,0x7137449123ef65cd
295 .quad
0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
296 .quad
0x3956c25bf348b538,0x59f111f1b605d019
297 .quad
0x923f82a4af194f9b,0xab1c5ed5da6d8118
298 .quad
0xd807aa98a3030242,0x12835b0145706fbe
299 .quad
0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
300 .quad
0x72be5d74f27b896f,0x80deb1fe3b1696b1
301 .quad
0x9bdc06a725c71235,0xc19bf174cf692694
302 .quad
0xe49b69c19ef14ad2,0xefbe4786384f25e3
303 .quad
0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
304 .quad
0x2de92c6f592b0275,0x4a7484aa6ea6e483
305 .quad
0x5cb0a9dcbd41fbd4,0x76f988da831153b5
306 .quad
0x983e5152ee66dfab,0xa831c66d2db43210
307 .quad
0xb00327c898fb213f,0xbf597fc7beef0ee4
308 .quad
0xc6e00bf33da88fc2,0xd5a79147930aa725
309 .quad
0x06ca6351e003826f,0x142929670a0e6e70
310 .quad
0x27b70a8546d22ffc,0x2e1b21385c26c926
311 .quad
0x4d2c6dfc5ac42aed,0x53380d139d95b3df
312 .quad
0x650a73548baf63de,0x766a0abb3c77b2a8
313 .quad
0x81c2c92e47edaee6,0x92722c851482353b
314 .quad
0xa2bfe8a14cf10364,0xa81a664bbc423001
315 .quad
0xc24b8b70d0f89791,0xc76c51a30654be30
316 .quad
0xd192e819d6ef5218,0xd69906245565a910
317 .quad
0xf40e35855771202a,0x106aa07032bbd1b8
318 .quad
0x19a4c116b8d2d0c8,0x1e376c085141ab53
319 .quad
0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
320 .quad
0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
321 .quad
0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
322 .quad
0x748f82ee5defb2fc,0x78a5636f43172f60
323 .quad
0x84c87814a1f0ab72,0x8cc702081a6439ec
324 .quad
0x90befffa23631e28,0xa4506cebde82bde9
325 .quad
0xbef9a3f7b2c67915,0xc67178f2e372532b
326 .quad
0xca273eceea26619c,0xd186b8c721c0c207
327 .quad
0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
328 .quad
0x06f067aa72176fba,0x0a637dc5a2c898a6
329 .quad
0x113f9804bef90dae,0x1b710b35131c471b
330 .quad
0x28db77f523047d84,0x32caab7b40c72493
331 .quad
0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
332 .quad
0x4cc5d4becb3e42b6,0x597f299cfc657e2a
333 .quad
0x5fcb6fab3ad6faec,0x6c44198c4a475817
334 .quad
0 // terminator
336 $code.=<<___
if ($SZ==4);
337 .long
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
338 .long
0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
339 .long
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
340 .long
0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
341 .long
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
342 .long
0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
343 .long
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
344 .long
0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
345 .long
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
346 .long
0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
347 .long
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
348 .long
0xd192e819,0xd6990624,0xf40e3585,0x106aa070
349 .long
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
350 .long
0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
351 .long
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
352 .long
0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
356 .size
.LK
$BITS,.-.LK
$BITS
361 .long OPENSSL_armcap_P
-.
363 .quad OPENSSL_armcap_P
-.
366 .asciz
"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
373 my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
374 my @MSG=map("v$_.16b",(4..7));
375 my ($W0,$W1)=("v16.4s","v17.4s");
376 my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
380 .type sha256_block_armv8
,%function
384 stp x29
,x30
,[sp
,#-16]!
