1 // SPDX-License-Identifier: GPL-2.0-only
3 * Contains CPU feature definitions
5 * Copyright (C) 2015 ARM Ltd.
8 #define pr_fmt(fmt) "CPU features: " fmt
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
17 #include <linux/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly
;
32 #define COMPAT_ELF_HWCAP_DEFAULT \
33 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
36 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
37 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
39 unsigned int compat_elf_hwcap __read_mostly
= COMPAT_ELF_HWCAP_DEFAULT
;
40 unsigned int compat_elf_hwcap2 __read_mostly
;
43 DECLARE_BITMAP(cpu_hwcaps
, ARM64_NCAPS
);
44 EXPORT_SYMBOL(cpu_hwcaps
);
45 static struct arm64_cpu_capabilities
const __ro_after_init
*cpu_hwcaps_ptrs
[ARM64_NCAPS
];
47 /* Need also bit for ARM64_CB_PATCH */
48 DECLARE_BITMAP(boot_capabilities
, ARM64_NPATCHABLE
);
51 * Flag to indicate if we have computed the system wide
52 * capabilities based on the boot time active CPUs. This
53 * will be used to determine if a new booting CPU should
54 * go through the verification process to make sure that it
55 * supports the system capabilities, without using a hotplug
58 static bool sys_caps_initialised
;
60 static inline void set_sys_caps_initialised(void)
62 sys_caps_initialised
= true;
65 static int dump_cpu_hwcaps(struct notifier_block
*self
, unsigned long v
, void *p
)
67 /* file-wide pr_fmt adds "CPU features: " prefix */
68 pr_emerg("0x%*pb\n", ARM64_NCAPS
, &cpu_hwcaps
);
72 static struct notifier_block cpu_hwcaps_notifier
= {
73 .notifier_call
= dump_cpu_hwcaps
76 static int __init
register_cpu_hwcaps_dumper(void)
78 atomic_notifier_chain_register(&panic_notifier_list
,
79 &cpu_hwcaps_notifier
);
82 __initcall(register_cpu_hwcaps_dumper
);
84 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys
, ARM64_NCAPS
);
85 EXPORT_SYMBOL(cpu_hwcap_keys
);
87 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
95 .safe_val = SAFE_VAL, \
98 /* Define a feature with unsigned values */
99 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
100 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
102 /* Define a feature with a signed value */
103 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
104 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106 #define ARM64_FTR_END \
111 /* meta feature for alternatives */
112 static bool __maybe_unused
113 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
);
115 static void cpu_enable_cnp(struct arm64_cpu_capabilities
const *cap
);
118 * NOTE: Any changes to the visibility of features should be kept in
119 * sync with the documentation of the CPU feature register ABI.
121 static const struct arm64_ftr_bits ftr_id_aa64isar0
[] = {
122 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_TS_SHIFT
, 4, 0),
123 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_FHM_SHIFT
, 4, 0),
124 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_DP_SHIFT
, 4, 0),
125 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SM4_SHIFT
, 4, 0),
126 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SM3_SHIFT
, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA3_SHIFT
, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_RDM_SHIFT
, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_ATOMICS_SHIFT
, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_CRC32_SHIFT
, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA2_SHIFT
, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA1_SHIFT
, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_AES_SHIFT
, 4, 0),
137 static const struct arm64_ftr_bits ftr_id_aa64isar1
[] = {
138 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_SB_SHIFT
, 4, 0),
139 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
140 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_GPI_SHIFT
, 4, 0),
141 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
142 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_GPA_SHIFT
, 4, 0),
143 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_LRCPC_SHIFT
, 4, 0),
144 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_FCMA_SHIFT
, 4, 0),
145 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_JSCVT_SHIFT
, 4, 0),
146 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
147 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_API_SHIFT
, 4, 0),
148 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
149 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_APA_SHIFT
, 4, 0),
150 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_DPB_SHIFT
, 4, 0),
154 static const struct arm64_ftr_bits ftr_id_aa64pfr0
[] = {
155 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_CSV3_SHIFT
, 4, 0),
156 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_CSV2_SHIFT
, 4, 0),
157 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_DIT_SHIFT
, 4, 0),
158 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
159 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_SVE_SHIFT
, 4, 0),
160 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_RAS_SHIFT
, 4, 0),
161 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_GIC_SHIFT
, 4, 0),
162 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_ASIMD_SHIFT
, 4, ID_AA64PFR0_ASIMD_NI
),
163 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_FP_SHIFT
, 4, ID_AA64PFR0_FP_NI
),
164 /* Linux doesn't care about the EL3 */
165 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL3_SHIFT
, 4, 0),
166 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL2_SHIFT
, 4, 0),
167 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_SHIFT
, 4, ID_AA64PFR0_EL1_64BIT_ONLY
),
168 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL0_SHIFT
, 4, ID_AA64PFR0_EL0_64BIT_ONLY
),
172 static const struct arm64_ftr_bits ftr_id_aa64pfr1
[] = {
173 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR1_SSBS_SHIFT
, 4, ID_AA64PFR1_SSBS_PSTATE_NI
),
177 static const struct arm64_ftr_bits ftr_id_aa64zfr0
[] = {
178 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_SM4_SHIFT
, 4, 0),
179 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_SHA3_SHIFT
, 4, 0),
180 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_BITPERM_SHIFT
, 4, 0),
181 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_AES_SHIFT
, 4, 0),
182 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_SVEVER_SHIFT
, 4, 0),
186 static const struct arm64_ftr_bits ftr_id_aa64mmfr0
[] = {
187 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN4_SHIFT
, 4, ID_AA64MMFR0_TGRAN4_NI
),
188 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN64_SHIFT
, 4, ID_AA64MMFR0_TGRAN64_NI
),
189 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN16_SHIFT
, 4, ID_AA64MMFR0_TGRAN16_NI
),
190 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_BIGENDEL0_SHIFT
, 4, 0),
191 /* Linux shouldn't care about secure memory */
192 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_SNSMEM_SHIFT
, 4, 0),
193 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_BIGENDEL_SHIFT
, 4, 0),
194 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_ASID_SHIFT
, 4, 0),
196 * Differing PARange is fine as long as all peripherals and memory are mapped
197 * within the minimum PARange of all CPUs
199 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_PARANGE_SHIFT
, 4, 0),
203 static const struct arm64_ftr_bits ftr_id_aa64mmfr1
[] = {
204 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_PAN_SHIFT
, 4, 0),
205 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_LOR_SHIFT
, 4, 0),
206 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_HPD_SHIFT
, 4, 0),
207 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_VHE_SHIFT
, 4, 0),
208 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_VMIDBITS_SHIFT
, 4, 0),
209 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_HADBS_SHIFT
, 4, 0),
213 static const struct arm64_ftr_bits ftr_id_aa64mmfr2
[] = {
214 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_FWB_SHIFT
, 4, 0),
215 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_AT_SHIFT
, 4, 0),
216 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_LVA_SHIFT
, 4, 0),
217 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_IESB_SHIFT
, 4, 0),
218 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_LSM_SHIFT
, 4, 0),
219 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_UAO_SHIFT
, 4, 0),
220 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_CNP_SHIFT
, 4, 0),
224 static const struct arm64_ftr_bits ftr_ctr
[] = {
225 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 31, 1, 1), /* RES1 */
226 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_DIC_SHIFT
, 1, 1),
227 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_IDC_SHIFT
, 1, 1),
228 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_SAFE
, CTR_CWG_SHIFT
, 4, 0),
229 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_SAFE
, CTR_ERG_SHIFT
, 4, 0),
230 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_DMINLINE_SHIFT
, 4, 1),
232 * Linux can handle differing I-cache policies. Userspace JITs will
233 * make use of *minLine.
234 * If we have differing I-cache policies, report it as the weakest - VIPT.
