1 // SPDX-License-Identifier: GPL-2.0-only
3 * MPU3050 gyroscope driver
5 * Copyright (C) 2016 Linaro Ltd.
6 * Author: Linus Walleij <linus.walleij@linaro.org>
8 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
13 * TODO: add support for setting up the low pass 3dB frequency.
16 #include <linux/bitops.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/iio/buffer.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
22 #include <linux/iio/trigger.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/triggered_buffer.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
33 #define MPU3050_CHIP_ID 0x68
34 #define MPU3050_CHIP_ID_MASK 0x7E
37 * Register map: anything suffixed *_H is a big-endian high byte and always
38 * followed by the corresponding low byte (*_L) even though these are not
39 * explicitly included in the register definitions.
41 #define MPU3050_CHIP_ID_REG 0x00
42 #define MPU3050_PRODUCT_ID_REG 0x01
43 #define MPU3050_XG_OFFS_TC 0x05
44 #define MPU3050_YG_OFFS_TC 0x08
45 #define MPU3050_ZG_OFFS_TC 0x0B
46 #define MPU3050_X_OFFS_USR_H 0x0C
47 #define MPU3050_Y_OFFS_USR_H 0x0E
48 #define MPU3050_Z_OFFS_USR_H 0x10
49 #define MPU3050_FIFO_EN 0x12
50 #define MPU3050_AUX_VDDIO 0x13
51 #define MPU3050_SLV_ADDR 0x14
52 #define MPU3050_SMPLRT_DIV 0x15
53 #define MPU3050_DLPF_FS_SYNC 0x16
54 #define MPU3050_INT_CFG 0x17
55 #define MPU3050_AUX_ADDR 0x18
56 #define MPU3050_INT_STATUS 0x1A
57 #define MPU3050_TEMP_H 0x1B
58 #define MPU3050_XOUT_H 0x1D
59 #define MPU3050_YOUT_H 0x1F
60 #define MPU3050_ZOUT_H 0x21
61 #define MPU3050_DMP_CFG1 0x35
62 #define MPU3050_DMP_CFG2 0x36
63 #define MPU3050_BANK_SEL 0x37
64 #define MPU3050_MEM_START_ADDR 0x38
65 #define MPU3050_MEM_R_W 0x39
66 #define MPU3050_FIFO_COUNT_H 0x3A
67 #define MPU3050_FIFO_R 0x3C
68 #define MPU3050_USR_CTRL 0x3D
69 #define MPU3050_PWR_MGM 0x3E
71 /* MPU memory bank read options */
72 #define MPU3050_MEM_PRFTCH BIT(5)
73 #define MPU3050_MEM_USER_BANK BIT(4)
74 /* Bits 8-11 select memory bank */
75 #define MPU3050_MEM_RAM_BANK_0 0
76 #define MPU3050_MEM_RAM_BANK_1 1
77 #define MPU3050_MEM_RAM_BANK_2 2
78 #define MPU3050_MEM_RAM_BANK_3 3
79 #define MPU3050_MEM_OTP_BANK_0 4
81 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
86 #define MPU3050_FIFO_EN_FOOTER BIT(0)
87 #define MPU3050_FIFO_EN_AUX_ZOUT BIT(1)
88 #define MPU3050_FIFO_EN_AUX_YOUT BIT(2)
89 #define MPU3050_FIFO_EN_AUX_XOUT BIT(3)
90 #define MPU3050_FIFO_EN_GYRO_ZOUT BIT(4)
91 #define MPU3050_FIFO_EN_GYRO_YOUT BIT(5)
92 #define MPU3050_FIFO_EN_GYRO_XOUT BIT(6)
93 #define MPU3050_FIFO_EN_TEMP_OUT BIT(7)
96 * Digital Low Pass filter (DLPF)
100 #define MPU3050_EXT_SYNC_NONE 0x00
101 #define MPU3050_EXT_SYNC_TEMP 0x20
102 #define MPU3050_EXT_SYNC_GYROX 0x40
103 #define MPU3050_EXT_SYNC_GYROY 0x60
104 #define MPU3050_EXT_SYNC_GYROZ 0x80
105 #define MPU3050_EXT_SYNC_ACCELX 0xA0
106 #define MPU3050_EXT_SYNC_ACCELY 0xC0
107 #define MPU3050_EXT_SYNC_ACCELZ 0xE0
108 #define MPU3050_EXT_SYNC_MASK 0xE0
109 #define MPU3050_EXT_SYNC_SHIFT 5
111 #define MPU3050_FS_250DPS 0x00
112 #define MPU3050_FS_500DPS 0x08
113 #define MPU3050_FS_1000DPS 0x10
114 #define MPU3050_FS_2000DPS 0x18
115 #define MPU3050_FS_MASK 0x18
116 #define MPU3050_FS_SHIFT 3