387 ld1
.32
{$ABCD,$EFGH},[$ctx]
391 ld1
{@MSG[0]-@MSG[3]},[$inp],#64
393 ld1
.32
{$W0},[$Ktbl],#16
394 rev32
@MSG[0],@MSG[0]
395 rev32
@MSG[1],@MSG[1]
396 rev32
@MSG[2],@MSG[2]
397 rev32
@MSG[3],@MSG[3]
398 orr
$ABCD_SAVE,$ABCD,$ABCD // offload
399 orr
$EFGH_SAVE,$EFGH,$EFGH
401 for($i=0;$i<12;$i++) {
403 ld1
.32
{$W1},[$Ktbl],#16
404 add
.i32
$W0,$W0,@MSG[0]
405 sha256su0
@MSG[0],@MSG[1]
406 orr
$abcd,$ABCD,$ABCD
407 sha256h
$ABCD,$EFGH,$W0
408 sha256h2
$EFGH,$abcd,$W0
409 sha256su1
@MSG[0],@MSG[2],@MSG[3]
411 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
414 ld1
.32
{$W1},[$Ktbl],#16
415 add
.i32
$W0,$W0,@MSG[0]
416 orr
$abcd,$ABCD,$ABCD
417 sha256h
$ABCD,$EFGH,$W0
418 sha256h2
$EFGH,$abcd,$W0
420 ld1
.32
{$W0},[$Ktbl],#16
421 add
.i32
$W1,$W1,@MSG[1]
422 orr
$abcd,$ABCD,$ABCD
423 sha256h
$ABCD,$EFGH,$W1
424 sha256h2
$EFGH,$abcd,$W1
427 add
.i32
$W0,$W0,@MSG[2]
428 sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
429 orr
$abcd,$ABCD,$ABCD
430 sha256h
$ABCD,$EFGH,$W0
431 sha256h2
$EFGH,$abcd,$W0
433 add
.i32
$W1,$W1,@MSG[3]
434 orr
$abcd,$ABCD,$ABCD
435 sha256h
$ABCD,$EFGH,$W1
436 sha256h2
$EFGH,$abcd,$W1
438 add
.i32
$ABCD,$ABCD,$ABCD_SAVE
439 add
.i32
$EFGH,$EFGH,$EFGH_SAVE
443 st1
.32
{$ABCD,$EFGH},[$ctx]
447 .size sha256_block_armv8
,.-sha256_block_armv8
452 if ($SZ==4) { ######################################### NEON stuff #
453 # You'll surely note a lot of similarities with sha256-armv4 module,
454 # and of course it's not a coincidence. sha256-armv4 was used as
455 # initial template, but was adapted for ARMv8 instruction set and
456 # extensively re-tuned for all-round performance.
458 my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
459 my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
462 my @X = map("q$_",(0..3));
463 my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
466 sub AUTOLOAD
() # thunk [simplified] x86-style perlasm
467 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
469 $arg = "#$arg" if ($arg*1 eq $arg);
470 $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
473 sub Dscalar
{ shift =~ m
|[qv
]([0-9]+)|?
"d$1":""; }
474 sub Dlo
{ shift =~ m
|[qv
]([0-9]+)|?
"v$1.d[0]":""; }
475 sub Dhi
{ shift =~ m
|[qv
]([0-9]+)|?
"v$1.d[1]":""; }
480 my @insns = (&$body,&$body,&$body,&$body);
481 my ($a,$b,$c,$d,$e,$f,$g,$h);
483 &ext_8
($T0,@X[0],@X[1],4); # X[1..4]
487 &ext_8
($T3,@X[2],@X[3],4); # X[9..12]
490 &mov
(&Dscalar
($T7),&Dhi
(@X[3])); # X[14..15]
493 &ushr_32
($T2,$T0,$sigma0[0]);
495 &ushr_32
($T1,$T0,$sigma0[2]);
497 &add_32
(@X[0],@X[0],$T3); # X[0..3] += X[9..12]
499 &sli_32
($T2,$T0,32-$sigma0[0]);
502 &ushr_32
($T3,$T0,$sigma0[1]);
505 &eor_8
($T1,$T1,$T2);
508 &sli_32
($T3,$T0,32-$sigma0[1]);
511 &ushr_32
($T4,$T7,$sigma1[0]);
514 &eor_8
($T1,$T1,$T3); # sigma0(X[1..4])
517 &sli_32
($T4,$T7,32-$sigma1[0]);
520 &ushr_32
($T5,$T7,$sigma1[2]);
523 &ushr_32
($T3,$T7,$sigma1[1]);
526 &add_32
(@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
529 &sli_u32
($T3,$T7,32-$sigma1[1]);
532 &eor_8
($T5,$T5,$T4);
536 &eor_8
($T5,$T5,$T3); # sigma1(X[14..15])
540 &add_32
(@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
544 &ushr_32
($T6,@X[0],$sigma1[0]);
546 &ushr_32
($T7,@X[0],$sigma1[2]);
549 &sli_32
($T6,@X[0],32-$sigma1[0]);
551 &ushr_32
($T5,@X[0],$sigma1[1]);
554 &eor_8
($T7,$T7,$T6);
557 &sli_32
($T5,@X[0],32-$sigma1[1]);
560 &ld1_32
("{$T0}","[$Ktbl], #16");
562 &eor_8
($T7,$T7,$T5); # sigma1(X[16..17])
565 &eor_8
($T5,$T5,$T5);
568 &mov
(&Dhi
