Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / arch / ia64 / mm / discontig.c
blob05490dd073e6c3f44cc69f77a305da83e7abc818
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
4 * Copyright (c) 2001 Intel Corp.
5 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
6 * Copyright (c) 2002 NEC Corp.
7 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
8 * Copyright (c) 2004 Silicon Graphics, Inc
9 * Russ Anderson <rja@sgi.com>
10 * Jesse Barnes <jbarnes@sgi.com>
11 * Jack Steiner <steiner@sgi.com>
15 * Platform initialization for Discontig Memory
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
22 #include <linux/memblock.h>
23 #include <linux/acpi.h>
24 #include <linux/efi.h>
25 #include <linux/nodemask.h>
26 #include <linux/slab.h>
27 #include <asm/pgalloc.h>
28 #include <asm/tlb.h>
29 #include <asm/meminit.h>
30 #include <asm/numa.h>
31 #include <asm/sections.h>
34 * Track per-node information needed to setup the boot memory allocator, the
35 * per-node areas, and the real VM.
37 struct early_node_data {
38 struct ia64_node_data *node_data;
39 unsigned long pernode_addr;
40 unsigned long pernode_size;
41 unsigned long min_pfn;
42 unsigned long max_pfn;
45 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
46 static nodemask_t memory_less_mask __initdata;
48 pg_data_t *pgdat_list[MAX_NUMNODES];
51 * To prevent cache aliasing effects, align per-node structures so that they
52 * start at addresses that are strided by node number.
54 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
55 #define NODEDATA_ALIGN(addr, node) \
56 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
57 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
59 /**
60 * build_node_maps - callback to setup mem_data structs for each node
61 * @start: physical start of range
62 * @len: length of range
63 * @node: node where this range resides
65 * Detect extents of each piece of memory that we wish to
66 * treat as a virtually contiguous block (i.e. each node). Each such block
67 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
68 * if necessary. Any non-existent pages will simply be part of the virtual
69 * memmap.
71 static int __init build_node_maps(unsigned long start, unsigned long len,
72 int node)
74 unsigned long spfn, epfn, end = start + len;
76 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
77 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
79 if (!mem_data[node].min_pfn) {
80 mem_data[node].min_pfn = spfn;
81 mem_data[node].max_pfn = epfn;
82 } else {
83 mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
84 mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
87 return 0;
90 /**
91 * early_nr_cpus_node - return number of cpus on a given node
92 * @node: node to check
94 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
95 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
96 * called yet. Note that node 0 will also count all non-existent cpus.
98 static int __meminit early_nr_cpus_node(int node)
100 int cpu, n = 0;
102 for_each_possible_early_cpu(cpu)
103 if (node == node_cpuid[cpu].nid)
104 n++;
106 return n;
110 * compute_pernodesize - compute size of pernode data
111 * @node: the node id.
113 static unsigned long __meminit compute_pernodesize(int node)
115 unsigned long pernodesize = 0, cpus;
117 cpus = early_nr_cpus_node(node);
118 pernodesize += PERCPU_PAGE_SIZE * cpus;
119 pernodesize += node * L1_CACHE_BYTES;
120 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
121 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
122 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
123 pernodesize = PAGE_ALIGN(pernodesize);
124 return pernodesize;
128 * per_cpu_node_setup - setup per-cpu areas on each node
129 * @cpu_data: per-cpu area on this node
130 * @node: node to setup
132 * Copy the static per-cpu data into the region we just set aside and then
133 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
134 * the end of the area.
136 static void *per_cpu_node_setup(void *cpu_data, int node)
138 #ifdef CONFIG_SMP
139 int cpu;
141 for_each_possible_early_cpu(cpu) {
142 void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
144 if (node != node_cpuid[cpu].nid)
145 continue;
147 memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
148 __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
149 __per_cpu_start;
152 * percpu area for cpu0 is moved from the __init area
153 * which is setup by head.S and used till this point.
154 * Update ar.k3. This move is ensures that percpu
155 * area for cpu0 is on the correct node and its
156 * virtual address isn't insanely far from other
157 * percpu areas which is important for congruent
158 * percpu allocator.
160 if (cpu == 0)
161 ia64_set_kr(IA64_KR_PER_CPU_DATA,
162 (unsigned long)cpu_data -
163 (unsigned long)__per_cpu_start);
165 cpu_data += PERCPU_PAGE_SIZE;
167 #endif
168 return cpu_data;
171 #ifdef CONFIG_SMP
173 * setup_per_cpu_areas - setup percpu areas
175 * Arch code has already allocated and initialized percpu areas. All
176 * this function has to do is to teach the determined layout to the
177 * dynamic percpu allocator, which happens to be more complex than
178 * creating whole new ones using helpers.
