Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / iio / adc / stm32-adc.c
blob205e1699f954fced46bea0e886003a23a0cd0bca
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is part of STM32 ADC driver
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
29 #include "stm32-adc-core.h"
31 /* STM32F4 - Registers for each ADC instance */
32 #define STM32F4_ADC_SR 0x00
33 #define STM32F4_ADC_CR1 0x04
34 #define STM32F4_ADC_CR2 0x08
35 #define STM32F4_ADC_SMPR1 0x0C
36 #define STM32F4_ADC_SMPR2 0x10
37 #define STM32F4_ADC_HTR 0x24
38 #define STM32F4_ADC_LTR 0x28
39 #define STM32F4_ADC_SQR1 0x2C
40 #define STM32F4_ADC_SQR2 0x30
41 #define STM32F4_ADC_SQR3 0x34
42 #define STM32F4_ADC_JSQR 0x38
43 #define STM32F4_ADC_JDR1 0x3C
44 #define STM32F4_ADC_JDR2 0x40
45 #define STM32F4_ADC_JDR3 0x44
46 #define STM32F4_ADC_JDR4 0x48
47 #define STM32F4_ADC_DR 0x4C
49 /* STM32F4_ADC_SR - bit fields */
50 #define STM32F4_STRT BIT(4)
51 #define STM32F4_EOC BIT(1)
53 /* STM32F4_ADC_CR1 - bit fields */
54 #define STM32F4_RES_SHIFT 24
55 #define STM32F4_RES_MASK GENMASK(25, 24)
56 #define STM32F4_SCAN BIT(8)
57 #define STM32F4_EOCIE BIT(5)
59 /* STM32F4_ADC_CR2 - bit fields */
60 #define STM32F4_SWSTART BIT(30)
61 #define STM32F4_EXTEN_SHIFT 28
62 #define STM32F4_EXTEN_MASK GENMASK(29, 28)
63 #define STM32F4_EXTSEL_SHIFT 24
64 #define STM32F4_EXTSEL_MASK GENMASK(27, 24)
65 #define STM32F4_EOCS BIT(10)
66 #define STM32F4_DDS BIT(9)
67 #define STM32F4_DMA BIT(8)
68 #define STM32F4_ADON BIT(0)
70 /* STM32H7 - Registers for each ADC instance */
71 #define STM32H7_ADC_ISR 0x00
72 #define STM32H7_ADC_IER 0x04
73 #define STM32H7_ADC_CR 0x08
74 #define STM32H7_ADC_CFGR 0x0C
75 #define STM32H7_ADC_SMPR1 0x14
76 #define STM32H7_ADC_SMPR2 0x18
77 #define STM32H7_ADC_PCSEL 0x1C
78 #define STM32H7_ADC_SQR1 0x30
79 #define STM32H7_ADC_SQR2 0x34
80 #define STM32H7_ADC_SQR3 0x38
81 #define STM32H7_ADC_SQR4 0x3C
82 #define STM32H7_ADC_DR 0x40
83 #define STM32H7_ADC_DIFSEL 0xC0
84 #define STM32H7_ADC_CALFACT 0xC4
85 #define STM32H7_ADC_CALFACT2 0xC8
87 /* STM32H7_ADC_ISR - bit fields */
88 #define STM32MP1_VREGREADY BIT(12)
89 #define STM32H7_EOC BIT(2)
90 #define STM32H7_ADRDY BIT(0)
92 /* STM32H7_ADC_IER - bit fields */
93 #define STM32H7_EOCIE STM32H7_EOC
95 /* STM32H7_ADC_CR - bit fields */
96 #define STM32H7_ADCAL BIT(31)
97 #define STM32H7_ADCALDIF BIT(30)
98 #define STM32H7_DEEPPWD BIT(29)
99 #define STM32H7_ADVREGEN BIT(28)
100 #define STM32H7_LINCALRDYW6 BIT(27)
101 #define STM32H7_LINCALRDYW5 BIT(26)
102 #define STM32H7_LINCALRDYW4 BIT(25)
103 #define STM32H7_LINCALRDYW3 BIT(24)
104 #define STM32H7_LINCALRDYW2 BIT(23)
105 #define STM32H7_LINCALRDYW1 BIT(22)
106 #define STM32H7_ADCALLIN BIT(16)
107 #define STM32H7_BOOST BIT(8)
108 #define STM32H7_ADSTP BIT(4)
109 #define STM32H7_ADSTART BIT(2)
110 #define STM32H7_ADDIS BIT(1)
111 #define STM32H7_ADEN BIT(0)
113 /* STM32H7_ADC_CFGR bit fields */
114 #define STM32H7_EXTEN_SHIFT 10
115 #define STM32H7_EXTEN_MASK GENMASK(11, 10)
116 #define STM32H7_EXTSEL_SHIFT 5
117 #define STM32H7_EXTSEL_MASK GENMASK(9, 5)
118 #define STM32H7_RES_SHIFT 2
119 #define STM32H7_RES_MASK GENMASK(4, 2)
120 #define STM32H7_DMNGT_SHIFT 0
121 #define STM32H7_DMNGT_MASK GENMASK(1, 0)
123 enum stm32h7_adc_dmngt {
124 STM32H7_DMNGT_DR_ONLY, /* Regular data in DR only */
125 STM32H7_DMNGT_DMA_ONESHOT, /* DMA one shot mode */
126 STM32H7_DMNGT_DFSDM, /* DFSDM mode */
127 STM32H7_DMNGT_DMA_CIRC, /* DMA circular mode */
130 /* STM32H7_ADC_CALFACT - bit fields */
131 #define STM32H7_CALFACT_D_SHIFT 16
132 #define STM32H7_CALFACT_D_MASK GENMASK(26, 16)
133 #define STM32H7_CALFACT_S_SHIFT 0
134 #define STM32H7_CALFACT_S_MASK GENMASK(10, 0)
136 /* STM32H7_ADC_CALFACT2 - bit fields */
137 #define STM32H7_LINCALFACT_SHIFT 0
138 #define STM32H7_LINCALFACT_MASK GENMASK(29, 0)
140 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
141 #define STM32H7_LINCALFACT_NUM 6
143 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
144 #define STM32H7_BOOST_CLKRATE 20000000UL
146 #define STM32_ADC_CH_MAX 20 /* max number of channels */
147 #define STM32_ADC_CH_SZ 10 /* max channel name size */
148 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
149 #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
150 #define STM32_ADC_TIMEOUT_US 100000
151 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
152 #define STM32_ADC_HW_STOP_DELAY_MS 100
154 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE
156 /* External trigger enable */
157 enum stm32_adc_exten {
158 STM32_EXTEN_SWTRIG,
159 STM32_EXTEN_HWTRIG_RISING_EDGE,
160 STM32_EXTEN_HWTRIG_FALLING_EDGE,
161 STM32_EXTEN_HWTRIG_BOTH_EDGES,
164 /* extsel - trigger mux selection value */
165 enum stm32_adc_extsel {
166 STM32_EXT0,
167 STM32_EXT1,
168 STM32_EXT2,
169 STM32_EXT3,
170 STM32_EXT4,
171 STM32_EXT5,
172 STM32_EXT6,
173 STM32_EXT7,
174 STM32_EXT8,
175 STM32_EXT9,
176 STM32_EXT10,
177 STM32_EXT11,
178 STM32_EXT12,
179 STM32_EXT13,
180 STM32_EXT14,
181 STM32_EXT15,
182 STM32_EXT16,
183 STM32_EXT17,
184 STM32_EXT18,
185 STM32_EXT19,
186 STM32_EXT20,
190 * struct stm32_adc_trig_info - ADC trigger info
191 * @name: name of the trigger, corresponding to its source
192 * @extsel: trigger selection
194 struct stm32_adc_trig_info {
195 const char *name;
196 enum stm32_adc_extsel extsel;
200 * struct stm32_adc_calib - optional adc calibration data
201 * @calfact_s: Calibration offset for single ended channels
202 * @calfact_d: Calibration offset in differential
203 * @lincalfact: Linearity calibration factor
204 * @calibrated: Indicates calibration status
206 struct stm32_adc_calib {
207 u32 calfact_s;
208 u32 calfact_d;
209 u32 lincalfact[STM32H7_LINCALFACT_NUM];
210 bool calibrated;
214 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
215 * @reg: register offset
216 * @mask: bitfield mask
217 * @shift: left shift
219 struct stm32_adc_regs {
220 int reg;
221 int mask;
222 int shift;
226 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
227 * @dr: data register offset
228 * @ier_eoc: interrupt enable register & eocie bitfield
229 * @isr_eoc: interrupt status register & eoc bitfield
230 * @sqr: reference to sequence registers array
231 * @exten: trigger control register & bitfield
232 * @extsel: trigger selection register & bitfield