236 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_EXACT
, 14, 2, ICACHE_POLICY_VIPT
), /* L1Ip */
237 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_IMINLINE_SHIFT
, 4, 0),
241 struct arm64_ftr_reg arm64_ftr_reg_ctrel0
= {
242 .name
= "SYS_CTR_EL0",
246 static const struct arm64_ftr_bits ftr_id_mmfr0
[] = {
247 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0xf), /* InnerShr */
248 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0), /* FCSE */
249 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* AuxReg */
250 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0), /* TCM */
251 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0), /* ShareLvl */
252 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0xf), /* OuterShr */
253 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* PMSA */
254 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* VMSA */
258 static const struct arm64_ftr_bits ftr_id_aa64dfr0
[] = {
259 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 36, 28, 0),
260 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_PMSVER_SHIFT
, 4, 0),
261 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_CTX_CMPS_SHIFT
, 4, 0),
262 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_WRPS_SHIFT
, 4, 0),
263 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_BRPS_SHIFT
, 4, 0),
265 * We can instantiate multiple PMU instances with different levels
268 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64DFR0_PMUVER_SHIFT
, 4, 0),
269 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_TRACEVER_SHIFT
, 4, 0),
270 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_DEBUGVER_SHIFT
, 4, 0x6),
274 static const struct arm64_ftr_bits ftr_mvfr2
[] = {
275 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* FPMisc */
276 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* SIMDMisc */
280 static const struct arm64_ftr_bits ftr_dczid
[] = {
281 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 4, 1, 1), /* DZP */
282 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* BS */
287 static const struct arm64_ftr_bits ftr_id_isar5
[] = {
288 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_RDM_SHIFT
, 4, 0),
289 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_CRC32_SHIFT
, 4, 0),
290 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SHA2_SHIFT
, 4, 0),
291 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SHA1_SHIFT
, 4, 0),
292 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_AES_SHIFT
, 4, 0),
293 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SEVL_SHIFT
, 4, 0),
297 static const struct arm64_ftr_bits ftr_id_mmfr4
[] = {
298 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* ac2 */
302 static const struct arm64_ftr_bits ftr_id_pfr0
[] = {
303 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0), /* State3 */
304 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0), /* State2 */
305 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* State1 */
306 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* State0 */
310 static const struct arm64_ftr_bits ftr_id_dfr0
[] = {
311 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
312 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0xf), /* PerfMon */
313 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
314 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
315 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
316 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
317 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
318 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
322 static const struct arm64_ftr_bits ftr_zcr
[] = {
323 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
,
324 ZCR_ELx_LEN_SHIFT
, ZCR_ELx_LEN_SIZE
, 0), /* LEN */
329 * Common ftr bits for a 32bit register with all hidden, strict
330 * attributes, with 4bit feature fields and a default safe value of
331 * 0. Covers the following 32bit registers:
332 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
334 static const struct arm64_ftr_bits ftr_generic_32bits
[] = {
335 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
336 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0),
337 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
338 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
339 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
340 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
341 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
342 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
346 /* Table for a single 32bit feature value */
347 static const struct arm64_ftr_bits ftr_single32
[] = {
348 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 0, 32, 0),
352 static const struct arm64_ftr_bits ftr_raz
[] = {
356 #define ARM64_FTR_REG(id, table) { \
358 .reg = &(struct arm64_ftr_reg){ \
360 .ftr_bits = &((table)[0]), \
363 static const struct __ftr_reg_entry
{
365 struct arm64_ftr_reg
*reg
;
366 } arm64_ftr_regs
[] = {
368 /* Op1 = 0, CRn = 0, CRm = 1 */
369 ARM64_FTR_REG(SYS_ID_PFR0_EL1
, ftr_id_pfr0
),
370 ARM64_FTR_REG(SYS_ID_PFR1_EL1
, ftr_generic_32bits
),
371 ARM64_FTR_REG(SYS_ID_DFR0_EL1
, ftr_id_dfr0
),
372 ARM64_FTR_REG(SYS_ID_MMFR0_EL1
, ftr_id_mmfr0
),
373 ARM64_FTR_REG(SYS_ID_MMFR1_EL1
, ftr_generic_32bits
),
374 ARM64_FTR_REG(SYS_ID_MMFR2_EL1
, ftr_generic_32bits
),
375 ARM64_FTR_REG(SYS_ID_MMFR3_EL1
, ftr_generic_32bits
),
377 /* Op1 = 0, CRn = 0, CRm = 2 */
378 ARM64_FTR_REG(SYS_ID_ISAR0_EL1
, ftr_generic_32bits
),
379 ARM64_FTR_REG(SYS_ID_ISAR1_EL1
, ftr_generic_32bits
),
380 ARM64_FTR_REG(SYS_ID_ISAR2_EL1
, ftr_generic_32bits
),
381 ARM64_FTR_REG(SYS_ID_ISAR3_EL1
, ftr_generic_32bits
),
382 ARM64_FTR_REG(SYS_ID_ISAR4_EL1
, ftr_generic_32bits
),
383 ARM64_FTR_REG(SYS_ID_ISAR5_EL1
, ftr_id_isar5
),
384 ARM64_FTR_REG(SYS_ID_MMFR4_EL1
, ftr_id_mmfr4
),
386 /* Op1 = 0, CRn = 0, CRm = 3 */
387 ARM64_FTR_REG(SYS_MVFR0_EL1
, ftr_generic_32bits
),
388 ARM64_FTR_REG(SYS_MVFR1_EL1
, ftr_generic_32bits
),
389 ARM64_FTR_REG(SYS_MVFR2_EL1
, ftr_mvfr2
),
391 /* Op1 = 0, CRn = 0, CRm = 4 */
392 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1
, ftr_id_aa64pfr0
),
393 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1
, ftr_id_aa64pfr1
),
394 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1
, ftr_id_aa64zfr0
),
396 /* Op1 = 0, CRn = 0, CRm = 5 */
397 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1
, ftr_id_aa64dfr0
),
398 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1
, ftr_raz
),
400 /* Op1 = 0, CRn = 0, CRm = 6 */
401 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1
, ftr_id_aa64isar0
),
402 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1
, ftr_id_aa64isar1
),
404 /* Op1 = 0, CRn = 0, CRm = 7 */
405 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1
, ftr_id_aa64mmfr0
),
406 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1
, ftr_id_aa64mmfr1
),
407 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1
, ftr_id_aa64mmfr2
),
409 /* Op1 = 0, CRn = 1, CRm = 2 */
410 ARM64_FTR_REG(SYS_ZCR_EL1
, ftr_zcr
),
412 /* Op1 = 3, CRn = 0, CRm = 0 */
413 { SYS_CTR_EL0
, &arm64_ftr_reg_ctrel0
},
414 ARM64_FTR_REG(SYS_DCZID_EL0
, ftr_dczid
),
416 /* Op1 = 3, CRn = 14, CRm = 0 */
417 ARM64_FTR_REG(SYS_CNTFRQ_EL0
, ftr_single32
),
420 static int search_cmp_ftr_reg(const void *id
, const void *regp
)
422 return (int)(unsigned long)id
- (int)((const struct __ftr_reg_entry
*)regp
)->sys_id
;
426 * get_arm64_ftr_reg - Lookup a feature register entry using its
427 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
428 * ascending order of sys_id , we use binary search to find a matching
431 * returns - Upon success, matching ftr_reg entry for id.
432 * - NULL on failure. It is upto the caller to decide
433 * the impact of a failure.
435 static struct arm64_ftr_reg
*get_arm64_ftr_reg(u32 sys_id
)
437 const struct __ftr_reg_entry
*ret
;
439 ret
= bsearch((const void *)(unsigned long)sys_id
,
441 ARRAY_SIZE(arm64_ftr_regs
),
442 sizeof(arm64_ftr_regs
[0]),
449 static u64
arm64_ftr_set_value(const struct arm64_ftr_bits
*ftrp
, s64 reg
,
452 u64 mask
= arm64_ftr_mask(ftrp
);
455 reg
|= (ftr_val
<< ftrp
->shift
) & mask
;
459 static s64
arm64_ftr_safe_value(const struct arm64_ftr_bits
*ftrp
, s64
new,
464 switch (ftrp
->type
) {
466 ret
= ftrp
->safe_val
;
469 ret
= new < cur
? new : cur
;
471 case FTR_HIGHER_SAFE
:
472 ret
= new > cur
? new : cur
;
481 static void __init
sort_ftr_regs(void)
485 /* Check that the array is sorted so that we can do the binary search */
486 for (i
= 1; i
< ARRAY_SIZE(arm64_ftr_regs
); i
++)
487 BUG_ON(arm64_ftr_regs
[i
].sys_id
< arm64_ftr_regs
[i
- 1].sys_id
);
491 * Initialise the CPU feature register from Boot CPU values.
492 * Also initiliases the strict_mask for the register.
493 * Any bits that are not covered by an arm64_ftr_bits entry are considered
494 * RES0 for the system-wide value, and must strictly match.
