Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / input / input.c
blob7f3c5fcb9ed6e6b4a618601dd41efa8b0dbdbe60
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
28 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
29 MODULE_DESCRIPTION("Input core");
30 MODULE_LICENSE("GPL");
32 #define INPUT_MAX_CHAR_DEVICES 1024
33 #define INPUT_FIRST_DYNAMIC_DEV 256
34 static DEFINE_IDA(input_ida);
36 static LIST_HEAD(input_dev_list);
37 static LIST_HEAD(input_handler_list);
40 * input_mutex protects access to both input_dev_list and input_handler_list.
41 * This also causes input_[un]register_device and input_[un]register_handler
42 * be mutually exclusive which simplifies locking in drivers implementing
43 * input handlers.
45 static DEFINE_MUTEX(input_mutex);
47 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49 static inline int is_event_supported(unsigned int code,
50 unsigned long *bm, unsigned int max)
52 return code <= max && test_bit(code, bm);
55 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 if (fuzz) {
58 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
59 return old_val;
61 if (value > old_val - fuzz && value < old_val + fuzz)
62 return (old_val * 3 + value) / 4;
64 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
65 return (old_val + value) / 2;
68 return value;
71 static void input_start_autorepeat(struct input_dev *dev, int code)
73 if (test_bit(EV_REP, dev->evbit) &&
74 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
75 dev->timer.function) {
76 dev->repeat_key = code;
77 mod_timer(&dev->timer,
78 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
82 static void input_stop_autorepeat(struct input_dev *dev)
84 del_timer(&dev->timer);
88 * Pass event first through all filters and then, if event has not been
89 * filtered out, through all open handles. This function is called with
90 * dev->event_lock held and interrupts disabled.
92 static unsigned int input_to_handler(struct input_handle *handle,
93 struct input_value *vals, unsigned int count)
95 struct input_handler *handler = handle->handler;
96 struct input_value *end = vals;
97 struct input_value *v;
99 if (handler->filter) {
100 for (v = vals; v != vals + count; v++) {
101 if (handler->filter(handle, v->type, v->code, v->value))
102 continue;
103 if (end != v)
104 *end = *v;
105 end++;
107 count = end - vals;
110 if (!count)
111 return 0;
113 if (handler->events)
114 handler->events(handle, vals, count);
115 else if (handler->event)
116 for (v = vals; v != vals + count; v++)
117 handler->event(handle, v->type, v->code, v->value);
119 return count;
123 * Pass values first through all filters and then, if event has not been
124 * filtered out, through all open handles. This function is called with
125 * dev->event_lock held and interrupts disabled.
127 static void input_pass_values(struct input_dev *dev,
128 struct input_value *vals, unsigned int count)
130 struct input_handle *handle;
131 struct input_value *v;
133 if (!count)
134 return;
136 rcu_read_lock();
138 handle = rcu_dereference(dev->grab);
139 if (handle) {
140 count = input_to_handler(handle, vals, count);
141 } else {
142 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
143 if (handle->open) {
144 count = input_to_handler(handle, vals, count);
145 if (!count)
146 break;
150 rcu_read_unlock();
152 /* trigger auto repeat for key events */
153 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
154 for (v = vals; v != vals + count; v++) {
155 if (v->type == EV_KEY && v->value != 2) {
156 if (v->value)
157 input_start_autorepeat(dev, v->code);
158 else
159 input_stop_autorepeat(dev);
165 static void input_pass_event(struct input_dev *dev,
166 unsigned int type, unsigned int code, int value)
168 struct input_value vals[] = { { type, code, value } };
170 input_pass_values(dev, vals, ARRAY_SIZE(vals));
174 * Generate software autorepeat event. Note that we take
175 * dev->event_lock here to avoid racing with input_event
176 * which may cause keys get "stuck".
