1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
21 #define CREATE_TRACE_POINTS
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
35 static inline bool regmap_should_log(struct regmap
*map
)
37 return (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0);
40 static inline bool regmap_should_log(struct regmap
*map
) { return false; }
44 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
45 unsigned int mask
, unsigned int val
,
46 bool *change
, bool force_write
);
48 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
50 static int _regmap_bus_read(void *context
, unsigned int reg
,
52 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
54 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
56 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
59 bool regmap_reg_in_ranges(unsigned int reg
,
60 const struct regmap_range
*ranges
,
63 const struct regmap_range
*r
;
66 for (i
= 0, r
= ranges
; i
< nranges
; i
++, r
++)
67 if (regmap_reg_in_range(reg
, r
))
71 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges
);
73 bool regmap_check_range_table(struct regmap
*map
, unsigned int reg
,
74 const struct regmap_access_table
*table
)
76 /* Check "no ranges" first */
77 if (regmap_reg_in_ranges(reg
, table
->no_ranges
, table
->n_no_ranges
))
80 /* In case zero "yes ranges" are supplied, any reg is OK */
81 if (!table
->n_yes_ranges
)
84 return regmap_reg_in_ranges(reg
, table
->yes_ranges
,
87 EXPORT_SYMBOL_GPL(regmap_check_range_table
);
89 bool regmap_writeable(struct regmap
*map
, unsigned int reg
)
91 if (map
->max_register
&& reg
> map
->max_register
)
94 if (map
->writeable_reg
)
95 return map
->writeable_reg(map
->dev
, reg
);
98 return regmap_check_range_table(map
, reg
, map
->wr_table
);
103 bool regmap_cached(struct regmap
*map
, unsigned int reg
)
108 if (map
->cache_type
== REGCACHE_NONE
)
114 if (map
->max_register
&& reg
> map
->max_register
)
117 map
->lock(map
->lock_arg
);
118 ret
= regcache_read(map
, reg
, &val
);
119 map
->unlock(map
->lock_arg
);
126 bool regmap_readable(struct regmap
*map
, unsigned int reg
)
131 if (map
->max_register
&& reg
> map
->max_register
)
134 if (map
->format
.format_write
)
137 if (map
->readable_reg
)
138 return map
->readable_reg(map
->dev
, reg
);
141 return regmap_check_range_table(map
, reg
, map
->rd_table
);
146 bool regmap_volatile(struct regmap
*map
, unsigned int reg
)
148 if (!map
->format
.format_write
&& !regmap_readable(map
, reg
))
151 if (map
->volatile_reg
)
152 return map
->volatile_reg(map
->dev
, reg
);
154 if (map
->volatile_table
)
155 return regmap_check_range_table(map
, reg
, map
->volatile_table
);
163 bool regmap_precious(struct regmap
*map
, unsigned int reg
)
165 if (!regmap_readable(map
, reg
))
168 if (map
->precious_reg
)
169 return map
->precious_reg(map
->dev
, reg
);
171 if (map
->precious_table
)
172 return regmap_check_range_table(map
, reg
, map
->precious_table
);
177 bool regmap_writeable_noinc(struct regmap
*map
, unsigned int reg
)
179 if (map
->writeable_noinc_reg
)
180 return map
->writeable_noinc_reg(map
->dev
, reg
);
182 if (map
->wr_noinc_table
)
183 return regmap_check_range_table(map
, reg
, map
->wr_noinc_table
);
188 bool regmap_readable_noinc(struct regmap
*map
, unsigned int reg
)
190 if (map
->readable_noinc_reg
)
191 return map
->readable_noinc_reg(map
->dev
, reg
);
193 if (map
->rd_noinc_table
)
194 return regmap_check_range_table(map
, reg
, map
->rd_noinc_table
);
199 static bool regmap_volatile_range(struct regmap
*map
, unsigned int reg
,
204 for (i
= 0; i
< num
; i
++)
205 if (!regmap_volatile(map
, reg
+ regmap_get_offset(map
, i
)))
211 static void regmap_format_2_6_write(struct regmap
*map
,
212 unsigned int reg
, unsigned int val
)
214 u8
*out
= map
->work_buf
;
216 *out
= (reg
<< 6) | val
;
219 static void regmap_format_4_12_write(struct regmap
*map
,
220 unsigned int reg
, unsigned int val
)
222 __be16
*out
= map
->work_buf
;
223 *out
= cpu_to_be16((reg
<< 12) | val
);
226 static void regmap_format_7_9_write(struct regmap
*map
,
227 unsigned int reg
, unsigned int val
)
229 __be16
*out
= map
->work_buf
;
230 *out
= cpu_to_be16((reg
<< 9) | val
);
233 static void regmap_format_10_14_write(struct regmap
*map
,
234 unsigned int reg
, unsigned int val
)
236 u8
*out
= map
->work_buf
;
239 out
[1] = (val
>> 8) | (reg
<< 6);
243 static void regmap_format_8(void *buf
, unsigned int val
, unsigned int shift
)
250 static void regmap_format_16_be(void *buf
, unsigned int val
, unsigned int shift
)
254 b
[0] = cpu_to_be16(val
<< shift
);
257 static void regmap_format_16_le(void *buf
, unsigned int val
, unsigned int shift
)
261 b
[0] = cpu_to_le16(val
<< shift
);
264 static void regmap_format_16_native(void *buf
, unsigned int val
,
267 *(u16
*)buf
= val
<< shift
;
270 static void regmap_format_24(void *buf
, unsigned int val
, unsigned int shift
)
281 static void regmap_format_32_be(void *buf
, unsigned int val
, unsigned int shift
)
285 b
[0] = cpu_to_be32(val
<< shift
);
288 static void regmap_format_32_le(void *buf
, unsigned int val
, unsigned int shift
)
292 b
[0] = cpu_to_le32(val
<< shift
);
295 static void regmap_format_32_native(void *buf
, unsigned int val
,
298 *(u32
*)buf
= val
<< shift
;
302 static void regmap_format_64_be(void *buf
, unsigned int val
, unsigned int shift
)
306 b
[0] = cpu_to_be64((u64
)val
<< shift
);
309 static void regmap_format_64_le(void *buf
, unsigned int val
, unsigned int shift
)
313 b
[0] = cpu_to_le64((u64
)val
<< shift
);
316 static void regmap_format_64_native(void *buf
, unsigned int val
,
319 *(u64
*)buf
= (u64
)val
<< shift
;
323 static void regmap_parse_inplace_noop(void *buf
)
327 static unsigned int regmap_parse_8(const void *buf
)
334 static unsigned int regmap_parse_16_be(const void *buf
)
336 const __be16
*b
= buf
;
338 return be16_to_cpu(b
[0]);
341 static unsigned int regmap_parse_16_le(const void *buf
)
343 const __le16
*b
= buf
;
345 return le16_to_cpu(b
[0]);
348 static void regmap_parse_16_be_inplace(void *buf
)
352 b
[0] = be16_to_cpu(b
[0]);
355 static void regmap_parse_16_le_inplace(void *buf
)
359 b
[0] = le16_to_cpu(b
[0]);
362 static unsigned int regmap_parse_16_native(const void *buf
)
367 static unsigned int regmap_parse_24(const void *buf
)
370 unsigned int ret
= b
[2];
371 ret
|= ((unsigned int)b
[1]) << 8;
372 ret
|= ((unsigned int)b
[0]) << 16;
377 static unsigned int regmap_parse_32_be(const void *buf
)
379 const __be32
*b
= buf
;
381 return be32_to_cpu(b
[0]);
384 static unsigned int regmap_parse_32_le(const void *buf
)
386 const __le32
*b
= buf
;
388 return le32_to_cpu(b
[0]);
391 static void regmap_parse_32_be_inplace(void *buf
)
395 b
[0] = be32_to_cpu(b
[0]);
398 static void regmap_parse_32_le_inplace(void *buf
)
402 b
[0] = le32_to_cpu(b
[0]);
405 static unsigned int regmap_parse_32_native(const void *buf
)
411 static unsigned int regmap_parse_64_be(const void *buf
)
413 const __be64
*b
= buf
;
415 return be64_to_cpu(b
[0]);
418 static unsigned int regmap_parse_64_le(const void *buf
)
420 const __le64
*b
= buf
;
422 return le64_to_cpu(b
[0]);
425 static void regmap_parse_64_be_inplace(void *buf
)
429 b
[0] = be64_to_cpu(b
[0]);
432 static void regmap_parse_64_le_inplace(void *buf
)
436 b
[0] = le64_to_cpu(b
[0]);
439 static unsigned int regmap_parse_64_native(const void *buf
)
445 static void regmap_lock_hwlock(void *__map
)
447 struct regmap
*map
= __map
;
449 hwspin_lock_timeout(map
->hwlock
, UINT_MAX
);
452 static void regmap_lock_hwlock_irq(void *__map
)
454 struct regmap
*map
= __map
;
456 hwspin_lock_timeout_irq(map
->hwlock
, UINT_MAX
);
459 static void regmap_lock_hwlock_irqsave(void *__map
)
461 struct regmap
*map
= __map
;
463 hwspin_lock_timeout_irqsave(map
->hwlock
, UINT_MAX
,
464 &map
->spinlock_flags
);
467 static void regmap_unlock_hwlock(void *__map
)
469 struct regmap
*map
= __map
;
471 hwspin_unlock(map
->hwlock
);
474 static void regmap_unlock_hwlock_irq(void *__map
)
476 struct regmap
*map
= __map
;
478 hwspin_unlock_irq(map
->hwlock
);
481 static void regmap_unlock_hwlock_irqrestore(void *__map
)
483 struct regmap
*map
= __map
;
485 hwspin_unlock_irqrestore(map
->hwlock
, &map
->spinlock_flags
);
488 static void regmap_lock_unlock_none(void *__map
)
493 static void regmap_lock_mutex(void *__map
)
495 struct regmap
*map
= __map
;
496 mutex_lock(&map
->mutex
);
499 static void regmap_unlock_mutex(void *__map
)
501 struct regmap
*map
= __map
;
502 mutex_unlock(&map
->mutex
);
505 static void regmap_lock_spinlock(void *__map
)
506 __acquires(&map
->spinlock
)
508 struct regmap
*map
= __map
;
511 spin_lock_irqsave(&map
->spinlock
, flags
);
512 map
->spinlock_flags
= flags
;
515 static void regmap_unlock_spinlock(void *__map
)
516 __releases(&map
->spinlock
)
518 struct regmap
*map
= __map
;
519 spin_unlock_irqrestore(&map
->spinlock
, map
->spinlock_flags
);
522 static void dev_get_regmap_release(struct device
*dev
, void *res
)
525 * We don't actually have anything to do here; the goal here
526 * is not to manage the regmap but to provide a simple way to
527 * get the regmap back given a struct device.
