Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / crypto / inside-secure / safexcel_hash.c
blobac9282c1a5ec13048037a8c84db819c27fc88fdf
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017 Marvell
5 * Antoine Tenart <antoine.tenart@free-electrons.com>
6 */
8 #include <crypto/hmac.h>
9 #include <crypto/md5.h>
10 #include <crypto/sha.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
15 #include "safexcel.h"
17 struct safexcel_ahash_ctx {
18 struct safexcel_context base;
19 struct safexcel_crypto_priv *priv;
21 u32 alg;
23 u32 ipad[SHA512_DIGEST_SIZE / sizeof(u32)];
24 u32 opad[SHA512_DIGEST_SIZE / sizeof(u32)];
27 struct safexcel_ahash_req {
28 bool last_req;
29 bool finish;
30 bool hmac;
31 bool needs_inv;
33 int nents;
34 dma_addr_t result_dma;
36 u32 digest;
38 u8 state_sz; /* expected sate size, only set once */
39 u32 state[SHA512_DIGEST_SIZE / sizeof(u32)] __aligned(sizeof(u32));
41 u64 len[2];
42 u64 processed[2];
44 u8 cache[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
45 dma_addr_t cache_dma;
46 unsigned int cache_sz;
48 u8 cache_next[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
51 static inline u64 safexcel_queued_len(struct safexcel_ahash_req *req)
53 if (req->len[1] > req->processed[1])
54 return 0xffffffff - (req->len[0] - req->processed[0]);
56 return req->len[0] - req->processed[0];
59 static void safexcel_hash_token(struct safexcel_command_desc *cdesc,
60 u32 input_length, u32 result_length)
62 struct safexcel_token *token =
63 (struct safexcel_token *)cdesc->control_data.token;
65 token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
66 token[0].packet_length = input_length;
67 token[0].stat = EIP197_TOKEN_STAT_LAST_HASH;
68 token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
70 token[1].opcode = EIP197_TOKEN_OPCODE_INSERT;
71 token[1].packet_length = result_length;
72 token[1].stat = EIP197_TOKEN_STAT_LAST_HASH |
73 EIP197_TOKEN_STAT_LAST_PACKET;
74 token[1].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
75 EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
78 static void safexcel_context_control(struct safexcel_ahash_ctx *ctx,
79 struct safexcel_ahash_req *req,
80 struct safexcel_command_desc *cdesc,
81 unsigned int digestsize)
83 struct safexcel_crypto_priv *priv = ctx->priv;
84 int i;
86 cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_OUT;
87 cdesc->control_data.control0 |= ctx->alg;
88 cdesc->control_data.control0 |= req->digest;
90 if (req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) {
91 if (req->processed[0] || req->processed[1]) {
92 if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5)
93 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(5);
94 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
95 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(6);
96 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224 ||
97 ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
98 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(9);
99 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA384 ||
100 ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA512)
101 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(17);
103 cdesc->control_data.control1 |= CONTEXT_CONTROL_DIGEST_CNT;
104 } else {
105 cdesc->control_data.control0 |= CONTEXT_CONTROL_RESTART_HASH;
108 if (!req->finish)
109 cdesc->control_data.control0 |= CONTEXT_CONTROL_NO_FINISH_HASH;
112 * Copy the input digest if needed, and setup the context
113 * fields. Do this now as we need it to setup the first command
114 * descriptor.
116 if (req->processed[0] || req->processed[1]) {
117 for (i = 0; i < digestsize / sizeof(u32); i++)
118 ctx->base.ctxr->data[i] = cpu_to_le32(req->state[i]);
120 if (req->finish) {
121 u64 count = req->processed[0] / EIP197_COUNTER_BLOCK_SIZE;
122 count += ((0xffffffff / EIP197_COUNTER_BLOCK_SIZE) *
123 req->processed[1]);
125 /* This is a haredware limitation, as the
126 * counter must fit into an u32. This represents
127 * a farily big amount of input data, so we
128 * shouldn't see this.
130 if (unlikely(count & 0xffff0000)) {
131 dev_warn(priv->dev,
132 "Input data is too big\n");
133 return;
136 ctx->base.ctxr->data[i] = cpu_to_le32(count);
139 } else if (req->digest == CONTEXT_CONTROL_DIGEST_HMAC) {
140 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(2 * req->state_sz / sizeof(u32));
142 memcpy(ctx->base.ctxr->data, ctx->ipad, req->state_sz);
143 memcpy(ctx->base.ctxr->data + req->state_sz / sizeof(u32),
144 ctx->opad, req->state_sz);
148 static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
149 struct crypto_async_request *async,
150 bool *should_complete, int *ret)
152 struct safexcel_result_desc *rdesc;
153 struct ahash_request *areq = ahash_request_cast(async);
154 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
155 struct safexcel_ahash_req *sreq = ahash_request_ctx(areq);
156 u64 cache_len;
158 *ret = 0;
160 rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
161 if (IS_ERR(rdesc)) {
162 dev_err(priv->dev,
163 "hash: result: could not retrieve the result descriptor\n");
164 *ret = PTR_ERR(rdesc);
165 } else {
166 *ret = safexcel_rdesc_check_errors(priv, rdesc);
169 safexcel_complete(priv, ring);
171 if (sreq->nents) {
172 dma_unmap_sg(priv->dev, areq->src, sreq->nents, DMA_TO_DEVICE);
173 sreq->nents = 0;
176 if (sreq->result_dma) {
177 dma_unmap_single(priv->dev, sreq->result_dma, sreq->state_sz,
178 DMA_FROM_DEVICE);
179 sreq->result_dma = 0;
182 if (sreq->cache_dma) {
183 dma_unmap_single(priv->dev, sreq->cache_dma, sreq->cache_sz,
184 DMA_TO_DEVICE);
185 sreq->cache_dma = 0;
188 if (sreq->finish)
189 memcpy(areq->result, sreq->state,
190 crypto_ahash_digestsize(ahash));
192 cache_len = safexcel_queued_len(sreq);
193 if (cache_len)
194 memcpy(sreq->cache, sreq->cache_next, cache_len);
196 *should_complete = true;
198 return 1;
201 static int safexcel_ahash_send_req(struct crypto_async_request *async, int ring,
202 int *commands, int *results)
204 struct ahash_request *areq = ahash_request_cast(async);
205 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
206 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
207 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
208 struct safexcel_crypto_priv *priv = ctx->priv;
209 struct safexcel_command_desc *cdesc, *first_cdesc = NULL;
210 struct safexcel_result_desc *rdesc;
211 struct scatterlist *sg;
212 int i, extra, n_cdesc = 0, ret = 0;
213 u64 queued, len, cache_len;
215 queued = len = safexcel_queued_len(req);
216 if (queued <= crypto_ahash_blocksize(ahash))
217 cache_len = queued;
218 else
219 cache_len = queued - areq->nbytes;
221 if (!req->last_req) {
222 /* If this is not the last request and the queued data does not
223 * fit into full blocks, cache it for the next send() call.