178 static void input_repeat_key(struct timer_list *t)
180 struct input_dev *dev = from_timer(dev, t, timer);
181 unsigned long flags;
183 spin_lock_irqsave(&dev->event_lock, flags);
185 if (test_bit(dev->repeat_key, dev->key) &&
186 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
187 struct input_value vals[] = {
188 { EV_KEY, dev->repeat_key, 2 },
189 input_value_sync
192 input_pass_values(dev, vals, ARRAY_SIZE(vals));
194 if (dev->rep[REP_PERIOD])
195 mod_timer(&dev->timer, jiffies +
196 msecs_to_jiffies(dev->rep[REP_PERIOD]));
199 spin_unlock_irqrestore(&dev->event_lock, flags);
202 #define INPUT_IGNORE_EVENT 0
203 #define INPUT_PASS_TO_HANDLERS 1
204 #define INPUT_PASS_TO_DEVICE 2
205 #define INPUT_SLOT 4
206 #define INPUT_FLUSH 8
207 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
209 static int input_handle_abs_event(struct input_dev *dev,
210 unsigned int code, int *pval)
212 struct input_mt *mt = dev->mt;
213 bool is_mt_event;
214 int *pold;
216 if (code == ABS_MT_SLOT) {
218 * "Stage" the event; we'll flush it later, when we
219 * get actual touch data.
221 if (mt && *pval >= 0 && *pval < mt->num_slots)
222 mt->slot = *pval;
224 return INPUT_IGNORE_EVENT;
227 is_mt_event = input_is_mt_value(code);
229 if (!is_mt_event) {
230 pold = &dev->absinfo[code].value;
231 } else if (mt) {
232 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
233 } else {
235 * Bypass filtering for multi-touch events when
236 * not employing slots.
238 pold = NULL;
241 if (pold) {
242 *pval = input_defuzz_abs_event(*pval, *pold,
243 dev->absinfo[code].fuzz);
244 if (*pold == *pval)
245 return INPUT_IGNORE_EVENT;
247 *pold = *pval;
250 /* Flush pending "slot" event */
251 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
252 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
253 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
256 return INPUT_PASS_TO_HANDLERS;
259 static int input_get_disposition(struct input_dev *dev,
260 unsigned int type, unsigned int code, int *pval)
262 int disposition = INPUT_IGNORE_EVENT;
263 int value = *pval;
265 switch (type) {
267 case EV_SYN:
268 switch (code) {
269 case SYN_CONFIG:
270 disposition = INPUT_PASS_TO_ALL;
271 break;
273 case SYN_REPORT:
274 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
275 break;
276 case SYN_MT_REPORT:
277 disposition = INPUT_PASS_TO_HANDLERS;
278 break;
280 break;
282 case EV_KEY:
283 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
285 /* auto-repeat bypasses state updates */
286 if (value == 2) {
287 disposition = INPUT_PASS_TO_HANDLERS;
288 break;
291 if (!!test_bit(code, dev->key) != !!value) {
293 __change_bit(code, dev->key);
294 disposition = INPUT_PASS_TO_HANDLERS;
297 break;
299 case EV_SW:
300 if (is_event_supported(code, dev->swbit, SW_MAX) &&
301 !!test_bit(code, dev->sw) != !!value) {
303 __change_bit(code, dev->sw);
304 disposition = INPUT_PASS_TO_HANDLERS;
306 break;
308 case EV_ABS:
309 if (is_event_supported(code, dev->absbit, ABS_MAX))
310 disposition = input_handle_abs_event(dev, code, &value);
312 break;
314 case EV_REL:
315 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
316 disposition = INPUT_PASS_TO_HANDLERS;
318 break;
320 case EV_MSC:
321 if (is_event_supported(code, dev->mscbit, MSC_MAX))
322 disposition = INPUT_PASS_TO_ALL;
324 break;
326 case EV_LED:
327 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
328 !!test_bit(code, dev->led) != !!value) {
330 __change_bit(code, dev->led);
331 disposition = INPUT_PASS_TO_ALL;
333 break;
335 case EV_SND:
336 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
338 if (!!test_bit(code, dev->snd) != !!value)
339 __change_bit(code, dev->snd);
340 disposition = INPUT_PASS_TO_ALL;
342 break;
344 case EV_REP:
345 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
346 dev->rep[code] = value;
347 disposition = INPUT_PASS_TO_ALL;
349 break;
351 case EV_FF:
352 if (value >= 0)
353 disposition = INPUT_PASS_TO_ALL;
354 break;
356 case EV_PWR:
357 disposition = INPUT_PASS_TO_ALL;
358 break;
361 *pval = value;
362 return disposition;
365 static void input_handle_event(struct input_dev *dev,
366 unsigned int type, unsigned int code, int value)
368 int disposition = input_get_disposition(dev, type, code, &value);
370 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