180 void __init setup_per_cpu_areas(void)
182 struct pcpu_alloc_info *ai;
183 struct pcpu_group_info *uninitialized_var(gi);
184 unsigned int *cpu_map;
185 void *base;
186 unsigned long base_offset;
187 unsigned int cpu;
188 ssize_t static_size, reserved_size, dyn_size;
189 int node, prev_node, unit, nr_units, rc;
191 ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
192 if (!ai)
193 panic("failed to allocate pcpu_alloc_info");
194 cpu_map = ai->groups[0].cpu_map;
196 /* determine base */
197 base = (void *)ULONG_MAX;
198 for_each_possible_cpu(cpu)
199 base = min(base,
200 (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
201 base_offset = (void *)__per_cpu_start - base;
203 /* build cpu_map, units are grouped by node */
204 unit = 0;
205 for_each_node(node)
206 for_each_possible_cpu(cpu)
207 if (node == node_cpuid[cpu].nid)
208 cpu_map[unit++] = cpu;
209 nr_units = unit;
211 /* set basic parameters */
212 static_size = __per_cpu_end - __per_cpu_start;
213 reserved_size = PERCPU_MODULE_RESERVE;
214 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
215 if (dyn_size < 0)
216 panic("percpu area overflow static=%zd reserved=%zd\n",
217 static_size, reserved_size);
219 ai->static_size = static_size;
220 ai->reserved_size = reserved_size;
221 ai->dyn_size = dyn_size;
222 ai->unit_size = PERCPU_PAGE_SIZE;
223 ai->atom_size = PAGE_SIZE;
224 ai->alloc_size = PERCPU_PAGE_SIZE;
227 * CPUs are put into groups according to node. Walk cpu_map
228 * and create new groups at node boundaries.
230 prev_node = NUMA_NO_NODE;
231 ai->nr_groups = 0;
232 for (unit = 0; unit < nr_units; unit++) {
233 cpu = cpu_map[unit];
234 node = node_cpuid[cpu].nid;
236 if (node == prev_node) {
237 gi->nr_units++;
238 continue;
240 prev_node = node;
242 gi = &ai->groups[ai->nr_groups++];
243 gi->nr_units = 1;
244 gi->base_offset = __per_cpu_offset[cpu] + base_offset;
245 gi->cpu_map = &cpu_map[unit];
248 rc = pcpu_setup_first_chunk(ai, base);
249 if (rc)
250 panic("failed to setup percpu area (err=%d)", rc);
252 pcpu_free_alloc_info(ai);
254 #endif
257 * fill_pernode - initialize pernode data.
258 * @node: the node id.
259 * @pernode: physical address of pernode data
260 * @pernodesize: size of the pernode data
262 static void __init fill_pernode(int node, unsigned long pernode,
263 unsigned long pernodesize)
265 void *cpu_data;
266 int cpus = early_nr_cpus_node(node);
268 mem_data[node].pernode_addr = pernode;
269 mem_data[node].pernode_size = pernodesize;
270 memset(__va(pernode), 0, pernodesize);
272 cpu_data = (void *)pernode;
273 pernode += PERCPU_PAGE_SIZE * cpus;
274 pernode += node * L1_CACHE_BYTES;
276 pgdat_list[node] = __va(pernode);
277 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
279 mem_data[node].node_data = __va(pernode);
280 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
281 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
283 cpu_data = per_cpu_node_setup(cpu_data, node);
285 return;
289 * find_pernode_space - allocate memory for memory map and per-node structures
290 * @start: physical start of range
291 * @len: length of range
292 * @node: node where this range resides
294 * This routine reserves space for the per-cpu data struct, the list of
295 * pg_data_ts and the per-node data struct. Each node will have something like
296 * the following in the first chunk of addr. space large enough to hold it.
298 * ________________________
299 * | |
300 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
301 * | PERCPU_PAGE_SIZE * | start and length big enough
302 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
303 * |------------------------|
304 * | local pg_data_t * |
305 * |------------------------|
306 * | local ia64_node_data |
307 * |------------------------|
308 * | ??? |
309 * |________________________|
311 * Once this space has been set aside, the bootmem maps are initialized. We
312 * could probably move the allocation of the per-cpu and ia64_node_data space
313 * outside of this function and use alloc_bootmem_node(), but doing it here
314 * is straightforward and we get the alignments we want so...