225 extra = queued & (crypto_ahash_blocksize(ahash) - 1);
226 if (!extra)
227 /* If this is not the last request and the queued data
228 * is a multiple of a block, cache the last one for now.
230 extra = crypto_ahash_blocksize(ahash);
232 if (extra) {
233 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
234 req->cache_next, extra,
235 areq->nbytes - extra);
237 queued -= extra;
238 len -= extra;
240 if (!queued) {
241 *commands = 0;
242 *results = 0;
243 return 0;
248 /* Add a command descriptor for the cached data, if any */
249 if (cache_len) {
250 req->cache_dma = dma_map_single(priv->dev, req->cache,
251 cache_len, DMA_TO_DEVICE);
252 if (dma_mapping_error(priv->dev, req->cache_dma))
253 return -EINVAL;
255 req->cache_sz = cache_len;
256 first_cdesc = safexcel_add_cdesc(priv, ring, 1,
257 (cache_len == len),
258 req->cache_dma, cache_len, len,
259 ctx->base.ctxr_dma);
260 if (IS_ERR(first_cdesc)) {
261 ret = PTR_ERR(first_cdesc);
262 goto unmap_cache;
264 n_cdesc++;
266 queued -= cache_len;
267 if (!queued)
268 goto send_command;
271 /* Now handle the current ahash request buffer(s) */
272 req->nents = dma_map_sg(priv->dev, areq->src,
273 sg_nents_for_len(areq->src, areq->nbytes),
274 DMA_TO_DEVICE);
275 if (!req->nents) {
276 ret = -ENOMEM;
277 goto cdesc_rollback;
280 for_each_sg(areq->src, sg, req->nents, i) {
281 int sglen = sg_dma_len(sg);
283 /* Do not overflow the request */
284 if (queued < sglen)
285 sglen = queued;
287 cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
288 !(queued - sglen), sg_dma_address(sg),
289 sglen, len, ctx->base.ctxr_dma);
290 if (IS_ERR(cdesc)) {
291 ret = PTR_ERR(cdesc);
292 goto unmap_sg;
294 n_cdesc++;
296 if (n_cdesc == 1)
297 first_cdesc = cdesc;
299 queued -= sglen;
300 if (!queued)
301 break;
304 send_command:
305 /* Setup the context options */
306 safexcel_context_control(ctx, req, first_cdesc, req->state_sz);
308 /* Add the token */
309 safexcel_hash_token(first_cdesc, len, req->state_sz);
311 req->result_dma = dma_map_single(priv->dev, req->state, req->state_sz,
312 DMA_FROM_DEVICE);
313 if (dma_mapping_error(priv->dev, req->result_dma)) {
314 ret = -EINVAL;
315 goto unmap_sg;
318 /* Add a result descriptor */
319 rdesc = safexcel_add_rdesc(priv, ring, 1, 1, req->result_dma,
320 req->state_sz);
321 if (IS_ERR(rdesc)) {
322 ret = PTR_ERR(rdesc);
323 goto unmap_result;
326 safexcel_rdr_req_set(priv, ring, rdesc, &areq->base);
328 req->processed[0] += len;
329 if (req->processed[0] < len)
330 req->processed[1]++;
332 *commands = n_cdesc;
333 *results = 1;
334 return 0;
336 unmap_result:
337 dma_unmap_single(priv->dev, req->result_dma, req->state_sz,
338 DMA_FROM_DEVICE);
339 unmap_sg:
340 dma_unmap_sg(priv->dev, areq->src, req->nents, DMA_TO_DEVICE);
341 cdesc_rollback:
342 for (i = 0; i < n_cdesc; i++)
343 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
344 unmap_cache:
345 if (req->cache_dma) {
346 dma_unmap_single(priv->dev, req->cache_dma, req->cache_sz,
347 DMA_TO_DEVICE);
348 req->cache_sz = 0;
351 return ret;
354 static inline bool safexcel_ahash_needs_inv_get(struct ahash_request *areq)
356 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
357 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
358 unsigned int state_w_sz = req->state_sz / sizeof(u32);
359 u64 processed;
360 int i;
362 processed = req->processed[0] / EIP197_COUNTER_BLOCK_SIZE;
363 processed += (0xffffffff / EIP197_COUNTER_BLOCK_SIZE) * req->processed[1];
365 for (i = 0; i < state_w_sz; i++)
366 if (ctx->base.ctxr->data[i] != cpu_to_le32(req->state[i]))
367 return true;
369 if (ctx->base.ctxr->data[state_w_sz] != cpu_to_le32(processed))
370 return true;
372 return false;
375 static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
376 int ring,
377 struct crypto_async_request *async,
378 bool *should_complete, int *ret)
380 struct safexcel_result_desc *rdesc;
381 struct ahash_request *areq = ahash_request_cast(async);
382 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
383 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
384 int enq_ret;
386 *ret = 0;
388 rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
389 if (IS_ERR(rdesc)) {
390 dev_err(priv->dev,
391 "hash: invalidate: could not retrieve the result descriptor\n");
392 *ret = PTR_ERR(rdesc);
393 } else {
394 *ret = safexcel_rdesc_check_errors(priv, rdesc);
397 safexcel_complete(priv, ring);
399 if (ctx->base.exit_inv) {
400 dma_pool_free(priv->context_pool, ctx->base.ctxr,
401 ctx->base.ctxr_dma);
403 *should_complete = true;
404 return 1;
407 ring = safexcel_select_ring(priv);
408 ctx->base.ring = ring;
410 spin_lock_bh(&priv->ring[ring].queue_lock);
411 enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async);
412 spin_unlock_bh(&priv->ring[ring].queue_lock);
414 if (enq_ret != -EINPROGRESS)
415 *ret = enq_ret;
417 queue_work(priv->ring[ring].workqueue,
418 &priv->ring[ring].work_data.work);
420 *should_complete = false;
422 return 1;
425 static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring,
426 struct crypto_async_request *async,
427 bool *should_complete, int *ret)
429 struct ahash_request *areq = ahash_request_cast(async);
430 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
431 int err;
433 BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && req->needs_inv);