496 static void __init
init_cpu_ftr_reg(u32 sys_reg
, u64
new)
499 u64 strict_mask
= ~0x0ULL
;
503 const struct arm64_ftr_bits
*ftrp
;
504 struct arm64_ftr_reg
*reg
= get_arm64_ftr_reg(sys_reg
);
508 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
509 u64 ftr_mask
= arm64_ftr_mask(ftrp
);
510 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
512 val
= arm64_ftr_set_value(ftrp
, val
, ftr_new
);
514 valid_mask
|= ftr_mask
;
516 strict_mask
&= ~ftr_mask
;
518 user_mask
|= ftr_mask
;
520 reg
->user_val
= arm64_ftr_set_value(ftrp
,
528 reg
->strict_mask
= strict_mask
;
529 reg
->user_mask
= user_mask
;
532 extern const struct arm64_cpu_capabilities arm64_errata
[];
533 static const struct arm64_cpu_capabilities arm64_features
[];
536 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities
*caps
)
538 for (; caps
->matches
; caps
++) {
539 if (WARN(caps
->capability
>= ARM64_NCAPS
,
540 "Invalid capability %d\n", caps
->capability
))
542 if (WARN(cpu_hwcaps_ptrs
[caps
->capability
],
543 "Duplicate entry for capability %d\n",
546 cpu_hwcaps_ptrs
[caps
->capability
] = caps
;
550 static void __init
init_cpu_hwcaps_indirect_list(void)
552 init_cpu_hwcaps_indirect_list_from_array(arm64_features
);
553 init_cpu_hwcaps_indirect_list_from_array(arm64_errata
);
556 static void __init
setup_boot_cpu_capabilities(void);
558 void __init
init_cpu_features(struct cpuinfo_arm64
*info
)
560 /* Before we start using the tables, make sure it is sorted */
563 init_cpu_ftr_reg(SYS_CTR_EL0
, info
->reg_ctr
);
564 init_cpu_ftr_reg(SYS_DCZID_EL0
, info
->reg_dczid
);
565 init_cpu_ftr_reg(SYS_CNTFRQ_EL0
, info
->reg_cntfrq
);
566 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1
, info
->reg_id_aa64dfr0
);
567 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1
, info
->reg_id_aa64dfr1
);
568 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1
, info
->reg_id_aa64isar0
);
569 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1
, info
->reg_id_aa64isar1
);
570 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1
, info
->reg_id_aa64mmfr0
);
571 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1
, info
->reg_id_aa64mmfr1
);
572 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1
, info
->reg_id_aa64mmfr2
);
573 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1
, info
->reg_id_aa64pfr0
);
574 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1
, info
->reg_id_aa64pfr1
);
575 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1
, info
->reg_id_aa64zfr0
);
577 if (id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
578 init_cpu_ftr_reg(SYS_ID_DFR0_EL1
, info
->reg_id_dfr0
);
579 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1
, info
->reg_id_isar0
);
580 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1
, info
->reg_id_isar1
);
581 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1
, info
->reg_id_isar2
);
582 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1
, info
->reg_id_isar3
);
583 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1
, info
->reg_id_isar4
);
584 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1
, info
->reg_id_isar5
);
585 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1
, info
->reg_id_mmfr0
);
586 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1
, info
->reg_id_mmfr1
);
587 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1
, info
->reg_id_mmfr2
);
588 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1
, info
->reg_id_mmfr3
);
589 init_cpu_ftr_reg(SYS_ID_PFR0_EL1
, info
->reg_id_pfr0
);
590 init_cpu_ftr_reg(SYS_ID_PFR1_EL1
, info
->reg_id_pfr1
);
591 init_cpu_ftr_reg(SYS_MVFR0_EL1
, info
->reg_mvfr0
);
592 init_cpu_ftr_reg(SYS_MVFR1_EL1
, info
->reg_mvfr1
);
593 init_cpu_ftr_reg(SYS_MVFR2_EL1
, info
->reg_mvfr2
);
596 if (id_aa64pfr0_sve(info
->reg_id_aa64pfr0
)) {
597 init_cpu_ftr_reg(SYS_ZCR_EL1
, info
->reg_zcr
);
602 * Initialize the indirect array of CPU hwcaps capabilities pointers
603 * before we handle the boot CPU below.
605 init_cpu_hwcaps_indirect_list();
608 * Detect and enable early CPU capabilities based on the boot CPU,
609 * after we have initialised the CPU feature infrastructure.
611 setup_boot_cpu_capabilities();
614 static void update_cpu_ftr_reg(struct arm64_ftr_reg
*reg
, u64
new)
616 const struct arm64_ftr_bits
*ftrp
;
618 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
619 s64 ftr_cur
= arm64_ftr_value(ftrp
, reg
->sys_val
);
620 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
622 if (ftr_cur
== ftr_new
)
624 /* Find a safe value */
625 ftr_new
= arm64_ftr_safe_value(ftrp
, ftr_new
, ftr_cur
);
626 reg
->sys_val
= arm64_ftr_set_value(ftrp
, reg
->sys_val
, ftr_new
);
631 static int check_update_ftr_reg(u32 sys_id
, int cpu
, u64 val
, u64 boot
)
633 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(sys_id
);
636 update_cpu_ftr_reg(regp
, val
);
637 if ((boot
& regp
->strict_mask
) == (val
& regp
->strict_mask
))
639 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
640 regp
->name
, boot
, cpu
, val
);
645 * Update system wide CPU feature registers with the values from a
646 * non-boot CPU. Also performs SANITY checks to make sure that there
647 * aren't any insane variations from that of the boot CPU.
649 void update_cpu_features(int cpu
,
650 struct cpuinfo_arm64
*info
,
651 struct cpuinfo_arm64
*boot
)
656 * The kernel can handle differing I-cache policies, but otherwise
657 * caches should look identical. Userspace JITs will make use of
660 taint
|= check_update_ftr_reg(SYS_CTR_EL0
, cpu
,
661 info
->reg_ctr
, boot
->reg_ctr
);
664 * Userspace may perform DC ZVA instructions. Mismatched block sizes
665 * could result in too much or too little memory being zeroed if a
666 * process is preempted and migrated between CPUs.
668 taint
|= check_update_ftr_reg(SYS_DCZID_EL0
, cpu
,
669 info
->reg_dczid
, boot
->reg_dczid
);
671 /* If different, timekeeping will be broken (especially with KVM) */
672 taint
|= check_update_ftr_reg(SYS_CNTFRQ_EL0
, cpu
,
673 info
->reg_cntfrq
, boot
->reg_cntfrq
);
676 * The kernel uses self-hosted debug features and expects CPUs to
677 * support identical debug features. We presently need CTX_CMPs, WRPs,
678 * and BRPs to be identical.
679 * ID_AA64DFR1 is currently RES0.
681 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1
, cpu
,
682 info
->reg_id_aa64dfr0
, boot
->reg_id_aa64dfr0
);
683 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1
, cpu
,
684 info
->reg_id_aa64dfr1
, boot
->reg_id_aa64dfr1
);
686 * Even in big.LITTLE, processors should be identical instruction-set
689 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1
, cpu
,
690 info
->reg_id_aa64isar0
, boot
->reg_id_aa64isar0
);
691 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1
, cpu
,
692 info
->reg_id_aa64isar1
, boot
->reg_id_aa64isar1
);
695 * Differing PARange support is fine as long as all peripherals and
696 * memory are mapped within the minimum PARange of all CPUs.
697 * Linux should not care about secure memory.
699 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1
, cpu
,
700 info
->reg_id_aa64mmfr0
, boot
->reg_id_aa64mmfr0
);
701 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1
, cpu
,
702 info
->reg_id_aa64mmfr1
, boot
->reg_id_aa64mmfr1
);
703 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1
, cpu
,
704 info
->reg_id_aa64mmfr2
, boot
->reg_id_aa64mmfr2
);
707 * EL3 is not our concern.
709 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1
, cpu
,
710 info
->reg_id_aa64pfr0
, boot
->reg_id_aa64pfr0
);
711 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1
, cpu
,
712 info
->reg_id_aa64pfr1
, boot
->reg_id_aa64pfr1
);
714 taint
|= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1
, cpu
,
715 info
->reg_id_aa64zfr0
, boot
->reg_id_aa64zfr0
);
718 * If we have AArch32, we care about 32-bit features for compat.
719 * If the system doesn't support AArch32, don't update them.
721 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
)) &&
722 id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
724 taint
|= check_update_ftr_reg(SYS_ID_DFR0_EL1
, cpu
,
725 info
->reg_id_dfr0
, boot
->reg_id_dfr0
);
726 taint
|= check_update_ftr_reg(SYS_ID_ISAR0_EL1
, cpu
,
727 info
->reg_id_isar0
, boot
->reg_id_isar0
);
728 taint
|= check_update_ftr_reg(SYS_ID_ISAR1_EL1
, cpu
,
729 info
->reg_id_isar1
, boot
->reg_id_isar1
);
730 taint
|= check_update_ftr_reg(SYS_ID_ISAR2_EL1
, cpu
,
731 info
->reg_id_isar2
, boot
->reg_id_isar2
);
732 taint
|= check_update_ftr_reg(SYS_ID_ISAR3_EL1
, cpu
,
733 info
->reg_id_isar3
, boot
->reg_id_isar3
);
734 taint
|= check_update_ftr_reg(SYS_ID_ISAR4_EL1
, cpu
,
735 info
->reg_id_isar4
, boot
->reg_id_isar4
);
736 taint
|= check_update_ftr_reg(SYS_ID_ISAR5_EL1
, cpu
,
737 info
->reg_id_isar5
, boot
->reg_id_isar5
);
740 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
741 * ACTLR formats could differ across CPUs and therefore would have to
742 * be trapped for virtualization anyway.
