Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / iio / magnetometer / ak8975.c
blob893bec5a0312b4ef16346afc226fdb196b525181
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * A sensor driver for the magnetometer AK8975.
5 * Magnetic compass sensor driver for monitoring magnetic flux information.
7 * Copyright (c) 2010, NVIDIA Corporation.
8 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/err.h>
16 #include <linux/mutex.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/gpio.h>
20 #include <linux/of_gpio.h>
21 #include <linux/acpi.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/pm_runtime.h>
25 #include <linux/iio/iio.h>
26 #include <linux/iio/sysfs.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/trigger.h>
29 #include <linux/iio/trigger_consumer.h>
30 #include <linux/iio/triggered_buffer.h>
32 #include <linux/iio/magnetometer/ak8975.h>
35 * Register definitions, as well as various shifts and masks to get at the
36 * individual fields of the registers.
38 #define AK8975_REG_WIA 0x00
39 #define AK8975_DEVICE_ID 0x48
41 #define AK8975_REG_INFO 0x01
43 #define AK8975_REG_ST1 0x02
44 #define AK8975_REG_ST1_DRDY_SHIFT 0
45 #define AK8975_REG_ST1_DRDY_MASK (1 << AK8975_REG_ST1_DRDY_SHIFT)
47 #define AK8975_REG_HXL 0x03
48 #define AK8975_REG_HXH 0x04
49 #define AK8975_REG_HYL 0x05
50 #define AK8975_REG_HYH 0x06
51 #define AK8975_REG_HZL 0x07
52 #define AK8975_REG_HZH 0x08
53 #define AK8975_REG_ST2 0x09
54 #define AK8975_REG_ST2_DERR_SHIFT 2
55 #define AK8975_REG_ST2_DERR_MASK (1 << AK8975_REG_ST2_DERR_SHIFT)
57 #define AK8975_REG_ST2_HOFL_SHIFT 3
58 #define AK8975_REG_ST2_HOFL_MASK (1 << AK8975_REG_ST2_HOFL_SHIFT)
60 #define AK8975_REG_CNTL 0x0A
61 #define AK8975_REG_CNTL_MODE_SHIFT 0
62 #define AK8975_REG_CNTL_MODE_MASK (0xF << AK8975_REG_CNTL_MODE_SHIFT)
63 #define AK8975_REG_CNTL_MODE_POWER_DOWN 0x00
64 #define AK8975_REG_CNTL_MODE_ONCE 0x01
65 #define AK8975_REG_CNTL_MODE_SELF_TEST 0x08
66 #define AK8975_REG_CNTL_MODE_FUSE_ROM 0x0F
68 #define AK8975_REG_RSVC 0x0B
69 #define AK8975_REG_ASTC 0x0C
70 #define AK8975_REG_TS1 0x0D
71 #define AK8975_REG_TS2 0x0E
72 #define AK8975_REG_I2CDIS 0x0F
73 #define AK8975_REG_ASAX 0x10
74 #define AK8975_REG_ASAY 0x11
75 #define AK8975_REG_ASAZ 0x12
77 #define AK8975_MAX_REGS AK8975_REG_ASAZ
80 * AK09912 Register definitions
82 #define AK09912_REG_WIA1 0x00
83 #define AK09912_REG_WIA2 0x01
84 #define AK09912_DEVICE_ID 0x04
85 #define AK09911_DEVICE_ID 0x05
87 #define AK09911_REG_INFO1 0x02
88 #define AK09911_REG_INFO2 0x03
90 #define AK09912_REG_ST1 0x10
92 #define AK09912_REG_ST1_DRDY_SHIFT 0
93 #define AK09912_REG_ST1_DRDY_MASK (1 << AK09912_REG_ST1_DRDY_SHIFT)
95 #define AK09912_REG_HXL 0x11
96 #define AK09912_REG_HXH 0x12
97 #define AK09912_REG_HYL 0x13
98 #define AK09912_REG_HYH 0x14
99 #define AK09912_REG_HZL 0x15
100 #define AK09912_REG_HZH 0x16
101 #define AK09912_REG_TMPS 0x17
103 #define AK09912_REG_ST2 0x18
104 #define AK09912_REG_ST2_HOFL_SHIFT 3
105 #define AK09912_REG_ST2_HOFL_MASK (1 << AK09912_REG_ST2_HOFL_SHIFT)
107 #define AK09912_REG_CNTL1 0x30
109 #define AK09912_REG_CNTL2 0x31
110 #define AK09912_REG_CNTL_MODE_POWER_DOWN 0x00
111 #define AK09912_REG_CNTL_MODE_ONCE 0x01
112 #define AK09912_REG_CNTL_MODE_SELF_TEST 0x10
113 #define AK09912_REG_CNTL_MODE_FUSE_ROM 0x1F
114 #define AK09912_REG_CNTL2_MODE_SHIFT 0
115 #define AK09912_REG_CNTL2_MODE_MASK (0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
117 #define AK09912_REG_CNTL3 0x32
119 #define AK09912_REG_TS1 0x33
120 #define AK09912_REG_TS2 0x34
121 #define AK09912_REG_TS3 0x35
122 #define AK09912_REG_I2CDIS 0x36
123 #define AK09912_REG_TS4 0x37
125 #define AK09912_REG_ASAX 0x60
126 #define AK09912_REG_ASAY 0x61
127 #define AK09912_REG_ASAZ 0x62
129 #define AK09912_MAX_REGS AK09912_REG_ASAZ
132 * Miscellaneous values.
