Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / base / regmap / regmap-irq.c
blobc9dc70ceca5f104a9c329f0d01fd7bd6a5c9bed7
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
18 #include "internal.h"
20 struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
27 int irq_base;
28 struct irq_domain *domain;
30 int irq;
31 int wake_count;
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
42 unsigned int irq_reg_stride;
43 unsigned int type_reg_stride;
45 bool clear_status:1;
48 static inline const
49 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50 int irq)
52 return &data->chip->irqs[irq];
55 static void regmap_irq_lock(struct irq_data *data)
57 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
59 mutex_lock(&d->lock);
62 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63 unsigned int reg, unsigned int mask,
64 unsigned int val)
66 if (d->chip->mask_writeonly)
67 return regmap_write_bits(d->map, reg, mask, val);
68 else
69 return regmap_update_bits(d->map, reg, mask, val);
72 static void regmap_irq_sync_unlock(struct irq_data *data)
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 struct regmap *map = d->map;
76 int i, ret;
77 u32 reg;
78 u32 unmask_offset;
79 u32 val;
81 if (d->chip->runtime_pm) {
82 ret = pm_runtime_get_sync(map->dev);
83 if (ret < 0)
84 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 ret);
88 if (d->clear_status) {
89 for (i = 0; i < d->chip->num_regs; i++) {
90 reg = d->chip->status_base +
91 (i * map->reg_stride * d->irq_reg_stride);
93 ret = regmap_read(map, reg, &val);
94 if (ret)
95 dev_err(d->map->dev,
96 "Failed to clear the interrupt status bits\n");
99 d->clear_status = false;
103 * If there's been a change in the mask write it back to the
104 * hardware. We rely on the use of the regmap core cache to
105 * suppress pointless writes.
107 for (i = 0; i < d->chip->num_regs; i++) {
108 if (!d->chip->mask_base)
109 continue;
111 reg = d->chip->mask_base +
112 (i * map->reg_stride * d->irq_reg_stride);
113 if (d->chip->mask_invert) {
114 ret = regmap_irq_update_bits(d, reg,
115 d->mask_buf_def[i], ~d->mask_buf[i]);
116 } else if (d->chip->unmask_base) {
117 /* set mask with mask_base register */
118 ret = regmap_irq_update_bits(d, reg,
119 d->mask_buf_def[i], ~d->mask_buf[i]);
120 if (ret < 0)
121 dev_err(d->map->dev,
122 "Failed to sync unmasks in %x\n",
123 reg);
124 unmask_offset = d->chip->unmask_base -
125 d->chip->mask_base;
126 /* clear mask with unmask_base register */
127 ret = regmap_irq_update_bits(d,
128 reg + unmask_offset,
129 d->mask_buf_def[i],
130 d->mask_buf[i]);
131 } else {
132 ret = regmap_irq_update_bits(d, reg,
133 d->mask_buf_def[i], d->mask_buf[i]);
135 if (ret != 0)
136 dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 reg);
139 reg = d->chip->wake_base +
140 (i * map->reg_stride * d->irq_reg_stride);
141 if (d->wake_buf) {
142 if (d->chip->wake_invert)
143 ret = regmap_irq_update_bits(d, reg,
144 d->mask_buf_def[i],
145 ~d->wake_buf[i]);
146 else
147 ret = regmap_irq_update_bits(d, reg,
148 d->mask_buf_def[i],
149 d->wake_buf[i]);
150 if (ret != 0)
151 dev_err(d->map->dev,
152 "Failed to sync wakes in %x: %d\n",
153 reg, ret);
156 if (!d->chip->init_ack_masked)
157 continue;
159 * Ack all the masked interrupts unconditionally,
160 * OR if there is masked interrupt which hasn't been Acked,
161 * it'll be ignored in irq handler, then may introduce irq storm
163 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 reg = d->chip->ack_base +
165 (i * map->reg_stride * d->irq_reg_stride);
166 /* some chips ack by write 0 */
167 if (d->chip->ack_invert)
168 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 else
170 ret = regmap_write(map, reg, d->mask_buf[i]);
171 if (ret != 0)
172 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173 reg, ret);
177 /* Don't update the type bits if we're using mask bits for irq type. */
178 if (!d->chip->type_in_mask) {
179 for (i = 0; i < d->chip->num_type_reg; i++) {
180 if (!d->type_buf_def[i])
181 continue;