371 add_input_randomness(type, code, value);
373 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
374 dev->event(dev, type, code, value);
376 if (!dev->vals)
377 return;
379 if (disposition & INPUT_PASS_TO_HANDLERS) {
380 struct input_value *v;
382 if (disposition & INPUT_SLOT) {
383 v = &dev->vals[dev->num_vals++];
384 v->type = EV_ABS;
385 v->code = ABS_MT_SLOT;
386 v->value = dev->mt->slot;
389 v = &dev->vals[dev->num_vals++];
390 v->type = type;
391 v->code = code;
392 v->value = value;
395 if (disposition & INPUT_FLUSH) {
396 if (dev->num_vals >= 2)
397 input_pass_values(dev, dev->vals, dev->num_vals);
398 dev->num_vals = 0;
399 } else if (dev->num_vals >= dev->max_vals - 2) {
400 dev->vals[dev->num_vals++] = input_value_sync;
401 input_pass_values(dev, dev->vals, dev->num_vals);
402 dev->num_vals = 0;
408 * input_event() - report new input event
409 * @dev: device that generated the event
410 * @type: type of the event
411 * @code: event code
412 * @value: value of the event
414 * This function should be used by drivers implementing various input
415 * devices to report input events. See also input_inject_event().
417 * NOTE: input_event() may be safely used right after input device was
418 * allocated with input_allocate_device(), even before it is registered
419 * with input_register_device(), but the event will not reach any of the
420 * input handlers. Such early invocation of input_event() may be used
421 * to 'seed' initial state of a switch or initial position of absolute
422 * axis, etc.
424 void input_event(struct input_dev *dev,
425 unsigned int type, unsigned int code, int value)
427 unsigned long flags;
429 if (is_event_supported(type, dev->evbit, EV_MAX)) {
431 spin_lock_irqsave(&dev->event_lock, flags);
432 input_handle_event(dev, type, code, value);
433 spin_unlock_irqrestore(&dev->event_lock, flags);
436 EXPORT_SYMBOL(input_event);
439 * input_inject_event() - send input event from input handler
440 * @handle: input handle to send event through
441 * @type: type of the event
442 * @code: event code
443 * @value: value of the event
445 * Similar to input_event() but will ignore event if device is
446 * "grabbed" and handle injecting event is not the one that owns
447 * the device.
449 void input_inject_event(struct input_handle *handle,
450 unsigned int type, unsigned int code, int value)
452 struct input_dev *dev = handle->dev;
453 struct input_handle *grab;
454 unsigned long flags;
456 if (is_event_supported(type, dev->evbit, EV_MAX)) {
457 spin_lock_irqsave(&dev->event_lock, flags);
459 rcu_read_lock();
460 grab = rcu_dereference(dev->grab);
461 if (!grab || grab == handle)
462 input_handle_event(dev, type, code, value);
463 rcu_read_unlock();
465 spin_unlock_irqrestore(&dev->event_lock, flags);
468 EXPORT_SYMBOL(input_inject_event);
471 * input_alloc_absinfo - allocates array of input_absinfo structs
472 * @dev: the input device emitting absolute events
474 * If the absinfo struct the caller asked for is already allocated, this
475 * functions will not do anything.
477 void input_alloc_absinfo(struct input_dev *dev)
479 if (dev->absinfo)
480 return;
482 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
483 if (!dev->absinfo) {
484 dev_err(dev->dev.parent ?: &dev->dev,
485 "%s: unable to allocate memory\n", __func__);
487 * We will handle this allocation failure in
488 * input_register_device() when we refuse to register input
489 * device with ABS bits but without absinfo.
493 EXPORT_SYMBOL(input_alloc_absinfo);
495 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
496 int min, int max, int fuzz, int flat)
498 struct input_absinfo *absinfo;
500 input_alloc_absinfo(dev);
501 if (!dev->absinfo)
502 return;
504 absinfo = &dev->absinfo[axis];
505 absinfo->minimum = min;
506 absinfo->maximum = max;
507 absinfo->fuzz = fuzz;
508 absinfo->flat = flat;
510 __set_bit(EV_ABS, dev->evbit);
511 __set_bit(axis, dev->absbit);
513 EXPORT_SYMBOL(input_set_abs_params);
517 * input_grab_device - grabs device for exclusive use
518 * @handle: input handle that wants to own the device
520 * When a device is grabbed by an input handle all events generated by
521 * the device are delivered only to this handle. Also events injected
522 * by other input handles are ignored while device is grabbed.