744 taint
|= check_update_ftr_reg(SYS_ID_MMFR0_EL1
, cpu
,
745 info
->reg_id_mmfr0
, boot
->reg_id_mmfr0
);
746 taint
|= check_update_ftr_reg(SYS_ID_MMFR1_EL1
, cpu
,
747 info
->reg_id_mmfr1
, boot
->reg_id_mmfr1
);
748 taint
|= check_update_ftr_reg(SYS_ID_MMFR2_EL1
, cpu
,
749 info
->reg_id_mmfr2
, boot
->reg_id_mmfr2
);
750 taint
|= check_update_ftr_reg(SYS_ID_MMFR3_EL1
, cpu
,
751 info
->reg_id_mmfr3
, boot
->reg_id_mmfr3
);
752 taint
|= check_update_ftr_reg(SYS_ID_PFR0_EL1
, cpu
,
753 info
->reg_id_pfr0
, boot
->reg_id_pfr0
);
754 taint
|= check_update_ftr_reg(SYS_ID_PFR1_EL1
, cpu
,
755 info
->reg_id_pfr1
, boot
->reg_id_pfr1
);
756 taint
|= check_update_ftr_reg(SYS_MVFR0_EL1
, cpu
,
757 info
->reg_mvfr0
, boot
->reg_mvfr0
);
758 taint
|= check_update_ftr_reg(SYS_MVFR1_EL1
, cpu
,
759 info
->reg_mvfr1
, boot
->reg_mvfr1
);
760 taint
|= check_update_ftr_reg(SYS_MVFR2_EL1
, cpu
,
761 info
->reg_mvfr2
, boot
->reg_mvfr2
);
764 if (id_aa64pfr0_sve(info
->reg_id_aa64pfr0
)) {
765 taint
|= check_update_ftr_reg(SYS_ZCR_EL1
, cpu
,
766 info
->reg_zcr
, boot
->reg_zcr
);
768 /* Probe vector lengths, unless we already gave up on SVE */
769 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
)) &&
770 !sys_caps_initialised
)
775 * Mismatched CPU features are a recipe for disaster. Don't even
776 * pretend to support them.
779 pr_warn_once("Unsupported CPU feature variation detected.\n");
780 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
784 u64
read_sanitised_ftr_reg(u32 id
)
786 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(id
);
788 /* We shouldn't get a request for an unsupported register */
790 return regp
->sys_val
;
793 #define read_sysreg_case(r) \
794 case r: return read_sysreg_s(r)
797 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
798 * Read the system register on the current CPU
800 static u64
__read_sysreg_by_encoding(u32 sys_id
)
803 read_sysreg_case(SYS_ID_PFR0_EL1
);
804 read_sysreg_case(SYS_ID_PFR1_EL1
);
805 read_sysreg_case(SYS_ID_DFR0_EL1
);
806 read_sysreg_case(SYS_ID_MMFR0_EL1
);
807 read_sysreg_case(SYS_ID_MMFR1_EL1
);
808 read_sysreg_case(SYS_ID_MMFR2_EL1
);
809 read_sysreg_case(SYS_ID_MMFR3_EL1
);
810 read_sysreg_case(SYS_ID_ISAR0_EL1
);
811 read_sysreg_case(SYS_ID_ISAR1_EL1
);
812 read_sysreg_case(SYS_ID_ISAR2_EL1
);
813 read_sysreg_case(SYS_ID_ISAR3_EL1
);
814 read_sysreg_case(SYS_ID_ISAR4_EL1
);
815 read_sysreg_case(SYS_ID_ISAR5_EL1
);
816 read_sysreg_case(SYS_MVFR0_EL1
);
817 read_sysreg_case(SYS_MVFR1_EL1
);
818 read_sysreg_case(SYS_MVFR2_EL1
);
820 read_sysreg_case(SYS_ID_AA64PFR0_EL1
);
821 read_sysreg_case(SYS_ID_AA64PFR1_EL1
);
822 read_sysreg_case(SYS_ID_AA64ZFR0_EL1
);
823 read_sysreg_case(SYS_ID_AA64DFR0_EL1
);
824 read_sysreg_case(SYS_ID_AA64DFR1_EL1
);
825 read_sysreg_case(SYS_ID_AA64MMFR0_EL1
);
826 read_sysreg_case(SYS_ID_AA64MMFR1_EL1
);
827 read_sysreg_case(SYS_ID_AA64MMFR2_EL1
);
828 read_sysreg_case(SYS_ID_AA64ISAR0_EL1
);
829 read_sysreg_case(SYS_ID_AA64ISAR1_EL1
);
831 read_sysreg_case(SYS_CNTFRQ_EL0
);
832 read_sysreg_case(SYS_CTR_EL0
);
833 read_sysreg_case(SYS_DCZID_EL0
);
841 #include <linux/irqchip/arm-gic-v3.h>
844 feature_matches(u64 reg
, const struct arm64_cpu_capabilities
*entry
)
846 int val
= cpuid_feature_extract_field(reg
, entry
->field_pos
, entry
->sign
);
848 return val
>= entry
->min_field_value
;
852 has_cpuid_feature(const struct arm64_cpu_capabilities
*entry
, int scope
)
856 WARN_ON(scope
== SCOPE_LOCAL_CPU
&& preemptible());
857 if (scope
== SCOPE_SYSTEM
)
858 val
= read_sanitised_ftr_reg(entry
->sys_reg
);
860 val
= __read_sysreg_by_encoding(entry
->sys_reg
);
862 return feature_matches(val
, entry
);
865 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities
*entry
, int scope
)
869 if (!has_cpuid_feature(entry
, scope
))
872 has_sre
= gic_enable_sre();
874 pr_warn_once("%s present but disabled by higher exception level\n",
880 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities
*entry
, int __unused
)
882 u32 midr
= read_cpuid_id();
884 /* Cavium ThunderX pass 1.x and 2.x */
885 return MIDR_IS_CPU_MODEL_RANGE(midr
, MIDR_THUNDERX
,
886 MIDR_CPU_VAR_REV(0, 0),
887 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK
));
890 static bool has_no_fpsimd(const struct arm64_cpu_capabilities
*entry
, int __unused
)
892 u64 pfr0
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
894 return cpuid_feature_extract_signed_field(pfr0
,
895 ID_AA64PFR0_FP_SHIFT
) < 0;
898 static bool has_cache_idc(const struct arm64_cpu_capabilities
*entry
,
903 if (scope
== SCOPE_SYSTEM
)
904 ctr
= arm64_ftr_reg_ctrel0
.sys_val
;
906 ctr
= read_cpuid_effective_cachetype();
908 return ctr
& BIT(CTR_IDC_SHIFT
);
911 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities
*__unused
)
914 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
915 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
916 * to the CTR_EL0 on this CPU and emulate it with the real/safe
919 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT
)))
920 sysreg_clear_set(sctlr_el1
, SCTLR_EL1_UCT
, 0);
923 static bool has_cache_dic(const struct arm64_cpu_capabilities
*entry
,
928 if (scope
== SCOPE_SYSTEM
)
929 ctr
= arm64_ftr_reg_ctrel0
.sys_val
;
931 ctr
= read_cpuid_cachetype();
933 return ctr
& BIT(CTR_DIC_SHIFT
);
936 static bool __maybe_unused
937 has_useable_cnp(const struct arm64_cpu_capabilities
*entry
, int scope
)
940 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
941 * may share TLB entries with a CPU stuck in the crashed
944 if (is_kdump_kernel())
947 return has_cpuid_feature(entry
, scope
);
950 static bool __meltdown_safe
= true;
951 static int __kpti_forced
; /* 0: not forced, >0: forced on, <0: forced off */
953 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities
*entry
,
956 /* List of CPUs that are not vulnerable and don't need KPTI */
957 static const struct midr_range kpti_safe_list
[] = {
958 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2
),
959 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN
),
960 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35
),
961 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53
),
962 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55
),
963 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57
),
964 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72
),
965 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73
),
966 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110
),
969 char const *str
= "kpti command line option";
972 meltdown_safe
= is_midr_in_range_list(read_cpuid_id(), kpti_safe_list
);
974 /* Defer to CPU feature registers */
975 if (has_cpuid_feature(entry
, scope
))
976 meltdown_safe
= true;
979 __meltdown_safe
= false;
982 * For reasons that aren't entirely clear, enabling KPTI on Cavium
983 * ThunderX leads to apparent I-cache corruption of kernel text, which
984 * ends as well as you might imagine. Don't even try.
986 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456
)) {
987 str
= "ARM64_WORKAROUND_CAVIUM_27456";
991 /* Useful for KASLR robustness */
992 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE
) && kaslr_offset() > 0) {
993 if (!__kpti_forced
) {
999 if (cpu_mitigations_off() && !__kpti_forced
) {
1000 str
= "mitigations=off";
1004 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0
)) {
1005 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1010 if (__kpti_forced
) {
1011 pr_info_once("kernel page table isolation forced %s by %s\n",
1012 __kpti_forced
> 0 ? "ON" : "OFF", str
);
1013 return __kpti_forced
> 0;
1016 return !meltdown_safe
;
1019 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1021 kpti_install_ng_mappings(const struct arm64_cpu_capabilities
*__unused
)
1023 typedef void (kpti_remap_fn
)(int, int, phys_addr_t
);
1024 extern kpti_remap_fn idmap_kpti_install_ng_mappings
;
1025 kpti_remap_fn
*remap_fn
;
1027 static bool kpti_applied
= false;
1028 int cpu
= smp_processor_id();
1031 * We don't need to rewrite the page-tables if either we've done
1032 * it already or we have KASLR enabled and therefore have not
1033 * created any global mappings at all.