233 * @res: resolution selection register & bitfield
234 * @smpr: smpr1 & smpr2 registers offset array
235 * @smp_bits: smpr1 & smpr2 index and bitfields
237 struct stm32_adc_regspec {
238 const u32 dr;
239 const struct stm32_adc_regs ier_eoc;
240 const struct stm32_adc_regs isr_eoc;
241 const struct stm32_adc_regs *sqr;
242 const struct stm32_adc_regs exten;
243 const struct stm32_adc_regs extsel;
244 const struct stm32_adc_regs res;
245 const u32 smpr[2];
246 const struct stm32_adc_regs *smp_bits;
249 struct stm32_adc;
252 * stm32_adc_cfg - stm32 compatible configuration data
253 * @regs: registers descriptions
254 * @adc_info: per instance input channels definitions
255 * @trigs: external trigger sources
256 * @clk_required: clock is required
257 * @has_vregready: vregready status flag presence
258 * @prepare: optional prepare routine (power-up, enable)
259 * @start_conv: routine to start conversions
260 * @stop_conv: routine to stop conversions
261 * @unprepare: optional unprepare routine (disable, power-down)
262 * @smp_cycles: programmable sampling time (ADC clock cycles)
264 struct stm32_adc_cfg {
265 const struct stm32_adc_regspec *regs;
266 const struct stm32_adc_info *adc_info;
267 struct stm32_adc_trig_info *trigs;
268 bool clk_required;
269 bool has_vregready;
270 int (*prepare)(struct stm32_adc *);
271 void (*start_conv)(struct stm32_adc *, bool dma);
272 void (*stop_conv)(struct stm32_adc *);
273 void (*unprepare)(struct stm32_adc *);
274 const unsigned int *smp_cycles;
278 * struct stm32_adc - private data of each ADC IIO instance
279 * @common: reference to ADC block common data
280 * @offset: ADC instance register offset in ADC block
281 * @cfg: compatible configuration data
282 * @completion: end of single conversion completion
283 * @buffer: data buffer
284 * @clk: clock for this adc instance
285 * @irq: interrupt for this adc instance
286 * @lock: spinlock
287 * @bufi: data buffer index
288 * @num_conv: expected number of scan conversions
289 * @res: data resolution (e.g. RES bitfield value)
290 * @trigger_polarity: external trigger polarity (e.g. exten)
291 * @dma_chan: dma channel
292 * @rx_buf: dma rx buffer cpu address
293 * @rx_dma_buf: dma rx buffer bus address
294 * @rx_buf_sz: dma rx buffer size
295 * @difsel bitmask to set single-ended/differential channel
296 * @pcsel bitmask to preselect channels on some devices
297 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
298 * @cal: optional calibration data on some devices
299 * @chan_name: channel name array
301 struct stm32_adc {
302 struct stm32_adc_common *common;
303 u32 offset;
304 const struct stm32_adc_cfg *cfg;
305 struct completion completion;
306 u16 buffer[STM32_ADC_MAX_SQ];
307 struct clk *clk;
308 int irq;
309 spinlock_t lock; /* interrupt lock */
310 unsigned int bufi;
311 unsigned int num_conv;
312 u32 res;
313 u32 trigger_polarity;
314 struct dma_chan *dma_chan;
315 u8 *rx_buf;
316 dma_addr_t rx_dma_buf;
317 unsigned int rx_buf_sz;
318 u32 difsel;
319 u32 pcsel;
320 u32 smpr_val[2];
321 struct stm32_adc_calib cal;
322 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
325 struct stm32_adc_diff_channel {
326 u32 vinp;
327 u32 vinn;
331 * struct stm32_adc_info - stm32 ADC, per instance config data
332 * @max_channels: Number of channels
333 * @resolutions: available resolutions
334 * @num_res: number of available resolutions
336 struct stm32_adc_info {
337 int max_channels;
338 const unsigned int *resolutions;
339 const unsigned int num_res;
342 static const unsigned int stm32f4_adc_resolutions[] = {
343 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
344 12, 10, 8, 6,
347 /* stm32f4 can have up to 16 channels */
348 static const struct stm32_adc_info stm32f4_adc_info = {
349 .max_channels = 16,
350 .resolutions = stm32f4_adc_resolutions,
351 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
354 static const unsigned int stm32h7_adc_resolutions[] = {
355 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
356 16, 14, 12, 10, 8,
359 /* stm32h7 can have up to 20 channels */
360 static const struct stm32_adc_info stm32h7_adc_info = {
361 .max_channels = STM32_ADC_CH_MAX,
362 .resolutions = stm32h7_adc_resolutions,
363 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
367 * stm32f4_sq - describe regular sequence registers
368 * - L: sequence len (register & bit field)
369 * - SQ1..SQ16: sequence entries (register & bit field)
371 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
372 /* L: len bit field description to be kept as first element */
373 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
374 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
375 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
376 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
377 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
378 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
379 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
380 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
381 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
382 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
383 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
384 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
385 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
386 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
387 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
388 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
389 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
390 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
393 /* STM32F4 external trigger sources for all instances */
394 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
395 { TIM1_CH1, STM32_EXT0 },
396 { TIM1_CH2, STM32_EXT1 },
397 { TIM1_CH3, STM32_EXT2 },
398 { TIM2_CH2, STM32_EXT3 },
399 { TIM2_CH3, STM32_EXT4 },
400 { TIM2_CH4, STM32_EXT5 },
401 { TIM2_TRGO, STM32_EXT6 },
402 { TIM3_CH1, STM32_EXT7 },
403 { TIM3_TRGO, STM32_EXT8 },
404 { TIM4_CH4, STM32_EXT9 },
405 { TIM5_CH1, STM32_EXT10 },
406 { TIM5_CH2, STM32_EXT11 },
407 { TIM5_CH3, STM32_EXT12 },
408 { TIM8_CH1, STM32_EXT13 },
409 { TIM8_TRGO, STM32_EXT14 },
410 {}, /* sentinel */
414 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
415 * Sorted so it can be indexed by channel number.