182 reg = d->chip->type_base +
183 (i * map->reg_stride * d->type_reg_stride);
184 if (d->chip->type_invert)
185 ret = regmap_irq_update_bits(d, reg,
186 d->type_buf_def[i], ~d->type_buf[i]);
187 else
188 ret = regmap_irq_update_bits(d, reg,
189 d->type_buf_def[i], d->type_buf[i]);
190 if (ret != 0)
191 dev_err(d->map->dev, "Failed to sync type in %x\n",
192 reg);
196 if (d->chip->runtime_pm)
197 pm_runtime_put(map->dev);
199 /* If we've changed our wakeup count propagate it to the parent */
200 if (d->wake_count < 0)
201 for (i = d->wake_count; i < 0; i++)
202 irq_set_irq_wake(d->irq, 0);
203 else if (d->wake_count > 0)
204 for (i = 0; i < d->wake_count; i++)
205 irq_set_irq_wake(d->irq, 1);
207 d->wake_count = 0;
209 mutex_unlock(&d->lock);
212 static void regmap_irq_enable(struct irq_data *data)
214 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215 struct regmap *map = d->map;
216 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217 unsigned int mask, type;
219 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
222 * The type_in_mask flag means that the underlying hardware uses
223 * separate mask bits for rising and falling edge interrupts, but
224 * we want to make them into a single virtual interrupt with
225 * configurable edge.
227 * If the interrupt we're enabling defines the falling or rising
228 * masks then instead of using the regular mask bits for this
229 * interrupt, use the value previously written to the type buffer
230 * at the corresponding offset in regmap_irq_set_type().
232 if (d->chip->type_in_mask && type)
233 mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234 else
235 mask = irq_data->mask;
237 if (d->chip->clear_on_unmask)
238 d->clear_status = true;
240 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
243 static void regmap_irq_disable(struct irq_data *data)
245 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246 struct regmap *map = d->map;
247 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
252 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
254 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255 struct regmap *map = d->map;
256 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 int reg;
258 const struct regmap_irq_type *t = &irq_data->type;
260 if ((t->types_supported & type) != type)
261 return 0;
263 reg = t->type_reg_offset / map->reg_stride;
265 if (t->type_reg_mask)
266 d->type_buf[reg] &= ~t->type_reg_mask;
267 else
268 d->type_buf[reg] &= ~(t->type_falling_val |
269 t->type_rising_val |
270 t->type_level_low_val |
271 t->type_level_high_val);
272 switch (type) {
273 case IRQ_TYPE_EDGE_FALLING:
274 d->type_buf[reg] |= t->type_falling_val;
275 break;
277 case IRQ_TYPE_EDGE_RISING:
278 d->type_buf[reg] |= t->type_rising_val;
279 break;
281 case IRQ_TYPE_EDGE_BOTH:
282 d->type_buf[reg] |= (t->type_falling_val |
283 t->type_rising_val);
284 break;
286 case IRQ_TYPE_LEVEL_HIGH:
287 d->type_buf[reg] |= t->type_level_high_val;
288 break;
290 case IRQ_TYPE_LEVEL_LOW:
291 d->type_buf[reg] |= t->type_level_low_val;
292 break;
293 default:
294 return -EINVAL;
296 return 0;
299 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
301 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302 struct regmap *map = d->map;
303 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
305 if (on) {
306 if (d->wake_buf)
307 d->wake_buf[irq_data->reg_offset / map->reg_stride]
308 &= ~irq_data->mask;
309 d->wake_count++;
310 } else {
311 if (d->wake_buf)
312 d->wake_buf[irq_data->reg_offset / map->reg_stride]
313 |= irq_data->mask;
314 d->wake_count--;
317 return 0;
320 static const struct irq_chip regmap_irq_chip = {
321 .irq_bus_lock = regmap_irq_lock,
322 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
323 .irq_disable = regmap_irq_disable,
324 .irq_enable = regmap_irq_enable,
325 .irq_set_type = regmap_irq_set_type,
326 .irq_set_wake = regmap_irq_set_wake,
329 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330 unsigned int b)
332 const struct regmap_irq_chip *chip = data->chip;