1035 if (kpti_applied
|| kaslr_offset() > 0)
1038 remap_fn
= (void *)__pa_symbol(idmap_kpti_install_ng_mappings
);
1040 cpu_install_idmap();
1041 remap_fn(cpu
, num_online_cpus(), __pa_symbol(swapper_pg_dir
));
1042 cpu_uninstall_idmap();
1045 kpti_applied
= true;
1051 kpti_install_ng_mappings(const struct arm64_cpu_capabilities
*__unused
)
1054 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1056 static int __init
parse_kpti(char *str
)
1059 int ret
= strtobool(str
, &enabled
);
1064 __kpti_forced
= enabled
? 1 : -1;
1067 early_param("kpti", parse_kpti
);
1069 #ifdef CONFIG_ARM64_HW_AFDBM
1070 static inline void __cpu_enable_hw_dbm(void)
1072 u64 tcr
= read_sysreg(tcr_el1
) | TCR_HD
;
1074 write_sysreg(tcr
, tcr_el1
);
1078 static bool cpu_has_broken_dbm(void)
1080 /* List of CPUs which have broken DBM support. */
1081 static const struct midr_range cpus
[] = {
1082 #ifdef CONFIG_ARM64_ERRATUM_1024718
1083 MIDR_RANGE(MIDR_CORTEX_A55
, 0, 0, 1, 0), // A55 r0p0 -r1p0
1088 return is_midr_in_range_list(read_cpuid_id(), cpus
);
1091 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities
*cap
)
1093 return has_cpuid_feature(cap
, SCOPE_LOCAL_CPU
) &&
1094 !cpu_has_broken_dbm();
1097 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities
const *cap
)
1099 if (cpu_can_use_dbm(cap
))
1100 __cpu_enable_hw_dbm();
1103 static bool has_hw_dbm(const struct arm64_cpu_capabilities
*cap
,
1106 static bool detected
= false;
1108 * DBM is a non-conflicting feature. i.e, the kernel can safely
1109 * run a mix of CPUs with and without the feature. So, we
1110 * unconditionally enable the capability to allow any late CPU
1111 * to use the feature. We only enable the control bits on the
1112 * CPU, if it actually supports.
1114 * We have to make sure we print the "feature" detection only
1115 * when at least one CPU actually uses it. So check if this CPU
1116 * can actually use it and print the message exactly once.
1118 * This is safe as all CPUs (including secondary CPUs - due to the
1119 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1120 * goes through the "matches" check exactly once. Also if a CPU
1121 * matches the criteria, it is guaranteed that the CPU will turn
1122 * the DBM on, as the capability is unconditionally enabled.
1124 if (!detected
&& cpu_can_use_dbm(cap
)) {
1126 pr_info("detected: Hardware dirty bit management\n");
1134 #ifdef CONFIG_ARM64_VHE
1135 static bool runs_at_el2(const struct arm64_cpu_capabilities
*entry
, int __unused
)
1137 return is_kernel_in_hyp_mode();
1140 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities
*__unused
)
1143 * Copy register values that aren't redirected by hardware.
1145 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1146 * this value to tpidr_el2 before we patch the code. Once we've done
1147 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1150 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN
))
1151 write_sysreg(read_sysreg(tpidr_el1
), tpidr_el2
);
1155 static void cpu_has_fwb(const struct arm64_cpu_capabilities
*__unused
)
1157 u64 val
= read_sysreg_s(SYS_CLIDR_EL1
);
1159 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1160 WARN_ON(val
& (7 << 27 | 7 << 21));
1163 #ifdef CONFIG_ARM64_SSBD
1164 static int ssbs_emulation_handler(struct pt_regs
*regs
, u32 instr
)
1166 if (user_mode(regs
))
1169 if (instr
& BIT(PSTATE_Imm_shift
))
1170 regs
->pstate
|= PSR_SSBS_BIT
;
1172 regs
->pstate
&= ~PSR_SSBS_BIT
;
1174 arm64_skip_faulting_instruction(regs
, 4);
1178 static struct undef_hook ssbs_emulation_hook
= {
1179 .instr_mask
= ~(1U << PSTATE_Imm_shift
),
1180 .instr_val
= 0xd500401f | PSTATE_SSBS
,
1181 .fn
= ssbs_emulation_handler
,
1184 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities
*__unused
)
1186 static bool undef_hook_registered
= false;
1187 static DEFINE_SPINLOCK(hook_lock
);
1189 spin_lock(&hook_lock
);
1190 if (!undef_hook_registered
) {
1191 register_undef_hook(&ssbs_emulation_hook
);
1192 undef_hook_registered
= true;
1194 spin_unlock(&hook_lock
);
1196 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE
) {
1197 sysreg_clear_set(sctlr_el1
, 0, SCTLR_ELx_DSSBS
);
1198 arm64_set_ssbd_mitigation(false);
1200 arm64_set_ssbd_mitigation(true);
1203 #endif /* CONFIG_ARM64_SSBD */
1205 #ifdef CONFIG_ARM64_PAN
1206 static void cpu_enable_pan(const struct arm64_cpu_capabilities
*__unused
)
1209 * We modify PSTATE. This won't work from irq context as the PSTATE
1210 * is discarded once we return from the exception.
1212 WARN_ON_ONCE(in_interrupt());
1214 sysreg_clear_set(sctlr_el1
, SCTLR_EL1_SPAN
, 0);
1215 asm(SET_PSTATE_PAN(1));
1217 #endif /* CONFIG_ARM64_PAN */
1219 #ifdef CONFIG_ARM64_RAS_EXTN
1220 static void cpu_clear_disr(const struct arm64_cpu_capabilities
*__unused
)
1222 /* Firmware may have left a deferred SError in this register. */
1223 write_sysreg_s(0, SYS_DISR_EL1
);
1225 #endif /* CONFIG_ARM64_RAS_EXTN */
1227 #ifdef CONFIG_ARM64_PTR_AUTH
1228 static void cpu_enable_address_auth(struct arm64_cpu_capabilities
const *cap
)
1230 sysreg_clear_set(sctlr_el1
, 0, SCTLR_ELx_ENIA
| SCTLR_ELx_ENIB
|
1231 SCTLR_ELx_ENDA
| SCTLR_ELx_ENDB
);
1233 #endif /* CONFIG_ARM64_PTR_AUTH */
1235 #ifdef CONFIG_ARM64_PSEUDO_NMI
1236 static bool enable_pseudo_nmi
;
1238 static int __init
early_enable_pseudo_nmi(char *p
)
1240 return strtobool(p
, &enable_pseudo_nmi
);
1242 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi
);
1244 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities
*entry
,
1247 return enable_pseudo_nmi
&& has_useable_gicv3_cpuif(entry
, scope
);
1251 static const struct arm64_cpu_capabilities arm64_features
[] = {
1253 .desc
= "GIC system register CPU interface",
1254 .capability
= ARM64_HAS_SYSREG_GIC_CPUIF
,
1255 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
1256 .matches
= has_useable_gicv3_cpuif
,
1257 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1258 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
1259 .sign
= FTR_UNSIGNED
,
1260 .min_field_value
= 1,
1262 #ifdef CONFIG_ARM64_PAN
1264 .desc
= "Privileged Access Never",
1265 .capability
= ARM64_HAS_PAN
,
1266 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1267 .matches
= has_cpuid_feature
,
1268 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
1269 .field_pos
= ID_AA64MMFR1_PAN_SHIFT
,
1270 .sign
= FTR_UNSIGNED
,
1271 .min_field_value
= 1,
1272 .cpu_enable
= cpu_enable_pan
,
1274 #endif /* CONFIG_ARM64_PAN */
1275 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1277 .desc
= "LSE atomic instructions",
1278 .capability
= ARM64_HAS_LSE_ATOMICS
,
1279 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1280 .matches
= has_cpuid_feature
,
1281 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
1282 .field_pos
= ID_AA64ISAR0_ATOMICS_SHIFT
,
1283 .sign
= FTR_UNSIGNED
,
1284 .min_field_value
= 2,
1286 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1288 .desc
= "Software prefetching using PRFM",
1289 .capability
= ARM64_HAS_NO_HW_PREFETCH
,
1290 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1291 .matches
= has_no_hw_prefetch
,
1293 #ifdef CONFIG_ARM64_UAO
1295 .desc
= "User Access Override",
1296 .capability
= ARM64_HAS_UAO
,
1297 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1298 .matches
= has_cpuid_feature
,
1299 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1300 .field_pos
= ID_AA64MMFR2_UAO_SHIFT
,
1301 .min_field_value
= 1,
1303 * We rely on stop_machine() calling uao_thread_switch() to set
1304 * UAO immediately after patching.