134 #define AK8975_MAX_CONVERSION_TIMEOUT 500
135 #define AK8975_CONVERSION_DONE_POLL_TIME 10
136 #define AK8975_DATA_READY_TIMEOUT ((100*HZ)/1000)
139 * Precalculate scale factor (in Gauss units) for each axis and
140 * store in the device data.
142 * This scale factor is axis-dependent, and is derived from 3 calibration
143 * factors ASA(x), ASA(y), and ASA(z).
145 * These ASA values are read from the sensor device at start of day, and
146 * cached in the device context struct.
148 * Adjusting the flux value with the sensitivity adjustment value should be
149 * done via the following formula:
151 * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
152 * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
153 * is the resultant adjusted value.
155 * We reduce the formula to:
157 * Hadj = H * (ASA + 128) / 256
159 * H is in the range of -4096 to 4095. The magnetometer has a range of
160 * +-1229uT. To go from the raw value to uT is:
162 * HuT = H * 1229/4096, or roughly, 3/10.
164 * Since 1uT = 0.01 gauss, our final scale factor becomes:
166 * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
167 * Hadj = H * ((ASA + 128) * 0.003) / 256
169 * Since ASA doesn't change, we cache the resultant scale factor into the
170 * device context in ak8975_setup().
172 * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
173 * multiply the stored scale value by 1e6.
175 static long ak8975_raw_to_gauss(u16 data)
177 return (((long)data + 128) * 3000) / 256;
181 * For AK8963 and AK09911, same calculation, but the device is less sensitive:
183 * H is in the range of +-8190. The magnetometer has a range of
184 * +-4912uT. To go from the raw value to uT is:
186 * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
189 static long ak8963_09911_raw_to_gauss(u16 data)
191 return (((long)data + 128) * 6000) / 256;
195 * For AK09912, same calculation, except the device is more sensitive:
197 * H is in the range of -32752 to 32752. The magnetometer has a range of
198 * +-4912uT. To go from the raw value to uT is:
200 * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
202 static long ak09912_raw_to_gauss(u16 data)
204 return (((long)data + 128) * 1500) / 256;
207 /* Compatible Asahi Kasei Compass parts */
208 enum asahi_compass_chipset {
209 AK8975,
210 AK8963,
211 AK09911,
212 AK09912,
213 AK_MAX_TYPE
216 enum ak_ctrl_reg_addr {
217 ST1,
218 ST2,
219 CNTL,
220 ASA_BASE,
221 MAX_REGS,
222 REGS_END,
225 enum ak_ctrl_reg_mask {
226 ST1_DRDY,
227 ST2_HOFL,
228 ST2_DERR,
229 CNTL_MODE,
230 MASK_END,
233 enum ak_ctrl_mode {
234 POWER_DOWN,
235 MODE_ONCE,
236 SELF_TEST,
237 FUSE_ROM,
238 MODE_END,