118 #define MPU3050_DLPF_CFG_256HZ_NOLPF2 0x00
119 #define MPU3050_DLPF_CFG_188HZ 0x01
120 #define MPU3050_DLPF_CFG_98HZ 0x02
121 #define MPU3050_DLPF_CFG_42HZ 0x03
122 #define MPU3050_DLPF_CFG_20HZ 0x04
123 #define MPU3050_DLPF_CFG_10HZ 0x05
124 #define MPU3050_DLPF_CFG_5HZ 0x06
125 #define MPU3050_DLPF_CFG_2100HZ_NOLPF 0x07
126 #define MPU3050_DLPF_CFG_MASK 0x07
127 #define MPU3050_DLPF_CFG_SHIFT 0
129 /* Interrupt config */
130 #define MPU3050_INT_RAW_RDY_EN BIT(0)
131 #define MPU3050_INT_DMP_DONE_EN BIT(1)
132 #define MPU3050_INT_MPU_RDY_EN BIT(2)
133 #define MPU3050_INT_ANYRD_2CLEAR BIT(4)
134 #define MPU3050_INT_LATCH_EN BIT(5)
135 #define MPU3050_INT_OPEN BIT(6)
136 #define MPU3050_INT_ACTL BIT(7)
137 /* Interrupt status */
138 #define MPU3050_INT_STATUS_RAW_RDY BIT(0)
139 #define MPU3050_INT_STATUS_DMP_DONE BIT(1)
140 #define MPU3050_INT_STATUS_MPU_RDY BIT(2)
141 #define MPU3050_INT_STATUS_FIFO_OVFLW BIT(7)
143 #define MPU3050_USR_CTRL_FIFO_EN BIT(6)
144 #define MPU3050_USR_CTRL_AUX_IF_EN BIT(5)
145 #define MPU3050_USR_CTRL_AUX_IF_RST BIT(3)
146 #define MPU3050_USR_CTRL_FIFO_RST BIT(1)
147 #define MPU3050_USR_CTRL_GYRO_RST BIT(0)
149 #define MPU3050_PWR_MGM_PLL_X 0x01
150 #define MPU3050_PWR_MGM_PLL_Y 0x02
151 #define MPU3050_PWR_MGM_PLL_Z 0x03
152 #define MPU3050_PWR_MGM_CLKSEL_MASK 0x07
153 #define MPU3050_PWR_MGM_STBY_ZG BIT(3)
154 #define MPU3050_PWR_MGM_STBY_YG BIT(4)
155 #define MPU3050_PWR_MGM_STBY_XG BIT(5)
156 #define MPU3050_PWR_MGM_SLEEP BIT(6)
157 #define MPU3050_PWR_MGM_RESET BIT(7)
158 #define MPU3050_PWR_MGM_MASK 0xff
161 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
162 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
163 * in two's complement.
165 static unsigned int mpu3050_fs_precision
[] = {
166 IIO_DEGREE_TO_RAD(250),
167 IIO_DEGREE_TO_RAD(500),
168 IIO_DEGREE_TO_RAD(1000),
169 IIO_DEGREE_TO_RAD(2000)
175 static const char mpu3050_reg_vdd
[] = "vdd";
176 static const char mpu3050_reg_vlogic
[] = "vlogic";
178 static unsigned int mpu3050_get_freq(struct mpu3050
*mpu3050
)
182 if (mpu3050
->lpf
== MPU3050_DLPF_CFG_256HZ_NOLPF2
)
186 freq
/= (mpu3050
->divisor
+ 1);
191 static int mpu3050_start_sampling(struct mpu3050
*mpu3050
)
198 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
199 MPU3050_PWR_MGM_RESET
, MPU3050_PWR_MGM_RESET
);
203 /* Turn on the Z-axis PLL */
204 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
205 MPU3050_PWR_MGM_CLKSEL_MASK
,
206 MPU3050_PWR_MGM_PLL_Z
);
210 /* Write calibration offset registers */
211 for (i
= 0; i
< 3; i
++)
212 raw_val
[i
] = cpu_to_be16(mpu3050
->calibration
[i
]);
214 ret
= regmap_bulk_write(mpu3050
->map
, MPU3050_X_OFFS_USR_H
, raw_val
,
219 /* Set low pass filter (sample rate), sync and full scale */
220 ret
= regmap_write(mpu3050
->map
, MPU3050_DLPF_FS_SYNC
,
221 MPU3050_EXT_SYNC_NONE
<< MPU3050_EXT_SYNC_SHIFT
|
222 mpu3050
->fullscale
<< MPU3050_FS_SHIFT
|
223 mpu3050
->lpf
<< MPU3050_DLPF_CFG_SHIFT
);
227 /* Set up sampling frequency */
228 ret
= regmap_write(mpu3050
->map
, MPU3050_SMPLRT_DIV
, mpu3050
->divisor
);
233 * Max 50 ms start-up time after setting DLPF_FS_SYNC
234 * according to the data sheet, then wait for the next sample
235 * at this frequency T = 1000/f ms.