435 if (req->needs_inv) {
436 req->needs_inv = false;
437 err = safexcel_handle_inv_result(priv, ring, async,
438 should_complete, ret);
439 } else {
440 err = safexcel_handle_req_result(priv, ring, async,
441 should_complete, ret);
444 return err;
447 static int safexcel_ahash_send_inv(struct crypto_async_request *async,
448 int ring, int *commands, int *results)
450 struct ahash_request *areq = ahash_request_cast(async);
451 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
452 int ret;
454 ret = safexcel_invalidate_cache(async, ctx->priv,
455 ctx->base.ctxr_dma, ring);
456 if (unlikely(ret))
457 return ret;
459 *commands = 1;
460 *results = 1;
462 return 0;
465 static int safexcel_ahash_send(struct crypto_async_request *async,
466 int ring, int *commands, int *results)
468 struct ahash_request *areq = ahash_request_cast(async);
469 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
470 int ret;
472 if (req->needs_inv)
473 ret = safexcel_ahash_send_inv(async, ring, commands, results);
474 else
475 ret = safexcel_ahash_send_req(async, ring, commands, results);
477 return ret;
480 static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm)
482 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
483 struct safexcel_crypto_priv *priv = ctx->priv;
484 EIP197_REQUEST_ON_STACK(req, ahash, EIP197_AHASH_REQ_SIZE);
485 struct safexcel_ahash_req *rctx = ahash_request_ctx(req);
486 struct safexcel_inv_result result = {};
487 int ring = ctx->base.ring;
489 memset(req, 0, sizeof(struct ahash_request));
491 /* create invalidation request */
492 init_completion(&result.completion);
493 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
494 safexcel_inv_complete, &result);
496 ahash_request_set_tfm(req, __crypto_ahash_cast(tfm));
497 ctx = crypto_tfm_ctx(req->base.tfm);
498 ctx->base.exit_inv = true;
499 rctx->needs_inv = true;
501 spin_lock_bh(&priv->ring[ring].queue_lock);
502 crypto_enqueue_request(&priv->ring[ring].queue, &req->base);
503 spin_unlock_bh(&priv->ring[ring].queue_lock);
505 queue_work(priv->ring[ring].workqueue,
506 &priv->ring[ring].work_data.work);
508 wait_for_completion(&result.completion);
510 if (result.error) {
511 dev_warn(priv->dev, "hash: completion error (%d)\n",
512 result.error);
513 return result.error;
516 return 0;
519 /* safexcel_ahash_cache: cache data until at least one request can be sent to
520 * the engine, aka. when there is at least 1 block size in the pipe.
522 static int safexcel_ahash_cache(struct ahash_request *areq)
524 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
525 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
526 u64 queued, cache_len;
528 /* queued: everything accepted by the driver which will be handled by
529 * the next send() calls.
530 * tot sz handled by update() - tot sz handled by send()
532 queued = safexcel_queued_len(req);
533 /* cache_len: everything accepted by the driver but not sent yet,
534 * tot sz handled by update() - last req sz - tot sz handled by send()
536 cache_len = queued - areq->nbytes;
539 * In case there isn't enough bytes to proceed (less than a
540 * block size), cache the data until we have enough.
542 if (cache_len + areq->nbytes <= crypto_ahash_blocksize(ahash)) {
543 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
544 req->cache + cache_len,
545 areq->nbytes, 0);
546 return areq->nbytes;
549 /* We couldn't cache all the data */
550 return -E2BIG;
553 static int safexcel_ahash_enqueue(struct ahash_request *areq)
555 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
556 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
557 struct safexcel_crypto_priv *priv = ctx->priv;
558 int ret, ring;
560 req->needs_inv = false;
562 if (ctx->base.ctxr) {
563 if (priv->flags & EIP197_TRC_CACHE && !ctx->base.needs_inv &&
564 (req->processed[0] || req->processed[1]) &&
565 req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED)
566 /* We're still setting needs_inv here, even though it is
567 * cleared right away, because the needs_inv flag can be
568 * set in other functions and we want to keep the same
569 * logic.
571 ctx->base.needs_inv = safexcel_ahash_needs_inv_get(areq);
573 if (ctx->base.needs_inv) {
574 ctx->base.needs_inv = false;
575 req->needs_inv = true;
577 } else {
578 ctx->base.ring = safexcel_select_ring(priv);
579 ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
580 EIP197_GFP_FLAGS(areq->base),
581 &ctx->base.ctxr_dma);
582 if (!ctx->base.ctxr)
583 return -ENOMEM;
586 ring = ctx->base.ring;
588 spin_lock_bh(&priv->ring[ring].queue_lock);
589 ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base);
590 spin_unlock_bh(&priv->ring[ring].queue_lock);
592 queue_work(priv->ring[ring].workqueue,
593 &priv->ring[ring].work_data.work);
595 return ret;
598 static int safexcel_ahash_update(struct ahash_request *areq)
600 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
601 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
603 /* If the request is 0 length, do nothing */
604 if (!areq->nbytes)
605 return 0;
607 req->len[0] += areq->nbytes;
608 if (req->len[0] < areq->nbytes)
609 req->len[1]++;
611 safexcel_ahash_cache(areq);
614 * We're not doing partial updates when performing an hmac request.
615 * Everything will be handled by the final() call.