241 struct ak_def {
242 enum asahi_compass_chipset type;
243 long (*raw_to_gauss)(u16 data);
244 u16 range;
245 u8 ctrl_regs[REGS_END];
246 u8 ctrl_masks[MASK_END];
247 u8 ctrl_modes[MODE_END];
248 u8 data_regs[3];
251 static const struct ak_def ak_def_array[AK_MAX_TYPE] = {
253 .type = AK8975,
254 .raw_to_gauss = ak8975_raw_to_gauss,
255 .range = 4096,
256 .ctrl_regs = {
257 AK8975_REG_ST1,
258 AK8975_REG_ST2,
259 AK8975_REG_CNTL,
260 AK8975_REG_ASAX,
261 AK8975_MAX_REGS},
262 .ctrl_masks = {
263 AK8975_REG_ST1_DRDY_MASK,
264 AK8975_REG_ST2_HOFL_MASK,
265 AK8975_REG_ST2_DERR_MASK,
266 AK8975_REG_CNTL_MODE_MASK},
267 .ctrl_modes = {
268 AK8975_REG_CNTL_MODE_POWER_DOWN,
269 AK8975_REG_CNTL_MODE_ONCE,
270 AK8975_REG_CNTL_MODE_SELF_TEST,
271 AK8975_REG_CNTL_MODE_FUSE_ROM},
272 .data_regs = {
273 AK8975_REG_HXL,
274 AK8975_REG_HYL,
275 AK8975_REG_HZL},
278 .type = AK8963,
279 .raw_to_gauss = ak8963_09911_raw_to_gauss,
280 .range = 8190,
281 .ctrl_regs = {
282 AK8975_REG_ST1,
283 AK8975_REG_ST2,
284 AK8975_REG_CNTL,
285 AK8975_REG_ASAX,
286 AK8975_MAX_REGS},
287 .ctrl_masks = {
288 AK8975_REG_ST1_DRDY_MASK,
289 AK8975_REG_ST2_HOFL_MASK,
291 AK8975_REG_CNTL_MODE_MASK},
292 .ctrl_modes = {
293 AK8975_REG_CNTL_MODE_POWER_DOWN,
294 AK8975_REG_CNTL_MODE_ONCE,
295 AK8975_REG_CNTL_MODE_SELF_TEST,
296 AK8975_REG_CNTL_MODE_FUSE_ROM},
297 .data_regs = {
298 AK8975_REG_HXL,
299 AK8975_REG_HYL,
300 AK8975_REG_HZL},
303 .type = AK09911,
304 .raw_to_gauss = ak8963_09911_raw_to_gauss,
305 .range = 8192,
306 .ctrl_regs = {
307 AK09912_REG_ST1,
308 AK09912_REG_ST2,
309 AK09912_REG_CNTL2,
310 AK09912_REG_ASAX,
311 AK09912_MAX_REGS},
312 .ctrl_masks = {
313 AK09912_REG_ST1_DRDY_MASK,
314 AK09912_REG_ST2_HOFL_MASK,
316 AK09912_REG_CNTL2_MODE_MASK},
317 .ctrl_modes = {
318 AK09912_REG_CNTL_MODE_POWER_DOWN,
319 AK09912_REG_CNTL_MODE_ONCE,
320 AK09912_REG_CNTL_MODE_SELF_TEST,
321 AK09912_REG_CNTL_MODE_FUSE_ROM},
322 .data_regs = {
323 AK09912_REG_HXL,
324 AK09912_REG_HYL,
325 AK09912_REG_HZL},
328 .type = AK09912,
329 .raw_to_gauss = ak09912_raw_to_gauss,
330 .range = 32752,
331 .ctrl_regs = {
332 AK09912_REG_ST1,
333 AK09912_REG_ST2,
334 AK09912_REG_CNTL2,
335 AK09912_REG_ASAX,
336 AK09912_MAX_REGS},
337 .ctrl_masks = {
338 AK09912_REG_ST1_DRDY_MASK,
339 AK09912_REG_ST2_HOFL_MASK,
341 AK09912_REG_CNTL2_MODE_MASK},
342 .ctrl_modes = {
343 AK09912_REG_CNTL_MODE_POWER_DOWN,
344 AK09912_REG_CNTL_MODE_ONCE,
345 AK09912_REG_CNTL_MODE_SELF_TEST,
346 AK09912_REG_CNTL_MODE_FUSE_ROM},
347 .data_regs = {
348 AK09912_REG_HXL,
349 AK09912_REG_HYL,
350 AK09912_REG_HZL},
355 * Per-instance context data for the device.