237 msleep(50 + 1000 / mpu3050_get_freq(mpu3050
));
242 static int mpu3050_set_8khz_samplerate(struct mpu3050
*mpu3050
)
246 enum mpu3050_lpf lpf
;
249 divisor
= mpu3050
->divisor
;
251 mpu3050
->lpf
= LPF_256_HZ_NOLPF
; /* 8 kHz base frequency */
252 mpu3050
->divisor
= 0; /* Divide by 1 */
253 ret
= mpu3050_start_sampling(mpu3050
);
256 mpu3050
->divisor
= divisor
;
261 static int mpu3050_read_raw(struct iio_dev
*indio_dev
,
262 struct iio_chan_spec
const *chan
,
266 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
271 case IIO_CHAN_INFO_OFFSET
:
272 switch (chan
->type
) {
274 /* The temperature scaling is (x+23000)/280 Celsius */
280 case IIO_CHAN_INFO_CALIBBIAS
:
281 switch (chan
->type
) {
283 *val
= mpu3050
->calibration
[chan
->scan_index
-1];
288 case IIO_CHAN_INFO_SAMP_FREQ
:
289 *val
= mpu3050_get_freq(mpu3050
);
291 case IIO_CHAN_INFO_SCALE
:
292 switch (chan
->type
) {
294 /* Millidegrees, see about temperature scaling above */
297 return IIO_VAL_FRACTIONAL
;
300 * Convert to the corresponding full scale in
301 * radians. All 16 bits are used with sign to
302 * span the available scale: to account for the one
303 * missing value if we multiply by 1/S16_MAX, instead
304 * multiply with 2/U16_MAX.
306 *val
= mpu3050_fs_precision
[mpu3050
->fullscale
] * 2;
308 return IIO_VAL_FRACTIONAL
;
312 case IIO_CHAN_INFO_RAW
:
314 pm_runtime_get_sync(mpu3050
->dev
);
315 mutex_lock(&mpu3050
->lock
);
317 ret
= mpu3050_set_8khz_samplerate(mpu3050
);
319 goto out_read_raw_unlock
;
321 switch (chan
->type
) {
323 ret
= regmap_bulk_read(mpu3050
->map
, MPU3050_TEMP_H
,
324 &raw_val
, sizeof(raw_val
));
326 dev_err(mpu3050
->dev
,
327 "error reading temperature\n");
328 goto out_read_raw_unlock
;
331 *val
= be16_to_cpu(raw_val
);
334 goto out_read_raw_unlock
;
336 ret
= regmap_bulk_read(mpu3050
->map
,
337 MPU3050_AXIS_REGS(chan
->scan_index
-1),
341 dev_err(mpu3050
->dev
,
342 "error reading axis data\n");
343 goto out_read_raw_unlock
;
346 *val
= be16_to_cpu(raw_val
);
349 goto out_read_raw_unlock
;
352 goto out_read_raw_unlock
;
361 mutex_unlock(&mpu3050
->lock
);
362 pm_runtime_mark_last_busy(mpu3050
->dev
);
363 pm_runtime_put_autosuspend(mpu3050
->dev
);
368 static int mpu3050_write_raw(struct iio_dev
*indio_dev
,
369 const struct iio_chan_spec
*chan
,
370 int val
, int val2
, long mask
)
372 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
374 * Couldn't figure out a way to precalculate these at compile time.
377 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[0] * 1000000 * 2,
380 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[1] * 1000000 * 2,
382 unsigned int fs1000
=
383 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[2] * 1000000 * 2,
385 unsigned int fs2000
=
386 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[3] * 1000000 * 2,
390 case IIO_CHAN_INFO_CALIBBIAS
:
391 if (chan
->type
!= IIO_ANGL_VEL
)
393 mpu3050
->calibration
[chan
->scan_index
-1] = val
;
395 case IIO_CHAN_INFO_SAMP_FREQ
:
397 * The max samplerate is 8000 Hz, the minimum
400 if (val
< 4 || val
> 8000)
404 * Above 1000 Hz we must turn off the digital low pass filter
405 * so we get a base frequency of 8kHz to the divider
408 mpu3050
->lpf
= LPF_256_HZ_NOLPF
;
409 mpu3050
->divisor
= DIV_ROUND_CLOSEST(8000, val
) - 1;
413 mpu3050
->lpf
= LPF_188_HZ
;
414 mpu3050
->divisor
= DIV_ROUND_CLOSEST(1000, val
) - 1;
416 case IIO_CHAN_INFO_SCALE
:
417 if (chan
->type
!= IIO_ANGL_VEL
)
420 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
421 * which means we need to round to the closest radians
422 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
423 * rad/s. The scale is then for the 16 bits used to cover
424 * it 2/(2^16) of that.
427 /* Just too large, set the max range */
429 mpu3050
->fullscale
= FS_2000_DPS
;
434 * Now we're dealing with fractions below zero in millirad/s
435 * do some integer interpolation and match with the closest
436 * fullscale in the table.