531 static bool _regmap_range_add(struct regmap
*map
,
532 struct regmap_range_node
*data
)
534 struct rb_root
*root
= &map
->range_tree
;
535 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
538 struct regmap_range_node
*this =
539 rb_entry(*new, struct regmap_range_node
, node
);
542 if (data
->range_max
< this->range_min
)
543 new = &((*new)->rb_left
);
544 else if (data
->range_min
> this->range_max
)
545 new = &((*new)->rb_right
);
550 rb_link_node(&data
->node
, parent
, new);
551 rb_insert_color(&data
->node
, root
);
556 static struct regmap_range_node
*_regmap_range_lookup(struct regmap
*map
,
559 struct rb_node
*node
= map
->range_tree
.rb_node
;
562 struct regmap_range_node
*this =
563 rb_entry(node
, struct regmap_range_node
, node
);
565 if (reg
< this->range_min
)
566 node
= node
->rb_left
;
567 else if (reg
> this->range_max
)
568 node
= node
->rb_right
;
576 static void regmap_range_exit(struct regmap
*map
)
578 struct rb_node
*next
;
579 struct regmap_range_node
*range_node
;
581 next
= rb_first(&map
->range_tree
);
583 range_node
= rb_entry(next
, struct regmap_range_node
, node
);
584 next
= rb_next(&range_node
->node
);
585 rb_erase(&range_node
->node
, &map
->range_tree
);
589 kfree(map
->selector_work_buf
);
592 int regmap_attach_dev(struct device
*dev
, struct regmap
*map
,
593 const struct regmap_config
*config
)
599 regmap_debugfs_init(map
, config
->name
);
601 /* Add a devres resource for dev_get_regmap() */
602 m
= devres_alloc(dev_get_regmap_release
, sizeof(*m
), GFP_KERNEL
);
604 regmap_debugfs_exit(map
);
612 EXPORT_SYMBOL_GPL(regmap_attach_dev
);
614 static enum regmap_endian
regmap_get_reg_endian(const struct regmap_bus
*bus
,
615 const struct regmap_config
*config
)
617 enum regmap_endian endian
;
619 /* Retrieve the endianness specification from the regmap config */
620 endian
= config
->reg_format_endian
;
622 /* If the regmap config specified a non-default value, use that */
623 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
626 /* Retrieve the endianness specification from the bus config */
627 if (bus
&& bus
->reg_format_endian_default
)
628 endian
= bus
->reg_format_endian_default
;
630 /* If the bus specified a non-default value, use that */
631 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
634 /* Use this if no other value was found */
635 return REGMAP_ENDIAN_BIG
;
638 enum regmap_endian
regmap_get_val_endian(struct device
*dev
,
639 const struct regmap_bus
*bus
,
640 const struct regmap_config
*config
)
642 struct device_node
*np
;
643 enum regmap_endian endian
;
645 /* Retrieve the endianness specification from the regmap config */
646 endian
= config
->val_format_endian
;
648 /* If the regmap config specified a non-default value, use that */
649 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
652 /* If the dev and dev->of_node exist try to get endianness from DT */
653 if (dev
&& dev
->of_node
) {
656 /* Parse the device's DT node for an endianness specification */
657 if (of_property_read_bool(np
, "big-endian"))
658 endian
= REGMAP_ENDIAN_BIG
;
659 else if (of_property_read_bool(np
, "little-endian"))
660 endian
= REGMAP_ENDIAN_LITTLE
;
661 else if (of_property_read_bool(np
, "native-endian"))
662 endian
= REGMAP_ENDIAN_NATIVE
;
664 /* If the endianness was specified in DT, use that */
665 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
669 /* Retrieve the endianness specification from the bus config */
670 if (bus
&& bus
->val_format_endian_default
)
671 endian
= bus
->val_format_endian_default
;
673 /* If the bus specified a non-default value, use that */
674 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
677 /* Use this if no other value was found */
678 return REGMAP_ENDIAN_BIG
;
680 EXPORT_SYMBOL_GPL(regmap_get_val_endian
);
682 struct regmap
*__regmap_init(struct device
*dev
,
683 const struct regmap_bus
*bus
,
685 const struct regmap_config
*config
,
686 struct lock_class_key
*lock_key
,
687 const char *lock_name
)
691 enum regmap_endian reg_endian
, val_endian
;
697 map
= kzalloc(sizeof(*map
), GFP_KERNEL
);
704 map
->name
= kstrdup_const(config
->name
, GFP_KERNEL
);
711 if (config
->disable_locking
) {
712 map
->lock
= map
->unlock
= regmap_lock_unlock_none
;
713 regmap_debugfs_disable(map
);
714 } else if (config
->lock
&& config
->unlock
) {
715 map
->lock
= config
->lock
;
716 map
->unlock
= config
->unlock
;
717 map
->lock_arg
= config
->lock_arg
;
718 } else if (config
->use_hwlock
) {
719 map
->hwlock
= hwspin_lock_request_specific(config
->hwlock_id
);
725 switch (config
->hwlock_mode
) {
726 case HWLOCK_IRQSTATE
:
727 map
->lock
= regmap_lock_hwlock_irqsave
;
728 map
->unlock
= regmap_unlock_hwlock_irqrestore
;
731 map
->lock
= regmap_lock_hwlock_irq
;
732 map
->unlock
= regmap_unlock_hwlock_irq
;
735 map
->lock
= regmap_lock_hwlock
;
736 map
->unlock
= regmap_unlock_hwlock
;
742 if ((bus
&& bus
->fast_io
) ||
744 spin_lock_init(&map
->spinlock
);
745 map
->lock
= regmap_lock_spinlock
;
746 map
->unlock
= regmap_unlock_spinlock
;
747 lockdep_set_class_and_name(&map
->spinlock
,
748 lock_key
, lock_name
);
750 mutex_init(&map
->mutex
);
751 map
->lock
= regmap_lock_mutex
;
752 map
->unlock
= regmap_unlock_mutex
;
753 lockdep_set_class_and_name(&map
->mutex
,
754 lock_key
, lock_name
);
760 * When we write in fast-paths with regmap_bulk_write() don't allocate
761 * scratch buffers with sleeping allocations.