357 struct ak8975_data {
358 struct i2c_client *client;
359 const struct ak_def *def;
360 struct mutex lock;
361 u8 asa[3];
362 long raw_to_gauss[3];
363 int eoc_gpio;
364 int eoc_irq;
365 wait_queue_head_t data_ready_queue;
366 unsigned long flags;
367 u8 cntl_cache;
368 struct iio_mount_matrix orientation;
369 struct regulator *vdd;
370 struct regulator *vid;
373 /* Enable attached power regulator if any. */
374 static int ak8975_power_on(const struct ak8975_data *data)
376 int ret;
378 ret = regulator_enable(data->vdd);
379 if (ret) {
380 dev_warn(&data->client->dev,
381 "Failed to enable specified Vdd supply\n");
382 return ret;
384 ret = regulator_enable(data->vid);
385 if (ret) {
386 dev_warn(&data->client->dev,
387 "Failed to enable specified Vid supply\n");
388 return ret;
391 * According to the datasheet the power supply rise time i 200us
392 * and the minimum wait time before mode setting is 100us, in
393 * total 300 us. Add some margin and say minimum 500us here.
395 usleep_range(500, 1000);
396 return 0;
399 /* Disable attached power regulator if any. */
400 static void ak8975_power_off(const struct ak8975_data *data)
402 regulator_disable(data->vid);
403 regulator_disable(data->vdd);
407 * Return 0 if the i2c device is the one we expect.
408 * return a negative error number otherwise
410 static int ak8975_who_i_am(struct i2c_client *client,
411 enum asahi_compass_chipset type)
413 u8 wia_val[2];
414 int ret;
417 * Signature for each device:
418 * Device | WIA1 | WIA2
419 * AK09912 | DEVICE_ID | AK09912_DEVICE_ID
420 * AK09911 | DEVICE_ID | AK09911_DEVICE_ID
421 * AK8975 | DEVICE_ID | NA
422 * AK8963 | DEVICE_ID | NA
424 ret = i2c_smbus_read_i2c_block_data_or_emulated(
425 client, AK09912_REG_WIA1, 2, wia_val);
426 if (ret < 0) {
427 dev_err(&client->dev, "Error reading WIA\n");
428 return ret;
431 if (wia_val[0] != AK8975_DEVICE_ID)
432 return -ENODEV;
434 switch (type) {
435 case AK8975:
436 case AK8963:
437 return 0;
438 case AK09911:
439 if (wia_val[1] == AK09911_DEVICE_ID)
440 return 0;
441 break;
442 case AK09912:
443 if (wia_val[1] == AK09912_DEVICE_ID)
444 return 0;
445 break;
446 default:
447 dev_err(&client->dev, "Type %d unknown\n", type);
449 return -ENODEV;
453 * Helper function to write to CNTL register.
455 static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
457 u8 regval;
458 int ret;
460 regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
461 data->def->ctrl_modes[mode];
462 ret = i2c_smbus_write_byte_data(data->client,
463 data->def->ctrl_regs[CNTL], regval);
464 if (ret < 0) {
465 return ret;
467 data->cntl_cache = regval;
468 /* After mode change wait atleast 100us */
469 usleep_range(100, 500);
471 return 0;
475 * Handle data ready irq
477 static irqreturn_t ak8975_irq_handler(int irq, void *data)
479 struct ak8975_data *ak8975 = data;
481 set_bit(0, &ak8975->flags);
482 wake_up(&ak8975->data_ready_queue);
484 return IRQ_HANDLED;
488 * Install data ready interrupt handler
490 static int ak8975_setup_irq(struct ak8975_data *data)
492 struct i2c_client *client = data->client;
493 int rc;
494 int irq;
496 init_waitqueue_head(&data->data_ready_queue);
497 clear_bit(0, &data->flags);
498 if (client->irq)
499 irq = client->irq;
500 else
501 irq = gpio_to_irq(data->eoc_gpio);
503 rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
504 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
505 dev_name(&client->dev), data);
506 if (rc < 0) {
507 dev_err(&client->dev,
508 "irq %d request failed, (gpio %d): %d\n",
509 irq, data->eoc_gpio, rc);
510 return rc;
513 data->eoc_irq = irq;
515 return rc;
520 * Perform some start-of-day setup, including reading the asa calibration
521 * values and caching them.