524 int input_grab_device(struct input_handle *handle)
526 struct input_dev *dev = handle->dev;
527 int retval;
529 retval = mutex_lock_interruptible(&dev->mutex);
530 if (retval)
531 return retval;
533 if (dev->grab) {
534 retval = -EBUSY;
535 goto out;
538 rcu_assign_pointer(dev->grab, handle);
540 out:
541 mutex_unlock(&dev->mutex);
542 return retval;
544 EXPORT_SYMBOL(input_grab_device);
546 static void __input_release_device(struct input_handle *handle)
548 struct input_dev *dev = handle->dev;
549 struct input_handle *grabber;
551 grabber = rcu_dereference_protected(dev->grab,
552 lockdep_is_held(&dev->mutex));
553 if (grabber == handle) {
554 rcu_assign_pointer(dev->grab, NULL);
555 /* Make sure input_pass_event() notices that grab is gone */
556 synchronize_rcu();
558 list_for_each_entry(handle, &dev->h_list, d_node)
559 if (handle->open && handle->handler->start)
560 handle->handler->start(handle);
565 * input_release_device - release previously grabbed device
566 * @handle: input handle that owns the device
568 * Releases previously grabbed device so that other input handles can
569 * start receiving input events. Upon release all handlers attached
570 * to the device have their start() method called so they have a change
571 * to synchronize device state with the rest of the system.
573 void input_release_device(struct input_handle *handle)
575 struct input_dev *dev = handle->dev;
577 mutex_lock(&dev->mutex);
578 __input_release_device(handle);
579 mutex_unlock(&dev->mutex);
581 EXPORT_SYMBOL(input_release_device);
584 * input_open_device - open input device
585 * @handle: handle through which device is being accessed
587 * This function should be called by input handlers when they
588 * want to start receive events from given input device.
590 int input_open_device(struct input_handle *handle)
592 struct input_dev *dev = handle->dev;
593 int retval;
595 retval = mutex_lock_interruptible(&dev->mutex);
596 if (retval)
597 return retval;
599 if (dev->going_away) {
600 retval = -ENODEV;
601 goto out;
604 handle->open++;
606 if (!dev->users++ && dev->open)
607 retval = dev->open(dev);
609 if (retval) {
610 dev->users--;
611 if (!--handle->open) {
613 * Make sure we are not delivering any more events
614 * through this handle
616 synchronize_rcu();
620 out:
621 mutex_unlock(&dev->mutex);
622 return retval;
624 EXPORT_SYMBOL(input_open_device);
626 int input_flush_device(struct input_handle *handle, struct file *file)
628 struct input_dev *dev = handle->dev;
629 int retval;
631 retval = mutex_lock_interruptible(&dev->mutex);
632 if (retval)
633 return retval;
635 if (dev->flush)
636 retval = dev->flush(dev, file);
638 mutex_unlock(&dev->mutex);
639 return retval;
641 EXPORT_SYMBOL(input_flush_device);
644 * input_close_device - close input device
645 * @handle: handle through which device is being accessed
647 * This function should be called by input handlers when they
648 * want to stop receive events from given input device.
650 void input_close_device(struct input_handle *handle)
652 struct input_dev *dev = handle->dev;
654 mutex_lock(&dev->mutex);
656 __input_release_device(handle);
658 if (!--dev->users && dev->close)
659 dev->close(dev);
661 if (!--handle->open) {
663 * synchronize_rcu() makes sure that input_pass_event()
664 * completed and that no more input events are delivered
665 * through this handle
667 synchronize_rcu();
670 mutex_unlock(&dev->mutex);
672 EXPORT_SYMBOL(input_close_device);
675 * Simulate keyup events for all keys that are marked as pressed.
676 * The function must be called with dev->event_lock held.