417 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
418 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
419 { 1, GENMASK(2, 0), 0 },
420 { 1, GENMASK(5, 3), 3 },
421 { 1, GENMASK(8, 6), 6 },
422 { 1, GENMASK(11, 9), 9 },
423 { 1, GENMASK(14, 12), 12 },
424 { 1, GENMASK(17, 15), 15 },
425 { 1, GENMASK(20, 18), 18 },
426 { 1, GENMASK(23, 21), 21 },
427 { 1, GENMASK(26, 24), 24 },
428 { 1, GENMASK(29, 27), 27 },
429 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
430 { 0, GENMASK(2, 0), 0 },
431 { 0, GENMASK(5, 3), 3 },
432 { 0, GENMASK(8, 6), 6 },
433 { 0, GENMASK(11, 9), 9 },
434 { 0, GENMASK(14, 12), 12 },
435 { 0, GENMASK(17, 15), 15 },
436 { 0, GENMASK(20, 18), 18 },
437 { 0, GENMASK(23, 21), 21 },
438 { 0, GENMASK(26, 24), 24 },
441 /* STM32F4 programmable sampling time (ADC clock cycles) */
442 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
443 3, 15, 28, 56, 84, 112, 144, 480,
446 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
447 .dr = STM32F4_ADC_DR,
448 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
449 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
450 .sqr = stm32f4_sq,
451 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
452 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
453 STM32F4_EXTSEL_SHIFT },
454 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
455 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
456 .smp_bits = stm32f4_smp_bits,
459 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
460 /* L: len bit field description to be kept as first element */
461 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
462 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
463 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
464 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
465 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
466 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
467 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
468 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
469 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
470 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
471 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
472 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
473 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
474 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
475 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
476 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
477 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
478 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
481 /* STM32H7 external trigger sources for all instances */
482 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
483 { TIM1_CH1, STM32_EXT0 },
484 { TIM1_CH2, STM32_EXT1 },
485 { TIM1_CH3, STM32_EXT2 },
486 { TIM2_CH2, STM32_EXT3 },
487 { TIM3_TRGO, STM32_EXT4 },
488 { TIM4_CH4, STM32_EXT5 },
489 { TIM8_TRGO, STM32_EXT7 },
490 { TIM8_TRGO2, STM32_EXT8 },
491 { TIM1_TRGO, STM32_EXT9 },
492 { TIM1_TRGO2, STM32_EXT10 },
493 { TIM2_TRGO, STM32_EXT11 },
494 { TIM4_TRGO, STM32_EXT12 },
495 { TIM6_TRGO, STM32_EXT13 },
496 { TIM15_TRGO, STM32_EXT14 },
497 { TIM3_CH4, STM32_EXT15 },
498 { LPTIM1_OUT, STM32_EXT18 },
499 { LPTIM2_OUT, STM32_EXT19 },
500 { LPTIM3_OUT, STM32_EXT20 },
505 * stm32h7_smp_bits - describe sampling time register index & bit fields
506 * Sorted so it can be indexed by channel number.
508 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
509 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
510 { 0, GENMASK(2, 0), 0 },
511 { 0, GENMASK(5, 3), 3 },
512 { 0, GENMASK(8, 6), 6 },
513 { 0, GENMASK(11, 9), 9 },
514 { 0, GENMASK(14, 12), 12 },
515 { 0, GENMASK(17, 15), 15 },
516 { 0, GENMASK(20, 18), 18 },
517 { 0, GENMASK(23, 21), 21 },
518 { 0, GENMASK(26, 24), 24 },
519 { 0, GENMASK(29, 27), 27 },
520 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
521 { 1, GENMASK(2, 0), 0 },
522 { 1, GENMASK(5, 3), 3 },
523 { 1, GENMASK(8, 6), 6 },
524 { 1, GENMASK(11, 9), 9 },
525 { 1, GENMASK(14, 12), 12 },
526 { 1, GENMASK(17, 15), 15 },
527 { 1, GENMASK(20, 18), 18 },
528 { 1, GENMASK(23, 21), 21 },
529 { 1, GENMASK(26, 24), 24 },
530 { 1, GENMASK(29, 27), 27 },
533 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
534 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
535 1, 2, 8, 16, 32, 64, 387, 810,
538 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
539 .dr = STM32H7_ADC_DR,
540 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
541 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
542 .sqr = stm32h7_sq,
543 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
544 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
545 STM32H7_EXTSEL_SHIFT },
546 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
547 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
548 .smp_bits = stm32h7_smp_bits,
552 * STM32 ADC registers access routines
553 * @adc: stm32 adc instance
554 * @reg: reg offset in adc instance
556 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
557 * for adc1, adc2 and adc3.
559 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
561 return readl_relaxed(adc->common->base + adc->offset + reg);
564 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
566 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
567 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
568 cond, sleep_us, timeout_us)
570 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
572 return readw_relaxed(adc->common->base + adc->offset + reg);
575 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
577 writel_relaxed(val, adc->common->base + adc->offset + reg);
580 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
582 unsigned long flags;
584 spin_lock_irqsave(&adc->lock, flags);
585 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
586 spin_unlock_irqrestore(&adc->lock, flags);
589 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
591 unsigned long flags;
593 spin_lock_irqsave(&adc->lock, flags);
594 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
595 spin_unlock_irqrestore(&adc->lock, flags);
599 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
600 * @adc: stm32 adc instance
602 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
604 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
605 adc->cfg->regs->ier_eoc.mask);
609 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
610 * @adc: stm32 adc instance
612 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
614 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
615 adc->cfg->regs->ier_eoc.mask);
618 static void stm32_adc_set_res(struct stm32_adc *adc)
620 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
621 u32 val;
623 val = stm32_adc_readl(adc, res->reg);
624 val = (val & ~res->mask) | (adc->res << res->shift);
625 stm32_adc_writel(adc, res->reg, val);
628 static int stm32_adc_hw_stop(struct device *dev)
630 struct stm32_adc *adc = dev_get_drvdata(dev);
632 if (adc->cfg->unprepare)
633 adc->cfg->unprepare(adc);
635 if (adc->clk)
636 clk_disable_unprepare(adc->clk);
638 return 0;
641 static int stm32_adc_hw_start(struct device *dev)
643 struct stm32_adc *adc = dev_get_drvdata(dev);
644 int ret;
646 if (adc->clk) {
647 ret = clk_prepare_enable(adc->clk);
648 if (ret)
649 return ret;
652 stm32_adc_set_res(adc);
654 if (adc->cfg->prepare) {
655 ret = adc->cfg->prepare(adc);
656 if (ret)
657 goto err_clk_dis;
660 return 0;
662 err_clk_dis:
663 if (adc->clk)
664 clk_disable_unprepare(adc->clk);
666 return ret;
670 * stm32f4_adc_start_conv() - Start conversions for regular channels.
671 * @adc: stm32 adc instance
672 * @dma: use dma to transfer conversion result
674 * Start conversions for regular channels.