333 struct regmap *map = data->map;
334 struct regmap_irq_sub_irq_map *subreg;
335 int i, ret = 0;
337 if (!chip->sub_reg_offsets) {
338 /* Assume linear mapping */
339 ret = regmap_read(map, chip->status_base +
340 (b * map->reg_stride * data->irq_reg_stride),
341 &data->status_buf[b]);
342 } else {
343 subreg = &chip->sub_reg_offsets[b];
344 for (i = 0; i < subreg->num_regs; i++) {
345 unsigned int offset = subreg->offset[i];
347 ret = regmap_read(map, chip->status_base + offset,
348 &data->status_buf[offset]);
349 if (ret)
350 break;
353 return ret;
356 static irqreturn_t regmap_irq_thread(int irq, void *d)
358 struct regmap_irq_chip_data *data = d;
359 const struct regmap_irq_chip *chip = data->chip;
360 struct regmap *map = data->map;
361 int ret, i;
362 bool handled = false;
363 u32 reg;
365 if (chip->handle_pre_irq)
366 chip->handle_pre_irq(chip->irq_drv_data);
368 if (chip->runtime_pm) {
369 ret = pm_runtime_get_sync(map->dev);
370 if (ret < 0) {
371 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372 ret);
373 pm_runtime_put(map->dev);
374 goto exit;
379 * Read only registers with active IRQs if the chip has 'main status
380 * register'. Else read in the statuses, using a single bulk read if
381 * possible in order to reduce the I/O overheads.
384 if (chip->num_main_regs) {
385 unsigned int max_main_bits;
386 unsigned long size;
388 size = chip->num_regs * sizeof(unsigned int);
390 max_main_bits = (chip->num_main_status_bits) ?
391 chip->num_main_status_bits : chip->num_regs;
392 /* Clear the status buf as we don't read all status regs */
393 memset(data->status_buf, 0, size);
395 /* We could support bulk read for main status registers
396 * but I don't expect to see devices with really many main
397 * status registers so let's only support single reads for the
398 * sake of simplicity. and add bulk reads only if needed
400 for (i = 0; i < chip->num_main_regs; i++) {
401 ret = regmap_read(map, chip->main_status +
402 (i * map->reg_stride
403 * data->irq_reg_stride),
404 &data->main_status_buf[i]);
405 if (ret) {
406 dev_err(map->dev,
407 "Failed to read IRQ status %d\n",
408 ret);
409 goto exit;
413 /* Read sub registers with active IRQs */
414 for (i = 0; i < chip->num_main_regs; i++) {
415 unsigned int b;
416 const unsigned long mreg = data->main_status_buf[i];
418 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
419 if (i * map->format.val_bytes * 8 + b >
420 max_main_bits)
421 break;
422 ret = read_sub_irq_data(data, b);
424 if (ret != 0) {
425 dev_err(map->dev,
426 "Failed to read IRQ status %d\n",
427 ret);
428 if (chip->runtime_pm)
429 pm_runtime_put(map->dev);
430 goto exit;
435 } else if (!map->use_single_read && map->reg_stride == 1 &&
436 data->irq_reg_stride == 1) {
438 u8 *buf8 = data->status_reg_buf;
439 u16 *buf16 = data->status_reg_buf;
440 u32 *buf32 = data->status_reg_buf;
442 BUG_ON(!data->status_reg_buf);
444 ret = regmap_bulk_read(map, chip->status_base,
445 data->status_reg_buf,
446 chip->num_regs);
447 if (ret != 0) {
448 dev_err(map->dev, "Failed to read IRQ status: %d\n",
449 ret);
450 goto exit;
453 for (i = 0; i < data->chip->num_regs; i++) {
454 switch (map->format.val_bytes) {
455 case 1:
456 data->status_buf[i] = buf8[i];
457 break;
458 case 2:
459 data->status_buf[i] = buf16[i];
460 break;
461 case 4:
462 data->status_buf[i] = buf32[i];
463 break;
464 default:
465 BUG();
466 goto exit;
470 } else {
471 for (i = 0; i < data->chip->num_regs; i++) {
472 ret = regmap_read(map, chip->status_base +
473 (i * map->reg_stride
474 * data->irq_reg_stride),
475 &data->status_buf[i]);
477 if (ret != 0) {
478 dev_err(map->dev,
479 "Failed to read IRQ status: %d\n",
480 ret);
481 if (chip->runtime_pm)
482 pm_runtime_put(map->dev);
483 goto exit;
489 * Ignore masked IRQs and ack if we need to; we ack early so
490 * there is no race between handling and acknowleding the
491 * interrupt. We assume that typically few of the interrupts
492 * will fire simultaneously so don't worry about overhead from
493 * doing a write per register.