763 if ((bus
&& bus
->fast_io
) || config
->fast_io
)
764 map
->alloc_flags
= GFP_ATOMIC
;
766 map
->alloc_flags
= GFP_KERNEL
;
768 map
->format
.reg_bytes
= DIV_ROUND_UP(config
->reg_bits
, 8);
769 map
->format
.pad_bytes
= config
->pad_bits
/ 8;
770 map
->format
.val_bytes
= DIV_ROUND_UP(config
->val_bits
, 8);
771 map
->format
.buf_size
= DIV_ROUND_UP(config
->reg_bits
+
772 config
->val_bits
+ config
->pad_bits
, 8);
773 map
->reg_shift
= config
->pad_bits
% 8;
774 if (config
->reg_stride
)
775 map
->reg_stride
= config
->reg_stride
;
778 if (is_power_of_2(map
->reg_stride
))
779 map
->reg_stride_order
= ilog2(map
->reg_stride
);
781 map
->reg_stride_order
= -1;
782 map
->use_single_read
= config
->use_single_read
|| !bus
|| !bus
->read
;
783 map
->use_single_write
= config
->use_single_write
|| !bus
|| !bus
->write
;
784 map
->can_multi_write
= config
->can_multi_write
&& bus
&& bus
->write
;
786 map
->max_raw_read
= bus
->max_raw_read
;
787 map
->max_raw_write
= bus
->max_raw_write
;
791 map
->bus_context
= bus_context
;
792 map
->max_register
= config
->max_register
;
793 map
->wr_table
= config
->wr_table
;
794 map
->rd_table
= config
->rd_table
;
795 map
->volatile_table
= config
->volatile_table
;
796 map
->precious_table
= config
->precious_table
;
797 map
->wr_noinc_table
= config
->wr_noinc_table
;
798 map
->rd_noinc_table
= config
->rd_noinc_table
;
799 map
->writeable_reg
= config
->writeable_reg
;
800 map
->readable_reg
= config
->readable_reg
;
801 map
->volatile_reg
= config
->volatile_reg
;
802 map
->precious_reg
= config
->precious_reg
;
803 map
->writeable_noinc_reg
= config
->writeable_noinc_reg
;
804 map
->readable_noinc_reg
= config
->readable_noinc_reg
;
805 map
->cache_type
= config
->cache_type
;
807 spin_lock_init(&map
->async_lock
);
808 INIT_LIST_HEAD(&map
->async_list
);
809 INIT_LIST_HEAD(&map
->async_free
);
810 init_waitqueue_head(&map
->async_waitq
);
812 if (config
->read_flag_mask
||
813 config
->write_flag_mask
||
814 config
->zero_flag_mask
) {
815 map
->read_flag_mask
= config
->read_flag_mask
;
816 map
->write_flag_mask
= config
->write_flag_mask
;
818 map
->read_flag_mask
= bus
->read_flag_mask
;
822 map
->reg_read
= config
->reg_read
;
823 map
->reg_write
= config
->reg_write
;
825 map
->defer_caching
= false;
826 goto skip_format_initialization
;
827 } else if (!bus
->read
|| !bus
->write
) {
828 map
->reg_read
= _regmap_bus_reg_read
;
829 map
->reg_write
= _regmap_bus_reg_write
;
831 map
->defer_caching
= false;
832 goto skip_format_initialization
;
834 map
->reg_read
= _regmap_bus_read
;
835 map
->reg_update_bits
= bus
->reg_update_bits
;
838 reg_endian
= regmap_get_reg_endian(bus
, config
);
839 val_endian
= regmap_get_val_endian(dev
, bus
, config
);
841 switch (config
->reg_bits
+ map
->reg_shift
) {
843 switch (config
->val_bits
) {
845 map
->format
.format_write
= regmap_format_2_6_write
;
853 switch (config
->val_bits
) {
855 map
->format
.format_write
= regmap_format_4_12_write
;
863 switch (config
->val_bits
) {
865 map
->format
.format_write
= regmap_format_7_9_write
;
873 switch (config
->val_bits
) {
875 map
->format
.format_write
= regmap_format_10_14_write
;
883 map
->format
.format_reg
= regmap_format_8
;
887 switch (reg_endian
) {
888 case REGMAP_ENDIAN_BIG
:
889 map
->format
.format_reg
= regmap_format_16_be
;
891 case REGMAP_ENDIAN_LITTLE
:
892 map
->format
.format_reg
= regmap_format_16_le
;
894 case REGMAP_ENDIAN_NATIVE
:
895 map
->format
.format_reg
= regmap_format_16_native
;
903 if (reg_endian
!= REGMAP_ENDIAN_BIG
)
905 map
->format
.format_reg
= regmap_format_24
;
909 switch (reg_endian
) {
910 case REGMAP_ENDIAN_BIG
:
911 map
->format
.format_reg
= regmap_format_32_be
;
913 case REGMAP_ENDIAN_LITTLE
:
914 map
->format
.format_reg
= regmap_format_32_le
;
916 case REGMAP_ENDIAN_NATIVE
:
917 map
->format
.format_reg
= regmap_format_32_native
;
926 switch (reg_endian
) {
927 case REGMAP_ENDIAN_BIG
:
928 map
->format
.format_reg
= regmap_format_64_be
;
930 case REGMAP_ENDIAN_LITTLE
:
931 map
->format
.format_reg
= regmap_format_64_le
;
933 case REGMAP_ENDIAN_NATIVE
:
934 map
->format
.format_reg
= regmap_format_64_native
;
946 if (val_endian
== REGMAP_ENDIAN_NATIVE
)
947 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
949 switch (config
->val_bits
) {
951 map
->format
.format_val
= regmap_format_8
;
952 map
->format
.parse_val
= regmap_parse_8
;
953 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
956 switch (val_endian
) {
957 case REGMAP_ENDIAN_BIG
:
958 map
->format
.format_val
= regmap_format_16_be
;
959 map
->format
.parse_val
= regmap_parse_16_be
;
960 map
->format
.parse_inplace
= regmap_parse_16_be_inplace
;
962 case REGMAP_ENDIAN_LITTLE
:
963 map
->format
.format_val
= regmap_format_16_le
;
964 map
->format
.parse_val
= regmap_parse_16_le
;
965 map
->format
.parse_inplace
= regmap_parse_16_le_inplace
;
967 case REGMAP_ENDIAN_NATIVE
:
968 map
->format
.format_val
= regmap_format_16_native
;
969 map
->format
.parse_val
= regmap_parse_16_native
;
976 if (val_endian
!= REGMAP_ENDIAN_BIG
)
978 map
->format
.format_val
= regmap_format_24
;
979 map
->format
.parse_val
= regmap_parse_24
;
982 switch (val_endian
) {
983 case REGMAP_ENDIAN_BIG
:
984 map
->format
.format_val
= regmap_format_32_be
;
985 map
->format
.parse_val
= regmap_parse_32_be
;
986 map
->format
.parse_inplace
= regmap_parse_32_be_inplace
;
988 case REGMAP_ENDIAN_LITTLE
:
989 map
->format
.format_val
= regmap_format_32_le
;
990 map
->format
.parse_val
= regmap_parse_32_le
;
991 map
->format
.parse_inplace
= regmap_parse_32_le_inplace
;
993 case REGMAP_ENDIAN_NATIVE
:
994 map
->format
.format_val
= regmap_format_32_native
;
995 map
->format
.parse_val
= regmap_parse_32_native
;
1003 switch (val_endian
) {
1004 case REGMAP_ENDIAN_BIG
:
1005 map
->format
.format_val
= regmap_format_64_be
;
1006 map
->format
.parse_val
= regmap_parse_64_be
;
1007 map
->format
.parse_inplace
= regmap_parse_64_be_inplace
;
1009 case REGMAP_ENDIAN_LITTLE
:
1010 map
->format
.format_val
= regmap_format_64_le
;
1011 map
->format
.parse_val
= regmap_parse_64_le
;
1012 map
->format
.parse_inplace
= regmap_parse_64_le_inplace
;
1014 case REGMAP_ENDIAN_NATIVE
:
1015 map
->format
.format_val
= regmap_format_64_native
;
1016 map
->format
.parse_val
= regmap_parse_64_native
;
1025 if (map
->format
.format_write
) {
1026 if ((reg_endian
!= REGMAP_ENDIAN_BIG
) ||
1027 (val_endian
!= REGMAP_ENDIAN_BIG
))
1029 map
->use_single_write
= true;
1032 if (!map
->format
.format_write
&&
1033 !(map
->format
.format_reg
&& map
->format
.format_val
))
1036 map
->work_buf
= kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1037 if (map
->work_buf
== NULL
) {
1042 if (map
->format
.format_write
) {
1043 map
->defer_caching
= false;
1044 map
->reg_write
= _regmap_bus_formatted_write
;
1045 } else if (map
->format
.format_val
) {
1046 map
->defer_caching
= true;
1047 map
->reg_write
= _regmap_bus_raw_write
;
1050 skip_format_initialization
:
1052 map
->range_tree
= RB_ROOT
;
1053 for (i
= 0; i
< config
->num_ranges
; i
++) {
1054 const struct regmap_range_cfg
*range_cfg
= &config
->ranges
[i
];
1055 struct regmap_range_node
*new;
1058 if (range_cfg
->range_max
< range_cfg
->range_min
) {
1059 dev_err(map
->dev
, "Invalid range %d: %d < %d\n", i
,
1060 range_cfg
->range_max
, range_cfg
->range_min
);
1064 if (range_cfg
->range_max
> map
->max_register
) {
1065 dev_err(map
->dev
, "Invalid range %d: %d > %d\n", i
,
1066 range_cfg
->range_max
, map
->max_register
);
1070 if (range_cfg
->selector_reg
> map
->max_register
) {
1072 "Invalid range %d: selector out of map\n", i
);
1076 if (range_cfg
->window_len
== 0) {
1077 dev_err(map
->dev
, "Invalid range %d: window_len 0\n",
1082 /* Make sure, that this register range has no selector
1083 or data window within its boundary */
1084 for (j
= 0; j
< config
->num_ranges
; j
++) {
1085 unsigned sel_reg
= config
->ranges
[j
].selector_reg
;
1086 unsigned win_min
= config
->ranges
[j
].window_start
;
1087 unsigned win_max
= win_min
+
1088 config
->ranges
[j
].window_len
- 1;
1090 /* Allow data window inside its own virtual range */
1094 if (range_cfg
->range_min
<= sel_reg
&&
1095 sel_reg
<= range_cfg
->range_max
) {
1097 "Range %d: selector for %d in window\n",
1102 if (!(win_max
< range_cfg
->range_min
||
1103 win_min
> range_cfg
->range_max
)) {
1105 "Range %d: window for %d in window\n",
1111 new = kzalloc(sizeof(*new), GFP_KERNEL
);
1118 new->name
= range_cfg
->name
;
1119 new->range_min
= range_cfg
->range_min
;
1120 new->range_max
= range_cfg
->range_max
;
1121 new->selector_reg
= range_cfg
->selector_reg
;
1122 new->selector_mask
= range_cfg
->selector_mask
;
1123 new->selector_shift
= range_cfg
->selector_shift
;
1124 new->window_start
= range_cfg
->window_start
;
1125 new->window_len
= range_cfg
->window_len
;
1127 if (!_regmap_range_add(map
, new)) {
1128 dev_err(map
->dev
, "Failed to add range %d\n", i
);
1133 if (map
->selector_work_buf
== NULL
) {
1134 map
->selector_work_buf
=
1135 kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1136 if (map
->selector_work_buf
== NULL
) {
1143 ret
= regcache_init(map
, config
);
1148 ret
= regmap_attach_dev(dev
, map
, config
);
1152 regmap_debugfs_init(map
, config
->name
);
1160 regmap_range_exit(map
);
1161 kfree(map
->work_buf
);
1164 hwspin_lock_free(map
->hwlock
);
1166 kfree_const(map
->name
);
1170 return ERR_PTR(ret
);
1172 EXPORT_SYMBOL_GPL(__regmap_init
);
1174 static void devm_regmap_release(struct device
*dev
, void *res
)
1176 regmap_exit(*(struct regmap
**)res
);
1179 struct regmap
*__devm_regmap_init(struct device
*dev
,
1180 const struct regmap_bus
*bus
,
1182 const struct regmap_config
*config
,
1183 struct lock_class_key
*lock_key
,
1184 const char *lock_name
)
1186 struct regmap
**ptr
, *regmap
;
1188 ptr
= devres_alloc(devm_regmap_release
, sizeof(*ptr
), GFP_KERNEL
);
1190 return ERR_PTR(-ENOMEM
);
1192 regmap
= __regmap_init(dev
, bus
, bus_context
, config
,
1193 lock_key
, lock_name
);
1194 if (!IS_ERR(regmap
)) {
1196 devres_add(dev
, ptr
);
1203 EXPORT_SYMBOL_GPL(__devm_regmap_init
);
1205 static void regmap_field_init(struct regmap_field
*rm_field
,
1206 struct regmap
*regmap
, struct reg_field reg_field
)
1208 rm_field
->regmap
= regmap
;
1209 rm_field
->reg
= reg_field
.reg
;
1210 rm_field
->shift
= reg_field
.lsb
;
1211 rm_field
->mask
= GENMASK(reg_field
.msb
, reg_field
.lsb
);
1212 rm_field
->id_size
= reg_field
.id_size
;
1213 rm_field
->id_offset
= reg_field
.id_offset
;
1217 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1219 * @dev: Device that will be interacted with
1220 * @regmap: regmap bank in which this register field is located.