617 if (req->digest == CONTEXT_CONTROL_DIGEST_HMAC)
618 return 0;
620 if (req->hmac)
621 return safexcel_ahash_enqueue(areq);
623 if (!req->last_req &&
624 safexcel_queued_len(req) > crypto_ahash_blocksize(ahash))
625 return safexcel_ahash_enqueue(areq);
627 return 0;
630 static int safexcel_ahash_final(struct ahash_request *areq)
632 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
633 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
635 req->last_req = true;
636 req->finish = true;
638 /* If we have an overall 0 length request */
639 if (!req->len[0] && !req->len[1] && !areq->nbytes) {
640 if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5)
641 memcpy(areq->result, md5_zero_message_hash,
642 MD5_DIGEST_SIZE);
643 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
644 memcpy(areq->result, sha1_zero_message_hash,
645 SHA1_DIGEST_SIZE);
646 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224)
647 memcpy(areq->result, sha224_zero_message_hash,
648 SHA224_DIGEST_SIZE);
649 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
650 memcpy(areq->result, sha256_zero_message_hash,
651 SHA256_DIGEST_SIZE);
652 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA384)
653 memcpy(areq->result, sha384_zero_message_hash,
654 SHA384_DIGEST_SIZE);
655 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA512)
656 memcpy(areq->result, sha512_zero_message_hash,
657 SHA512_DIGEST_SIZE);
659 return 0;
662 return safexcel_ahash_enqueue(areq);
665 static int safexcel_ahash_finup(struct ahash_request *areq)
667 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
669 req->last_req = true;
670 req->finish = true;
672 safexcel_ahash_update(areq);
673 return safexcel_ahash_final(areq);
676 static int safexcel_ahash_export(struct ahash_request *areq, void *out)
678 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
679 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
680 struct safexcel_ahash_export_state *export = out;
682 export->len[0] = req->len[0];
683 export->len[1] = req->len[1];
684 export->processed[0] = req->processed[0];
685 export->processed[1] = req->processed[1];
687 export->digest = req->digest;
689 memcpy(export->state, req->state, req->state_sz);
690 memcpy(export->cache, req->cache, crypto_ahash_blocksize(ahash));
692 return 0;
695 static int safexcel_ahash_import(struct ahash_request *areq, const void *in)
697 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
698 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
699 const struct safexcel_ahash_export_state *export = in;
700 int ret;
702 ret = crypto_ahash_init(areq);
703 if (ret)
704 return ret;
706 req->len[0] = export->len[0];
707 req->len[1] = export->len[1];
708 req->processed[0] = export->processed[0];
709 req->processed[1] = export->processed[1];
711 req->digest = export->digest;
713 memcpy(req->cache, export->cache, crypto_ahash_blocksize(ahash));
714 memcpy(req->state, export->state, req->state_sz);
716 return 0;
719 static int safexcel_ahash_cra_init(struct crypto_tfm *tfm)
721 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
722 struct safexcel_alg_template *tmpl =
723 container_of(__crypto_ahash_alg(tfm->__crt_alg),
724 struct safexcel_alg_template, alg.ahash);
726 ctx->priv = tmpl->priv;
727 ctx->base.send = safexcel_ahash_send;
728 ctx->base.handle_result = safexcel_handle_result;
730 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
731 sizeof(struct safexcel_ahash_req));
732 return 0;
735 static int safexcel_sha1_init(struct ahash_request *areq)
737 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
738 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
740 memset(req, 0, sizeof(*req));
742 req->state[0] = SHA1_H0;
743 req->state[1] = SHA1_H1;
744 req->state[2] = SHA1_H2;
745 req->state[3] = SHA1_H3;
746 req->state[4] = SHA1_H4;
748 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
749 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
750 req->state_sz = SHA1_DIGEST_SIZE;
752 return 0;
755 static int safexcel_sha1_digest(struct ahash_request *areq)
757 int ret = safexcel_sha1_init(areq);
759 if (ret)
760 return ret;
762 return safexcel_ahash_finup(areq);
765 static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm)
767 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
768 struct safexcel_crypto_priv *priv = ctx->priv;
769 int ret;
771 /* context not allocated, skip invalidation */
772 if (!ctx->base.ctxr)
773 return;
775 if (priv->flags & EIP197_TRC_CACHE) {
776 ret = safexcel_ahash_exit_inv(tfm);
777 if (ret)
778 dev_warn(priv->dev, "hash: invalidation error %d\n", ret);
779 } else {
780 dma_pool_free(priv->context_pool, ctx->base.ctxr,
781 ctx->base.ctxr_dma);
785 struct safexcel_alg_template safexcel_alg_sha1 = {
786 .type = SAFEXCEL_ALG_TYPE_AHASH,
787 .engines = EIP97IES | EIP197B | EIP197D,
788 .alg.ahash = {
789 .init = safexcel_sha1_init,
790 .update = safexcel_ahash_update,
791 .final = safexcel_ahash_final,
792 .finup = safexcel_ahash_finup,
793 .digest = safexcel_sha1_digest,
794 .export = safexcel_ahash_export,
795 .import = safexcel_ahash_import,
796 .halg = {
797 .digestsize = SHA1_DIGEST_SIZE,
798 .statesize = sizeof(struct safexcel_ahash_export_state),
799 .base = {
800 .cra_name = "sha1",
801 .cra_driver_name = "safexcel-sha1",
802 .cra_priority = 300,
803 .cra_flags = CRYPTO_ALG_ASYNC |
804 CRYPTO_ALG_KERN_DRIVER_ONLY,
805 .cra_blocksize = SHA1_BLOCK_SIZE,
806 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
807 .cra_init = safexcel_ahash_cra_init,
808 .cra_exit = safexcel_ahash_cra_exit,
809 .cra_module = THIS_MODULE,
815 static int safexcel_hmac_sha1_init(struct ahash_request *areq)
817 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
819 safexcel_sha1_init(areq);
820 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
821 return 0;
824 static int safexcel_hmac_sha1_digest(struct ahash_request *areq)