523 static int ak8975_setup(struct i2c_client *client)
525 struct iio_dev *indio_dev = i2c_get_clientdata(client);
526 struct ak8975_data *data = iio_priv(indio_dev);
527 int ret;
529 /* Write the fused rom access mode. */
530 ret = ak8975_set_mode(data, FUSE_ROM);
531 if (ret < 0) {
532 dev_err(&client->dev, "Error in setting fuse access mode\n");
533 return ret;
536 /* Get asa data and store in the device data. */
537 ret = i2c_smbus_read_i2c_block_data_or_emulated(
538 client, data->def->ctrl_regs[ASA_BASE],
539 3, data->asa);
540 if (ret < 0) {
541 dev_err(&client->dev, "Not able to read asa data\n");
542 return ret;
545 /* After reading fuse ROM data set power-down mode */
546 ret = ak8975_set_mode(data, POWER_DOWN);
547 if (ret < 0) {
548 dev_err(&client->dev, "Error in setting power-down mode\n");
549 return ret;
552 if (data->eoc_gpio > 0 || client->irq > 0) {
553 ret = ak8975_setup_irq(data);
554 if (ret < 0) {
555 dev_err(&client->dev,
556 "Error setting data ready interrupt\n");
557 return ret;
561 data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
562 data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
563 data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
565 return 0;
568 static int wait_conversion_complete_gpio(struct ak8975_data *data)
570 struct i2c_client *client = data->client;
571 u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
572 int ret;
574 /* Wait for the conversion to complete. */
575 while (timeout_ms) {
576 msleep(AK8975_CONVERSION_DONE_POLL_TIME);
577 if (gpio_get_value(data->eoc_gpio))
578 break;
579 timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
581 if (!timeout_ms) {
582 dev_err(&client->dev, "Conversion timeout happened\n");
583 return -EINVAL;
586 ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
587 if (ret < 0)
588 dev_err(&client->dev, "Error in reading ST1\n");
590 return ret;
593 static int wait_conversion_complete_polled(struct ak8975_data *data)
595 struct i2c_client *client = data->client;
596 u8 read_status;
597 u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
598 int ret;
600 /* Wait for the conversion to complete. */
601 while (timeout_ms) {
602 msleep(AK8975_CONVERSION_DONE_POLL_TIME);
603 ret = i2c_smbus_read_byte_data(client,
604 data->def->ctrl_regs[ST1]);
605 if (ret < 0) {
606 dev_err(&client->dev, "Error in reading ST1\n");
607 return ret;
609 read_status = ret;
610 if (read_status)
611 break;
612 timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
614 if (!timeout_ms) {
615 dev_err(&client->dev, "Conversion timeout happened\n");
616 return -EINVAL;
619 return read_status;
622 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
623 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
625 int ret;
627 ret = wait_event_timeout(data->data_ready_queue,
628 test_bit(0, &data->flags),
629 AK8975_DATA_READY_TIMEOUT);
630 clear_bit(0, &data->flags);
632 return ret > 0 ? 0 : -ETIME;
635 static int ak8975_start_read_axis(struct ak8975_data *data,
636 const struct i2c_client *client)
638 /* Set up the device for taking a sample. */
639 int ret = ak8975_set_mode(data, MODE_ONCE);
641 if (ret < 0) {
642 dev_err(&client->dev, "Error in setting operating mode\n");
643 return ret;
646 /* Wait for the conversion to complete. */
647 if (data->eoc_irq)
648 ret = wait_conversion_complete_interrupt(data);
649 else if (gpio_is_valid(data->eoc_gpio))
650 ret = wait_conversion_complete_gpio(data);
651 else
652 ret = wait_conversion_complete_polled(data);
653 if (ret < 0)
654 return ret;
656 /* This will be executed only for non-interrupt based waiting case */
657 if (ret & data->def->ctrl_masks[ST1_DRDY]) {
658 ret = i2c_smbus_read_byte_data(client,
659 data->def->ctrl_regs[ST2]);
660 if (ret < 0) {
661 dev_err(&client->dev, "Error in reading ST2\n");
662 return ret;
664 if (ret & (data->def->ctrl_masks[ST2_DERR] |