316 static int __init find_pernode_space(unsigned long start, unsigned long len,
317 int node)
319 unsigned long spfn, epfn;
320 unsigned long pernodesize = 0, pernode;
322 spfn = start >> PAGE_SHIFT;
323 epfn = (start + len) >> PAGE_SHIFT;
326 * Make sure this memory falls within this node's usable memory
327 * since we may have thrown some away in build_maps().
329 if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
330 return 0;
332 /* Don't setup this node's local space twice... */
333 if (mem_data[node].pernode_addr)
334 return 0;
337 * Calculate total size needed, incl. what's necessary
338 * for good alignment and alias prevention.
340 pernodesize = compute_pernodesize(node);
341 pernode = NODEDATA_ALIGN(start, node);
343 /* Is this range big enough for what we want to store here? */
344 if (start + len > (pernode + pernodesize))
345 fill_pernode(node, pernode, pernodesize);
347 return 0;
351 * reserve_pernode_space - reserve memory for per-node space
353 * Reserve the space used by the bootmem maps & per-node space in the boot
354 * allocator so that when we actually create the real mem maps we don't
355 * use their memory.
357 static void __init reserve_pernode_space(void)
359 unsigned long base, size;
360 int node;
362 for_each_online_node(node) {
363 if (node_isset(node, memory_less_mask))
364 continue;
366 /* Now the per-node space */
367 size = mem_data[node].pernode_size;
368 base = __pa(mem_data[node].pernode_addr);
369 memblock_reserve(base, size);
373 static void __meminit scatter_node_data(void)
375 pg_data_t **dst;
376 int node;
379 * for_each_online_node() can't be used at here.
380 * node_online_map is not set for hot-added nodes at this time,
381 * because we are halfway through initialization of the new node's
382 * structures. If for_each_online_node() is used, a new node's
383 * pg_data_ptrs will be not initialized. Instead of using it,
384 * pgdat_list[] is checked.
386 for_each_node(node) {
387 if (pgdat_list[node]) {
388 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
389 memcpy(dst, pgdat_list, sizeof(pgdat_list));
395 * initialize_pernode_data - fixup per-cpu & per-node pointers
397 * Each node's per-node area has a copy of the global pg_data_t list, so
398 * we copy that to each node here, as well as setting the per-cpu pointer
399 * to the local node data structure. The active_cpus field of the per-node
400 * structure gets setup by the platform_cpu_init() function later.
402 static void __init initialize_pernode_data(void)
404 int cpu, node;
406 scatter_node_data();
408 #ifdef CONFIG_SMP
409 /* Set the node_data pointer for each per-cpu struct */
410 for_each_possible_early_cpu(cpu) {
411 node = node_cpuid[cpu].nid;
412 per_cpu(ia64_cpu_info, cpu).node_data =
413 mem_data[node].node_data;
415 #else
417 struct cpuinfo_ia64 *cpu0_cpu_info;
418 cpu = 0;
419 node = node_cpuid[cpu].nid;
420 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
421 ((char *)&ia64_cpu_info - __per_cpu_start));
422 cpu0_cpu_info->node_data = mem_data[node].node_data;
424 #endif /* CONFIG_SMP */
428 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
429 * node but fall back to any other node when __alloc_bootmem_node fails
430 * for best.
431 * @nid: node id
432 * @pernodesize: size of this node's pernode data
434 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
436 void *ptr = NULL;
437 u8 best = 0xff;
438 int bestnode = NUMA_NO_NODE, node, anynode = 0;
440 for_each_online_node(node) {
441 if (node_isset(node, memory_less_mask))
442 continue;
443 else if (node_distance(nid, node) < best) {
444 best = node_distance(nid, node);
445 bestnode = node;
447 anynode = node;
450 if (bestnode == NUMA_NO_NODE)
451 bestnode = anynode;
453 ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE,
454 __pa(MAX_DMA_ADDRESS),
455 MEMBLOCK_ALLOC_ACCESSIBLE,
456 bestnode);
457 if (!ptr)
458 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n",
459 __func__, pernodesize, PERCPU_PAGE_SIZE, bestnode,
460 __pa(MAX_DMA_ADDRESS));
462 return ptr;
466 * memory_less_nodes - allocate and initialize CPU only nodes pernode
467 * information.
469 static void __init memory_less_nodes(void)
471 unsigned long pernodesize;
472 void *pernode;
473 int node;
475 for_each_node_mask(node, memory_less_mask) {
476 pernodesize = compute_pernodesize(node);
477 pernode = memory_less_node_alloc(node, pernodesize);
478 fill_pernode(node, __pa(pernode), pernodesize);
481 return;
485 * find_memory - walk the EFI memory map and setup the bootmem allocator
487 * Called early in boot to setup the bootmem allocator, and to
488 * allocate the per-cpu and per-node structures.