826 int ret = safexcel_hmac_sha1_init(areq);
828 if (ret)
829 return ret;
831 return safexcel_ahash_finup(areq);
834 struct safexcel_ahash_result {
835 struct completion completion;
836 int error;
839 static void safexcel_ahash_complete(struct crypto_async_request *req, int error)
841 struct safexcel_ahash_result *result = req->data;
843 if (error == -EINPROGRESS)
844 return;
846 result->error = error;
847 complete(&result->completion);
850 static int safexcel_hmac_init_pad(struct ahash_request *areq,
851 unsigned int blocksize, const u8 *key,
852 unsigned int keylen, u8 *ipad, u8 *opad)
854 struct safexcel_ahash_result result;
855 struct scatterlist sg;
856 int ret, i;
857 u8 *keydup;
859 if (keylen <= blocksize) {
860 memcpy(ipad, key, keylen);
861 } else {
862 keydup = kmemdup(key, keylen, GFP_KERNEL);
863 if (!keydup)
864 return -ENOMEM;
866 ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
867 safexcel_ahash_complete, &result);
868 sg_init_one(&sg, keydup, keylen);
869 ahash_request_set_crypt(areq, &sg, ipad, keylen);
870 init_completion(&result.completion);
872 ret = crypto_ahash_digest(areq);
873 if (ret == -EINPROGRESS || ret == -EBUSY) {
874 wait_for_completion_interruptible(&result.completion);
875 ret = result.error;
878 /* Avoid leaking */
879 memzero_explicit(keydup, keylen);
880 kfree(keydup);
882 if (ret)
883 return ret;
885 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
888 memset(ipad + keylen, 0, blocksize - keylen);
889 memcpy(opad, ipad, blocksize);
891 for (i = 0; i < blocksize; i++) {
892 ipad[i] ^= HMAC_IPAD_VALUE;
893 opad[i] ^= HMAC_OPAD_VALUE;
896 return 0;
899 static int safexcel_hmac_init_iv(struct ahash_request *areq,
900 unsigned int blocksize, u8 *pad, void *state)
902 struct safexcel_ahash_result result;
903 struct safexcel_ahash_req *req;
904 struct scatterlist sg;
905 int ret;
907 ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
908 safexcel_ahash_complete, &result);
909 sg_init_one(&sg, pad, blocksize);
910 ahash_request_set_crypt(areq, &sg, pad, blocksize);
911 init_completion(&result.completion);
913 ret = crypto_ahash_init(areq);
914 if (ret)
915 return ret;
917 req = ahash_request_ctx(areq);
918 req->hmac = true;
919 req->last_req = true;
921 ret = crypto_ahash_update(areq);
922 if (ret && ret != -EINPROGRESS && ret != -EBUSY)
923 return ret;
925 wait_for_completion_interruptible(&result.completion);
926 if (result.error)
927 return result.error;
929 return crypto_ahash_export(areq, state);
932 int safexcel_hmac_setkey(const char *alg, const u8 *key, unsigned int keylen,
933 void *istate, void *ostate)
935 struct ahash_request *areq;
936 struct crypto_ahash *tfm;
937 unsigned int blocksize;
938 u8 *ipad, *opad;
939 int ret;
941 tfm = crypto_alloc_ahash(alg, 0, 0);
942 if (IS_ERR(tfm))
943 return PTR_ERR(tfm);
945 areq = ahash_request_alloc(tfm, GFP_KERNEL);
946 if (!areq) {
947 ret = -ENOMEM;
948 goto free_ahash;
951 crypto_ahash_clear_flags(tfm, ~0);
952 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
954 ipad = kcalloc(2, blocksize, GFP_KERNEL);
955 if (!ipad) {
956 ret = -ENOMEM;
957 goto free_request;
960 opad = ipad + blocksize;
962 ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad);
963 if (ret)
964 goto free_ipad;
966 ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate);
967 if (ret)
968 goto free_ipad;
970 ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate);
972 free_ipad:
973 kfree(ipad);
974 free_request:
975 ahash_request_free(areq);
976 free_ahash:
977 crypto_free_ahash(tfm);
979 return ret;
982 static int safexcel_hmac_alg_setkey(struct crypto_ahash *tfm, const u8 *key,
983 unsigned int keylen, const char *alg,
984 unsigned int state_sz)
986 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
987 struct safexcel_crypto_priv *priv = ctx->priv;
988 struct safexcel_ahash_export_state istate, ostate;
989 int ret, i;
991 ret = safexcel_hmac_setkey(alg, key, keylen, &istate, &ostate);
992 if (ret)
993 return ret;
995 if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr) {
996 for (i = 0; i < state_sz / sizeof(u32); i++) {
997 if (ctx->ipad[i] != le32_to_cpu(istate.state[i]) ||
998 ctx->opad[i] != le32_to_cpu(ostate.state[i])) {
999 ctx->base.needs_inv = true;
1000 break;
1005 memcpy(ctx->ipad, &istate.state, state_sz);
1006 memcpy(ctx->opad, &ostate.state, state_sz);
1008 return 0;
1011 static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1012 unsigned int keylen)
1014 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha1",
1015 SHA1_DIGEST_SIZE);
1018 struct safexcel_alg_template safexcel_alg_hmac_sha1 = {
1019 .type = SAFEXCEL_ALG_TYPE_AHASH,
1020 .engines = EIP97IES | EIP197B | EIP197D,
1021 .alg.ahash = {
1022 .init = safexcel_hmac_sha1_init,
1023 .update = safexcel_ahash_update,
1024 .final = safexcel_ahash_final,
1025 .finup = safexcel_ahash_finup,
1026 .digest = safexcel_hmac_sha1_digest,
1027 .setkey = safexcel_hmac_sha1_setkey,
1028 .export = safexcel_ahash_export,
1029 .import = safexcel_ahash_import,
1030 .halg = {
1031 .digestsize = SHA1_DIGEST_SIZE,
1032 .statesize = sizeof(struct safexcel_ahash_export_state),
1033 .base = {
1034 .cra_name = "hmac(sha1)",
1035 .cra_driver_name = "safexcel-hmac-sha1",
1036 .cra_priority = 300,
1037 .cra_flags = CRYPTO_ALG_ASYNC |
1038 CRYPTO_ALG_KERN_DRIVER_ONLY,
1039 .cra_blocksize = SHA1_BLOCK_SIZE,
1040 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1041 .cra_init = safexcel_ahash_cra_init,
1042 .cra_exit = safexcel_ahash_cra_exit,
1043 .cra_module = THIS_MODULE,
1049 static int safexcel_sha256_init(struct ahash_request *areq)
1051 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1052 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1054 memset(req, 0, sizeof(*req));
1056 req->state[0] = SHA256_H0;
1057 req->state[1] = SHA256_H1;