665 data->def->ctrl_masks[ST2_HOFL])) {
666 dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
667 return -EINVAL;
671 return 0;
674 /* Retrieve raw flux value for one of the x, y, or z axis. */
675 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
677 struct ak8975_data *data = iio_priv(indio_dev);
678 const struct i2c_client *client = data->client;
679 const struct ak_def *def = data->def;
680 __le16 rval;
681 u16 buff;
682 int ret;
684 pm_runtime_get_sync(&data->client->dev);
686 mutex_lock(&data->lock);
688 ret = ak8975_start_read_axis(data, client);
689 if (ret)
690 goto exit;
692 ret = i2c_smbus_read_i2c_block_data_or_emulated(
693 client, def->data_regs[index],
694 sizeof(rval), (u8*)&rval);
695 if (ret < 0)
696 goto exit;
698 mutex_unlock(&data->lock);
700 pm_runtime_mark_last_busy(&data->client->dev);
701 pm_runtime_put_autosuspend(&data->client->dev);
703 /* Swap bytes and convert to valid range. */
704 buff = le16_to_cpu(rval);
705 *val = clamp_t(s16, buff, -def->range, def->range);
706 return IIO_VAL_INT;
708 exit:
709 mutex_unlock(&data->lock);
710 dev_err(&client->dev, "Error in reading axis\n");
711 return ret;
714 static int ak8975_read_raw(struct iio_dev *indio_dev,
715 struct iio_chan_spec const *chan,
716 int *val, int *val2,
717 long mask)
719 struct ak8975_data *data = iio_priv(indio_dev);
721 switch (mask) {
722 case IIO_CHAN_INFO_RAW:
723 return ak8975_read_axis(indio_dev, chan->address, val);
724 case IIO_CHAN_INFO_SCALE:
725 *val = 0;
726 *val2 = data->raw_to_gauss[chan->address];
727 return IIO_VAL_INT_PLUS_MICRO;
729 return -EINVAL;
732 static const struct iio_mount_matrix *
733 ak8975_get_mount_matrix(const struct iio_dev *indio_dev,
734 const struct iio_chan_spec *chan)
736 struct ak8975_data *data = iio_priv(indio_dev);
738 return &data->orientation;
741 static const struct iio_chan_spec_ext_info ak8975_ext_info[] = {
742 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8975_get_mount_matrix),
746 #define AK8975_CHANNEL(axis, index) \
748 .type = IIO_MAGN, \
749 .modified = 1, \
750 .channel2 = IIO_MOD_##axis, \
751 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
752 BIT(IIO_CHAN_INFO_SCALE), \
753 .address = index, \
754 .scan_index = index, \
755 .scan_type = { \
756 .sign = 's', \
757 .realbits = 16, \
758 .storagebits = 16, \
759 .endianness = IIO_CPU \
760 }, \
761 .ext_info = ak8975_ext_info, \
764 static const struct iio_chan_spec ak8975_channels[] = {
765 AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
766 IIO_CHAN_SOFT_TIMESTAMP(3),
769 static const unsigned long ak8975_scan_masks[] = { 0x7, 0 };
771 static const struct iio_info ak8975_info = {
772 .read_raw = &ak8975_read_raw,
775 #ifdef CONFIG_ACPI
776 static const struct acpi_device_id ak_acpi_match[] = {
777 {"AK8975", AK8975},
778 {"AK8963", AK8963},
779 {"INVN6500", AK8963},
780 {"AK009911", AK09911},
781 {"AK09911", AK09911},
782 {"AKM9911", AK09911},
783 {"AK09912", AK09912},
786 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
787 #endif
789 static const char *ak8975_match_acpi_device(struct device *dev,
790 enum asahi_compass_chipset *chipset)
792 const struct acpi_device_id *id;
794 id = acpi_match_device(dev->driver->acpi_match_table, dev);
795 if (!id)
796 return NULL;
797 *chipset = (int)id->driver_data;
799 return dev_name(dev);
802 static void ak8975_fill_buffer(struct iio_dev *indio_dev)
804 struct ak8975_data *data = iio_priv(indio_dev);
805 const struct i2c_client *client = data->client;
806 const struct ak_def *def = data->def;
807 int ret;
808 s16 buff[8]; /* 3 x 16 bits axis values + 1 aligned 64 bits timestamp */
809 __le16 fval[3];
811 mutex_lock(&data->lock);
813 ret = ak8975_start_read_axis(data, client);
814 if (ret)
815 goto unlock;
818 * For each axis, read the flux value from the appropriate register
819 * (the register is specified in the iio device attributes).