490 void __init find_memory(void)
492 int node;
494 reserve_memory();
495 efi_memmap_walk(filter_memory, register_active_ranges);
497 if (num_online_nodes() == 0) {
498 printk(KERN_ERR "node info missing!\n");
499 node_set_online(0);
502 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
503 min_low_pfn = -1;
504 max_low_pfn = 0;
506 /* These actually end up getting called by call_pernode_memory() */
507 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
508 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
509 efi_memmap_walk(find_max_min_low_pfn, NULL);
511 for_each_online_node(node)
512 if (mem_data[node].min_pfn)
513 node_clear(node, memory_less_mask);
515 reserve_pernode_space();
516 memory_less_nodes();
517 initialize_pernode_data();
519 max_pfn = max_low_pfn;
521 find_initrd();
524 #ifdef CONFIG_SMP
526 * per_cpu_init - setup per-cpu variables
528 * find_pernode_space() does most of this already, we just need to set
529 * local_per_cpu_offset
531 void *per_cpu_init(void)
533 int cpu;
534 static int first_time = 1;
536 if (first_time) {
537 first_time = 0;
538 for_each_possible_early_cpu(cpu)
539 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
542 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
544 #endif /* CONFIG_SMP */
547 * call_pernode_memory - use SRAT to call callback functions with node info
548 * @start: physical start of range
549 * @len: length of range
550 * @arg: function to call for each range
552 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
553 * out to which node a block of memory belongs. Ignore memory that we cannot
554 * identify, and split blocks that run across multiple nodes.
556 * Take this opportunity to round the start address up and the end address
557 * down to page boundaries.
559 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
561 unsigned long rs, re, end = start + len;
562 void (*func)(unsigned long, unsigned long, int);
563 int i;
565 start = PAGE_ALIGN(start);
566 end &= PAGE_MASK;
567 if (start >= end)
568 return;
570 func = arg;
572 if (!num_node_memblks) {
573 /* No SRAT table, so assume one node (node 0) */
574 if (start < end)
575 (*func)(start, end - start, 0);
576 return;
579 for (i = 0; i < num_node_memblks; i++) {
580 rs = max(start, node_memblk[i].start_paddr);
581 re = min(end, node_memblk[i].start_paddr +
582 node_memblk[i].size);
584 if (rs < re)
585 (*func)(rs, re - rs, node_memblk[i].nid);
587 if (re == end)
588 break;
593 * paging_init - setup page tables
595 * paging_init() sets up the page tables for each node of the system and frees
596 * the bootmem allocator memory for general use.
598 void __init paging_init(void)
600 unsigned long max_dma;
601 unsigned long pfn_offset = 0;
602 unsigned long max_pfn = 0;
603 int node;
604 unsigned long max_zone_pfns[MAX_NR_ZONES];
606 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
608 sparse_memory_present_with_active_regions(MAX_NUMNODES);
609 sparse_init();
611 #ifdef CONFIG_VIRTUAL_MEM_MAP
612 VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
613 sizeof(struct page));
614 vmem_map = (struct page *) VMALLOC_END;
615 efi_memmap_walk(create_mem_map_page_table, NULL);
616 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
617 #endif
619 for_each_online_node(node) {
620 pfn_offset = mem_data[node].min_pfn;
622 #ifdef CONFIG_VIRTUAL_MEM_MAP
623 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
624 #endif
625 if (mem_data[node].max_pfn > max_pfn)
626 max_pfn = mem_data[node].max_pfn;
629 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
630 #ifdef CONFIG_ZONE_DMA32
631 max_zone_pfns[ZONE_DMA32] = max_dma;
632 #endif
633 max_zone_pfns[ZONE_NORMAL] = max_pfn;
634 free_area_init_nodes(max_zone_pfns);
636 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
639 #ifdef CONFIG_MEMORY_HOTPLUG
640 pg_data_t *arch_alloc_nodedata(int nid)
642 unsigned long size = compute_pernodesize(nid);
644 return kzalloc(size, GFP_KERNEL);
647 void arch_free_nodedata(pg_data_t *pgdat)
649 kfree(pgdat);
652 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
654 pgdat_list[update_node] = update_pgdat;
655 scatter_node_data();
657 #endif
659 #ifdef CONFIG_SPARSEMEM_VMEMMAP
660 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
661 struct vmem_altmap *altmap)
663 return vmemmap_populate_basepages(start, end, node);
666 void vmemmap_free(unsigned long start, unsigned long end,
667 struct vmem_altmap *altmap)
670 #endif