1221 * @reg_field: Register field with in the bank.
1223 * The return value will be an ERR_PTR() on error or a valid pointer
1224 * to a struct regmap_field. The regmap_field will be automatically freed
1225 * by the device management code.
1227 struct regmap_field
*devm_regmap_field_alloc(struct device
*dev
,
1228 struct regmap
*regmap
, struct reg_field reg_field
)
1230 struct regmap_field
*rm_field
= devm_kzalloc(dev
,
1231 sizeof(*rm_field
), GFP_KERNEL
);
1233 return ERR_PTR(-ENOMEM
);
1235 regmap_field_init(rm_field
, regmap
, reg_field
);
1240 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc
);
1243 * devm_regmap_field_free() - Free a register field allocated using
1244 * devm_regmap_field_alloc.
1246 * @dev: Device that will be interacted with
1247 * @field: regmap field which should be freed.
1249 * Free register field allocated using devm_regmap_field_alloc(). Usually
1250 * drivers need not call this function, as the memory allocated via devm
1251 * will be freed as per device-driver life-cyle.
1253 void devm_regmap_field_free(struct device
*dev
,
1254 struct regmap_field
*field
)
1256 devm_kfree(dev
, field
);
1258 EXPORT_SYMBOL_GPL(devm_regmap_field_free
);
1261 * regmap_field_alloc() - Allocate and initialise a register field.
1263 * @regmap: regmap bank in which this register field is located.
1264 * @reg_field: Register field with in the bank.
1266 * The return value will be an ERR_PTR() on error or a valid pointer
1267 * to a struct regmap_field. The regmap_field should be freed by the
1268 * user once its finished working with it using regmap_field_free().
1270 struct regmap_field
*regmap_field_alloc(struct regmap
*regmap
,
1271 struct reg_field reg_field
)
1273 struct regmap_field
*rm_field
= kzalloc(sizeof(*rm_field
), GFP_KERNEL
);
1276 return ERR_PTR(-ENOMEM
);
1278 regmap_field_init(rm_field
, regmap
, reg_field
);
1282 EXPORT_SYMBOL_GPL(regmap_field_alloc
);
1285 * regmap_field_free() - Free register field allocated using
1286 * regmap_field_alloc.
1288 * @field: regmap field which should be freed.
1290 void regmap_field_free(struct regmap_field
*field
)
1294 EXPORT_SYMBOL_GPL(regmap_field_free
);
1297 * regmap_reinit_cache() - Reinitialise the current register cache
1299 * @map: Register map to operate on.
1300 * @config: New configuration. Only the cache data will be used.
1302 * Discard any existing register cache for the map and initialize a
1303 * new cache. This can be used to restore the cache to defaults or to
1304 * update the cache configuration to reflect runtime discovery of the
1307 * No explicit locking is done here, the user needs to ensure that
1308 * this function will not race with other calls to regmap.
1310 int regmap_reinit_cache(struct regmap
*map
, const struct regmap_config
*config
)
1313 regmap_debugfs_exit(map
);
1315 map
->max_register
= config
->max_register
;
1316 map
->writeable_reg
= config
->writeable_reg
;
1317 map
->readable_reg
= config
->readable_reg
;
1318 map
->volatile_reg
= config
->volatile_reg
;
1319 map
->precious_reg
= config
->precious_reg
;
1320 map
->writeable_noinc_reg
= config
->writeable_noinc_reg
;
1321 map
->readable_noinc_reg
= config
->readable_noinc_reg
;
1322 map
->cache_type
= config
->cache_type
;
1324 regmap_debugfs_init(map
, config
->name
);
1326 map
->cache_bypass
= false;
1327 map
->cache_only
= false;
1329 return regcache_init(map
, config
);
1331 EXPORT_SYMBOL_GPL(regmap_reinit_cache
);
1334 * regmap_exit() - Free a previously allocated register map
1336 * @map: Register map to operate on.
1338 void regmap_exit(struct regmap
*map
)
1340 struct regmap_async
*async
;
1343 regmap_debugfs_exit(map
);
1344 regmap_range_exit(map
);
1345 if (map
->bus
&& map
->bus
->free_context
)
1346 map
->bus
->free_context(map
->bus_context
);
1347 kfree(map
->work_buf
);
1348 while (!list_empty(&map
->async_free
)) {
1349 async
= list_first_entry_or_null(&map
->async_free
,
1350 struct regmap_async
,
1352 list_del(&async
->list
);
1353 kfree(async
->work_buf
);
1357 hwspin_lock_free(map
->hwlock
);
1358 kfree_const(map
->name
);
1361 EXPORT_SYMBOL_GPL(regmap_exit
);
1363 static int dev_get_regmap_match(struct device
*dev
, void *res
, void *data
)
1365 struct regmap
**r
= res
;
1371 /* If the user didn't specify a name match any */
1373 return (*r
)->name
== data
;
1379 * dev_get_regmap() - Obtain the regmap (if any) for a device
1381 * @dev: Device to retrieve the map for
1382 * @name: Optional name for the register map, usually NULL.
1384 * Returns the regmap for the device if one is present, or NULL. If
1385 * name is specified then it must match the name specified when
1386 * registering the device, if it is NULL then the first regmap found
1387 * will be used. Devices with multiple register maps are very rare,
1388 * generic code should normally not need to specify a name.
1390 struct regmap
*dev_get_regmap(struct device
*dev
, const char *name
)
1392 struct regmap
**r
= devres_find(dev
, dev_get_regmap_release
,
1393 dev_get_regmap_match
, (void *)name
);
1399 EXPORT_SYMBOL_GPL(dev_get_regmap
);
1402 * regmap_get_device() - Obtain the device from a regmap
1404 * @map: Register map to operate on.
1406 * Returns the underlying device that the regmap has been created for.
1408 struct device
*regmap_get_device(struct regmap
*map
)
1412 EXPORT_SYMBOL_GPL(regmap_get_device
);
1414 static int _regmap_select_page(struct regmap
*map
, unsigned int *reg
,
1415 struct regmap_range_node
*range
,
1416 unsigned int val_num
)
1418 void *orig_work_buf
;
1419 unsigned int win_offset
;
1420 unsigned int win_page
;
1424 win_offset
= (*reg
- range
->range_min
) % range
->window_len
;
1425 win_page
= (*reg
- range
->range_min
) / range
->window_len
;
1428 /* Bulk write shouldn't cross range boundary */
1429 if (*reg
+ val_num
- 1 > range
->range_max
)
1432 /* ... or single page boundary */
1433 if (val_num
> range
->window_len
- win_offset
)
1437 /* It is possible to have selector register inside data window.