675 * Also take care of normal or DMA mode. Circular DMA may be used for regular
676 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
677 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
679 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
681 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
683 if (dma)
684 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
685 STM32F4_DMA | STM32F4_DDS);
687 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
689 /* Wait for Power-up time (tSTAB from datasheet) */
690 usleep_range(2, 3);
692 /* Software start ? (e.g. trigger detection disabled ?) */
693 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
694 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
697 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
699 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
700 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
702 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
703 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
704 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
707 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
709 enum stm32h7_adc_dmngt dmngt;
710 unsigned long flags;
711 u32 val;
713 if (dma)
714 dmngt = STM32H7_DMNGT_DMA_CIRC;
715 else
716 dmngt = STM32H7_DMNGT_DR_ONLY;
718 spin_lock_irqsave(&adc->lock, flags);
719 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
720 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
721 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
722 spin_unlock_irqrestore(&adc->lock, flags);
724 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
727 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
729 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
730 int ret;
731 u32 val;
733 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
735 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
736 !(val & (STM32H7_ADSTART)),
737 100, STM32_ADC_TIMEOUT_US);
738 if (ret)
739 dev_warn(&indio_dev->dev, "stop failed\n");
741 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
744 static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
746 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
747 int ret;
748 u32 val;
750 /* Exit deep power down, then enable ADC voltage regulator */
751 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
752 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
754 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
755 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
757 /* Wait for startup time */
758 if (!adc->cfg->has_vregready) {
759 usleep_range(10, 20);
760 return 0;
763 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
764 val & STM32MP1_VREGREADY, 100,
765 STM32_ADC_TIMEOUT_US);
766 if (ret) {
767 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
768 dev_err(&indio_dev->dev, "Failed to exit power down\n");
771 return ret;
774 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
776 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
778 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
779 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
782 static int stm32h7_adc_enable(struct stm32_adc *adc)
784 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
785 int ret;
786 u32 val;
788 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
790 /* Poll for ADRDY to be set (after adc startup time) */
791 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
792 val & STM32H7_ADRDY,
793 100, STM32_ADC_TIMEOUT_US);
794 if (ret) {
795 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
796 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
797 } else {
798 /* Clear ADRDY by writing one */
799 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
802 return ret;
805 static void stm32h7_adc_disable(struct stm32_adc *adc)
807 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
808 int ret;
809 u32 val;
811 /* Disable ADC and wait until it's effectively disabled */
812 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
813 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
814 !(val & STM32H7_ADEN), 100,
815 STM32_ADC_TIMEOUT_US);
816 if (ret)
817 dev_warn(&indio_dev->dev, "Failed to disable\n");
821 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
822 * @adc: stm32 adc instance
823 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
825 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
827 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
828 int i, ret;
829 u32 lincalrdyw_mask, val;
831 /* Read linearity calibration */
832 lincalrdyw_mask = STM32H7_LINCALRDYW6;
833 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
834 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
835 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
837 /* Poll: wait calib data to be ready in CALFACT2 register */
838 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
839 !(val & lincalrdyw_mask),
840 100, STM32_ADC_TIMEOUT_US);
841 if (ret) {
842 dev_err(&indio_dev->dev, "Failed to read calfact\n");
843 return ret;
846 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
847 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
848 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
850 lincalrdyw_mask >>= 1;
853 /* Read offset calibration */
854 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
855 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
856 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
857 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
858 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
859 adc->cal.calibrated = true;
861 return 0;
865 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
866 * @adc: stm32 adc instance
867 * Note: ADC must be enabled, with no on-going conversions.
869 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
871 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
872 int i, ret;
873 u32 lincalrdyw_mask, val;
875 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
876 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
877 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
879 lincalrdyw_mask = STM32H7_LINCALRDYW6;
880 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
882 * Write saved calibration data to shadow registers:
883 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
884 * data write. Then poll to wait for complete transfer.
886 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
887 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
888 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
889 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
890 val & lincalrdyw_mask,
891 100, STM32_ADC_TIMEOUT_US);
892 if (ret) {
893 dev_err(&indio_dev->dev, "Failed to write calfact\n");
894 return ret;
898 * Read back calibration data, has two effects:
899 * - It ensures bits LINCALRDYW[6..1] are kept cleared
900 * for next time calibration needs to be restored.
901 * - BTW, bit clear triggers a read, then check data has been
902 * correctly written.
904 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
905 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
906 !(val & lincalrdyw_mask),
907 100, STM32_ADC_TIMEOUT_US);
908 if (ret) {
909 dev_err(&indio_dev->dev, "Failed to read calfact\n");
910 return ret;
912 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
913 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
914 dev_err(&indio_dev->dev, "calfact not consistent\n");
915 return -EIO;
918 lincalrdyw_mask >>= 1;
921 return 0;
925 * Fixed timeout value for ADC calibration.
926 * worst cases:
927 * - low clock frequency
928 * - maximum prescalers
929 * Calibration requires:
930 * - 131,072 ADC clock cycle for the linear calibration
931 * - 20 ADC clock cycle for the offset calibration
933 * Set to 100ms for now
935 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000
938 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
939 * @adc: stm32 adc instance
940 * Note: Must be called once ADC is out of power down.
942 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
944 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
945 int ret;
946 u32 val;
948 if (adc->cal.calibrated)
949 return true;
952 * Select calibration mode:
953 * - Offset calibration for single ended inputs
954 * - No linearity calibration (do it later, before reading it)
956 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
957 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
959 /* Start calibration, then wait for completion */
960 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
961 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
962 !(val & STM32H7_ADCAL), 100,
963 STM32H7_ADC_CALIB_TIMEOUT_US);
964 if (ret) {
965 dev_err(&indio_dev->dev, "calibration failed\n");
966 goto out;
970 * Select calibration mode, then start calibration:
971 * - Offset calibration for differential input
972 * - Linearity calibration (needs to be done only once for single/diff)
973 * will run simultaneously with offset calibration.
975 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
976 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
977 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
978 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
979 !(val & STM32H7_ADCAL), 100,
980 STM32H7_ADC_CALIB_TIMEOUT_US);
981 if (ret) {
982 dev_err(&indio_dev->dev, "calibration failed\n");
983 goto out;
986 out:
987 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
988 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
990 return ret;
994 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
995 * @adc: stm32 adc instance
996 * Leave power down mode.
997 * Configure channels as single ended or differential before enabling ADC.
998 * Enable ADC.
999 * Restore calibration data.
1000 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1001 * - Only one input is selected for single ended (e.g. 'vinp')
1002 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1004 static int stm32h7_adc_prepare(struct stm32_adc *adc)
1006 int calib, ret;
1008 ret = stm32h7_adc_exit_pwr_down(adc);
1009 if (ret)
1010 return ret;
1012 ret = stm32h7_adc_selfcalib(adc);
1013 if (ret < 0)
1014 goto pwr_dwn;
1015 calib = ret;
1017 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
1019 ret = stm32h7_adc_enable(adc);
1020 if (ret)
1021 goto pwr_dwn;
1023 /* Either restore or read calibration result for future reference */
1024 if (calib)
1025 ret = stm32h7_adc_restore_selfcalib(adc);
1026 else
1027 ret = stm32h7_adc_read_selfcalib(adc);
1028 if (ret)
1029 goto disable;
1031 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1033 return 0;
1035 disable:
1036 stm32h7_adc_disable(adc);
1037 pwr_dwn:
1038 stm32h7_adc_enter_pwr_down(adc);
1040 return ret;
1043 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
1045 stm32h7_adc_disable(adc);
1046 stm32h7_adc_enter_pwr_down(adc);
1050 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1051 * @indio_dev: IIO device
1052 * @scan_mask: channels to be converted
1054 * Conversion sequence :
1055 * Apply sampling time settings for all channels.
1056 * Configure ADC scan sequence based on selected channels in scan_mask.
1057 * Add channels to SQR registers, from scan_mask LSB to MSB, then
1058 * program sequence len.