495 for (i = 0; i < data->chip->num_regs; i++) {
496 data->status_buf[i] &= ~data->mask_buf[i];
498 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
499 reg = chip->ack_base +
500 (i * map->reg_stride * data->irq_reg_stride);
501 ret = regmap_write(map, reg, data->status_buf[i]);
502 if (ret != 0)
503 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
504 reg, ret);
508 for (i = 0; i < chip->num_irqs; i++) {
509 if (data->status_buf[chip->irqs[i].reg_offset /
510 map->reg_stride] & chip->irqs[i].mask) {
511 handle_nested_irq(irq_find_mapping(data->domain, i));
512 handled = true;
516 if (chip->runtime_pm)
517 pm_runtime_put(map->dev);
519 exit:
520 if (chip->handle_post_irq)
521 chip->handle_post_irq(chip->irq_drv_data);
523 if (handled)
524 return IRQ_HANDLED;
525 else
526 return IRQ_NONE;
529 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
530 irq_hw_number_t hw)
532 struct regmap_irq_chip_data *data = h->host_data;
534 irq_set_chip_data(virq, data);
535 irq_set_chip(virq, &data->irq_chip);
536 irq_set_nested_thread(virq, 1);
537 irq_set_parent(virq, data->irq);
538 irq_set_noprobe(virq);
540 return 0;
543 static const struct irq_domain_ops regmap_domain_ops = {
544 .map = regmap_irq_map,
545 .xlate = irq_domain_xlate_onetwocell,
549 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
551 * @map: The regmap for the device.
552 * @irq: The IRQ the device uses to signal interrupts.
553 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
554 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
555 * @chip: Configuration for the interrupt controller.
556 * @data: Runtime data structure for the controller, allocated on success.
558 * Returns 0 on success or an errno on failure.
560 * In order for this to be efficient the chip really should use a
561 * register cache. The chip driver is responsible for restoring the
562 * register values used by the IRQ controller over suspend and resume.
564 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
565 int irq_base, const struct regmap_irq_chip *chip,
566 struct regmap_irq_chip_data **data)
568 struct regmap_irq_chip_data *d;
569 int i;
570 int ret = -ENOMEM;
571 int num_type_reg;
572 u32 reg;
573 u32 unmask_offset;
575 if (chip->num_regs <= 0)
576 return -EINVAL;
578 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
579 return -EINVAL;
581 for (i = 0; i < chip->num_irqs; i++) {
582 if (chip->irqs[i].reg_offset % map->reg_stride)
583 return -EINVAL;
584 if (chip->irqs[i].reg_offset / map->reg_stride >=
585 chip->num_regs)
586 return -EINVAL;
589 if (irq_base) {
590 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
591 if (irq_base < 0) {
592 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
593 irq_base);
594 return irq_base;
598 d = kzalloc(sizeof(*d), GFP_KERNEL);
599 if (!d)
600 return -ENOMEM;
602 if (chip->num_main_regs) {
603 d->main_status_buf = kcalloc(chip->num_main_regs,
604 sizeof(unsigned int),
605 GFP_KERNEL);
607 if (!d->main_status_buf)
608 goto err_alloc;
611 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
612 GFP_KERNEL);
613 if (!d->status_buf)
614 goto err_alloc;
616 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
617 GFP_KERNEL);
618 if (!d->mask_buf)
619 goto err_alloc;
621 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
622 GFP_KERNEL);
623 if (!d->mask_buf_def)
624 goto err_alloc;
626 if (chip->wake_base) {
627 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
628 GFP_KERNEL);
629 if (!d->wake_buf)
630 goto err_alloc;
633 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
634 if (num_type_reg) {
635 d->type_buf_def = kcalloc(num_type_reg,
636 sizeof(unsigned int), GFP_KERNEL);
637 if (!d->type_buf_def)
638 goto err_alloc;
640 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
641 GFP_KERNEL);
642 if (!d->type_buf)
643 goto err_alloc;
646 d->irq_chip = regmap_irq_chip;
647 d->irq_chip.name = chip->name;
648 d->irq = irq;
649 d->map = map;
650 d->chip = chip;
651 d->irq_base = irq_base;
653 if (chip->irq_reg_stride)
654 d->irq_reg_stride = chip->irq_reg_stride;
655 else
656 d->irq_reg_stride = 1;
658 if (chip->type_reg_stride)