678 static void input_dev_release_keys(struct input_dev *dev)
680 bool need_sync = false;
681 int code;
683 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
684 for_each_set_bit(code, dev->key, KEY_CNT) {
685 input_pass_event(dev, EV_KEY, code, 0);
686 need_sync = true;
689 if (need_sync)
690 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
692 memset(dev->key, 0, sizeof(dev->key));
697 * Prepare device for unregistering
699 static void input_disconnect_device(struct input_dev *dev)
701 struct input_handle *handle;
704 * Mark device as going away. Note that we take dev->mutex here
705 * not to protect access to dev->going_away but rather to ensure
706 * that there are no threads in the middle of input_open_device()
708 mutex_lock(&dev->mutex);
709 dev->going_away = true;
710 mutex_unlock(&dev->mutex);
712 spin_lock_irq(&dev->event_lock);
715 * Simulate keyup events for all pressed keys so that handlers
716 * are not left with "stuck" keys. The driver may continue
717 * generate events even after we done here but they will not
718 * reach any handlers.
720 input_dev_release_keys(dev);
722 list_for_each_entry(handle, &dev->h_list, d_node)
723 handle->open = 0;
725 spin_unlock_irq(&dev->event_lock);
729 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
730 * @ke: keymap entry containing scancode to be converted.
731 * @scancode: pointer to the location where converted scancode should
732 * be stored.
734 * This function is used to convert scancode stored in &struct keymap_entry
735 * into scalar form understood by legacy keymap handling methods. These
736 * methods expect scancodes to be represented as 'unsigned int'.
738 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
739 unsigned int *scancode)
741 switch (ke->len) {
742 case 1:
743 *scancode = *((u8 *)ke->scancode);
744 break;
746 case 2:
747 *scancode = *((u16 *)ke->scancode);
748 break;
750 case 4:
751 *scancode = *((u32 *)ke->scancode);
752 break;
754 default:
755 return -EINVAL;
758 return 0;
760 EXPORT_SYMBOL(input_scancode_to_scalar);
763 * Those routines handle the default case where no [gs]etkeycode() is
764 * defined. In this case, an array indexed by the scancode is used.
767 static unsigned int input_fetch_keycode(struct input_dev *dev,
768 unsigned int index)
770 switch (dev->keycodesize) {
771 case 1:
772 return ((u8 *)dev->keycode)[index];
774 case 2:
775 return ((u16 *)dev->keycode)[index];
777 default:
778 return ((u32 *)dev->keycode)[index];
782 static int input_default_getkeycode(struct input_dev *dev,
783 struct input_keymap_entry *ke)
785 unsigned int index;
786 int error;
788 if (!dev->keycodesize)
789 return -EINVAL;
791 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
792 index = ke->index;
793 else {
794 error = input_scancode_to_scalar(ke, &index);
795 if (error)
796 return error;
799 if (index >= dev->keycodemax)
800 return -EINVAL;
802 ke->keycode = input_fetch_keycode(dev, index);
803 ke->index = index;
804 ke->len = sizeof(index);
805 memcpy(ke->scancode, &index, sizeof(index));
807 return 0;
810 static int input_default_setkeycode(struct input_dev *dev,
811 const struct input_keymap_entry *ke,
812 unsigned int *old_keycode)
814 unsigned int index;
815 int error;
816 int i;
818 if (!dev->keycodesize)
819 return -EINVAL;
821 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
822 index = ke->index;
823 } else {
824 error = input_scancode_to_scalar(ke, &index);
825 if (error)
826 return error;
829 if (index >= dev->keycodemax)
830 return -EINVAL;
832 if (dev->keycodesize < sizeof(ke->keycode) &&
833 (ke->keycode >> (dev->keycodesize * 8)))
834 return -EINVAL;
836 switch (dev->keycodesize) {
837 case 1: {
838 u8 *k = (u8 *)dev->keycode;
839 *old_keycode = k[index];
840 k[index] = ke->keycode;
841 break;
843 case 2: {
844 u16 *k = (u16 *)dev->keycode;
845 *old_keycode = k[index];
846 k[index] = ke->keycode;
847 break;
849 default: {
850 u32 *k = (u32 *)dev->keycode;
851 *old_keycode = k[index];
852 k[index] = ke->keycode;
853 break;
857 __clear_bit(*old_keycode, dev->keybit);
858 __set_bit(ke->keycode, dev->keybit);
860 for (i = 0; i < dev->keycodemax; i++) {
861 if (input_fetch_keycode(dev, i) == *old_keycode) {
862 __set_bit(*old_keycode, dev->keybit);
863 break; /* Setting the bit twice is useless, so break */
867 return 0;
871 * input_get_keycode - retrieve keycode currently mapped to a given scancode
872 * @dev: input device which keymap is being queried
873 * @ke: keymap entry
875 * This function should be called by anyone interested in retrieving current
876 * keymap. Presently evdev handlers use it.