1438 In that case, selector register is located on every page and
1439 it needs no page switching, when accessed alone. */
1441 range
->window_start
+ win_offset
!= range
->selector_reg
) {
1442 /* Use separate work_buf during page switching */
1443 orig_work_buf
= map
->work_buf
;
1444 map
->work_buf
= map
->selector_work_buf
;
1446 ret
= _regmap_update_bits(map
, range
->selector_reg
,
1447 range
->selector_mask
,
1448 win_page
<< range
->selector_shift
,
1451 map
->work_buf
= orig_work_buf
;
1457 *reg
= range
->window_start
+ win_offset
;
1462 static void regmap_set_work_buf_flag_mask(struct regmap
*map
, int max_bytes
,
1468 if (!mask
|| !map
->work_buf
)
1471 buf
= map
->work_buf
;
1473 for (i
= 0; i
< max_bytes
; i
++)
1474 buf
[i
] |= (mask
>> (8 * i
)) & 0xff;
1477 static int _regmap_raw_write_impl(struct regmap
*map
, unsigned int reg
,
1478 const void *val
, size_t val_len
)
1480 struct regmap_range_node
*range
;
1481 unsigned long flags
;
1482 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
1483 map
->format
.pad_bytes
;
1485 int ret
= -ENOTSUPP
;
1491 /* Check for unwritable registers before we start */
1492 for (i
= 0; i
< val_len
/ map
->format
.val_bytes
; i
++)
1493 if (!regmap_writeable(map
,
1494 reg
+ regmap_get_offset(map
, i
)))
1497 if (!map
->cache_bypass
&& map
->format
.parse_val
) {
1499 int val_bytes
= map
->format
.val_bytes
;
1500 for (i
= 0; i
< val_len
/ val_bytes
; i
++) {
1501 ival
= map
->format
.parse_val(val
+ (i
* val_bytes
));
1502 ret
= regcache_write(map
,
1503 reg
+ regmap_get_offset(map
, i
),
1507 "Error in caching of register: %x ret: %d\n",
1512 if (map
->cache_only
) {
1513 map
->cache_dirty
= true;
1518 range
= _regmap_range_lookup(map
, reg
);
1520 int val_num
= val_len
/ map
->format
.val_bytes
;
1521 int win_offset
= (reg
- range
->range_min
) % range
->window_len
;
1522 int win_residue
= range
->window_len
- win_offset
;
1524 /* If the write goes beyond the end of the window split it */
1525 while (val_num
> win_residue
) {
1526 dev_dbg(map
->dev
, "Writing window %d/%zu\n",
1527 win_residue
, val_len
/ map
->format
.val_bytes
);
1528 ret
= _regmap_raw_write_impl(map
, reg
, val
,
1530 map
->format
.val_bytes
);
1535 val_num
-= win_residue
;
1536 val
+= win_residue
* map
->format
.val_bytes
;
1537 val_len
-= win_residue
* map
->format
.val_bytes
;
1539 win_offset
= (reg
- range
->range_min
) %
1541 win_residue
= range
->window_len
- win_offset
;
1544 ret
= _regmap_select_page(map
, ®
, range
, val_num
);
1549 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1550 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
1551 map
->write_flag_mask
);
1554 * Essentially all I/O mechanisms will be faster with a single
1555 * buffer to write. Since register syncs often generate raw
1556 * writes of single registers optimise that case.
1558 if (val
!= work_val
&& val_len
== map
->format
.val_bytes
) {
1559 memcpy(work_val
, val
, map
->format
.val_bytes
);
1563 if (map
->async
&& map
->bus
->async_write
) {
1564 struct regmap_async
*async
;
1566 trace_regmap_async_write_start(map
, reg
, val_len
);
1568 spin_lock_irqsave(&map
->async_lock
, flags
);
1569 async
= list_first_entry_or_null(&map
->async_free
,
1570 struct regmap_async
,
1573 list_del(&async
->list
);
1574 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1577 async
= map
->bus
->async_alloc();
1581 async
->work_buf
= kzalloc(map
->format
.buf_size
,
1582 GFP_KERNEL
| GFP_DMA
);
1583 if (!async
->work_buf
) {
1591 /* If the caller supplied the value we can use it safely. */
1592 memcpy(async
->work_buf
, map
->work_buf
, map
->format
.pad_bytes
+
1593 map
->format
.reg_bytes
+ map
->format
.val_bytes
);
1595 spin_lock_irqsave(&map
->async_lock
, flags
);
1596 list_add_tail(&async
->list
, &map
->async_list
);
1597 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1599 if (val
!= work_val
)
1600 ret
= map
->bus
->async_write(map
->bus_context
,
1602 map
->format
.reg_bytes
+
1603 map
->format
.pad_bytes
,
1604 val
, val_len
, async
);
1606 ret
= map
->bus
->async_write(map
->bus_context
,
1608 map
->format
.reg_bytes
+
1609 map
->format
.pad_bytes
+
1610 val_len
, NULL
, 0, async
);
1613 dev_err(map
->dev
, "Failed to schedule write: %d\n",
1616 spin_lock_irqsave(&map
->async_lock
, flags
);
1617 list_move(&async
->list
, &map
->async_free
);
1618 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1624 trace_regmap_hw_write_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
1626 /* If we're doing a single register write we can probably just
1627 * send the work_buf directly, otherwise try to do a gather
1630 if (val
== work_val
)
1631 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1632 map
->format
.reg_bytes
+
1633 map
->format
.pad_bytes
+
1635 else if (map
->bus
->gather_write
)
1636 ret
= map
->bus
->gather_write(map
->bus_context
, map
->work_buf
,
1637 map
->format
.reg_bytes
+
1638 map
->format
.pad_bytes
,
1641 /* If that didn't work fall back on linearising by hand. */
1642 if (ret
== -ENOTSUPP
) {
1643 len
= map
->format
.reg_bytes
+ map
->format
.pad_bytes
+ val_len
;
1644 buf
= kzalloc(len
, GFP_KERNEL
);
1648 memcpy(buf
, map
->work_buf
, map
->format
.reg_bytes
);
1649 memcpy(buf
+ map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1651 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1654 } else if (ret
!= 0 && !map
->cache_bypass
&& map
->format
.parse_val
) {
1655 /* regcache_drop_region() takes lock that we already have,
1656 * thus call map->cache_ops->drop() directly
1658 if (map
->cache_ops
&& map
->cache_ops
->drop
)
1659 map
->cache_ops
->drop(map
, reg
, reg
+ 1);
1662 trace_regmap_hw_write_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
1668 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1670 * @map: Map to check.
1672 bool regmap_can_raw_write(struct regmap
*map
)
1674 return map
->bus
&& map
->bus
->write
&& map
->format
.format_val
&&
1675 map
->format
.format_reg
;
1677 EXPORT_SYMBOL_GPL(regmap_can_raw_write
);
1680 * regmap_get_raw_read_max - Get the maximum size we can read
1682 * @map: Map to check.
1684 size_t regmap_get_raw_read_max(struct regmap
*map
)
1686 return map
->max_raw_read
;
1688 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max
);
1691 * regmap_get_raw_write_max - Get the maximum size we can read
1693 * @map: Map to check.
1695 size_t regmap_get_raw_write_max(struct regmap
*map
)
1697 return map
->max_raw_write
;
1699 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max
);
1701 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
1705 struct regmap_range_node
*range
;
1706 struct regmap
*map
= context
;
1708 WARN_ON(!map
->bus
|| !map
->format
.format_write
);
1710 range
= _regmap_range_lookup(map
, reg
);
1712 ret
= _regmap_select_page(map
, ®
, range
, 1);
1717 map
->format
.format_write(map
, reg
, val
);
1719 trace_regmap_hw_write_start(map
, reg
, 1);
1721 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1722 map
->format
.buf_size
);
1724 trace_regmap_hw_write_done(map
, reg
, 1);
1729 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
1732 struct regmap
*map
= context
;
1734 return map
->bus
->reg_write(map
->bus_context
, reg
, val
);
1737 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
1740 struct regmap
*map
= context
;
1742 WARN_ON(!map
->bus
|| !map
->format
.format_val
);
1744 map
->format
.format_val(map
->work_buf
+ map
->format
.reg_bytes
1745 + map
->format
.pad_bytes
, val
, 0);
1746 return _regmap_raw_write_impl(map
, reg
,
1748 map
->format
.reg_bytes
+
1749 map
->format
.pad_bytes
,
1750 map
->format
.val_bytes
);
1753 static inline void *_regmap_map_get_context(struct regmap
*map
)
1755 return (map
->bus
) ? map
: map
->bus_context
;
1758 int _regmap_write(struct regmap
*map
, unsigned int reg
,
1762 void *context
= _regmap_map_get_context(map
);
1764 if (!regmap_writeable(map
, reg
))
1767 if (!map
->cache_bypass
&& !map
->defer_caching
) {
1768 ret
= regcache_write(map
, reg
, val
);
1771 if (map
->cache_only
) {
1772 map
->cache_dirty
= true;
1777 if (regmap_should_log(map
))
1778 dev_info(map
->dev
, "%x <= %x\n", reg
, val
);
1780 trace_regmap_reg_write(map
, reg
, val
);
1782 return map
->reg_write(context
, reg
, val
);
1786 * regmap_write() - Write a value to a single register
1788 * @map: Register map to write to
1789 * @reg: Register to write to
1790 * @val: Value to be written
1792 * A value of zero will be returned on success, a negative errno will
1793 * be returned in error cases.
1795 int regmap_write(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1799 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1802 map
->lock(map
->lock_arg
);
1804 ret
= _regmap_write(map
, reg
, val
);
1806 map
->unlock(map
->lock_arg
);
1810 EXPORT_SYMBOL_GPL(regmap_write
);
1813 * regmap_write_async() - Write a value to a single register asynchronously
1815 * @map: Register map to write to
1816 * @reg: Register to write to
1817 * @val: Value to be written
1819 * A value of zero will be returned on success, a negative errno will
1820 * be returned in error cases.
1822 int regmap_write_async(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1826 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1829 map
->lock(map
->lock_arg
);
1833 ret
= _regmap_write(map
, reg
, val
);
1837 map
->unlock(map
->lock_arg
);
1841 EXPORT_SYMBOL_GPL(regmap_write_async
);
1843 int _regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1844 const void *val
, size_t val_len
)
1846 size_t val_bytes
= map
->format
.val_bytes
;
1847 size_t val_count
= val_len
/ val_bytes
;
1848 size_t chunk_count
, chunk_bytes
;
1849 size_t chunk_regs
= val_count
;
1855 if (map
->use_single_write
)
1857 else if (map
->max_raw_write
&& val_len
> map
->max_raw_write
)
1858 chunk_regs
= map
->max_raw_write
/ val_bytes
;
1860 chunk_count
= val_count
/ chunk_regs
;
1861 chunk_bytes
= chunk_regs
* val_bytes
;
1863 /* Write as many bytes as possible with chunk_size */
1864 for (i
= 0; i
< chunk_count
; i
++) {
1865 ret
= _regmap_raw_write_impl(map
, reg
, val
, chunk_bytes
);
1869 reg
+= regmap_get_offset(map
, chunk_regs
);
1871 val_len
-= chunk_bytes
;
1874 /* Write remaining bytes */
1876 ret
= _regmap_raw_write_impl(map
, reg
, val
, val_len
);
1882 * regmap_raw_write() - Write raw values to one or more registers
1884 * @map: Register map to write to
1885 * @reg: Initial register to write to
1886 * @val: Block of data to be written, laid out for direct transmission to the
1888 * @val_len: Length of data pointed to by val.