1060 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1061 const unsigned long *scan_mask)
1063 struct stm32_adc *adc = iio_priv(indio_dev);
1064 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1065 const struct iio_chan_spec *chan;
1066 u32 val, bit;
1067 int i = 0;
1069 /* Apply sampling time settings */
1070 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1071 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1073 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1074 chan = indio_dev->channels + bit;
1076 * Assign one channel per SQ entry in regular
1077 * sequence, starting with SQ1.
1079 i++;
1080 if (i > STM32_ADC_MAX_SQ)
1081 return -EINVAL;
1083 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1084 __func__, chan->channel, i);
1086 val = stm32_adc_readl(adc, sqr[i].reg);
1087 val &= ~sqr[i].mask;
1088 val |= chan->channel << sqr[i].shift;
1089 stm32_adc_writel(adc, sqr[i].reg, val);
1092 if (!i)
1093 return -EINVAL;
1095 /* Sequence len */
1096 val = stm32_adc_readl(adc, sqr[0].reg);
1097 val &= ~sqr[0].mask;
1098 val |= ((i - 1) << sqr[0].shift);
1099 stm32_adc_writel(adc, sqr[0].reg, val);
1101 return 0;
1105 * stm32_adc_get_trig_extsel() - Get external trigger selection
1106 * @trig: trigger
1108 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1110 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1111 struct iio_trigger *trig)
1113 struct stm32_adc *adc = iio_priv(indio_dev);
1114 int i;
1116 /* lookup triggers registered by stm32 timer trigger driver */
1117 for (i = 0; adc->cfg->trigs[i].name; i++) {
1119 * Checking both stm32 timer trigger type and trig name
1120 * should be safe against arbitrary trigger names.
1122 if ((is_stm32_timer_trigger(trig) ||
1123 is_stm32_lptim_trigger(trig)) &&
1124 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1125 return adc->cfg->trigs[i].extsel;
1129 return -EINVAL;
1133 * stm32_adc_set_trig() - Set a regular trigger
1134 * @indio_dev: IIO device
1135 * @trig: IIO trigger
1137 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1138 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1139 * - if HW trigger enabled, set source & polarity
1141 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1142 struct iio_trigger *trig)
1144 struct stm32_adc *adc = iio_priv(indio_dev);
1145 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1146 unsigned long flags;
1147 int ret;
1149 if (trig) {
1150 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1151 if (ret < 0)
1152 return ret;
1154 /* set trigger source and polarity (default to rising edge) */
1155 extsel = ret;
1156 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1159 spin_lock_irqsave(&adc->lock, flags);
1160 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1161 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1162 val |= exten << adc->cfg->regs->exten.shift;
1163 val |= extsel << adc->cfg->regs->extsel.shift;
1164 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1165 spin_unlock_irqrestore(&adc->lock, flags);
1167 return 0;
1170 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1171 const struct iio_chan_spec *chan,
1172 unsigned int type)
1174 struct stm32_adc *adc = iio_priv(indio_dev);
1176 adc->trigger_polarity = type;
1178 return 0;
1181 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1182 const struct iio_chan_spec *chan)
1184 struct stm32_adc *adc = iio_priv(indio_dev);
1186 return adc->trigger_polarity;
1189 static const char * const stm32_trig_pol_items[] = {
1190 "rising-edge", "falling-edge", "both-edges",
1193 static const struct iio_enum stm32_adc_trig_pol = {
1194 .items = stm32_trig_pol_items,
1195 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1196 .get = stm32_adc_get_trig_pol,
1197 .set = stm32_adc_set_trig_pol,
1201 * stm32_adc_single_conv() - Performs a single conversion
1202 * @indio_dev: IIO device
1203 * @chan: IIO channel
1204 * @res: conversion result
1206 * The function performs a single conversion on a given channel:
1207 * - Apply sampling time settings
1208 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1209 * - Use SW trigger
1210 * - Start conversion, then wait for interrupt completion.
1212 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1213 const struct iio_chan_spec *chan,
1214 int *res)
1216 struct stm32_adc *adc = iio_priv(indio_dev);
1217 struct device *dev = indio_dev->dev.parent;
1218 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1219 long timeout;
1220 u32 val;
1221 int ret;
1223 reinit_completion(&adc->completion);
1225 adc->bufi = 0;
1227 ret = pm_runtime_get_sync(dev);
1228 if (ret < 0) {
1229 pm_runtime_put_noidle(dev);
1230 return ret;
1233 /* Apply sampling time settings */
1234 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1235 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1237 /* Program chan number in regular sequence (SQ1) */
1238 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1239 val &= ~regs->sqr[1].mask;
1240 val |= chan->channel << regs->sqr[1].shift;
1241 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1243 /* Set regular sequence len (0 for 1 conversion) */
1244 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1246 /* Trigger detection disabled (conversion can be launched in SW) */
1247 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1249 stm32_adc_conv_irq_enable(adc);
1251 adc->cfg->start_conv(adc, false);
1253 timeout = wait_for_completion_interruptible_timeout(
1254 &adc->completion, STM32_ADC_TIMEOUT);
1255 if (timeout == 0) {
1256 ret = -ETIMEDOUT;
1257 } else if (timeout < 0) {
1258 ret = timeout;
1259 } else {
1260 *res = adc->buffer[0];
1261 ret = IIO_VAL_INT;
1264 adc->cfg->stop_conv(adc);
1266 stm32_adc_conv_irq_disable(adc);
1268 pm_runtime_mark_last_busy(dev);
1269 pm_runtime_put_autosuspend(dev);
1271 return ret;
1274 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1275 struct iio_chan_spec const *chan,
1276 int *val, int *val2, long mask)
1278 struct stm32_adc *adc = iio_priv(indio_dev);
1279 int ret;
1281 switch (mask) {
1282 case IIO_CHAN_INFO_RAW:
1283 ret = iio_device_claim_direct_mode(indio_dev);
1284 if (ret)
1285 return ret;
1286 if (chan->type == IIO_VOLTAGE)
1287 ret = stm32_adc_single_conv(indio_dev, chan, val);
1288 else
1289 ret = -EINVAL;
1290 iio_device_release_direct_mode(indio_dev);
1291 return ret;
1293 case IIO_CHAN_INFO_SCALE:
1294 if (chan->differential) {
1295 *val = adc->common->vref_mv * 2;
1296 *val2 = chan->scan_type.realbits;
1297 } else {
1298 *val = adc->common->vref_mv;
1299 *val2 = chan->scan_type.realbits;
1301 return IIO_VAL_FRACTIONAL_LOG2;
1303 case IIO_CHAN_INFO_OFFSET:
1304 if (chan->differential)
1305 /* ADC_full_scale / 2 */
1306 *val = -((1 << chan->scan_type.realbits) / 2);
1307 else
1308 *val = 0;
1309 return IIO_VAL_INT;
1311 default:
1312 return -EINVAL;
1316 static irqreturn_t stm32_adc_isr(int irq, void *data)
1318 struct stm32_adc *adc = data;
1319 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1320 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1321 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1323 if (status & regs->isr_eoc.mask) {
1324 /* Reading DR also clears EOC status flag */
1325 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1326 if (iio_buffer_enabled(indio_dev)) {
1327 adc->bufi++;
1328 if (adc->bufi >= adc->num_conv) {
1329 stm32_adc_conv_irq_disable(adc);
1330 iio_trigger_poll(indio_dev->trig);
1332 } else {
1333 complete(&adc->completion);
1335 return IRQ_HANDLED;
1338 return IRQ_NONE;
1342 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1343 * @indio_dev: IIO device
1344 * @trig: new trigger
1346 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1347 * driver, -EINVAL otherwise.