659 d->type_reg_stride = chip->type_reg_stride;
660 else
661 d->type_reg_stride = 1;
663 if (!map->use_single_read && map->reg_stride == 1 &&
664 d->irq_reg_stride == 1) {
665 d->status_reg_buf = kmalloc_array(chip->num_regs,
666 map->format.val_bytes,
667 GFP_KERNEL);
668 if (!d->status_reg_buf)
669 goto err_alloc;
672 mutex_init(&d->lock);
674 for (i = 0; i < chip->num_irqs; i++)
675 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
676 |= chip->irqs[i].mask;
678 /* Mask all the interrupts by default */
679 for (i = 0; i < chip->num_regs; i++) {
680 d->mask_buf[i] = d->mask_buf_def[i];
681 if (!chip->mask_base)
682 continue;
684 reg = chip->mask_base +
685 (i * map->reg_stride * d->irq_reg_stride);
686 if (chip->mask_invert)
687 ret = regmap_irq_update_bits(d, reg,
688 d->mask_buf[i], ~d->mask_buf[i]);
689 else if (d->chip->unmask_base) {
690 unmask_offset = d->chip->unmask_base -
691 d->chip->mask_base;
692 ret = regmap_irq_update_bits(d,
693 reg + unmask_offset,
694 d->mask_buf[i],
695 d->mask_buf[i]);
696 } else
697 ret = regmap_irq_update_bits(d, reg,
698 d->mask_buf[i], d->mask_buf[i]);
699 if (ret != 0) {
700 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
701 reg, ret);
702 goto err_alloc;
705 if (!chip->init_ack_masked)
706 continue;
708 /* Ack masked but set interrupts */
709 reg = chip->status_base +
710 (i * map->reg_stride * d->irq_reg_stride);
711 ret = regmap_read(map, reg, &d->status_buf[i]);
712 if (ret != 0) {
713 dev_err(map->dev, "Failed to read IRQ status: %d\n",
714 ret);
715 goto err_alloc;
718 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
719 reg = chip->ack_base +
720 (i * map->reg_stride * d->irq_reg_stride);
721 if (chip->ack_invert)
722 ret = regmap_write(map, reg,
723 ~(d->status_buf[i] & d->mask_buf[i]));
724 else
725 ret = regmap_write(map, reg,
726 d->status_buf[i] & d->mask_buf[i]);
727 if (ret != 0) {
728 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
729 reg, ret);
730 goto err_alloc;
735 /* Wake is disabled by default */
736 if (d->wake_buf) {
737 for (i = 0; i < chip->num_regs; i++) {
738 d->wake_buf[i] = d->mask_buf_def[i];
739 reg = chip->wake_base +
740 (i * map->reg_stride * d->irq_reg_stride);
742 if (chip->wake_invert)
743 ret = regmap_irq_update_bits(d, reg,
744 d->mask_buf_def[i],
746 else
747 ret = regmap_irq_update_bits(d, reg,
748 d->mask_buf_def[i],
749 d->wake_buf[i]);
750 if (ret != 0) {
751 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
752 reg, ret);
753 goto err_alloc;
758 if (chip->num_type_reg && !chip->type_in_mask) {
759 for (i = 0; i < chip->num_type_reg; ++i) {
760 reg = chip->type_base +
761 (i * map->reg_stride * d->type_reg_stride);
763 ret = regmap_read(map, reg, &d->type_buf_def[i]);
765 if (d->chip->type_invert)
766 d->type_buf_def[i] = ~d->type_buf_def[i];
768 if (ret) {
769 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
770 reg, ret);
771 goto err_alloc;
776 if (irq_base)
777 d->domain = irq_domain_add_legacy(map->dev->of_node,
778 chip->num_irqs, irq_base, 0,
779 &regmap_domain_ops, d);
780 else
781 d->domain = irq_domain_add_linear(map->dev->of_node,
782 chip->num_irqs,
783 &regmap_domain_ops, d);
784 if (!d->domain) {
785 dev_err(map->dev, "Failed to create IRQ domain\n");
786 ret = -ENOMEM;
787 goto err_alloc;
790 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
791 irq_flags | IRQF_ONESHOT,
792 chip->name, d);
793 if (ret != 0) {
794 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
795 irq, chip->name, ret);
796 goto err_domain;
799 *data = d;
801 return 0;
803 err_domain:
804 /* Should really dispose of the domain but... */
805 err_alloc:
806 kfree(d->type_buf);
807 kfree(d->type_buf_def);
808 kfree(d->wake_buf);
809 kfree(d->mask_buf_def);
810 kfree(d->mask_buf);
811 kfree(d->status_buf);
812 kfree(d->status_reg_buf);
813 kfree(d);
814 return ret;
816 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
819 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
821 * @irq: Primary IRQ for the device
822 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
824 * This function also disposes of all mapped IRQs on the chip.