1890 * This function is intended to be used for things like firmware
1891 * download where a large block of data needs to be transferred to the
1892 * device. No formatting will be done on the data provided.
1894 * A value of zero will be returned on success, a negative errno will
1895 * be returned in error cases.
1897 int regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1898 const void *val
, size_t val_len
)
1902 if (!regmap_can_raw_write(map
))
1904 if (val_len
% map
->format
.val_bytes
)
1907 map
->lock(map
->lock_arg
);
1909 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1911 map
->unlock(map
->lock_arg
);
1915 EXPORT_SYMBOL_GPL(regmap_raw_write
);
1918 * regmap_noinc_write(): Write data from a register without incrementing the
1921 * @map: Register map to write to
1922 * @reg: Register to write to
1923 * @val: Pointer to data buffer
1924 * @val_len: Length of output buffer in bytes.
1926 * The regmap API usually assumes that bulk bus write operations will write a
1927 * range of registers. Some devices have certain registers for which a write
1928 * operation can write to an internal FIFO.
1930 * The target register must be volatile but registers after it can be
1931 * completely unrelated cacheable registers.
1933 * This will attempt multiple writes as required to write val_len bytes.
1935 * A value of zero will be returned on success, a negative errno will be
1936 * returned in error cases.
1938 int regmap_noinc_write(struct regmap
*map
, unsigned int reg
,
1939 const void *val
, size_t val_len
)
1946 if (!map
->bus
->write
)
1948 if (val_len
% map
->format
.val_bytes
)
1950 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1955 map
->lock(map
->lock_arg
);
1957 if (!regmap_volatile(map
, reg
) || !regmap_writeable_noinc(map
, reg
)) {
1963 if (map
->max_raw_write
&& map
->max_raw_write
< val_len
)
1964 write_len
= map
->max_raw_write
;
1966 write_len
= val_len
;
1967 ret
= _regmap_raw_write(map
, reg
, val
, write_len
);
1970 val
= ((u8
*)val
) + write_len
;
1971 val_len
-= write_len
;
1975 map
->unlock(map
->lock_arg
);
1978 EXPORT_SYMBOL_GPL(regmap_noinc_write
);
1981 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1984 * @field: Register field to write to
1985 * @mask: Bitmask to change
1986 * @val: Value to be written
1987 * @change: Boolean indicating if a write was done
1988 * @async: Boolean indicating asynchronously
1989 * @force: Boolean indicating use force update
1991 * Perform a read/modify/write cycle on the register field with change,
1992 * async, force option.
1994 * A value of zero will be returned on success, a negative errno will
1995 * be returned in error cases.
1997 int regmap_field_update_bits_base(struct regmap_field
*field
,
1998 unsigned int mask
, unsigned int val
,
1999 bool *change
, bool async
, bool force
)
2001 mask
= (mask
<< field
->shift
) & field
->mask
;
2003 return regmap_update_bits_base(field
->regmap
, field
->reg
,
2004 mask
, val
<< field
->shift
,
2005 change
, async
, force
);
2007 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base
);
2010 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2011 * register field with port ID
2013 * @field: Register field to write to
2015 * @mask: Bitmask to change
2016 * @val: Value to be written
2017 * @change: Boolean indicating if a write was done
2018 * @async: Boolean indicating asynchronously
2019 * @force: Boolean indicating use force update
2021 * A value of zero will be returned on success, a negative errno will
2022 * be returned in error cases.
2024 int regmap_fields_update_bits_base(struct regmap_field
*field
, unsigned int id
,
2025 unsigned int mask
, unsigned int val
,
2026 bool *change
, bool async
, bool force
)
2028 if (id
>= field
->id_size
)
2031 mask
= (mask
<< field
->shift
) & field
->mask
;
2033 return regmap_update_bits_base(field
->regmap
,
2034 field
->reg
+ (field
->id_offset
* id
),
2035 mask
, val
<< field
->shift
,
2036 change
, async
, force
);
2038 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base
);
2041 * regmap_bulk_write() - Write multiple registers to the device
2043 * @map: Register map to write to
2044 * @reg: First register to be write from
2045 * @val: Block of data to be written, in native register size for device
2046 * @val_count: Number of registers to write
2048 * This function is intended to be used for writing a large block of
2049 * data to the device either in single transfer or multiple transfer.
2051 * A value of zero will be returned on success, a negative errno will
2052 * be returned in error cases.
2054 int regmap_bulk_write(struct regmap
*map
, unsigned int reg
, const void *val
,
2058 size_t val_bytes
= map
->format
.val_bytes
;
2060 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2064 * Some devices don't support bulk write, for them we have a series of
2065 * single write operations.
2067 if (!map
->bus
|| !map
->format
.parse_inplace
) {
2068 map
->lock(map
->lock_arg
);
2069 for (i
= 0; i
< val_count
; i
++) {
2072 switch (val_bytes
) {
2074 ival
= *(u8
*)(val
+ (i
* val_bytes
));
2077 ival
= *(u16
*)(val
+ (i
* val_bytes
));
2080 ival
= *(u32
*)(val
+ (i
* val_bytes
));
2084 ival
= *(u64
*)(val
+ (i
* val_bytes
));
2092 ret
= _regmap_write(map
,
2093 reg
+ regmap_get_offset(map
, i
),
2099 map
->unlock(map
->lock_arg
);
2103 wval
= kmemdup(val
, val_count
* val_bytes
, map
->alloc_flags
);
2107 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2108 map
->format
.parse_inplace(wval
+ i
);
2110 ret
= regmap_raw_write(map
, reg
, wval
, val_bytes
* val_count
);
2116 EXPORT_SYMBOL_GPL(regmap_bulk_write
);
2119 * _regmap_raw_multi_reg_write()
2121 * the (register,newvalue) pairs in regs have not been formatted, but
2122 * they are all in the same page and have been changed to being page
2123 * relative. The page register has been written if that was necessary.
2125 static int _regmap_raw_multi_reg_write(struct regmap
*map
,
2126 const struct reg_sequence
*regs
,
2133 size_t val_bytes
= map
->format
.val_bytes
;
2134 size_t reg_bytes
= map
->format
.reg_bytes
;
2135 size_t pad_bytes
= map
->format
.pad_bytes
;
2136 size_t pair_size
= reg_bytes
+ pad_bytes
+ val_bytes
;
2137 size_t len
= pair_size
* num_regs
;
2142 buf
= kzalloc(len
, GFP_KERNEL
);
2146 /* We have to linearise by hand. */
2150 for (i
= 0; i
< num_regs
; i
++) {
2151 unsigned int reg
= regs
[i
].reg
;
2152 unsigned int val
= regs
[i
].def
;
2153 trace_regmap_hw_write_start(map
, reg
, 1);
2154 map
->format
.format_reg(u8
, reg
, map
->reg_shift
);
2155 u8
+= reg_bytes
+ pad_bytes
;
2156 map
->format
.format_val(u8
, val
, 0);
2160 *u8
|= map
->write_flag_mask
;
2162 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
2166 for (i
= 0; i
< num_regs
; i
++) {
2167 int reg
= regs
[i
].reg
;
2168 trace_regmap_hw_write_done(map
, reg
, 1);
2173 static unsigned int _regmap_register_page(struct regmap
*map
,
2175 struct regmap_range_node
*range
)
2177 unsigned int win_page
= (reg
- range
->range_min
) / range
->window_len
;
2182 static int _regmap_range_multi_paged_reg_write(struct regmap
*map
,
2183 struct reg_sequence
*regs
,
2188 struct reg_sequence
*base
;
2189 unsigned int this_page
= 0;
2190 unsigned int page_change
= 0;
2192 * the set of registers are not neccessarily in order, but
2193 * since the order of write must be preserved this algorithm
2194 * chops the set each time the page changes. This also applies
2195 * if there is a delay required at any point in the sequence.