1349 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1350 struct iio_trigger *trig)
1352 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1355 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1357 struct stm32_adc *adc = iio_priv(indio_dev);
1358 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1359 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1362 * dma cyclic transfers are used, buffer is split into two periods.
1363 * There should be :
1364 * - always one buffer (period) dma is working on
1365 * - one buffer (period) driver can push with iio_trigger_poll().
1367 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1368 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1370 return 0;
1373 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1374 const unsigned long *scan_mask)
1376 struct stm32_adc *adc = iio_priv(indio_dev);
1377 struct device *dev = indio_dev->dev.parent;
1378 int ret;
1380 ret = pm_runtime_get_sync(dev);
1381 if (ret < 0) {
1382 pm_runtime_put_noidle(dev);
1383 return ret;
1386 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1388 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1389 pm_runtime_mark_last_busy(dev);
1390 pm_runtime_put_autosuspend(dev);
1392 return ret;
1395 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1396 const struct of_phandle_args *iiospec)
1398 int i;
1400 for (i = 0; i < indio_dev->num_channels; i++)
1401 if (indio_dev->channels[i].channel == iiospec->args[0])
1402 return i;
1404 return -EINVAL;
1408 * stm32_adc_debugfs_reg_access - read or write register value
1410 * To read a value from an ADC register:
1411 * echo [ADC reg offset] > direct_reg_access
1412 * cat direct_reg_access
1414 * To write a value in a ADC register:
1415 * echo [ADC_reg_offset] [value] > direct_reg_access
1417 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1418 unsigned reg, unsigned writeval,
1419 unsigned *readval)
1421 struct stm32_adc *adc = iio_priv(indio_dev);
1422 struct device *dev = indio_dev->dev.parent;
1423 int ret;
1425 ret = pm_runtime_get_sync(dev);
1426 if (ret < 0) {
1427 pm_runtime_put_noidle(dev);
1428 return ret;
1431 if (!readval)
1432 stm32_adc_writel(adc, reg, writeval);
1433 else
1434 *readval = stm32_adc_readl(adc, reg);
1436 pm_runtime_mark_last_busy(dev);
1437 pm_runtime_put_autosuspend(dev);
1439 return 0;
1442 static const struct iio_info stm32_adc_iio_info = {
1443 .read_raw = stm32_adc_read_raw,
1444 .validate_trigger = stm32_adc_validate_trigger,
1445 .hwfifo_set_watermark = stm32_adc_set_watermark,
1446 .update_scan_mode = stm32_adc_update_scan_mode,
1447 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1448 .of_xlate = stm32_adc_of_xlate,
1451 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1453 struct dma_tx_state state;
1454 enum dma_status status;
1456 status = dmaengine_tx_status(adc->dma_chan,
1457 adc->dma_chan->cookie,
1458 &state);
1459 if (status == DMA_IN_PROGRESS) {
1460 /* Residue is size in bytes from end of buffer */
1461 unsigned int i = adc->rx_buf_sz - state.residue;
1462 unsigned int size;
1464 /* Return available bytes */
1465 if (i >= adc->bufi)
1466 size = i - adc->bufi;
1467 else
1468 size = adc->rx_buf_sz + i - adc->bufi;
1470 return size;
1473 return 0;
1476 static void stm32_adc_dma_buffer_done(void *data)
1478 struct iio_dev *indio_dev = data;
1480 iio_trigger_poll_chained(indio_dev->trig);
1483 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1485 struct stm32_adc *adc = iio_priv(indio_dev);
1486 struct dma_async_tx_descriptor *desc;
1487 dma_cookie_t cookie;
1488 int ret;
1490 if (!adc->dma_chan)
1491 return 0;
1493 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1494 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1496 /* Prepare a DMA cyclic transaction */
1497 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1498 adc->rx_dma_buf,
1499 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1500 DMA_DEV_TO_MEM,
1501 DMA_PREP_INTERRUPT);
1502 if (!desc)
1503 return -EBUSY;
1505 desc->callback = stm32_adc_dma_buffer_done;
1506 desc->callback_param = indio_dev;
1508 cookie = dmaengine_submit(desc);
1509 ret = dma_submit_error(cookie);
1510 if (ret) {
1511 dmaengine_terminate_all(adc->dma_chan);
1512 return ret;
1515 /* Issue pending DMA requests */
1516 dma_async_issue_pending(adc->dma_chan);
1518 return 0;
1521 static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1523 struct stm32_adc *adc = iio_priv(indio_dev);
1524 struct device *dev = indio_dev->dev.parent;
1525 int ret;
1527 ret = pm_runtime_get_sync(dev);
1528 if (ret < 0) {
1529 pm_runtime_put_noidle(dev);
1530 return ret;
1533 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1534 if (ret) {
1535 dev_err(&indio_dev->dev, "Can't set trigger\n");
1536 goto err_pm_put;
1539 ret = stm32_adc_dma_start(indio_dev);
1540 if (ret) {
1541 dev_err(&indio_dev->dev, "Can't start dma\n");
1542 goto err_clr_trig;
1545 /* Reset adc buffer index */
1546 adc->bufi = 0;
1548 if (!adc->dma_chan)
1549 stm32_adc_conv_irq_enable(adc);
1551 adc->cfg->start_conv(adc, !!adc->dma_chan);
1553 return 0;
1555 err_clr_trig:
1556 stm32_adc_set_trig(indio_dev, NULL);
1557 err_pm_put:
1558 pm_runtime_mark_last_busy(dev);
1559 pm_runtime_put_autosuspend(dev);
1561 return ret;
1564 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1566 int ret;
1568 ret = iio_triggered_buffer_postenable(indio_dev);
1569 if (ret < 0)
1570 return ret;
1572 ret = __stm32_adc_buffer_postenable(indio_dev);
1573 if (ret < 0)
1574 iio_triggered_buffer_predisable(indio_dev);
1576 return ret;
1579 static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1581 struct stm32_adc *adc = iio_priv(indio_dev);
1582 struct device *dev = indio_dev->dev.parent;
1584 adc->cfg->stop_conv(adc);
1585 if (!adc->dma_chan)
1586 stm32_adc_conv_irq_disable(adc);
1588 if (adc->dma_chan)
1589 dmaengine_terminate_all(adc->dma_chan);
1591 if (stm32_adc_set_trig(indio_dev, NULL))
1592 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1594 pm_runtime_mark_last_busy(dev);
1595 pm_runtime_put_autosuspend(dev);
1598 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1600 int ret;
1602 __stm32_adc_buffer_predisable(indio_dev);
1604 ret = iio_triggered_buffer_predisable(indio_dev);
1605 if (ret < 0)
1606 dev_err(&indio_dev->dev, "predisable failed\n");
1608 return ret;
1611 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1612 .postenable = &stm32_adc_buffer_postenable,
1613 .predisable = &stm32_adc_buffer_predisable,