1058 req->state[2] = SHA256_H2;
1059 req->state[3] = SHA256_H3;
1060 req->state[4] = SHA256_H4;
1061 req->state[5] = SHA256_H5;
1062 req->state[6] = SHA256_H6;
1063 req->state[7] = SHA256_H7;
1065 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
1066 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1067 req->state_sz = SHA256_DIGEST_SIZE;
1069 return 0;
1072 static int safexcel_sha256_digest(struct ahash_request *areq)
1074 int ret = safexcel_sha256_init(areq);
1076 if (ret)
1077 return ret;
1079 return safexcel_ahash_finup(areq);
1082 struct safexcel_alg_template safexcel_alg_sha256 = {
1083 .type = SAFEXCEL_ALG_TYPE_AHASH,
1084 .engines = EIP97IES | EIP197B | EIP197D,
1085 .alg.ahash = {
1086 .init = safexcel_sha256_init,
1087 .update = safexcel_ahash_update,
1088 .final = safexcel_ahash_final,
1089 .finup = safexcel_ahash_finup,
1090 .digest = safexcel_sha256_digest,
1091 .export = safexcel_ahash_export,
1092 .import = safexcel_ahash_import,
1093 .halg = {
1094 .digestsize = SHA256_DIGEST_SIZE,
1095 .statesize = sizeof(struct safexcel_ahash_export_state),
1096 .base = {
1097 .cra_name = "sha256",
1098 .cra_driver_name = "safexcel-sha256",
1099 .cra_priority = 300,
1100 .cra_flags = CRYPTO_ALG_ASYNC |
1101 CRYPTO_ALG_KERN_DRIVER_ONLY,
1102 .cra_blocksize = SHA256_BLOCK_SIZE,
1103 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1104 .cra_init = safexcel_ahash_cra_init,
1105 .cra_exit = safexcel_ahash_cra_exit,
1106 .cra_module = THIS_MODULE,
1112 static int safexcel_sha224_init(struct ahash_request *areq)
1114 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1115 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1117 memset(req, 0, sizeof(*req));
1119 req->state[0] = SHA224_H0;
1120 req->state[1] = SHA224_H1;
1121 req->state[2] = SHA224_H2;
1122 req->state[3] = SHA224_H3;
1123 req->state[4] = SHA224_H4;
1124 req->state[5] = SHA224_H5;
1125 req->state[6] = SHA224_H6;
1126 req->state[7] = SHA224_H7;
1128 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1129 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1130 req->state_sz = SHA256_DIGEST_SIZE;
1132 return 0;
1135 static int safexcel_sha224_digest(struct ahash_request *areq)
1137 int ret = safexcel_sha224_init(areq);
1139 if (ret)
1140 return ret;
1142 return safexcel_ahash_finup(areq);
1145 struct safexcel_alg_template safexcel_alg_sha224 = {
1146 .type = SAFEXCEL_ALG_TYPE_AHASH,
1147 .engines = EIP97IES | EIP197B | EIP197D,
1148 .alg.ahash = {
1149 .init = safexcel_sha224_init,
1150 .update = safexcel_ahash_update,
1151 .final = safexcel_ahash_final,
1152 .finup = safexcel_ahash_finup,
1153 .digest = safexcel_sha224_digest,
1154 .export = safexcel_ahash_export,
1155 .import = safexcel_ahash_import,
1156 .halg = {
1157 .digestsize = SHA224_DIGEST_SIZE,
1158 .statesize = sizeof(struct safexcel_ahash_export_state),
1159 .base = {
1160 .cra_name = "sha224",
1161 .cra_driver_name = "safexcel-sha224",
1162 .cra_priority = 300,
1163 .cra_flags = CRYPTO_ALG_ASYNC |
1164 CRYPTO_ALG_KERN_DRIVER_ONLY,
1165 .cra_blocksize = SHA224_BLOCK_SIZE,
1166 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1167 .cra_init = safexcel_ahash_cra_init,
1168 .cra_exit = safexcel_ahash_cra_exit,
1169 .cra_module = THIS_MODULE,
1175 static int safexcel_hmac_sha224_setkey(struct crypto_ahash *tfm, const u8 *key,
1176 unsigned int keylen)
1178 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha224",
1179 SHA256_DIGEST_SIZE);
1182 static int safexcel_hmac_sha224_init(struct ahash_request *areq)
1184 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1186 safexcel_sha224_init(areq);
1187 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
1188 return 0;
1191 static int safexcel_hmac_sha224_digest(struct ahash_request *areq)
1193 int ret = safexcel_hmac_sha224_init(areq);
1195 if (ret)
1196 return ret;
1198 return safexcel_ahash_finup(areq);
1201 struct safexcel_alg_template safexcel_alg_hmac_sha224 = {
1202 .type = SAFEXCEL_ALG_TYPE_AHASH,
1203 .engines = EIP97IES | EIP197B | EIP197D,
1204 .alg.ahash = {
1205 .init = safexcel_hmac_sha224_init,
1206 .update = safexcel_ahash_update,
1207 .final = safexcel_ahash_final,
1208 .finup = safexcel_ahash_finup,
1209 .digest = safexcel_hmac_sha224_digest,
1210 .setkey = safexcel_hmac_sha224_setkey,
1211 .export = safexcel_ahash_export,
1212 .import = safexcel_ahash_import,
1213 .halg = {
1214 .digestsize = SHA224_DIGEST_SIZE,
1215 .statesize = sizeof(struct safexcel_ahash_export_state),
1216 .base = {
1217 .cra_name = "hmac(sha224)",
1218 .cra_driver_name = "safexcel-hmac-sha224",
1219 .cra_priority = 300,
1220 .cra_flags = CRYPTO_ALG_ASYNC |
1221 CRYPTO_ALG_KERN_DRIVER_ONLY,
1222 .cra_blocksize = SHA224_BLOCK_SIZE,
1223 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1224 .cra_init = safexcel_ahash_cra_init,
1225 .cra_exit = safexcel_ahash_cra_exit,
1226 .cra_module = THIS_MODULE,
1232 static int safexcel_hmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1233 unsigned int keylen)
1235 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha256",
1236 SHA256_DIGEST_SIZE);
1239 static int safexcel_hmac_sha256_init(struct ahash_request *areq)
1241 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1243 safexcel_sha256_init(areq);
1244 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
1245 return 0;
1248 static int safexcel_hmac_sha256_digest(struct ahash_request *areq)
1250 int ret = safexcel_hmac_sha256_init(areq);
1252 if (ret)
1253 return ret;
1255 return safexcel_ahash_finup(areq);
1258 struct safexcel_alg_template safexcel_alg_hmac_sha256 = {
1259 .type = SAFEXCEL_ALG_TYPE_AHASH,
1260 .engines = EIP97IES | EIP197B | EIP197D,
1261 .alg.ahash = {
1262 .init = safexcel_hmac_sha256_init,
1263 .update = safexcel_ahash_update,
1264 .final = safexcel_ahash_final,
1265 .finup = safexcel_ahash_finup,
1266 .digest = safexcel_hmac_sha256_digest,