878 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
880 unsigned long flags;
881 int retval;
883 spin_lock_irqsave(&dev->event_lock, flags);
884 retval = dev->getkeycode(dev, ke);
885 spin_unlock_irqrestore(&dev->event_lock, flags);
887 return retval;
889 EXPORT_SYMBOL(input_get_keycode);
892 * input_set_keycode - attribute a keycode to a given scancode
893 * @dev: input device which keymap is being updated
894 * @ke: new keymap entry
896 * This function should be called by anyone needing to update current
897 * keymap. Presently keyboard and evdev handlers use it.
899 int input_set_keycode(struct input_dev *dev,
900 const struct input_keymap_entry *ke)
902 unsigned long flags;
903 unsigned int old_keycode;
904 int retval;
906 if (ke->keycode > KEY_MAX)
907 return -EINVAL;
909 spin_lock_irqsave(&dev->event_lock, flags);
911 retval = dev->setkeycode(dev, ke, &old_keycode);
912 if (retval)
913 goto out;
915 /* Make sure KEY_RESERVED did not get enabled. */
916 __clear_bit(KEY_RESERVED, dev->keybit);
919 * Simulate keyup event if keycode is not present
920 * in the keymap anymore
922 if (test_bit(EV_KEY, dev->evbit) &&
923 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
924 __test_and_clear_bit(old_keycode, dev->key)) {
925 struct input_value vals[] = {
926 { EV_KEY, old_keycode, 0 },
927 input_value_sync
930 input_pass_values(dev, vals, ARRAY_SIZE(vals));
933 out:
934 spin_unlock_irqrestore(&dev->event_lock, flags);
936 return retval;
938 EXPORT_SYMBOL(input_set_keycode);
940 bool input_match_device_id(const struct input_dev *dev,
941 const struct input_device_id *id)
943 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
944 if (id->bustype != dev->id.bustype)
945 return false;
947 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
948 if (id->vendor != dev->id.vendor)
949 return false;
951 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
952 if (id->product != dev->id.product)
953 return false;
955 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
956 if (id->version != dev->id.version)
957 return false;
959 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
960 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
961 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
962 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
963 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
964 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
965 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
966 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
967 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
968 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
969 return false;
972 return true;
974 EXPORT_SYMBOL(input_match_device_id);
976 static const struct input_device_id *input_match_device(struct input_handler *handler,
977 struct input_dev *dev)
979 const struct input_device_id *id;
981 for (id = handler->id_table; id->flags || id->driver_info; id++) {
982 if (input_match_device_id(dev, id) &&
983 (!handler->match || handler->match(handler, dev))) {
984 return id;
988 return NULL;
991 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
993 const struct input_device_id *id;
994 int error;
996 id = input_match_device(handler, dev);
997 if (!id)
998 return -ENODEV;
1000 error = handler->connect(handler, dev, id);
1001 if (error && error != -ENODEV)
1002 pr_err("failed to attach handler %s to device %s, error: %d\n",
1003 handler->name, kobject_name(&dev->dev.kobj), error);
1005 return error;
1008 #ifdef CONFIG_COMPAT
1010 static int input_bits_to_string(char *buf, int buf_size,
1011 unsigned long bits, bool skip_empty)
1013 int len = 0;
1015 if (in_compat_syscall()) {
1016 u32 dword = bits >> 32;
1017 if (dword || !skip_empty)
1018 len += snprintf(buf, buf_size, "%x ", dword);
1020 dword = bits & 0xffffffffUL;
1021 if (dword || !skip_empty || len)
1022 len += snprintf(buf + len, max(buf_size - len, 0),
1023 "%x", dword);
1024 } else {
1025 if (bits || !skip_empty)
1026 len += snprintf(buf, buf_size, "%lx", bits);
1029 return len;
1032 #else /* !CONFIG_COMPAT */
1034 static int input_bits_to_string(char *buf, int buf_size,
1035 unsigned long bits, bool skip_empty)
1037 return bits || !skip_empty ?