1616 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1618 struct iio_poll_func *pf = p;
1619 struct iio_dev *indio_dev = pf->indio_dev;
1620 struct stm32_adc *adc = iio_priv(indio_dev);
1622 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1624 if (!adc->dma_chan) {
1625 /* reset buffer index */
1626 adc->bufi = 0;
1627 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1628 pf->timestamp);
1629 } else {
1630 int residue = stm32_adc_dma_residue(adc);
1632 while (residue >= indio_dev->scan_bytes) {
1633 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1635 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1636 pf->timestamp);
1637 residue -= indio_dev->scan_bytes;
1638 adc->bufi += indio_dev->scan_bytes;
1639 if (adc->bufi >= adc->rx_buf_sz)
1640 adc->bufi = 0;
1644 iio_trigger_notify_done(indio_dev->trig);
1646 /* re-enable eoc irq */
1647 if (!adc->dma_chan)
1648 stm32_adc_conv_irq_enable(adc);
1650 return IRQ_HANDLED;
1653 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1654 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1656 .name = "trigger_polarity_available",
1657 .shared = IIO_SHARED_BY_ALL,
1658 .read = iio_enum_available_read,
1659 .private = (uintptr_t)&stm32_adc_trig_pol,
1664 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1666 struct device_node *node = indio_dev->dev.of_node;
1667 struct stm32_adc *adc = iio_priv(indio_dev);
1668 unsigned int i;
1669 u32 res;
1671 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1672 res = adc->cfg->adc_info->resolutions[0];
1674 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1675 if (res == adc->cfg->adc_info->resolutions[i])
1676 break;
1677 if (i >= adc->cfg->adc_info->num_res) {
1678 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1679 return -EINVAL;
1682 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1683 adc->res = i;
1685 return 0;
1688 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1690 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1691 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1692 unsigned int smp, r = smpr->reg;
1694 /* Determine sampling time (ADC clock cycles) */
1695 period_ns = NSEC_PER_SEC / adc->common->rate;
1696 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1697 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1698 break;
1699 if (smp > STM32_ADC_MAX_SMP)
1700 smp = STM32_ADC_MAX_SMP;
1702 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1703 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1706 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1707 struct iio_chan_spec *chan, u32 vinp,
1708 u32 vinn, int scan_index, bool differential)
1710 struct stm32_adc *adc = iio_priv(indio_dev);
1711 char *name = adc->chan_name[vinp];
1713 chan->type = IIO_VOLTAGE;
1714 chan->channel = vinp;
1715 if (differential) {
1716 chan->differential = 1;
1717 chan->channel2 = vinn;
1718 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1719 } else {
1720 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1722 chan->datasheet_name = name;
1723 chan->scan_index = scan_index;
1724 chan->indexed = 1;
1725 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1726 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1727 BIT(IIO_CHAN_INFO_OFFSET);
1728 chan->scan_type.sign = 'u';
1729 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1730 chan->scan_type.storagebits = 16;
1731 chan->ext_info = stm32_adc_ext_info;
1733 /* pre-build selected channels mask */
1734 adc->pcsel |= BIT(chan->channel);
1735 if (differential) {
1736 /* pre-build diff channels mask */
1737 adc->difsel |= BIT(chan->channel);
1738 /* Also add negative input to pre-selected channels */
1739 adc->pcsel |= BIT(chan->channel2);
1743 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1745 struct device_node *node = indio_dev->dev.of_node;
1746 struct stm32_adc *adc = iio_priv(indio_dev);
1747 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1748 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1749 struct property *prop;
1750 const __be32 *cur;
1751 struct iio_chan_spec *channels;
1752 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1753 u32 val, smp = 0;
1755 ret = of_property_count_u32_elems(node, "st,adc-channels");
1756 if (ret > adc_info->max_channels) {
1757 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1758 return -EINVAL;
1759 } else if (ret > 0) {
1760 num_channels += ret;
1763 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1764 sizeof(*diff));
1765 if (ret > adc_info->max_channels) {
1766 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1767 return -EINVAL;
1768 } else if (ret > 0) {
1769 int size = ret * sizeof(*diff) / sizeof(u32);
1771 num_diff = ret;
1772 num_channels += ret;
1773 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1774 (u32 *)diff, size);
1775 if (ret)
1776 return ret;
1779 if (!num_channels) {
1780 dev_err(&indio_dev->dev, "No channels configured\n");
1781 return -ENODATA;
1784 /* Optional sample time is provided either for each, or all channels */
1785 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1786 if (ret > 1 && ret != num_channels) {
1787 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1788 return -EINVAL;
1791 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1792 sizeof(struct iio_chan_spec), GFP_KERNEL);
1793 if (!channels)
1794 return -ENOMEM;
1796 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1797 if (val >= adc_info->max_channels) {
1798 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1799 return -EINVAL;
1802 /* Channel can't be configured both as single-ended & diff */
1803 for (i = 0; i < num_diff; i++) {
1804 if (val == diff[i].vinp) {
1805 dev_err(&indio_dev->dev,
1806 "channel %d miss-configured\n", val);
1807 return -EINVAL;
1810 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1811 0, scan_index, false);
1812 scan_index++;
1815 for (i = 0; i < num_diff; i++) {
1816 if (diff[i].vinp >= adc_info->max_channels ||
1817 diff[i].vinn >= adc_info->max_channels) {
1818 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1819 diff[i].vinp, diff[i].vinn);
1820 return -EINVAL;
1822 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1823 diff[i].vinp, diff[i].vinn, scan_index,
1824 true);
1825 scan_index++;
1828 for (i = 0; i < scan_index; i++) {
1830 * Using of_property_read_u32_index(), smp value will only be
1831 * modified if valid u32 value can be decoded. This allows to
1832 * get either no value, 1 shared value for all indexes, or one
1833 * value per channel.