821 ret = i2c_smbus_read_i2c_block_data_or_emulated(client,
822 def->data_regs[0],
823 3 * sizeof(fval[0]),
824 (u8 *)fval);
825 if (ret < 0)
826 goto unlock;
828 mutex_unlock(&data->lock);
830 /* Clamp to valid range. */
831 buff[0] = clamp_t(s16, le16_to_cpu(fval[0]), -def->range, def->range);
832 buff[1] = clamp_t(s16, le16_to_cpu(fval[1]), -def->range, def->range);
833 buff[2] = clamp_t(s16, le16_to_cpu(fval[2]), -def->range, def->range);
835 iio_push_to_buffers_with_timestamp(indio_dev, buff,
836 iio_get_time_ns(indio_dev));
837 return;
839 unlock:
840 mutex_unlock(&data->lock);
841 dev_err(&client->dev, "Error in reading axes block\n");
844 static irqreturn_t ak8975_handle_trigger(int irq, void *p)
846 const struct iio_poll_func *pf = p;
847 struct iio_dev *indio_dev = pf->indio_dev;
849 ak8975_fill_buffer(indio_dev);
850 iio_trigger_notify_done(indio_dev->trig);
851 return IRQ_HANDLED;
854 static int ak8975_probe(struct i2c_client *client,
855 const struct i2c_device_id *id)
857 struct ak8975_data *data;
858 struct iio_dev *indio_dev;
859 int eoc_gpio;
860 int err;
861 const char *name = NULL;
862 enum asahi_compass_chipset chipset = AK_MAX_TYPE;
863 const struct ak8975_platform_data *pdata =
864 dev_get_platdata(&client->dev);
866 /* Grab and set up the supplied GPIO. */
867 if (pdata)
868 eoc_gpio = pdata->eoc_gpio;
869 else if (client->dev.of_node)
870 eoc_gpio = of_get_gpio(client->dev.of_node, 0);
871 else
872 eoc_gpio = -1;
874 if (eoc_gpio == -EPROBE_DEFER)
875 return -EPROBE_DEFER;
877 /* We may not have a GPIO based IRQ to scan, that is fine, we will
878 poll if so */
879 if (gpio_is_valid(eoc_gpio)) {
880 err = devm_gpio_request_one(&client->dev, eoc_gpio,
881 GPIOF_IN, "ak_8975");
882 if (err < 0) {
883 dev_err(&client->dev,
884 "failed to request GPIO %d, error %d\n",
885 eoc_gpio, err);
886 return err;
890 /* Register with IIO */
891 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
892 if (indio_dev == NULL)
893 return -ENOMEM;
895 data = iio_priv(indio_dev);
896 i2c_set_clientdata(client, indio_dev);
898 data->client = client;
899 data->eoc_gpio = eoc_gpio;
900 data->eoc_irq = 0;
902 if (!pdata) {
903 err = iio_read_mount_matrix(&client->dev, "mount-matrix",
904 &data->orientation);
905 if (err)
906 return err;
907 } else
908 data->orientation = pdata->orientation;
910 /* id will be NULL when enumerated via ACPI */
911 if (id) {
912 chipset = (enum asahi_compass_chipset)(id->driver_data);
913 name = id->name;
914 } else if (ACPI_HANDLE(&client->dev)) {
915 name = ak8975_match_acpi_device(&client->dev, &chipset);
916 if (!name)
917 return -ENODEV;
918 } else
919 return -ENOSYS;
921 if (chipset >= AK_MAX_TYPE) {
922 dev_err(&client->dev, "AKM device type unsupported: %d\n",
923 chipset);
924 return -ENODEV;
927 data->def = &ak_def_array[chipset];
929 /* Fetch the regulators */
930 data->vdd = devm_regulator_get(&client->dev, "vdd");
931 if (IS_ERR(data->vdd))
932 return PTR_ERR(data->vdd);
933 data->vid = devm_regulator_get(&client->dev, "vid");
934 if (IS_ERR(data->vid))
935 return PTR_ERR(data->vid);
937 err = ak8975_power_on(data);
938 if (err)
939 return err;
941 err = ak8975_who_i_am(client, data->def->type);
942 if (err < 0) {
943 dev_err(&client->dev, "Unexpected device\n");
944 goto power_off;
946 dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
948 /* Perform some basic start-of-day setup of the device. */
949 err = ak8975_setup(client);
950 if (err < 0) {
951 dev_err(&client->dev, "%s initialization fails\n", name);
952 goto power_off;
955 mutex_init(&data->lock);
956 indio_dev->dev.parent = &client->dev;
957 indio_dev->channels = ak8975_channels;
958 indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
959 indio_dev->info = &ak8975_info;
960 indio_dev->available_scan_masks = ak8975_scan_masks;
961 indio_dev->modes = INDIO_DIRECT_MODE;
962 indio_dev->name = name;
964 err = iio_triggered_buffer_setup(indio_dev, NULL, ak8975_handle_trigger,
965 NULL);
966 if (err) {
967 dev_err(&client->dev, "triggered buffer setup failed\n");
968 goto power_off;
971 err = iio_device_register(indio_dev);
972 if (err) {
973 dev_err(&client->dev, "device register failed\n");
974 goto cleanup_buffer;
977 /* Enable runtime PM */
978 pm_runtime_get_noresume(&client->dev);
979 pm_runtime_set_active(&client->dev);
980 pm_runtime_enable(&client->dev);
982 * The device comes online in 500us, so add two orders of magnitude
983 * of delay before autosuspending: 50 ms.