2198 for (i
= 0, n
= 0; i
< num_regs
; i
++, n
++) {
2199 unsigned int reg
= regs
[i
].reg
;
2200 struct regmap_range_node
*range
;
2202 range
= _regmap_range_lookup(map
, reg
);
2204 unsigned int win_page
= _regmap_register_page(map
, reg
,
2208 this_page
= win_page
;
2209 if (win_page
!= this_page
) {
2210 this_page
= win_page
;
2215 /* If we have both a page change and a delay make sure to
2216 * write the regs and apply the delay before we change the
2220 if (page_change
|| regs
[i
].delay_us
) {
2222 /* For situations where the first write requires
2223 * a delay we need to make sure we don't call
2224 * raw_multi_reg_write with n=0
2225 * This can't occur with page breaks as we
2226 * never write on the first iteration
2228 if (regs
[i
].delay_us
&& i
== 0)
2231 ret
= _regmap_raw_multi_reg_write(map
, base
, n
);
2235 if (regs
[i
].delay_us
)
2236 udelay(regs
[i
].delay_us
);
2242 ret
= _regmap_select_page(map
,
2255 return _regmap_raw_multi_reg_write(map
, base
, n
);
2259 static int _regmap_multi_reg_write(struct regmap
*map
,
2260 const struct reg_sequence
*regs
,
2266 if (!map
->can_multi_write
) {
2267 for (i
= 0; i
< num_regs
; i
++) {
2268 ret
= _regmap_write(map
, regs
[i
].reg
, regs
[i
].def
);
2272 if (regs
[i
].delay_us
)
2273 udelay(regs
[i
].delay_us
);
2278 if (!map
->format
.parse_inplace
)
2281 if (map
->writeable_reg
)
2282 for (i
= 0; i
< num_regs
; i
++) {
2283 int reg
= regs
[i
].reg
;
2284 if (!map
->writeable_reg(map
->dev
, reg
))
2286 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2290 if (!map
->cache_bypass
) {
2291 for (i
= 0; i
< num_regs
; i
++) {
2292 unsigned int val
= regs
[i
].def
;
2293 unsigned int reg
= regs
[i
].reg
;
2294 ret
= regcache_write(map
, reg
, val
);
2297 "Error in caching of register: %x ret: %d\n",
2302 if (map
->cache_only
) {
2303 map
->cache_dirty
= true;
2310 for (i
= 0; i
< num_regs
; i
++) {
2311 unsigned int reg
= regs
[i
].reg
;
2312 struct regmap_range_node
*range
;
2314 /* Coalesce all the writes between a page break or a delay
2317 range
= _regmap_range_lookup(map
, reg
);
2318 if (range
|| regs
[i
].delay_us
) {
2319 size_t len
= sizeof(struct reg_sequence
)*num_regs
;
2320 struct reg_sequence
*base
= kmemdup(regs
, len
,
2324 ret
= _regmap_range_multi_paged_reg_write(map
, base
,
2331 return _regmap_raw_multi_reg_write(map
, regs
, num_regs
);
2335 * regmap_multi_reg_write() - Write multiple registers to the device
2337 * @map: Register map to write to
2338 * @regs: Array of structures containing register,value to be written
2339 * @num_regs: Number of registers to write
2341 * Write multiple registers to the device where the set of register, value
2342 * pairs are supplied in any order, possibly not all in a single range.
2344 * The 'normal' block write mode will send ultimately send data on the
2345 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2346 * addressed. However, this alternative block multi write mode will send
2347 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2348 * must of course support the mode.
2350 * A value of zero will be returned on success, a negative errno will be
2351 * returned in error cases.
2353 int regmap_multi_reg_write(struct regmap
*map
, const struct reg_sequence
*regs
,
2358 map
->lock(map
->lock_arg
);
2360 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2362 map
->unlock(map
->lock_arg
);
2366 EXPORT_SYMBOL_GPL(regmap_multi_reg_write
);
2369 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2370 * device but not the cache
2372 * @map: Register map to write to
2373 * @regs: Array of structures containing register,value to be written
2374 * @num_regs: Number of registers to write
2376 * Write multiple registers to the device but not the cache where the set
2377 * of register are supplied in any order.
2379 * This function is intended to be used for writing a large block of data
2380 * atomically to the device in single transfer for those I2C client devices
2381 * that implement this alternative block write mode.
2383 * A value of zero will be returned on success, a negative errno will
2384 * be returned in error cases.
2386 int regmap_multi_reg_write_bypassed(struct regmap
*map
,
2387 const struct reg_sequence
*regs
,
2393 map
->lock(map
->lock_arg
);
2395 bypass
= map
->cache_bypass
;
2396 map
->cache_bypass
= true;
2398 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2400 map
->cache_bypass
= bypass
;
2402 map
->unlock(map
->lock_arg
);
2406 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed
);
2409 * regmap_raw_write_async() - Write raw values to one or more registers
2412 * @map: Register map to write to
2413 * @reg: Initial register to write to
2414 * @val: Block of data to be written, laid out for direct transmission to the
2415 * device. Must be valid until regmap_async_complete() is called.
2416 * @val_len: Length of data pointed to by val.
2418 * This function is intended to be used for things like firmware
2419 * download where a large block of data needs to be transferred to the
2420 * device. No formatting will be done on the data provided.
2422 * If supported by the underlying bus the write will be scheduled
2423 * asynchronously, helping maximise I/O speed on higher speed buses
2424 * like SPI. regmap_async_complete() can be called to ensure that all
2425 * asynchrnous writes have been completed.
2427 * A value of zero will be returned on success, a negative errno will
2428 * be returned in error cases.
2430 int regmap_raw_write_async(struct regmap
*map
, unsigned int reg
,
2431 const void *val
, size_t val_len
)
2435 if (val_len
% map
->format
.val_bytes
)
2437 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2440 map
->lock(map
->lock_arg
);
2444 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
2448 map
->unlock(map
->lock_arg
);
2452 EXPORT_SYMBOL_GPL(regmap_raw_write_async
);
2454 static int _regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2455 unsigned int val_len
)
2457 struct regmap_range_node
*range
;
2462 if (!map
->bus
|| !map
->bus
->read
)
2465 range
= _regmap_range_lookup(map
, reg
);
2467 ret
= _regmap_select_page(map
, ®
, range
,
2468 val_len
/ map
->format
.val_bytes
);
2473 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
2474 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
2475 map
->read_flag_mask
);
2476 trace_regmap_hw_read_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
2478 ret
= map
->bus
->read(map
->bus_context
, map
->work_buf
,
2479 map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
2482 trace_regmap_hw_read_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
2487 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
2490 struct regmap
*map
= context
;
2492 return map
->bus
->reg_read(map
->bus_context
, reg
, val
);
2495 static int _regmap_bus_read(void *context
, unsigned int reg
,
2499 struct regmap
*map
= context
;
2500 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
2501 map
->format
.pad_bytes
;
2503 if (!map
->format
.parse_val
)
2506 ret
= _regmap_raw_read(map
, reg
, work_val
, map
->format
.val_bytes
);
2508 *val
= map
->format
.parse_val(work_val
);
2513 static int _regmap_read(struct regmap
*map
, unsigned int reg
,
2517 void *context
= _regmap_map_get_context(map
);
2519 if (!map
->cache_bypass
) {
2520 ret
= regcache_read(map
, reg
, val
);
2525 if (map
->cache_only
)
2528 if (!regmap_readable(map
, reg
))
2531 ret
= map
->reg_read(context
, reg
, val
);
2533 if (regmap_should_log(map
))
2534 dev_info(map
->dev
, "%x => %x\n", reg
, *val
);
2536 trace_regmap_reg_read(map
, reg
, *val
);
2538 if (!map
->cache_bypass
)
2539 regcache_write(map
, reg
, *val
);
2546 * regmap_read() - Read a value from a single register
2548 * @map: Register map to read from
2549 * @reg: Register to be read from
2550 * @val: Pointer to store read value
2552 * A value of zero will be returned on success, a negative errno will
2553 * be returned in error cases.
2555 int regmap_read(struct regmap
*map
, unsigned int reg
, unsigned int *val
)
2559 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2562 map
->lock(map
->lock_arg
);
2564 ret
= _regmap_read(map
, reg
, val
);
2566 map
->unlock(map
->lock_arg
);
2570 EXPORT_SYMBOL_GPL(regmap_read
);
2573 * regmap_raw_read() - Read raw data from the device
2575 * @map: Register map to read from
2576 * @reg: First register to be read from
2577 * @val: Pointer to store read value
2578 * @val_len: Size of data to read
2580 * A value of zero will be returned on success, a negative errno will
2581 * be returned in error cases.
2583 int regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2586 size_t val_bytes
= map
->format
.val_bytes
;
2587 size_t val_count
= val_len
/ val_bytes
;
2593 if (val_len
% map
->format
.val_bytes
)
2595 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2600 map
->lock(map
->lock_arg
);
2602 if (regmap_volatile_range(map
, reg
, val_count
) || map
->cache_bypass
||
2603 map
->cache_type
== REGCACHE_NONE
) {
2604 size_t chunk_count
, chunk_bytes
;
2605 size_t chunk_regs
= val_count
;
2607 if (!map
->bus
->read
) {
2612 if (map
->use_single_read
)
2614 else if (map
->max_raw_read
&& val_len
> map
->max_raw_read
)
2615 chunk_regs
= map
->max_raw_read
/ val_bytes
;
2617 chunk_count
= val_count
/ chunk_regs
;
2618 chunk_bytes
= chunk_regs
* val_bytes
;
2620 /* Read bytes that fit into whole chunks */
2621 for (i
= 0; i
< chunk_count
; i
++) {
2622 ret
= _regmap_raw_read(map
, reg
, val
, chunk_bytes
);
2626 reg
+= regmap_get_offset(map
, chunk_regs
);
2628 val_len
-= chunk_bytes
;
2631 /* Read remaining bytes */
2633 ret
= _regmap_raw_read(map
, reg
, val
, val_len
);
2638 /* Otherwise go word by word for the cache; should be low
2639 * cost as we expect to hit the cache.
2641 for (i
= 0; i
< val_count
; i
++) {
2642 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2647 map
->format
.format_val(val
+ (i
* val_bytes
), v
, 0);
2652 map
->unlock(map
->lock_arg
);
2656 EXPORT_SYMBOL_GPL(regmap_raw_read
);
2659 * regmap_noinc_read(): Read data from a register without incrementing the
2662 * @map: Register map to read from
2663 * @reg: Register to read from
2664 * @val: Pointer to data buffer
2665 * @val_len: Length of output buffer in bytes.
2667 * The regmap API usually assumes that bulk bus read operations will read a
2668 * range of registers. Some devices have certain registers for which a read
2669 * operation read will read from an internal FIFO.
2671 * The target register must be volatile but registers after it can be
2672 * completely unrelated cacheable registers.
2674 * This will attempt multiple reads as required to read val_len bytes.