1835 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1836 i, &smp);
1837 /* Prepare sampling time settings */
1838 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1841 indio_dev->num_channels = scan_index;
1842 indio_dev->channels = channels;
1844 return 0;
1847 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1849 struct stm32_adc *adc = iio_priv(indio_dev);
1850 struct dma_slave_config config;
1851 int ret;
1853 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1854 if (!adc->dma_chan)
1855 return 0;
1857 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1858 STM32_DMA_BUFFER_SIZE,
1859 &adc->rx_dma_buf, GFP_KERNEL);
1860 if (!adc->rx_buf) {
1861 ret = -ENOMEM;
1862 goto err_release;
1865 /* Configure DMA channel to read data register */
1866 memset(&config, 0, sizeof(config));
1867 config.src_addr = (dma_addr_t)adc->common->phys_base;
1868 config.src_addr += adc->offset + adc->cfg->regs->dr;
1869 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1871 ret = dmaengine_slave_config(adc->dma_chan, &config);
1872 if (ret)
1873 goto err_free;
1875 return 0;
1877 err_free:
1878 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1879 adc->rx_buf, adc->rx_dma_buf);
1880 err_release:
1881 dma_release_channel(adc->dma_chan);
1883 return ret;
1886 static int stm32_adc_probe(struct platform_device *pdev)
1888 struct iio_dev *indio_dev;
1889 struct device *dev = &pdev->dev;
1890 struct stm32_adc *adc;
1891 int ret;
1893 if (!pdev->dev.of_node)
1894 return -ENODEV;
1896 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1897 if (!indio_dev)
1898 return -ENOMEM;
1900 adc = iio_priv(indio_dev);
1901 adc->common = dev_get_drvdata(pdev->dev.parent);
1902 spin_lock_init(&adc->lock);
1903 init_completion(&adc->completion);
1904 adc->cfg = (const struct stm32_adc_cfg *)
1905 of_match_device(dev->driver->of_match_table, dev)->data;
1907 indio_dev->name = dev_name(&pdev->dev);
1908 indio_dev->dev.parent = &pdev->dev;
1909 indio_dev->dev.of_node = pdev->dev.of_node;
1910 indio_dev->info = &stm32_adc_iio_info;
1911 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1913 platform_set_drvdata(pdev, adc);
1915 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1916 if (ret != 0) {
1917 dev_err(&pdev->dev, "missing reg property\n");
1918 return -EINVAL;
1921 adc->irq = platform_get_irq(pdev, 0);
1922 if (adc->irq < 0) {
1923 dev_err(&pdev->dev, "failed to get irq\n");
1924 return adc->irq;
1927 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1928 0, pdev->name, adc);
1929 if (ret) {
1930 dev_err(&pdev->dev, "failed to request IRQ\n");
1931 return ret;
1934 adc->clk = devm_clk_get(&pdev->dev, NULL);
1935 if (IS_ERR(adc->clk)) {
1936 ret = PTR_ERR(adc->clk);
1937 if (ret == -ENOENT && !adc->cfg->clk_required) {
1938 adc->clk = NULL;
1939 } else {
1940 dev_err(&pdev->dev, "Can't get clock\n");
1941 return ret;
1945 ret = stm32_adc_of_get_resolution(indio_dev);
1946 if (ret < 0)
1947 return ret;
1949 ret = stm32_adc_chan_of_init(indio_dev);
1950 if (ret < 0)
1951 return ret;
1953 ret = stm32_adc_dma_request(indio_dev);
1954 if (ret < 0)
1955 return ret;
1957 ret = iio_triggered_buffer_setup(indio_dev,
1958 &iio_pollfunc_store_time,
1959 &stm32_adc_trigger_handler,
1960 &stm32_adc_buffer_setup_ops);
1961 if (ret) {
1962 dev_err(&pdev->dev, "buffer setup failed\n");
1963 goto err_dma_disable;
1966 /* Get stm32-adc-core PM online */
1967 pm_runtime_get_noresume(dev);
1968 pm_runtime_set_active(dev);
1969 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1970 pm_runtime_use_autosuspend(dev);
1971 pm_runtime_enable(dev);
1973 ret = stm32_adc_hw_start(dev);
1974 if (ret)
1975 goto err_buffer_cleanup;
1977 ret = iio_device_register(indio_dev);
1978 if (ret) {
1979 dev_err(&pdev->dev, "iio dev register failed\n");
1980 goto err_hw_stop;
1983 pm_runtime_mark_last_busy(dev);
1984 pm_runtime_put_autosuspend(dev);
1986 return 0;
1988 err_hw_stop:
1989 stm32_adc_hw_stop(dev);
1991 err_buffer_cleanup:
1992 pm_runtime_disable(dev);
1993 pm_runtime_set_suspended(dev);
1994 pm_runtime_put_noidle(dev);
1995 iio_triggered_buffer_cleanup(indio_dev);
1997 err_dma_disable:
1998 if (adc->dma_chan) {
1999 dma_free_coherent(adc->dma_chan->device->dev,
2000 STM32_DMA_BUFFER_SIZE,
2001 adc->rx_buf, adc->rx_dma_buf);
2002 dma_release_channel(adc->dma_chan);
2005 return ret;
2008 static int stm32_adc_remove(struct platform_device *pdev)
2010 struct stm32_adc *adc = platform_get_drvdata(pdev);
2011 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2013 pm_runtime_get_sync(&pdev->dev);
2014 iio_device_unregister(indio_dev);
2015 stm32_adc_hw_stop(&pdev->dev);
2016 pm_runtime_disable(&pdev->dev);
2017 pm_runtime_set_suspended(&pdev->dev);
2018 pm_runtime_put_noidle(&pdev->dev);
2019 iio_triggered_buffer_cleanup(indio_dev);
2020 if (adc->dma_chan) {
2021 dma_free_coherent(adc->dma_chan->device->dev,
2022 STM32_DMA_BUFFER_SIZE,
2023 adc->rx_buf, adc->rx_dma_buf);
2024 dma_release_channel(adc->dma_chan);
2027 return 0;
2030 #if defined(CONFIG_PM_SLEEP)
2031 static int stm32_adc_suspend(struct device *dev)
2033 struct stm32_adc *adc = dev_get_drvdata(dev);
2034 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2036 if (iio_buffer_enabled(indio_dev))
2037 __stm32_adc_buffer_predisable(indio_dev);
2039 return pm_runtime_force_suspend(dev);
2042 static int stm32_adc_resume(struct device *dev)
2044 struct stm32_adc *adc = dev_get_drvdata(dev);
2045 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2046 int ret;
2048 ret = pm_runtime_force_resume(dev);
2049 if (ret < 0)
2050 return ret;
2052 if (!iio_buffer_enabled(indio_dev))
2053 return 0;
2055 ret = stm32_adc_update_scan_mode(indio_dev,
2056 indio_dev->active_scan_mask);
2057 if (ret < 0)
2058 return ret;
2060 return __stm32_adc_buffer_postenable(indio_dev);
2062 #endif
2064 #if defined(CONFIG_PM)
2065 static int stm32_adc_runtime_suspend(struct device *dev)
2067 return stm32_adc_hw_stop(dev);
2070 static int stm32_adc_runtime_resume(struct device *dev)
2072 return stm32_adc_hw_start(dev);
2074 #endif
2076 static const struct dev_pm_ops stm32_adc_pm_ops = {
2077 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2078 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2079 NULL)
2082 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2083 .regs = &stm32f4_adc_regspec,
2084 .adc_info = &stm32f4_adc_info,
2085 .trigs = stm32f4_adc_trigs,
2086 .clk_required = true,
2087 .start_conv = stm32f4_adc_start_conv,
2088 .stop_conv = stm32f4_adc_stop_conv,
2089 .smp_cycles = stm32f4_adc_smp_cycles,
2092 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2093 .regs = &stm32h7_adc_regspec,
2094 .adc_info = &stm32h7_adc_info,
2095 .trigs = stm32h7_adc_trigs,
2096 .start_conv = stm32h7_adc_start_conv,
2097 .stop_conv = stm32h7_adc_stop_conv,
2098 .prepare = stm32h7_adc_prepare,
2099 .unprepare = stm32h7_adc_unprepare,
2100 .smp_cycles = stm32h7_adc_smp_cycles,
2103 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2104 .regs = &stm32h7_adc_regspec,
2105 .adc_info = &stm32h7_adc_info,
2106 .trigs = stm32h7_adc_trigs,
2107 .has_vregready = true,
2108 .start_conv = stm32h7_adc_start_conv,
2109 .stop_conv = stm32h7_adc_stop_conv,
2110 .prepare = stm32h7_adc_prepare,
2111 .unprepare = stm32h7_adc_unprepare,
2112 .smp_cycles = stm32h7_adc_smp_cycles,
2115 static const struct of_device_id stm32_adc_of_match[] = {
2116 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2117 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2118 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2121 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2123 static struct platform_driver stm32_adc_driver = {
2124 .probe = stm32_adc_probe,
2125 .remove = stm32_adc_remove,
2126 .driver = {
2127 .name = "stm32-adc",
2128 .of_match_table = stm32_adc_of_match,
2129 .pm = &stm32_adc_pm_ops,
2132 module_platform_driver(stm32_adc_driver);
2134 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2135 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2136 MODULE_LICENSE("GPL v2");
2137 MODULE_ALIAS("platform:stm32-adc");