439 val2
< ((fs500
+ fs250
) / 2))
440 mpu3050
->fullscale
= FS_250_DPS
;
441 else if (val2
<= fs500
||
442 val2
< ((fs1000
+ fs500
) / 2))
443 mpu3050
->fullscale
= FS_500_DPS
;
444 else if (val2
<= fs1000
||
445 val2
< ((fs2000
+ fs1000
) / 2))
446 mpu3050
->fullscale
= FS_1000_DPS
;
449 mpu3050
->fullscale
= FS_2000_DPS
;
458 static irqreturn_t
mpu3050_trigger_handler(int irq
, void *p
)
460 const struct iio_poll_func
*pf
= p
;
461 struct iio_dev
*indio_dev
= pf
->indio_dev
;
462 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
465 * Temperature 1*16 bits
466 * Three axes 3*16 bits
467 * Timestamp 64 bits (4*16 bits)
468 * Sum total 8*16 bits
472 unsigned int datums_from_fifo
= 0;
475 * If we're using the hardware trigger, get the precise timestamp from
476 * the top half of the threaded IRQ handler. Otherwise get the
477 * timestamp here so it will be close in time to the actual values
478 * read from the registers.
480 if (iio_trigger_using_own(indio_dev
))
481 timestamp
= mpu3050
->hw_timestamp
;
483 timestamp
= iio_get_time_ns(indio_dev
);
485 mutex_lock(&mpu3050
->lock
);
487 /* Using the hardware IRQ trigger? Check the buffer then. */
488 if (mpu3050
->hw_irq_trigger
) {
491 /* X, Y, Z + temperature */
492 unsigned int bytes_per_datum
= 8;
493 bool fifo_overflow
= false;
495 ret
= regmap_bulk_read(mpu3050
->map
,
496 MPU3050_FIFO_COUNT_H
,
498 sizeof(raw_fifocnt
));
500 goto out_trigger_unlock
;
501 fifocnt
= be16_to_cpu(raw_fifocnt
);
503 if (fifocnt
== 512) {
504 dev_info(mpu3050
->dev
,
505 "FIFO overflow! Emptying and resetting FIFO\n");
506 fifo_overflow
= true;
507 /* Reset and enable the FIFO */
508 ret
= regmap_update_bits(mpu3050
->map
,
510 MPU3050_USR_CTRL_FIFO_EN
|
511 MPU3050_USR_CTRL_FIFO_RST
,
512 MPU3050_USR_CTRL_FIFO_EN
|
513 MPU3050_USR_CTRL_FIFO_RST
);
515 dev_info(mpu3050
->dev
, "error resetting FIFO\n");
516 goto out_trigger_unlock
;
518 mpu3050
->pending_fifo_footer
= false;
522 dev_dbg(mpu3050
->dev
,
523 "%d bytes in the FIFO\n",
526 while (!fifo_overflow
&& fifocnt
> bytes_per_datum
) {
529 __be16 fifo_values
[5];
532 * If there is a FIFO footer in the pipe, first clear
533 * that out. This follows the complex algorithm in the
534 * datasheet that states that you may never leave the
535 * FIFO empty after the first reading: you have to
536 * always leave two footer bytes in it. The footer is
537 * in practice just two zero bytes.
539 if (mpu3050
->pending_fifo_footer
) {
540 toread
= bytes_per_datum
+ 2;
543 toread
= bytes_per_datum
;
545 /* Put in some dummy value */
546 fifo_values
[0] = 0xAAAA;
549 ret
= regmap_bulk_read(mpu3050
->map
,
551 &fifo_values
[offset
],
554 dev_dbg(mpu3050
->dev
,
555 "%04x %04x %04x %04x %04x\n",
562 /* Index past the footer (fifo_values[0]) and push */
563 iio_push_to_buffers_with_timestamp(indio_dev
,
569 mpu3050
->pending_fifo_footer
= true;
572 * If we're emptying the FIFO, just make sure to
573 * check if something new appeared.
575 if (fifocnt
< bytes_per_datum
) {
576 ret
= regmap_bulk_read(mpu3050
->map
,
577 MPU3050_FIFO_COUNT_H
,
579 sizeof(raw_fifocnt
));
581 goto out_trigger_unlock
;
582 fifocnt
= be16_to_cpu(raw_fifocnt
);
585 if (fifocnt
< bytes_per_datum
)
586 dev_dbg(mpu3050
->dev
,
587 "%d bytes left in the FIFO\n",
591 * At this point, the timestamp that triggered the
592 * hardware interrupt is no longer valid for what
593 * we are reading (the interrupt likely fired for
594 * the value on the top of the FIFO), so set the
595 * timestamp to zero and let userspace deal with it.
602 * If we picked some datums from the FIFO that's enough, else
603 * fall through and just read from the current value registers.
604 * This happens in two cases:
606 * - We are using some other trigger (external, like an HRTimer)
607 * than the sensor's own sample generator. In this case the
608 * sensor is just set to the max sampling frequency and we give
609 * the trigger a copy of the latest value every time we get here.