1307 #endif /* CONFIG_ARM64_UAO */
1308 #ifdef CONFIG_ARM64_PAN
1310 .capability
= ARM64_ALT_PAN_NOT_UAO
,
1311 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1312 .matches
= cpufeature_pan_not_uao
,
1314 #endif /* CONFIG_ARM64_PAN */
1315 #ifdef CONFIG_ARM64_VHE
1317 .desc
= "Virtualization Host Extensions",
1318 .capability
= ARM64_HAS_VIRT_HOST_EXTN
,
1319 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
1320 .matches
= runs_at_el2
,
1321 .cpu_enable
= cpu_copy_el2regs
,
1323 #endif /* CONFIG_ARM64_VHE */
1325 .desc
= "32-bit EL0 Support",
1326 .capability
= ARM64_HAS_32BIT_EL0
,
1327 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1328 .matches
= has_cpuid_feature
,
1329 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1330 .sign
= FTR_UNSIGNED
,
1331 .field_pos
= ID_AA64PFR0_EL0_SHIFT
,
1332 .min_field_value
= ID_AA64PFR0_EL0_32BIT_64BIT
,
1335 .desc
= "Kernel page table isolation (KPTI)",
1336 .capability
= ARM64_UNMAP_KERNEL_AT_EL0
,
1337 .type
= ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE
,
1339 * The ID feature fields below are used to indicate that
1340 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1343 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1344 .field_pos
= ID_AA64PFR0_CSV3_SHIFT
,
1345 .min_field_value
= 1,
1346 .matches
= unmap_kernel_at_el0
,
1347 .cpu_enable
= kpti_install_ng_mappings
,
1350 /* FP/SIMD is not implemented */
1351 .capability
= ARM64_HAS_NO_FPSIMD
,
1352 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1353 .min_field_value
= 0,
1354 .matches
= has_no_fpsimd
,
1356 #ifdef CONFIG_ARM64_PMEM
1358 .desc
= "Data cache clean to Point of Persistence",
1359 .capability
= ARM64_HAS_DCPOP
,
1360 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1361 .matches
= has_cpuid_feature
,
1362 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1363 .field_pos
= ID_AA64ISAR1_DPB_SHIFT
,
1364 .min_field_value
= 1,
1367 .desc
= "Data cache clean to Point of Deep Persistence",
1368 .capability
= ARM64_HAS_DCPODP
,
1369 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1370 .matches
= has_cpuid_feature
,
1371 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1372 .sign
= FTR_UNSIGNED
,
1373 .field_pos
= ID_AA64ISAR1_DPB_SHIFT
,
1374 .min_field_value
= 2,
1377 #ifdef CONFIG_ARM64_SVE
1379 .desc
= "Scalable Vector Extension",
1380 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1381 .capability
= ARM64_SVE
,
1382 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1383 .sign
= FTR_UNSIGNED
,
1384 .field_pos
= ID_AA64PFR0_SVE_SHIFT
,
1385 .min_field_value
= ID_AA64PFR0_SVE
,
1386 .matches
= has_cpuid_feature
,
1387 .cpu_enable
= sve_kernel_enable
,
1389 #endif /* CONFIG_ARM64_SVE */
1390 #ifdef CONFIG_ARM64_RAS_EXTN
1392 .desc
= "RAS Extension Support",
1393 .capability
= ARM64_HAS_RAS_EXTN
,
1394 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1395 .matches
= has_cpuid_feature
,
1396 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1397 .sign
= FTR_UNSIGNED
,
1398 .field_pos
= ID_AA64PFR0_RAS_SHIFT
,
1399 .min_field_value
= ID_AA64PFR0_RAS_V1
,
1400 .cpu_enable
= cpu_clear_disr
,
1402 #endif /* CONFIG_ARM64_RAS_EXTN */
1404 .desc
= "Data cache clean to the PoU not required for I/D coherence",
1405 .capability
= ARM64_HAS_CACHE_IDC
,
1406 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1407 .matches
= has_cache_idc
,
1408 .cpu_enable
= cpu_emulate_effective_ctr
,
1411 .desc
= "Instruction cache invalidation not required for I/D coherence",
1412 .capability
= ARM64_HAS_CACHE_DIC
,
1413 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1414 .matches
= has_cache_dic
,
1417 .desc
= "Stage-2 Force Write-Back",
1418 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1419 .capability
= ARM64_HAS_STAGE2_FWB
,
1420 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1421 .sign
= FTR_UNSIGNED
,
1422 .field_pos
= ID_AA64MMFR2_FWB_SHIFT
,
1423 .min_field_value
= 1,
1424 .matches
= has_cpuid_feature
,
1425 .cpu_enable
= cpu_has_fwb
,
1427 #ifdef CONFIG_ARM64_HW_AFDBM
1430 * Since we turn this on always, we don't want the user to
1431 * think that the feature is available when it may not be.
1432 * So hide the description.
1434 * .desc = "Hardware pagetable Dirty Bit Management",
1437 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1438 .capability
= ARM64_HW_DBM
,
1439 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
1440 .sign
= FTR_UNSIGNED
,
1441 .field_pos
= ID_AA64MMFR1_HADBS_SHIFT
,
1442 .min_field_value
= 2,
1443 .matches
= has_hw_dbm
,
1444 .cpu_enable
= cpu_enable_hw_dbm
,
1448 .desc
= "CRC32 instructions",
1449 .capability
= ARM64_HAS_CRC32
,
1450 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1451 .matches
= has_cpuid_feature
,
1452 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
1453 .field_pos
= ID_AA64ISAR0_CRC32_SHIFT
,
1454 .min_field_value
= 1,
1456 #ifdef CONFIG_ARM64_SSBD
1458 .desc
= "Speculative Store Bypassing Safe (SSBS)",
1459 .capability
= ARM64_SSBS
,
1460 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1461 .matches
= has_cpuid_feature
,
1462 .sys_reg
= SYS_ID_AA64PFR1_EL1
,
1463 .field_pos
= ID_AA64PFR1_SSBS_SHIFT
,
1464 .sign
= FTR_UNSIGNED
,
1465 .min_field_value
= ID_AA64PFR1_SSBS_PSTATE_ONLY
,
1466 .cpu_enable
= cpu_enable_ssbs
,
1469 #ifdef CONFIG_ARM64_CNP
1471 .desc
= "Common not Private translations",
1472 .capability
= ARM64_HAS_CNP
,
1473 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1474 .matches
= has_useable_cnp
,
1475 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1476 .sign
= FTR_UNSIGNED
,
1477 .field_pos
= ID_AA64MMFR2_CNP_SHIFT
,
1478 .min_field_value
= 1,
1479 .cpu_enable
= cpu_enable_cnp
,
1483 .desc
= "Speculation barrier (SB)",
1484 .capability
= ARM64_HAS_SB
,
1485 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1486 .matches
= has_cpuid_feature
,
1487 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1488 .field_pos
= ID_AA64ISAR1_SB_SHIFT
,
1489 .sign
= FTR_UNSIGNED
,
1490 .min_field_value
= 1,
1492 #ifdef CONFIG_ARM64_PTR_AUTH
1494 .desc
= "Address authentication (architected algorithm)",
1495 .capability
= ARM64_HAS_ADDRESS_AUTH_ARCH
,
1496 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1497 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1498 .sign
= FTR_UNSIGNED
,
1499 .field_pos
= ID_AA64ISAR1_APA_SHIFT
,
1500 .min_field_value
= ID_AA64ISAR1_APA_ARCHITECTED
,
1501 .matches
= has_cpuid_feature
,
1502 .cpu_enable
= cpu_enable_address_auth
,
1505 .desc
= "Address authentication (IMP DEF algorithm)",
1506 .capability
= ARM64_HAS_ADDRESS_AUTH_IMP_DEF
,
1507 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1508 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1509 .sign
= FTR_UNSIGNED
,
1510 .field_pos
= ID_AA64ISAR1_API_SHIFT
,
1511 .min_field_value
= ID_AA64ISAR1_API_IMP_DEF
,
1512 .matches
= has_cpuid_feature
,
1513 .cpu_enable
= cpu_enable_address_auth
,
1516 .desc
= "Generic authentication (architected algorithm)",
1517 .capability
= ARM64_HAS_GENERIC_AUTH_ARCH
,
1518 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1519 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1520 .sign
= FTR_UNSIGNED
,
1521 .field_pos
= ID_AA64ISAR1_GPA_SHIFT
,
1522 .min_field_value
= ID_AA64ISAR1_GPA_ARCHITECTED
,
1523 .matches
= has_cpuid_feature
,
1526 .desc
= "Generic authentication (IMP DEF algorithm)",
1527 .capability
= ARM64_HAS_GENERIC_AUTH_IMP_DEF
,
1528 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1529 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1530 .sign
= FTR_UNSIGNED
,
1531 .field_pos
= ID_AA64ISAR1_GPI_SHIFT
,
1532 .min_field_value
= ID_AA64ISAR1_GPI_IMP_DEF
,
1533 .matches
= has_cpuid_feature
,
1535 #endif /* CONFIG_ARM64_PTR_AUTH */
1536 #ifdef CONFIG_ARM64_PSEUDO_NMI
1539 * Depends on having GICv3
1541 .desc
= "IRQ priority masking",
1542 .capability
= ARM64_HAS_IRQ_PRIO_MASKING
,
1543 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
1544 .matches
= can_use_gic_priorities
,
1545 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1546 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
1547 .sign
= FTR_UNSIGNED
,
1548 .min_field_value
= 1,
1554 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1555 .matches = has_cpuid_feature, \
1557 .field_pos = field, \
1559 .min_field_value = min_value,
1561 #define __HWCAP_CAP(name, cap_type, cap) \
1563 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
1564 .hwcap_type = cap_type, \
1567 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
1569 __HWCAP_CAP(#cap, cap_type, cap) \
1570 HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1573 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
1575 __HWCAP_CAP(#cap, cap_type, cap) \
1576 .matches = cpucap_multi_entry_cap_matches, \
1577 .match_list = list, \
1580 #ifdef CONFIG_ARM64_PTR_AUTH
1581 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches
[] = {
1583 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_APA_SHIFT
,
1584 FTR_UNSIGNED
, ID_AA64ISAR1_APA_ARCHITECTED
)
1587 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_API_SHIFT
,
1588 FTR_UNSIGNED
, ID_AA64ISAR1_API_IMP_DEF
)
1593 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches
[] = {
1595 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_GPA_SHIFT
,
1596 FTR_UNSIGNED
, ID_AA64ISAR1_GPA_ARCHITECTED
)
1599 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_GPI_SHIFT
,
1600 FTR_UNSIGNED
, ID_AA64ISAR1_GPI_IMP_DEF
)
1606 static const struct arm64_cpu_capabilities arm64_elf_hwcaps
[] = {