2676 * A value of zero will be returned on success, a negative errno will be
2677 * returned in error cases.
2679 int regmap_noinc_read(struct regmap
*map
, unsigned int reg
,
2680 void *val
, size_t val_len
)
2687 if (!map
->bus
->read
)
2689 if (val_len
% map
->format
.val_bytes
)
2691 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2696 map
->lock(map
->lock_arg
);
2698 if (!regmap_volatile(map
, reg
) || !regmap_readable_noinc(map
, reg
)) {
2704 if (map
->max_raw_read
&& map
->max_raw_read
< val_len
)
2705 read_len
= map
->max_raw_read
;
2708 ret
= _regmap_raw_read(map
, reg
, val
, read_len
);
2711 val
= ((u8
*)val
) + read_len
;
2712 val_len
-= read_len
;
2716 map
->unlock(map
->lock_arg
);
2719 EXPORT_SYMBOL_GPL(regmap_noinc_read
);
2722 * regmap_field_read(): Read a value to a single register field
2724 * @field: Register field to read from
2725 * @val: Pointer to store read value
2727 * A value of zero will be returned on success, a negative errno will
2728 * be returned in error cases.
2730 int regmap_field_read(struct regmap_field
*field
, unsigned int *val
)
2733 unsigned int reg_val
;
2734 ret
= regmap_read(field
->regmap
, field
->reg
, ®_val
);
2738 reg_val
&= field
->mask
;
2739 reg_val
>>= field
->shift
;
2744 EXPORT_SYMBOL_GPL(regmap_field_read
);
2747 * regmap_fields_read() - Read a value to a single register field with port ID
2749 * @field: Register field to read from
2751 * @val: Pointer to store read value
2753 * A value of zero will be returned on success, a negative errno will
2754 * be returned in error cases.
2756 int regmap_fields_read(struct regmap_field
*field
, unsigned int id
,
2760 unsigned int reg_val
;
2762 if (id
>= field
->id_size
)
2765 ret
= regmap_read(field
->regmap
,
2766 field
->reg
+ (field
->id_offset
* id
),
2771 reg_val
&= field
->mask
;
2772 reg_val
>>= field
->shift
;
2777 EXPORT_SYMBOL_GPL(regmap_fields_read
);
2780 * regmap_bulk_read() - Read multiple registers from the device
2782 * @map: Register map to read from
2783 * @reg: First register to be read from
2784 * @val: Pointer to store read value, in native register size for device
2785 * @val_count: Number of registers to read
2787 * A value of zero will be returned on success, a negative errno will
2788 * be returned in error cases.
2790 int regmap_bulk_read(struct regmap
*map
, unsigned int reg
, void *val
,
2794 size_t val_bytes
= map
->format
.val_bytes
;
2795 bool vol
= regmap_volatile_range(map
, reg
, val_count
);
2797 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2802 if (map
->bus
&& map
->format
.parse_inplace
&& (vol
|| map
->cache_type
== REGCACHE_NONE
)) {
2803 ret
= regmap_raw_read(map
, reg
, val
, val_bytes
* val_count
);
2807 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2808 map
->format
.parse_inplace(val
+ i
);
2817 map
->lock(map
->lock_arg
);
2819 for (i
= 0; i
< val_count
; i
++) {
2822 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2827 switch (map
->format
.val_bytes
) {
2849 map
->unlock(map
->lock_arg
);
2854 EXPORT_SYMBOL_GPL(regmap_bulk_read
);
2856 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2857 unsigned int mask
, unsigned int val
,
2858 bool *change
, bool force_write
)
2861 unsigned int tmp
, orig
;
2866 if (regmap_volatile(map
, reg
) && map
->reg_update_bits
) {
2867 ret
= map
->reg_update_bits(map
->bus_context
, reg
, mask
, val
);
2868 if (ret
== 0 && change
)
2871 ret
= _regmap_read(map
, reg
, &orig
);
2878 if (force_write
|| (tmp
!= orig
)) {
2879 ret
= _regmap_write(map
, reg
, tmp
);
2880 if (ret
== 0 && change
)
2889 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2891 * @map: Register map to update
2892 * @reg: Register to update
2893 * @mask: Bitmask to change
2894 * @val: New value for bitmask
2895 * @change: Boolean indicating if a write was done
2896 * @async: Boolean indicating asynchronously
2897 * @force: Boolean indicating use force update
2899 * Perform a read/modify/write cycle on a register map with change, async, force
2904 * With most buses the read must be done synchronously so this is most useful
2905 * for devices with a cache which do not need to interact with the hardware to
2906 * determine the current register value.
2908 * Returns zero for success, a negative number on error.
2910 int regmap_update_bits_base(struct regmap
*map
, unsigned int reg
,
2911 unsigned int mask
, unsigned int val
,
2912 bool *change
, bool async
, bool force
)
2916 map
->lock(map
->lock_arg
);
2920 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
, force
);
2924 map
->unlock(map
->lock_arg
);
2928 EXPORT_SYMBOL_GPL(regmap_update_bits_base
);
2930 void regmap_async_complete_cb(struct regmap_async
*async
, int ret
)
2932 struct regmap
*map
= async
->map
;
2935 trace_regmap_async_io_complete(map
);
2937 spin_lock(&map
->async_lock
);
2938 list_move(&async
->list
, &map
->async_free
);
2939 wake
= list_empty(&map
->async_list
);
2942 map
->async_ret
= ret
;
2944 spin_unlock(&map
->async_lock
);
2947 wake_up(&map
->async_waitq
);
2949 EXPORT_SYMBOL_GPL(regmap_async_complete_cb
);
2951 static int regmap_async_is_done(struct regmap
*map
)
2953 unsigned long flags
;
2956 spin_lock_irqsave(&map
->async_lock
, flags
);
2957 ret
= list_empty(&map
->async_list
);
2958 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2964 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2966 * @map: Map to operate on.
2968 * Blocks until any pending asynchronous I/O has completed. Returns
2969 * an error code for any failed I/O operations.
2971 int regmap_async_complete(struct regmap
*map
)
2973 unsigned long flags
;
2976 /* Nothing to do with no async support */
2977 if (!map
->bus
|| !map
->bus
->async_write
)
2980 trace_regmap_async_complete_start(map
);
2982 wait_event(map
->async_waitq
, regmap_async_is_done(map
));
2984 spin_lock_irqsave(&map
->async_lock
, flags
);
2985 ret
= map
->async_ret
;
2987 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2989 trace_regmap_async_complete_done(map
);
2993 EXPORT_SYMBOL_GPL(regmap_async_complete
);
2996 * regmap_register_patch - Register and apply register updates to be applied
2997 * on device initialistion
2999 * @map: Register map to apply updates to.
3000 * @regs: Values to update.
3001 * @num_regs: Number of entries in regs.
3003 * Register a set of register updates to be applied to the device
3004 * whenever the device registers are synchronised with the cache and
3005 * apply them immediately. Typically this is used to apply
3006 * corrections to be applied to the device defaults on startup, such
3007 * as the updates some vendors provide to undocumented registers.
3009 * The caller must ensure that this function cannot be called
3010 * concurrently with either itself or regcache_sync().
3012 int regmap_register_patch(struct regmap
*map
, const struct reg_sequence
*regs
,
3015 struct reg_sequence
*p
;
3019 if (WARN_ONCE(num_regs
<= 0, "invalid registers number (%d)\n",
3023 p
= krealloc(map
->patch
,
3024 sizeof(struct reg_sequence
) * (map
->patch_regs
+ num_regs
),
3027 memcpy(p
+ map
->patch_regs
, regs
, num_regs
* sizeof(*regs
));
3029 map
->patch_regs
+= num_regs
;
3034 map
->lock(map
->lock_arg
);
3036 bypass
= map
->cache_bypass
;
3038 map
->cache_bypass
= true;
3041 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
3044 map
->cache_bypass
= bypass
;
3046 map
->unlock(map
->lock_arg
);
3048 regmap_async_complete(map
);
3052 EXPORT_SYMBOL_GPL(regmap_register_patch
);
3055 * regmap_get_val_bytes() - Report the size of a register value
3057 * @map: Register map to operate on.
3059 * Report the size of a register value, mainly intended to for use by
3060 * generic infrastructure built on top of regmap.
3062 int regmap_get_val_bytes(struct regmap
*map
)
3064 if (map
->format
.format_write
)
3067 return map
->format
.val_bytes
;
3069 EXPORT_SYMBOL_GPL(regmap_get_val_bytes
);
3072 * regmap_get_max_register() - Report the max register value
3074 * @map: Register map to operate on.
3076 * Report the max register value, mainly intended to for use by
3077 * generic infrastructure built on top of regmap.
3079 int regmap_get_max_register(struct regmap
*map
)
3081 return map
->max_register
? map
->max_register
: -EINVAL
;
3083 EXPORT_SYMBOL_GPL(regmap_get_max_register
);
3086 * regmap_get_reg_stride() - Report the register address stride
3088 * @map: Register map to operate on.
3090 * Report the register address stride, mainly intended to for use by
3091 * generic infrastructure built on top of regmap.
3093 int regmap_get_reg_stride(struct regmap
*map
)
3095 return map
->reg_stride
;
3097 EXPORT_SYMBOL_GPL(regmap_get_reg_stride
);
3099 int regmap_parse_val(struct regmap
*map
, const void *buf
,
3102 if (!map
->format
.parse_val
)
3105 *val
= map
->format
.parse_val(buf
);
3109 EXPORT_SYMBOL_GPL(regmap_parse_val
);
3111 static int __init
regmap_initcall(void)
3113 regmap_debugfs_initcall();
3117 postcore_initcall(regmap_initcall
);