1267 .setkey = safexcel_hmac_sha256_setkey,
1268 .export = safexcel_ahash_export,
1269 .import = safexcel_ahash_import,
1270 .halg = {
1271 .digestsize = SHA256_DIGEST_SIZE,
1272 .statesize = sizeof(struct safexcel_ahash_export_state),
1273 .base = {
1274 .cra_name = "hmac(sha256)",
1275 .cra_driver_name = "safexcel-hmac-sha256",
1276 .cra_priority = 300,
1277 .cra_flags = CRYPTO_ALG_ASYNC |
1278 CRYPTO_ALG_KERN_DRIVER_ONLY,
1279 .cra_blocksize = SHA256_BLOCK_SIZE,
1280 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1281 .cra_init = safexcel_ahash_cra_init,
1282 .cra_exit = safexcel_ahash_cra_exit,
1283 .cra_module = THIS_MODULE,
1289 static int safexcel_sha512_init(struct ahash_request *areq)
1291 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1292 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1294 memset(req, 0, sizeof(*req));
1296 req->state[0] = lower_32_bits(SHA512_H0);
1297 req->state[1] = upper_32_bits(SHA512_H0);
1298 req->state[2] = lower_32_bits(SHA512_H1);
1299 req->state[3] = upper_32_bits(SHA512_H1);
1300 req->state[4] = lower_32_bits(SHA512_H2);
1301 req->state[5] = upper_32_bits(SHA512_H2);
1302 req->state[6] = lower_32_bits(SHA512_H3);
1303 req->state[7] = upper_32_bits(SHA512_H3);
1304 req->state[8] = lower_32_bits(SHA512_H4);
1305 req->state[9] = upper_32_bits(SHA512_H4);
1306 req->state[10] = lower_32_bits(SHA512_H5);
1307 req->state[11] = upper_32_bits(SHA512_H5);
1308 req->state[12] = lower_32_bits(SHA512_H6);
1309 req->state[13] = upper_32_bits(SHA512_H6);
1310 req->state[14] = lower_32_bits(SHA512_H7);
1311 req->state[15] = upper_32_bits(SHA512_H7);
1313 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
1314 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1315 req->state_sz = SHA512_DIGEST_SIZE;
1317 return 0;
1320 static int safexcel_sha512_digest(struct ahash_request *areq)
1322 int ret = safexcel_sha512_init(areq);
1324 if (ret)
1325 return ret;
1327 return safexcel_ahash_finup(areq);
1330 struct safexcel_alg_template safexcel_alg_sha512 = {
1331 .type = SAFEXCEL_ALG_TYPE_AHASH,
1332 .engines = EIP97IES | EIP197B | EIP197D,
1333 .alg.ahash = {
1334 .init = safexcel_sha512_init,
1335 .update = safexcel_ahash_update,
1336 .final = safexcel_ahash_final,
1337 .finup = safexcel_ahash_finup,
1338 .digest = safexcel_sha512_digest,
1339 .export = safexcel_ahash_export,
1340 .import = safexcel_ahash_import,
1341 .halg = {
1342 .digestsize = SHA512_DIGEST_SIZE,
1343 .statesize = sizeof(struct safexcel_ahash_export_state),
1344 .base = {
1345 .cra_name = "sha512",
1346 .cra_driver_name = "safexcel-sha512",
1347 .cra_priority = 300,
1348 .cra_flags = CRYPTO_ALG_ASYNC |
1349 CRYPTO_ALG_KERN_DRIVER_ONLY,
1350 .cra_blocksize = SHA512_BLOCK_SIZE,
1351 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1352 .cra_init = safexcel_ahash_cra_init,
1353 .cra_exit = safexcel_ahash_cra_exit,
1354 .cra_module = THIS_MODULE,
1360 static int safexcel_sha384_init(struct ahash_request *areq)
1362 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1363 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1365 memset(req, 0, sizeof(*req));
1367 req->state[0] = lower_32_bits(SHA384_H0);
1368 req->state[1] = upper_32_bits(SHA384_H0);
1369 req->state[2] = lower_32_bits(SHA384_H1);
1370 req->state[3] = upper_32_bits(SHA384_H1);
1371 req->state[4] = lower_32_bits(SHA384_H2);
1372 req->state[5] = upper_32_bits(SHA384_H2);
1373 req->state[6] = lower_32_bits(SHA384_H3);
1374 req->state[7] = upper_32_bits(SHA384_H3);
1375 req->state[8] = lower_32_bits(SHA384_H4);
1376 req->state[9] = upper_32_bits(SHA384_H4);
1377 req->state[10] = lower_32_bits(SHA384_H5);
1378 req->state[11] = upper_32_bits(SHA384_H5);
1379 req->state[12] = lower_32_bits(SHA384_H6);
1380 req->state[13] = upper_32_bits(SHA384_H6);
1381 req->state[14] = lower_32_bits(SHA384_H7);
1382 req->state[15] = upper_32_bits(SHA384_H7);
1384 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
1385 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1386 req->state_sz = SHA512_DIGEST_SIZE;
1388 return 0;
1391 static int safexcel_sha384_digest(struct ahash_request *areq)
1393 int ret = safexcel_sha384_init(areq);
1395 if (ret)
1396 return ret;
1398 return safexcel_ahash_finup(areq);
1401 struct safexcel_alg_template safexcel_alg_sha384 = {
1402 .type = SAFEXCEL_ALG_TYPE_AHASH,
1403 .engines = EIP97IES | EIP197B | EIP197D,
1404 .alg.ahash = {
1405 .init = safexcel_sha384_init,
1406 .update = safexcel_ahash_update,
1407 .final = safexcel_ahash_final,
1408 .finup = safexcel_ahash_finup,
1409 .digest = safexcel_sha384_digest,
1410 .export = safexcel_ahash_export,
1411 .import = safexcel_ahash_import,
1412 .halg = {
1413 .digestsize = SHA384_DIGEST_SIZE,
1414 .statesize = sizeof(struct safexcel_ahash_export_state),
1415 .base = {
1416 .cra_name = "sha384",
1417 .cra_driver_name = "safexcel-sha384",
1418 .cra_priority = 300,
1419 .cra_flags = CRYPTO_ALG_ASYNC |
1420 CRYPTO_ALG_KERN_DRIVER_ONLY,
1421 .cra_blocksize = SHA384_BLOCK_SIZE,
1422 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1423 .cra_init = safexcel_ahash_cra_init,
1424 .cra_exit = safexcel_ahash_cra_exit,
1425 .cra_module = THIS_MODULE,
1431 static int safexcel_hmac_sha512_setkey(struct crypto_ahash *tfm, const u8 *key,
1432 unsigned int keylen)
1434 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha512",
1435 SHA512_DIGEST_SIZE);
1438 static int safexcel_hmac_sha512_init(struct ahash_request *areq)
1440 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1442 safexcel_sha512_init(areq);
1443 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
1444 return 0;
1447 static int safexcel_hmac_sha512_digest(struct ahash_request *areq)
1449 int ret = safexcel_hmac_sha512_init(areq);
1451 if (ret)
1452 return ret;
1454 return safexcel_ahash_finup(areq);