1607 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_PMULL
),
1608 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_AES
),
1609 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SHA1
),
1610 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SHA2
),
1611 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_SHA512
),
1612 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_CRC32
),
1613 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_ATOMICS_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_ATOMICS
),
1614 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_RDM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDRDM
),
1615 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA3_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SHA3
),
1616 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SM3_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SM3
),
1617 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SM4_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SM4
),
1618 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_DP_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDDP
),
1619 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_FHM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDFHM
),
1620 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_TS_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_FLAGM
),
1621 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, KERNEL_HWCAP_FP
),
1622 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_FPHP
),
1623 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, KERNEL_HWCAP_ASIMD
),
1624 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDHP
),
1625 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_DIT_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_DIT
),
1626 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_DPB_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_DCPOP
),
1627 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_DPB_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_DCPODP
),
1628 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_JSCVT_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_JSCVT
),
1629 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_FCMA_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_FCMA
),
1630 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_LRCPC_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_LRCPC
),
1631 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_LRCPC_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_ILRCPC
),
1632 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_SB_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SB
),
1633 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1
, ID_AA64MMFR2_AT_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_USCAT
),
1634 #ifdef CONFIG_ARM64_SVE
1635 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_SVE_SHIFT
, FTR_UNSIGNED
, ID_AA64PFR0_SVE
, CAP_HWCAP
, KERNEL_HWCAP_SVE
),
1636 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_SVEVER_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_SVEVER_SVE2
, CAP_HWCAP
, KERNEL_HWCAP_SVE2
),
1637 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_AES_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_AES
, CAP_HWCAP
, KERNEL_HWCAP_SVEAES
),
1638 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_AES_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_AES_PMULL
, CAP_HWCAP
, KERNEL_HWCAP_SVEPMULL
),
1639 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_BITPERM_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_BITPERM
, CAP_HWCAP
, KERNEL_HWCAP_SVEBITPERM
),
1640 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_SHA3_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_SHA3
, CAP_HWCAP
, KERNEL_HWCAP_SVESHA3
),
1641 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_SM4_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_SM4
, CAP_HWCAP
, KERNEL_HWCAP_SVESM4
),
1643 HWCAP_CAP(SYS_ID_AA64PFR1_EL1
, ID_AA64PFR1_SSBS_SHIFT
, FTR_UNSIGNED
, ID_AA64PFR1_SSBS_PSTATE_INSNS
, CAP_HWCAP
, KERNEL_HWCAP_SSBS
),
1644 #ifdef CONFIG_ARM64_PTR_AUTH
1645 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches
, CAP_HWCAP
, KERNEL_HWCAP_PACA
),
1646 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches
, CAP_HWCAP
, KERNEL_HWCAP_PACG
),
1651 static const struct arm64_cpu_capabilities compat_elf_hwcaps
[] = {
1652 #ifdef CONFIG_COMPAT
1653 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_PMULL
),
1654 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_AES
),
1655 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA1
),
1656 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA2
),
1657 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_CRC32
),
1662 static void __init
cap_set_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
1664 switch (cap
->hwcap_type
) {
1666 cpu_set_feature(cap
->hwcap
);
1668 #ifdef CONFIG_COMPAT
1669 case CAP_COMPAT_HWCAP
:
1670 compat_elf_hwcap
|= (u32
)cap
->hwcap
;
1672 case CAP_COMPAT_HWCAP2
:
1673 compat_elf_hwcap2
|= (u32
)cap
->hwcap
;
1682 /* Check if we have a particular HWCAP enabled */
1683 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
1687 switch (cap
->hwcap_type
) {
1689 rc
= cpu_have_feature(cap
->hwcap
);
1691 #ifdef CONFIG_COMPAT
1692 case CAP_COMPAT_HWCAP
:
1693 rc
= (compat_elf_hwcap
& (u32
)cap
->hwcap
) != 0;
1695 case CAP_COMPAT_HWCAP2
:
1696 rc
= (compat_elf_hwcap2
& (u32
)cap
->hwcap
) != 0;
1707 static void __init
setup_elf_hwcaps(const struct arm64_cpu_capabilities
*hwcaps
)
1709 /* We support emulation of accesses to CPU ID feature registers */
1710 cpu_set_named_feature(CPUID
);
1711 for (; hwcaps
->matches
; hwcaps
++)
1712 if (hwcaps
->matches(hwcaps
, cpucap_default_scope(hwcaps
)))
1713 cap_set_elf_hwcap(hwcaps
);
1716 static void update_cpu_capabilities(u16 scope_mask
)
1719 const struct arm64_cpu_capabilities
*caps
;
1721 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
1722 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
1723 caps
= cpu_hwcaps_ptrs
[i
];
1724 if (!caps
|| !(caps
->type
& scope_mask
) ||
1725 cpus_have_cap(caps
->capability
) ||
1726 !caps
->matches(caps
, cpucap_default_scope(caps
)))
1730 pr_info("detected: %s\n", caps
->desc
);
1731 cpus_set_cap(caps
->capability
);
1733 if ((scope_mask
& SCOPE_BOOT_CPU
) && (caps
->type
& SCOPE_BOOT_CPU
))
1734 set_bit(caps
->capability
, boot_capabilities
);
1739 * Enable all the available capabilities on this CPU. The capabilities
1740 * with BOOT_CPU scope are handled separately and hence skipped here.
1742 static int cpu_enable_non_boot_scope_capabilities(void *__unused
)
1745 u16 non_boot_scope
= SCOPE_ALL
& ~SCOPE_BOOT_CPU
;
1747 for_each_available_cap(i
) {
1748 const struct arm64_cpu_capabilities
*cap
= cpu_hwcaps_ptrs
[i
];
1753 if (!(cap
->type
& non_boot_scope
))
1756 if (cap
->cpu_enable
)
1757 cap
->cpu_enable(cap
);
1763 * Run through the enabled capabilities and enable() it on all active
1766 static void __init
enable_cpu_capabilities(u16 scope_mask
)
1769 const struct arm64_cpu_capabilities
*caps
;
1772 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
1773 boot_scope
= !!(scope_mask
& SCOPE_BOOT_CPU
);
1775 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
1778 caps
= cpu_hwcaps_ptrs
[i
];
1779 if (!caps
|| !(caps
->type
& scope_mask
))
1781 num
= caps
->capability
;
1782 if (!cpus_have_cap(num
))
1785 /* Ensure cpus_have_const_cap(num) works */
1786 static_branch_enable(&cpu_hwcap_keys
[num
]);
1788 if (boot_scope
&& caps
->cpu_enable
)
1790 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1791 * before any secondary CPU boots. Thus, each secondary
1792 * will enable the capability as appropriate via
1793 * check_local_cpu_capabilities(). The only exception is
1794 * the boot CPU, for which the capability must be
1795 * enabled here. This approach avoids costly
1796 * stop_machine() calls for this case.
1798 caps
->cpu_enable(caps
);
1802 * For all non-boot scope capabilities, use stop_machine()
1803 * as it schedules the work allowing us to modify PSTATE,
1804 * instead of on_each_cpu() which uses an IPI, giving us a
1805 * PSTATE that disappears when we return.
1808 stop_machine(cpu_enable_non_boot_scope_capabilities
,
1809 NULL
, cpu_online_mask
);
1813 * Run through the list of capabilities to check for conflicts.
1814 * If the system has already detected a capability, take necessary
1815 * action on this CPU.
1817 * Returns "false" on conflicts.
1819 static bool verify_local_cpu_caps(u16 scope_mask
)
1822 bool cpu_has_cap
, system_has_cap
;
1823 const struct arm64_cpu_capabilities
*caps
;
1825 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
1827 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
1828 caps
= cpu_hwcaps_ptrs
[i
];
1829 if (!caps
|| !(caps
->type
& scope_mask
))
1832 cpu_has_cap
= caps
->matches(caps
, SCOPE_LOCAL_CPU
);
1833 system_has_cap
= cpus_have_cap(caps
->capability
);
1835 if (system_has_cap
) {
1837 * Check if the new CPU misses an advertised feature,
1838 * which is not safe to miss.
1840 if (!cpu_has_cap
&& !cpucap_late_cpu_optional(caps
))
1843 * We have to issue cpu_enable() irrespective of
1844 * whether the CPU has it or not, as it is enabeld
1845 * system wide. It is upto the call back to take
1846 * appropriate action on this CPU.
1848 if (caps
->cpu_enable
)
1849 caps
->cpu_enable(caps
);
1852 * Check if the CPU has this capability if it isn't
1853 * safe to have when the system doesn't.