826 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
828 unsigned int virq;
829 int hwirq;
831 if (!d)
832 return;
834 free_irq(irq, d);
836 /* Dispose all virtual irq from irq domain before removing it */
837 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
838 /* Ignore hwirq if holes in the IRQ list */
839 if (!d->chip->irqs[hwirq].mask)
840 continue;
843 * Find the virtual irq of hwirq on chip and if it is
844 * there then dispose it
846 virq = irq_find_mapping(d->domain, hwirq);
847 if (virq)
848 irq_dispose_mapping(virq);
851 irq_domain_remove(d->domain);
852 kfree(d->type_buf);
853 kfree(d->type_buf_def);
854 kfree(d->wake_buf);
855 kfree(d->mask_buf_def);
856 kfree(d->mask_buf);
857 kfree(d->status_reg_buf);
858 kfree(d->status_buf);
859 kfree(d);
861 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
863 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
865 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
867 regmap_del_irq_chip(d->irq, d);
870 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
873 struct regmap_irq_chip_data **r = res;
875 if (!r || !*r) {
876 WARN_ON(!r || !*r);
877 return 0;
879 return *r == data;
883 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
885 * @dev: The device pointer on which irq_chip belongs to.
886 * @map: The regmap for the device.
887 * @irq: The IRQ the device uses to signal interrupts
888 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
889 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
890 * @chip: Configuration for the interrupt controller.
891 * @data: Runtime data structure for the controller, allocated on success
893 * Returns 0 on success or an errno on failure.
895 * The &regmap_irq_chip_data will be automatically released when the device is
896 * unbound.
898 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
899 int irq_flags, int irq_base,
900 const struct regmap_irq_chip *chip,
901 struct regmap_irq_chip_data **data)
903 struct regmap_irq_chip_data **ptr, *d;
904 int ret;
906 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
907 GFP_KERNEL);
908 if (!ptr)
909 return -ENOMEM;
911 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
912 chip, &d);
913 if (ret < 0) {
914 devres_free(ptr);
915 return ret;
918 *ptr = d;
919 devres_add(dev, ptr);
920 *data = d;
921 return 0;
923 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
926 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
928 * @dev: Device for which which resource was allocated.
929 * @irq: Primary IRQ for the device.
930 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
932 * A resource managed version of regmap_del_irq_chip().
934 void devm_regmap_del_irq_chip(struct device *dev, int irq,
935 struct regmap_irq_chip_data *data)
937 int rc;
939 WARN_ON(irq != data->irq);
940 rc = devres_release(dev, devm_regmap_irq_chip_release,
941 devm_regmap_irq_chip_match, data);
943 if (rc != 0)
944 WARN_ON(rc);
946 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
949 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
951 * @data: regmap irq controller to operate on.
953 * Useful for drivers to request their own IRQs.
955 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
957 WARN_ON(!data->irq_base);
958 return data->irq_base;
960 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
963 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
965 * @data: regmap irq controller to operate on.
966 * @irq: index of the interrupt requested in the chip IRQs.
968 * Useful for drivers to request their own IRQs.
970 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
972 /* Handle holes in the IRQ list */
973 if (!data->chip->irqs[irq].mask)
974 return -EINVAL;
976 return irq_create_mapping(data->domain, irq);
978 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
981 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
983 * @data: regmap_irq controller to operate on.
985 * Useful for drivers to request their own IRQs and for integration
986 * with subsystems. For ease of integration NULL is accepted as a
987 * domain, allowing devices to just call this even if no domain is
988 * allocated.
990 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
992 if (data)
993 return data->domain;
994 else
995 return NULL;
997 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);