1457 struct safexcel_alg_template safexcel_alg_hmac_sha512 = {
1458 .type = SAFEXCEL_ALG_TYPE_AHASH,
1459 .engines = EIP97IES | EIP197B | EIP197D,
1460 .alg.ahash = {
1461 .init = safexcel_hmac_sha512_init,
1462 .update = safexcel_ahash_update,
1463 .final = safexcel_ahash_final,
1464 .finup = safexcel_ahash_finup,
1465 .digest = safexcel_hmac_sha512_digest,
1466 .setkey = safexcel_hmac_sha512_setkey,
1467 .export = safexcel_ahash_export,
1468 .import = safexcel_ahash_import,
1469 .halg = {
1470 .digestsize = SHA512_DIGEST_SIZE,
1471 .statesize = sizeof(struct safexcel_ahash_export_state),
1472 .base = {
1473 .cra_name = "hmac(sha512)",
1474 .cra_driver_name = "safexcel-hmac-sha512",
1475 .cra_priority = 300,
1476 .cra_flags = CRYPTO_ALG_ASYNC |
1477 CRYPTO_ALG_KERN_DRIVER_ONLY,
1478 .cra_blocksize = SHA512_BLOCK_SIZE,
1479 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1480 .cra_init = safexcel_ahash_cra_init,
1481 .cra_exit = safexcel_ahash_cra_exit,
1482 .cra_module = THIS_MODULE,
1488 static int safexcel_hmac_sha384_setkey(struct crypto_ahash *tfm, const u8 *key,
1489 unsigned int keylen)
1491 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha384",
1492 SHA512_DIGEST_SIZE);
1495 static int safexcel_hmac_sha384_init(struct ahash_request *areq)
1497 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1499 safexcel_sha384_init(areq);
1500 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
1501 return 0;
1504 static int safexcel_hmac_sha384_digest(struct ahash_request *areq)
1506 int ret = safexcel_hmac_sha384_init(areq);
1508 if (ret)
1509 return ret;
1511 return safexcel_ahash_finup(areq);
1514 struct safexcel_alg_template safexcel_alg_hmac_sha384 = {
1515 .type = SAFEXCEL_ALG_TYPE_AHASH,
1516 .engines = EIP97IES | EIP197B | EIP197D,
1517 .alg.ahash = {
1518 .init = safexcel_hmac_sha384_init,
1519 .update = safexcel_ahash_update,
1520 .final = safexcel_ahash_final,
1521 .finup = safexcel_ahash_finup,
1522 .digest = safexcel_hmac_sha384_digest,
1523 .setkey = safexcel_hmac_sha384_setkey,
1524 .export = safexcel_ahash_export,
1525 .import = safexcel_ahash_import,
1526 .halg = {
1527 .digestsize = SHA384_DIGEST_SIZE,
1528 .statesize = sizeof(struct safexcel_ahash_export_state),
1529 .base = {
1530 .cra_name = "hmac(sha384)",
1531 .cra_driver_name = "safexcel-hmac-sha384",
1532 .cra_priority = 300,
1533 .cra_flags = CRYPTO_ALG_ASYNC |
1534 CRYPTO_ALG_KERN_DRIVER_ONLY,
1535 .cra_blocksize = SHA384_BLOCK_SIZE,
1536 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1537 .cra_init = safexcel_ahash_cra_init,
1538 .cra_exit = safexcel_ahash_cra_exit,
1539 .cra_module = THIS_MODULE,
1545 static int safexcel_md5_init(struct ahash_request *areq)
1547 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1548 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1550 memset(req, 0, sizeof(*req));
1552 req->state[0] = MD5_H0;
1553 req->state[1] = MD5_H1;
1554 req->state[2] = MD5_H2;
1555 req->state[3] = MD5_H3;
1557 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_MD5;
1558 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1559 req->state_sz = MD5_DIGEST_SIZE;
1561 return 0;
1564 static int safexcel_md5_digest(struct ahash_request *areq)
1566 int ret = safexcel_md5_init(areq);
1568 if (ret)
1569 return ret;
1571 return safexcel_ahash_finup(areq);
1574 struct safexcel_alg_template safexcel_alg_md5 = {
1575 .type = SAFEXCEL_ALG_TYPE_AHASH,
1576 .engines = EIP97IES | EIP197B | EIP197D,
1577 .alg.ahash = {
1578 .init = safexcel_md5_init,
1579 .update = safexcel_ahash_update,
1580 .final = safexcel_ahash_final,
1581 .finup = safexcel_ahash_finup,
1582 .digest = safexcel_md5_digest,
1583 .export = safexcel_ahash_export,
1584 .import = safexcel_ahash_import,
1585 .halg = {
1586 .digestsize = MD5_DIGEST_SIZE,
1587 .statesize = sizeof(struct safexcel_ahash_export_state),
1588 .base = {
1589 .cra_name = "md5",
1590 .cra_driver_name = "safexcel-md5",
1591 .cra_priority = 300,
1592 .cra_flags = CRYPTO_ALG_ASYNC |
1593 CRYPTO_ALG_KERN_DRIVER_ONLY,
1594 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1595 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1596 .cra_init = safexcel_ahash_cra_init,
1597 .cra_exit = safexcel_ahash_cra_exit,
1598 .cra_module = THIS_MODULE,
1604 static int safexcel_hmac_md5_init(struct ahash_request *areq)
1606 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1608 safexcel_md5_init(areq);
1609 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
1610 return 0;
1613 static int safexcel_hmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1614 unsigned int keylen)
1616 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-md5",
1617 MD5_DIGEST_SIZE);
1620 static int safexcel_hmac_md5_digest(struct ahash_request *areq)
1622 int ret = safexcel_hmac_md5_init(areq);
1624 if (ret)
1625 return ret;
1627 return safexcel_ahash_finup(areq);
1630 struct safexcel_alg_template safexcel_alg_hmac_md5 = {
1631 .type = SAFEXCEL_ALG_TYPE_AHASH,
1632 .engines = EIP97IES | EIP197B | EIP197D,
1633 .alg.ahash = {
1634 .init = safexcel_hmac_md5_init,
1635 .update = safexcel_ahash_update,
1636 .final = safexcel_ahash_final,
1637 .finup = safexcel_ahash_finup,
1638 .digest = safexcel_hmac_md5_digest,
1639 .setkey = safexcel_hmac_md5_setkey,
1640 .export = safexcel_ahash_export,
1641 .import = safexcel_ahash_import,
1642 .halg = {
1643 .digestsize = MD5_DIGEST_SIZE,
1644 .statesize = sizeof(struct safexcel_ahash_export_state),
1645 .base = {
1646 .cra_name = "hmac(md5)",
1647 .cra_driver_name = "safexcel-hmac-md5",
1648 .cra_priority = 300,
1649 .cra_flags = CRYPTO_ALG_ASYNC |
1650 CRYPTO_ALG_KERN_DRIVER_ONLY,
1651 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1652 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1653 .cra_init = safexcel_ahash_cra_init,
1654 .cra_exit = safexcel_ahash_cra_exit,
1655 .cra_module = THIS_MODULE,