611 * - The hardware trigger is active but unused and we actually use
612 * another trigger which calls here with a frequency higher
613 * than what the device provides data. We will then just read
614 * duplicate values directly from the hardware registers.
616 if (datums_from_fifo
) {
617 dev_dbg(mpu3050
->dev
,
618 "read %d datums from the FIFO\n",
620 goto out_trigger_unlock
;
623 ret
= regmap_bulk_read(mpu3050
->map
, MPU3050_TEMP_H
, &hw_values
,
626 dev_err(mpu3050
->dev
,
627 "error reading axis data\n");
628 goto out_trigger_unlock
;
631 iio_push_to_buffers_with_timestamp(indio_dev
, hw_values
, timestamp
);
634 mutex_unlock(&mpu3050
->lock
);
635 iio_trigger_notify_done(indio_dev
->trig
);
640 static int mpu3050_buffer_preenable(struct iio_dev
*indio_dev
)
642 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
644 pm_runtime_get_sync(mpu3050
->dev
);
646 /* Unless we have OUR trigger active, run at full speed */
647 if (!mpu3050
->hw_irq_trigger
)
648 return mpu3050_set_8khz_samplerate(mpu3050
);
653 static int mpu3050_buffer_postdisable(struct iio_dev
*indio_dev
)
655 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
657 pm_runtime_mark_last_busy(mpu3050
->dev
);
658 pm_runtime_put_autosuspend(mpu3050
->dev
);
663 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops
= {
664 .preenable
= mpu3050_buffer_preenable
,
665 .postenable
= iio_triggered_buffer_postenable
,
666 .predisable
= iio_triggered_buffer_predisable
,
667 .postdisable
= mpu3050_buffer_postdisable
,
670 static const struct iio_mount_matrix
*
671 mpu3050_get_mount_matrix(const struct iio_dev
*indio_dev
,
672 const struct iio_chan_spec
*chan
)
674 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
676 return &mpu3050
->orientation
;
679 static const struct iio_chan_spec_ext_info mpu3050_ext_info
[] = {
680 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE
, mpu3050_get_mount_matrix
),
684 #define MPU3050_AXIS_CHANNEL(axis, index) \
686 .type = IIO_ANGL_VEL, \
688 .channel2 = IIO_MOD_##axis, \
689 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
690 BIT(IIO_CHAN_INFO_CALIBBIAS), \
691 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
692 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
693 .ext_info = mpu3050_ext_info, \
694 .scan_index = index, \
699 .endianness = IIO_BE, \
703 static const struct iio_chan_spec mpu3050_channels
[] = {
706 .info_mask_separate
= BIT(IIO_CHAN_INFO_RAW
) |
707 BIT(IIO_CHAN_INFO_SCALE
) |
708 BIT(IIO_CHAN_INFO_OFFSET
),
709 .info_mask_shared_by_all
= BIT(IIO_CHAN_INFO_SAMP_FREQ
),
715 .endianness
= IIO_BE
,
718 MPU3050_AXIS_CHANNEL(X
, 1),
719 MPU3050_AXIS_CHANNEL(Y
, 2),
720 MPU3050_AXIS_CHANNEL(Z
, 3),
721 IIO_CHAN_SOFT_TIMESTAMP(4),
724 /* Four channels apart from timestamp, scan mask = 0x0f */
725 static const unsigned long mpu3050_scan_masks
[] = { 0xf, 0 };
728 * These are just the hardcoded factors resulting from the more elaborate
729 * calculations done with fractions in the scale raw get/set functions.
731 static IIO_CONST_ATTR(anglevel_scale_available
,
737 static struct attribute
*mpu3050_attributes
[] = {
738 &iio_const_attr_anglevel_scale_available
.dev_attr
.attr
,
742 static const struct attribute_group mpu3050_attribute_group
= {
743 .attrs
= mpu3050_attributes
,
746 static const struct iio_info mpu3050_info
= {
747 .read_raw
= mpu3050_read_raw
,
748 .write_raw
= mpu3050_write_raw
,
749 .attrs
= &mpu3050_attribute_group
,
753 * mpu3050_read_mem() - read MPU-3050 internal memory
754 * @mpu3050: device to read from
756 * @addr: target address
757 * @len: number of bytes
758 * @buf: the buffer to store the read bytes in
760 static int mpu3050_read_mem(struct mpu3050
*mpu3050
,
768 ret
= regmap_write(mpu3050
->map
,
774 ret
= regmap_write(mpu3050
->map
,
775 MPU3050_MEM_START_ADDR
,
780 return regmap_bulk_read(mpu3050
->map
,
786 static int mpu3050_hw_init(struct mpu3050
*mpu3050
)
792 ret
= regmap_update_bits(mpu3050
->map
,
794 MPU3050_PWR_MGM_RESET
,