985 pm_runtime_set_autosuspend_delay(&client->dev, 50);
986 pm_runtime_use_autosuspend(&client->dev);
987 pm_runtime_put(&client->dev);
989 return 0;
991 cleanup_buffer:
992 iio_triggered_buffer_cleanup(indio_dev);
993 power_off:
994 ak8975_power_off(data);
995 return err;
998 static int ak8975_remove(struct i2c_client *client)
1000 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1001 struct ak8975_data *data = iio_priv(indio_dev);
1003 pm_runtime_get_sync(&client->dev);
1004 pm_runtime_put_noidle(&client->dev);
1005 pm_runtime_disable(&client->dev);
1006 iio_device_unregister(indio_dev);
1007 iio_triggered_buffer_cleanup(indio_dev);
1008 ak8975_set_mode(data, POWER_DOWN);
1009 ak8975_power_off(data);
1011 return 0;
1014 #ifdef CONFIG_PM
1015 static int ak8975_runtime_suspend(struct device *dev)
1017 struct i2c_client *client = to_i2c_client(dev);
1018 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1019 struct ak8975_data *data = iio_priv(indio_dev);
1020 int ret;
1022 /* Set the device in power down if it wasn't already */
1023 ret = ak8975_set_mode(data, POWER_DOWN);
1024 if (ret < 0) {
1025 dev_err(&client->dev, "Error in setting power-down mode\n");
1026 return ret;
1028 /* Next cut the regulators */
1029 ak8975_power_off(data);
1031 return 0;
1034 static int ak8975_runtime_resume(struct device *dev)
1036 struct i2c_client *client = to_i2c_client(dev);
1037 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1038 struct ak8975_data *data = iio_priv(indio_dev);
1039 int ret;
1041 /* Take up the regulators */
1042 ak8975_power_on(data);
1044 * We come up in powered down mode, the reading routines will
1045 * put us in the mode to read values later.
1047 ret = ak8975_set_mode(data, POWER_DOWN);
1048 if (ret < 0) {
1049 dev_err(&client->dev, "Error in setting power-down mode\n");
1050 return ret;
1053 return 0;
1055 #endif /* CONFIG_PM */
1057 static const struct dev_pm_ops ak8975_dev_pm_ops = {
1058 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1059 pm_runtime_force_resume)
1060 SET_RUNTIME_PM_OPS(ak8975_runtime_suspend,
1061 ak8975_runtime_resume, NULL)
1064 static const struct i2c_device_id ak8975_id[] = {
1065 {"ak8975", AK8975},
1066 {"ak8963", AK8963},
1067 {"AK8963", AK8963},
1068 {"ak09911", AK09911},
1069 {"ak09912", AK09912},
1073 MODULE_DEVICE_TABLE(i2c, ak8975_id);
1075 static const struct of_device_id ak8975_of_match[] = {
1076 { .compatible = "asahi-kasei,ak8975", },
1077 { .compatible = "ak8975", },
1078 { .compatible = "asahi-kasei,ak8963", },
1079 { .compatible = "ak8963", },
1080 { .compatible = "asahi-kasei,ak09911", },
1081 { .compatible = "ak09911", },
1082 { .compatible = "asahi-kasei,ak09912", },
1083 { .compatible = "ak09912", },
1086 MODULE_DEVICE_TABLE(of, ak8975_of_match);
1088 static struct i2c_driver ak8975_driver = {
1089 .driver = {
1090 .name = "ak8975",
1091 .pm = &ak8975_dev_pm_ops,
1092 .of_match_table = of_match_ptr(ak8975_of_match),
1093 .acpi_match_table = ACPI_PTR(ak_acpi_match),
1095 .probe = ak8975_probe,
1096 .remove = ak8975_remove,
1097 .id_table = ak8975_id,
1099 module_i2c_driver(ak8975_driver);
1101 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1102 MODULE_DESCRIPTION("AK8975 magnetometer driver");
1103 MODULE_LICENSE("GPL");