($T5), &Dlo
($T7));
572 &add_32
(@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
576 &add_32
($T0,$T0,@X[0]);
577 while($#insns>=1) { eval(shift(@insns)); }
578 &st1_32
("{$T0}","[$Xfer], #16");
581 push(@X,shift(@X)); # "rotate" X[]
587 my @insns = (&$body,&$body,&$body,&$body);
588 my ($a,$b,$c,$d,$e,$f,$g,$h);
592 &ld1_8
("{@X[0]}","[$inp],#16");
595 &ld1_32
("{$T0}","[$Ktbl],#16");
600 &rev32
(@X[0],@X[0]);
605 &add_32
($T0,$T0,@X[0]);
606 foreach (@insns) { eval; } # remaining instructions
607 &st1_32
("{$T0}","[$Xfer], #16");
609 push(@X,shift(@X)); # "rotate" X[]
614 '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
615 '&add ($h,$h,$t1)', # h+=X[i]+K[i]
616 '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
619 '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
620 '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
621 '&orr ($t1,$t1,$t4)', # Ch(e,f,g)
622 '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
623 '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
624 '&add ($h,$h,$t1)', # h+=Ch(e,f,g)
625 '&ror ($t0,$t0,"#$Sigma1[0]")',
626 '&eor ($t2,$a,$b)', # a^b, b^c in next round
627 '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
628 '&add ($h,$h,$t0)', # h+=Sigma1(e)
629 '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
630 '&ldr ($t1,"[$Ktbl]") if ($j==15);'.
631 '&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
632 '&ror ($t4,$t4,"#$Sigma0[0]")',
633 '&add ($d,$d,$h)', # d+=h
634 '&eor ($t3,$t3,$b)', # Maj(a,b,c)
635 '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
641 .globl sha256_block_neon
643 .type sha256_block_neon
,%function
647 stp x29
, x30
, [sp
, #-16]!
652 add
$num,$inp,$num,lsl
#6 // len to point at the end of inp
654 ld1
.8
{@X[0]},[$inp], #16
655 ld1
.8
{@X[1]},[$inp], #16
656 ld1
.8
{@X[2]},[$inp], #16
657 ld1
.8
{@X[3]},[$inp], #16
658 ld1
.32
{$T0},[$Ktbl], #16
659 ld1
.32
{$T1},[$Ktbl], #16
660 ld1
.32
{$T2},[$Ktbl], #16
661 ld1
.32
{$T3},[$Ktbl], #16
662 rev32
@X[0],@X[0] // yes
, even on
663 rev32
@X[1],@X[1] // big
-endian
670 st1
.32
{$T0-$T1},[$Xfer], #32
672 st1
.32
{$T2-$T3},[$Xfer]
688 &Xupdate
(\
&body_00_15
);
689 &Xupdate
(\
&body_00_15
);
690 &Xupdate
(\
&body_00_15
);
691 &Xupdate
(\
&body_00_15
);
693 cmp $t1,#0 // check for K256 terminator
698 sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
701 csel
$Xfer, $Xfer, xzr
, eq
702 sub $inp,$inp,$Xfer // avoid SEGV
705 &Xpreload
(\
&body_00_15
);
706 &Xpreload
(\
&body_00_15
);
707 &Xpreload
(\
&body_00_15
);
708 &Xpreload
(\
&body_00_15
);
710 add
$A,$A,$t4 // h
+=Sigma0
(a
) from the past
711 ldp
$t0,$t1,[$ctx,#0]
712 add
$A,$A,$t2 // h
+=Maj
(a
,b
,c
) from the past
713 ldp
$t2,$t3,[$ctx,#8]
714 add
$A,$A,$t0 // accumulate
716 ldp
$t0,$t1,[$ctx,#16]
719 ldp
$t2,$t3,[$ctx,#24]
738 .size sha256_block_neon
,.-sha256_block_neon
744 .comm OPENSSL_armcap_P
,4,4
749 "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
750 "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
753 my ($mnemonic,$arg)=@_;
755 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
757 sprintf ".inst\t0x%08x\t//%s %s",
758 $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
766 last if (!s/^#/\/\
// and !/^$/);
771 foreach(split("\n",$code)) {
773 s/\`([^\`]*)\`/eval($1)/ge;
775 s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
777 s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
780 s/\.\w?32\b// and s/\.16b/\.4s/g;
781 m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;