795 MPU3050_PWR_MGM_RESET
);
799 /* Turn on the PLL */
800 ret
= regmap_update_bits(mpu3050
->map
,
802 MPU3050_PWR_MGM_CLKSEL_MASK
,
803 MPU3050_PWR_MGM_PLL_Z
);
808 ret
= regmap_write(mpu3050
->map
,
814 /* Read out the 8 bytes of OTP (one-time-programmable) memory */
815 ret
= mpu3050_read_mem(mpu3050
,
816 (MPU3050_MEM_PRFTCH
|
817 MPU3050_MEM_USER_BANK
|
818 MPU3050_MEM_OTP_BANK_0
),
825 /* This is device-unique data so it goes into the entropy pool */
826 add_device_randomness(otp
, sizeof(otp
));
828 dev_info(mpu3050
->dev
,
829 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
830 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
831 /* Die ID, bits 0-12 */
832 (otp
[1] << 8 | otp
[0]) & 0x1fff,
833 /* Wafer ID, bits 13-17 */
834 ((otp
[2] << 8 | otp
[1]) & 0x03e0) >> 5,
835 /* A lot ID, bits 18-33 */
836 ((otp
[4] << 16 | otp
[3] << 8 | otp
[2]) & 0x3fffc) >> 2,
837 /* W lot ID, bits 34-45 */
838 ((otp
[5] << 8 | otp
[4]) & 0x3ffc) >> 2,
839 /* WP ID, bits 47-49 */
840 ((otp
[6] << 8 | otp
[5]) & 0x0380) >> 7,
841 /* rev ID, bits 50-55 */
847 static int mpu3050_power_up(struct mpu3050
*mpu3050
)
851 ret
= regulator_bulk_enable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
853 dev_err(mpu3050
->dev
, "cannot enable regulators\n");
857 * 20-100 ms start-up time for register read/write according to
858 * the datasheet, be on the safe side and wait 200 ms.
862 /* Take device out of sleep mode */
863 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
864 MPU3050_PWR_MGM_SLEEP
, 0);
866 dev_err(mpu3050
->dev
, "error setting power mode\n");
869 usleep_range(10000, 20000);
874 static int mpu3050_power_down(struct mpu3050
*mpu3050
)
879 * Put MPU-3050 into sleep mode before cutting regulators.
880 * This is important, because we may not be the sole user
881 * of the regulator so the power may stay on after this, and
882 * then we would be wasting power unless we go to sleep mode
885 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
886 MPU3050_PWR_MGM_SLEEP
, MPU3050_PWR_MGM_SLEEP
);
888 dev_err(mpu3050
->dev
, "error putting to sleep\n");
890 ret
= regulator_bulk_disable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
892 dev_err(mpu3050
->dev
, "error disabling regulators\n");
897 static irqreturn_t
mpu3050_irq_handler(int irq
, void *p
)
899 struct iio_trigger
*trig
= p
;
900 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
901 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
903 if (!mpu3050
->hw_irq_trigger
)
906 /* Get the time stamp as close in time as possible */
907 mpu3050
->hw_timestamp
= iio_get_time_ns(indio_dev
);
909 return IRQ_WAKE_THREAD
;
912 static irqreturn_t
mpu3050_irq_thread(int irq
, void *p
)
914 struct iio_trigger
*trig
= p
;
915 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
916 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
920 /* ACK IRQ and check if it was from us */
921 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
923 dev_err(mpu3050
->dev
, "error reading IRQ status\n");
926 if (!(val
& MPU3050_INT_STATUS_RAW_RDY
))
929 iio_trigger_poll_chained(p
);
935 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
936 * @trig: trigger instance
937 * @enable: true if trigger should be enabled, false to disable
939 static int mpu3050_drdy_trigger_set_state(struct iio_trigger
*trig
,
942 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
943 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
947 /* Disabling trigger: disable interrupt and return */
949 /* Disable all interrupts */
950 ret
= regmap_write(mpu3050
->map
,
954 dev_err(mpu3050
->dev
, "error disabling IRQ\n");
957 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
959 dev_err(mpu3050
->dev
, "error clearing IRQ status\n");
961 /* Disable all things in the FIFO and reset it */
962 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
, 0);
964 dev_err(mpu3050
->dev
, "error disabling FIFO\n");
966 ret
= regmap_write(mpu3050
->map
, MPU3050_USR_CTRL
,