1855 if (cpu_has_cap
&& !cpucap_late_cpu_permitted(caps
))
1860 if (i
< ARM64_NCAPS
) {
1861 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1862 smp_processor_id(), caps
->capability
,
1863 caps
->desc
, system_has_cap
, cpu_has_cap
);
1871 * Check for CPU features that are used in early boot
1872 * based on the Boot CPU value.
1874 static void check_early_cpu_features(void)
1876 verify_cpu_asid_bits();
1878 * Early features are used by the kernel already. If there
1879 * is a conflict, we cannot proceed further.
1881 if (!verify_local_cpu_caps(SCOPE_BOOT_CPU
))
1886 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities
*caps
)
1889 for (; caps
->matches
; caps
++)
1890 if (cpus_have_elf_hwcap(caps
) && !caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
1891 pr_crit("CPU%d: missing HWCAP: %s\n",
1892 smp_processor_id(), caps
->desc
);
1897 static void verify_sve_features(void)
1899 u64 safe_zcr
= read_sanitised_ftr_reg(SYS_ZCR_EL1
);
1900 u64 zcr
= read_zcr_features();
1902 unsigned int safe_len
= safe_zcr
& ZCR_ELx_LEN_MASK
;
1903 unsigned int len
= zcr
& ZCR_ELx_LEN_MASK
;
1905 if (len
< safe_len
|| sve_verify_vq_map()) {
1906 pr_crit("CPU%d: SVE: vector length support mismatch\n",
1907 smp_processor_id());
1911 /* Add checks on other ZCR bits here if necessary */
1916 * Run through the enabled system capabilities and enable() it on this CPU.
1917 * The capabilities were decided based on the available CPUs at the boot time.
1918 * Any new CPU should match the system wide status of the capability. If the
1919 * new CPU doesn't have a capability which the system now has enabled, we
1920 * cannot do anything to fix it up and could cause unexpected failures. So
1923 static void verify_local_cpu_capabilities(void)
1926 * The capabilities with SCOPE_BOOT_CPU are checked from
1927 * check_early_cpu_features(), as they need to be verified
1928 * on all secondary CPUs.
1930 if (!verify_local_cpu_caps(SCOPE_ALL
& ~SCOPE_BOOT_CPU
))
1933 verify_local_elf_hwcaps(arm64_elf_hwcaps
);
1935 if (system_supports_32bit_el0())
1936 verify_local_elf_hwcaps(compat_elf_hwcaps
);
1938 if (system_supports_sve())
1939 verify_sve_features();
1942 void check_local_cpu_capabilities(void)
1945 * All secondary CPUs should conform to the early CPU features
1946 * in use by the kernel based on boot CPU.
1948 check_early_cpu_features();
1951 * If we haven't finalised the system capabilities, this CPU gets
1952 * a chance to update the errata work arounds and local features.
1953 * Otherwise, this CPU should verify that it has all the system
1954 * advertised capabilities.
1956 if (!sys_caps_initialised
)
1957 update_cpu_capabilities(SCOPE_LOCAL_CPU
);
1959 verify_local_cpu_capabilities();
1962 static void __init
setup_boot_cpu_capabilities(void)
1964 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1965 update_cpu_capabilities(SCOPE_BOOT_CPU
| SCOPE_LOCAL_CPU
);
1966 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1967 enable_cpu_capabilities(SCOPE_BOOT_CPU
);
1970 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready
);
1971 EXPORT_SYMBOL(arm64_const_caps_ready
);
1973 static void __init
mark_const_caps_ready(void)
1975 static_branch_enable(&arm64_const_caps_ready
);
1978 bool this_cpu_has_cap(unsigned int n
)
1980 if (!WARN_ON(preemptible()) && n
< ARM64_NCAPS
) {
1981 const struct arm64_cpu_capabilities
*cap
= cpu_hwcaps_ptrs
[n
];
1984 return cap
->matches(cap
, SCOPE_LOCAL_CPU
);
1990 void cpu_set_feature(unsigned int num
)
1992 WARN_ON(num
>= MAX_CPU_FEATURES
);
1993 elf_hwcap
|= BIT(num
);
1995 EXPORT_SYMBOL_GPL(cpu_set_feature
);
1997 bool cpu_have_feature(unsigned int num
)
1999 WARN_ON(num
>= MAX_CPU_FEATURES
);
2000 return elf_hwcap
& BIT(num
);
2002 EXPORT_SYMBOL_GPL(cpu_have_feature
);
2004 unsigned long cpu_get_elf_hwcap(void)
2007 * We currently only populate the first 32 bits of AT_HWCAP. Please
2008 * note that for userspace compatibility we guarantee that bits 62
2009 * and 63 will always be returned as 0.
2011 return lower_32_bits(elf_hwcap
);
2014 unsigned long cpu_get_elf_hwcap2(void)
2016 return upper_32_bits(elf_hwcap
);
2019 static void __init
setup_system_capabilities(void)
2022 * We have finalised the system-wide safe feature
2023 * registers, finalise the capabilities that depend
2024 * on it. Also enable all the available capabilities,
2025 * that are not enabled already.
2027 update_cpu_capabilities(SCOPE_SYSTEM
);
2028 enable_cpu_capabilities(SCOPE_ALL
& ~SCOPE_BOOT_CPU
);
2031 void __init
setup_cpu_features(void)
2035 setup_system_capabilities();
2036 mark_const_caps_ready();
2037 setup_elf_hwcaps(arm64_elf_hwcaps
);
2039 if (system_supports_32bit_el0())
2040 setup_elf_hwcaps(compat_elf_hwcaps
);
2042 if (system_uses_ttbr0_pan())
2043 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2046 minsigstksz_setup();
2048 /* Advertise that we have computed the system capabilities */
2049 set_sys_caps_initialised();
2052 * Check for sane CTR_EL0.CWG value.
2054 cwg
= cache_type_cwg();
2056 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2060 static bool __maybe_unused
2061 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
)
2063 return (cpus_have_const_cap(ARM64_HAS_PAN
) && !cpus_have_const_cap(ARM64_HAS_UAO
));
2066 static void __maybe_unused
cpu_enable_cnp(struct arm64_cpu_capabilities
const *cap
)
2068 cpu_replace_ttbr1(lm_alias(swapper_pg_dir
));
2072 * We emulate only the following system register space.
2073 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2074 * See Table C5-6 System instruction encodings for System register accesses,
2075 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2077 static inline bool __attribute_const__
is_emulated(u32 id
)
2079 return (sys_reg_Op0(id
) == 0x3 &&
2080 sys_reg_CRn(id
) == 0x0 &&
2081 sys_reg_Op1(id
) == 0x0 &&
2082 (sys_reg_CRm(id
) == 0 ||
2083 ((sys_reg_CRm(id
) >= 4) && (sys_reg_CRm(id
) <= 7))));
2087 * With CRm == 0, reg should be one of :
2088 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2090 static inline int emulate_id_reg(u32 id
, u64
*valp
)
2094 *valp
= read_cpuid_id();
2097 *valp
= SYS_MPIDR_SAFE_VAL
;
2099 case SYS_REVIDR_EL1
:
2100 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2110 static int emulate_sys_reg(u32 id
, u64
*valp
)
2112 struct arm64_ftr_reg
*regp
;
2114 if (!is_emulated(id
))
2117 if (sys_reg_CRm(id
) == 0)
2118 return emulate_id_reg(id
, valp
);
2120 regp
= get_arm64_ftr_reg(id
);
2122 *valp
= arm64_ftr_reg_user_value(regp
);
2125 * The untracked registers are either IMPLEMENTATION DEFINED
2126 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2132 int do_emulate_mrs(struct pt_regs
*regs
, u32 sys_reg
, u32 rt
)
2137 rc
= emulate_sys_reg(sys_reg
, &val
);
2139 pt_regs_write_reg(regs
, rt
, val
);
2140 arm64_skip_faulting_instruction(regs
, AARCH64_INSN_SIZE
);
2145 static int emulate_mrs(struct pt_regs
*regs
, u32 insn
)
2150 * sys_reg values are defined as used in mrs/msr instruction.
2151 * shift the imm value to get the encoding.
2153 sys_reg
= (u32
)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16
, insn
) << 5;
2154 rt
= aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT
, insn
);
2155 return do_emulate_mrs(regs
, sys_reg
, rt
);
2158 static struct undef_hook mrs_hook
= {
2159 .instr_mask
= 0xfff00000,
2160 .instr_val
= 0xd5300000,
2161 .pstate_mask
= PSR_AA32_MODE_MASK
,
2162 .pstate_val
= PSR_MODE_EL0t
,
2166 static int __init
enable_mrs_emulation(void)
2168 register_undef_hook(&mrs_hook
);
2172 core_initcall(enable_mrs_emulation
);
2174 ssize_t
cpu_show_meltdown(struct device
*dev
, struct device_attribute
*attr
,
2177 if (__meltdown_safe
)
2178 return sprintf(buf
, "Not affected\n");
2180 if (arm64_kernel_unmapped_at_el0())
2181 return sprintf(buf
, "Mitigation: PTI\n");
2183 return sprintf(buf
, "Vulnerable\n");