967 MPU3050_USR_CTRL_FIFO_RST
);
969 dev_err(mpu3050
->dev
, "error resetting FIFO\n");
971 pm_runtime_mark_last_busy(mpu3050
->dev
);
972 pm_runtime_put_autosuspend(mpu3050
->dev
);
973 mpu3050
->hw_irq_trigger
= false;
977 /* Else we're enabling the trigger from this point */
978 pm_runtime_get_sync(mpu3050
->dev
);
979 mpu3050
->hw_irq_trigger
= true;
981 /* Disable all things in the FIFO */
982 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
, 0);
986 /* Reset and enable the FIFO */
987 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_USR_CTRL
,
988 MPU3050_USR_CTRL_FIFO_EN
|
989 MPU3050_USR_CTRL_FIFO_RST
,
990 MPU3050_USR_CTRL_FIFO_EN
|
991 MPU3050_USR_CTRL_FIFO_RST
);
995 mpu3050
->pending_fifo_footer
= false;
997 /* Turn on the FIFO for temp+X+Y+Z */
998 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
,
999 MPU3050_FIFO_EN_TEMP_OUT
|
1000 MPU3050_FIFO_EN_GYRO_XOUT
|
1001 MPU3050_FIFO_EN_GYRO_YOUT
|
1002 MPU3050_FIFO_EN_GYRO_ZOUT
|
1003 MPU3050_FIFO_EN_FOOTER
);
1007 /* Configure the sample engine */
1008 ret
= mpu3050_start_sampling(mpu3050
);
1012 /* Clear IRQ flag */
1013 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
1015 dev_err(mpu3050
->dev
, "error clearing IRQ status\n");
1017 /* Give us interrupts whenever there is new data ready */
1018 val
= MPU3050_INT_RAW_RDY_EN
;
1020 if (mpu3050
->irq_actl
)
1021 val
|= MPU3050_INT_ACTL
;
1022 if (mpu3050
->irq_latch
)
1023 val
|= MPU3050_INT_LATCH_EN
;
1024 if (mpu3050
->irq_opendrain
)
1025 val
|= MPU3050_INT_OPEN
;
1027 ret
= regmap_write(mpu3050
->map
, MPU3050_INT_CFG
, val
);
1035 static const struct iio_trigger_ops mpu3050_trigger_ops
= {
1036 .set_trigger_state
= mpu3050_drdy_trigger_set_state
,
1039 static int mpu3050_trigger_probe(struct iio_dev
*indio_dev
, int irq
)
1041 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
1042 unsigned long irq_trig
;
1045 mpu3050
->trig
= devm_iio_trigger_alloc(&indio_dev
->dev
,
1052 /* Check if IRQ is open drain */
1053 if (of_property_read_bool(mpu3050
->dev
->of_node
, "drive-open-drain"))
1054 mpu3050
->irq_opendrain
= true;
1056 irq_trig
= irqd_get_trigger_type(irq_get_irq_data(irq
));
1058 * Configure the interrupt generator hardware to supply whatever
1059 * the interrupt is configured for, edges low/high level low/high,
1060 * we can provide it all.
1063 case IRQF_TRIGGER_RISING
:
1064 dev_info(&indio_dev
->dev
,
1065 "pulse interrupts on the rising edge\n");
1067 case IRQF_TRIGGER_FALLING
:
1068 mpu3050
->irq_actl
= true;
1069 dev_info(&indio_dev
->dev
,
1070 "pulse interrupts on the falling edge\n");
1072 case IRQF_TRIGGER_HIGH
:
1073 mpu3050
->irq_latch
= true;
1074 dev_info(&indio_dev
->dev
,
1075 "interrupts active high level\n");
1077 * With level IRQs, we mask the IRQ until it is processed,
1078 * but with edge IRQs (pulses) we can queue several interrupts
1081 irq_trig
|= IRQF_ONESHOT
;
1083 case IRQF_TRIGGER_LOW
:
1084 mpu3050
->irq_latch
= true;
1085 mpu3050
->irq_actl
= true;
1086 irq_trig
|= IRQF_ONESHOT
;
1087 dev_info(&indio_dev
->dev
,
1088 "interrupts active low level\n");
1091 /* This is the most preferred mode, if possible */
1092 dev_err(&indio_dev
->dev
,
1093 "unsupported IRQ trigger specified (%lx), enforce "
1094 "rising edge\n", irq_trig
);
1095 irq_trig
= IRQF_TRIGGER_RISING
;
1099 /* An open drain line can be shared with several devices */
1100 if (mpu3050
->irq_opendrain
)
1101 irq_trig
|= IRQF_SHARED
;
1103 ret
= request_threaded_irq(irq
,
1104 mpu3050_irq_handler
,
1107 mpu3050
->trig
->name
,
1110 dev_err(mpu3050
->dev
,
1111 "can't get IRQ %d, error %d\n", irq
, ret
);
1116 mpu3050
->trig
->dev
.parent
= mpu3050
->dev
;
1117 mpu3050
->trig
->ops
= &mpu3050_trigger_ops
;
1118 iio_trigger_set_drvdata(mpu3050
->trig
, indio_dev
);
1120 ret
= iio_trigger_register(mpu3050
->trig
);
1124 indio_dev
->trig
= iio_trigger_get(mpu3050
->trig
);
1129 int mpu3050_common_probe(struct device
*dev
,
1134 struct iio_dev
*indio_dev
;
1135 struct mpu3050
*mpu3050
;
1139 indio_dev
= devm_iio_device_alloc(dev
, sizeof(*mpu3050
));
1142 mpu3050
= iio_priv(indio_dev
);
1146 mutex_init(&mpu3050
->lock
);
1147 /* Default fullscale: 2000 degrees per second */
1148 mpu3050
->fullscale
= FS_2000_DPS
;
1149 /* 1 kHz, divide by 100, default frequency = 10 Hz */
1150 mpu3050
->lpf
= MPU3050_DLPF_CFG_188HZ
;
1151 mpu3050
->divisor
= 99;
1153 /* Read the mounting matrix, if present */
1154 ret
= iio_read_mount_matrix(dev
, "mount-matrix", &mpu3050
->orientation
);
1158 /* Fetch and turn on regulators */
1159 mpu3050
->regs
[0].supply
= mpu3050_reg_vdd
;
1160 mpu3050
->regs
[1].supply
= mpu3050_reg_vlogic
;
1161 ret
= devm_regulator_bulk_get(dev
, ARRAY_SIZE(mpu3050
->regs
),
1164 dev_err(dev
, "Cannot get regulators\n");
1168 ret
= mpu3050_power_up(mpu3050
);
1172 ret
= regmap_read(map
, MPU3050_CHIP_ID_REG
, &val
);
1174 dev_err(dev
, "could not read device ID\n");
1177 goto err_power_down
;
1180 if ((val
& MPU3050_CHIP_ID_MASK
) != MPU3050_CHIP_ID
) {
1181 dev_err(dev
, "unsupported chip id %02x\n",
1182 (u8
)(val
& MPU3050_CHIP_ID_MASK
));
1184 goto err_power_down
;
1187 ret
= regmap_read(map
, MPU3050_PRODUCT_ID_REG
, &val
);
1189 dev_err(dev
, "could not read device ID\n");
1192 goto err_power_down
;
1194 dev_info(dev
, "found MPU-3050 part no: %d, version: %d\n",
1195 ((val
>> 4) & 0xf), (val
& 0xf));
1197 ret
= mpu3050_hw_init(mpu3050
);
1199 goto err_power_down
;
1201 indio_dev
->dev
.parent
= dev
;
1202 indio_dev
->channels
= mpu3050_channels
;
1203 indio_dev
->num_channels
= ARRAY_SIZE(mpu3050_channels
);
1204 indio_dev
->info
= &mpu3050_info
;
1205 indio_dev
->available_scan_masks
= mpu3050_scan_masks
;
1206 indio_dev
->modes
= INDIO_DIRECT_MODE
;
1207 indio_dev
->name
= name
;
1209 ret
= iio_triggered_buffer_setup(indio_dev
, iio_pollfunc_store_time
,
1210 mpu3050_trigger_handler
,
1211 &mpu3050_buffer_setup_ops
);
1213 dev_err(dev
, "triggered buffer setup failed\n");
1214 goto err_power_down
;
1217 ret
= iio_device_register(indio_dev
);
1219 dev_err(dev
, "device register failed\n");
1220 goto err_cleanup_buffer
;
1223 dev_set_drvdata(dev
, indio_dev
);
1225 /* Check if we have an assigned IRQ to use as trigger */
1227 ret
= mpu3050_trigger_probe(indio_dev
, irq
);
1229 dev_err(dev
, "failed to register trigger\n");
1232 /* Enable runtime PM */
1233 pm_runtime_get_noresume(dev
);
1234 pm_runtime_set_active(dev
);
1235 pm_runtime_enable(dev
);
1237 * Set autosuspend to two orders of magnitude larger than the
1238 * start-up time. 100ms start-up time means 10000ms autosuspend,
1241 pm_runtime_set_autosuspend_delay(dev
, 10000);
1242 pm_runtime_use_autosuspend(dev
);
1243 pm_runtime_put(dev
);
1248 iio_triggered_buffer_cleanup(indio_dev
);
1250 mpu3050_power_down(mpu3050
);
1254 EXPORT_SYMBOL(mpu3050_common_probe
);
1256 int mpu3050_common_remove(struct device
*dev
)
1258 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1259 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
1261 pm_runtime_get_sync(dev
);
1262 pm_runtime_put_noidle(dev
);
1263 pm_runtime_disable(dev
);
1264 iio_triggered_buffer_cleanup(indio_dev
);
1266 free_irq(mpu3050
->irq
, mpu3050
);
1267 iio_device_unregister(indio_dev
);
1268 mpu3050_power_down(mpu3050
);
1272 EXPORT_SYMBOL(mpu3050_common_remove
);
1275 static int mpu3050_runtime_suspend(struct device
*dev
)
1277 return mpu3050_power_down(iio_priv(dev_get_drvdata(dev
)));
1280 static int mpu3050_runtime_resume(struct device
*dev
)
1282 return mpu3050_power_up(iio_priv(dev_get_drvdata(dev
)));
1284 #endif /* CONFIG_PM */
1286 const struct dev_pm_ops mpu3050_dev_pm_ops
= {
1287 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1288 pm_runtime_force_resume
)
1289 SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend
,
1290 mpu3050_runtime_resume
, NULL
)
1292 EXPORT_SYMBOL(mpu3050_dev_pm_ops
);
1294 MODULE_AUTHOR("Linus Walleij");
1295 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1296 MODULE_LICENSE("GPL");