1038 snprintf(buf, buf_size, "%lx", bits) : 0;
1041 #endif
1043 #ifdef CONFIG_PROC_FS
1045 static struct proc_dir_entry *proc_bus_input_dir;
1046 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1047 static int input_devices_state;
1049 static inline void input_wakeup_procfs_readers(void)
1051 input_devices_state++;
1052 wake_up(&input_devices_poll_wait);
1055 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1057 poll_wait(file, &input_devices_poll_wait, wait);
1058 if (file->f_version != input_devices_state) {
1059 file->f_version = input_devices_state;
1060 return EPOLLIN | EPOLLRDNORM;
1063 return 0;
1066 union input_seq_state {
1067 struct {
1068 unsigned short pos;
1069 bool mutex_acquired;
1071 void *p;
1074 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1076 union input_seq_state *state = (union input_seq_state *)&seq->private;
1077 int error;
1079 /* We need to fit into seq->private pointer */
1080 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1082 error = mutex_lock_interruptible(&input_mutex);
1083 if (error) {
1084 state->mutex_acquired = false;
1085 return ERR_PTR(error);
1088 state->mutex_acquired = true;
1090 return seq_list_start(&input_dev_list, *pos);
1093 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1095 return seq_list_next(v, &input_dev_list, pos);
1098 static void input_seq_stop(struct seq_file *seq, void *v)
1100 union input_seq_state *state = (union input_seq_state *)&seq->private;
1102 if (state->mutex_acquired)
1103 mutex_unlock(&input_mutex);
1106 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1107 unsigned long *bitmap, int max)
1109 int i;
1110 bool skip_empty = true;
1111 char buf[18];
1113 seq_printf(seq, "B: %s=", name);
1115 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1116 if (input_bits_to_string(buf, sizeof(buf),
1117 bitmap[i], skip_empty)) {
1118 skip_empty = false;
1119 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1124 * If no output was produced print a single 0.
1126 if (skip_empty)
1127 seq_putc(seq, '0');
1129 seq_putc(seq, '\n');
1132 static int input_devices_seq_show(struct seq_file *seq, void *v)
1134 struct input_dev *dev = container_of(v, struct input_dev, node);
1135 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1136 struct input_handle *handle;
1138 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1139 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1141 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1142 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1143 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1144 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1145 seq_puts(seq, "H: Handlers=");
1147 list_for_each_entry(handle, &dev->h_list, d_node)
1148 seq_printf(seq, "%s ", handle->name);
1149 seq_putc(seq, '\n');
1151 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1153 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1154 if (test_bit(EV_KEY, dev->evbit))
1155 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1156 if (test_bit(EV_REL, dev->evbit))
1157 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1158 if (test_bit(EV_ABS, dev->evbit))
1159 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1160 if (test_bit(EV_MSC, dev->evbit))
1161 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1162 if (test_bit(EV_LED, dev->evbit))
1163 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1164 if (test_bit(EV_SND, dev->evbit))
1165 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1166 if (test_bit(EV_FF, dev->evbit))
1167 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1168 if (test_bit(EV_SW, dev->evbit))
1169 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1171 seq_putc(seq, '\n');
1173 kfree(path);
1174 return 0;
1177 static const struct seq_operations input_devices_seq_ops = {
1178 .start = input_devices_seq_start,
1179 .next = input_devices_seq_next,
1180 .stop = input_seq_stop,
1181 .show = input_devices_seq_show,
1184 static int input_proc_devices_open(struct inode *inode, struct file *file)
1186 return seq_open(file, &input_devices_seq_ops);
1189 static const struct file_operations input_devices_fileops = {
1190 .owner = THIS_MODULE,
1191 .open = input_proc_devices_open,
1192 .poll = input_proc_devices_poll,
1193 .read = seq_read,
1194 .llseek = seq_lseek,
1195 .release = seq_release,
1198 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1200 union input_seq_state *state = (union input_seq_state *)&seq->private;
1201 int error;
1203 /* We need to fit into seq->private pointer */
1204 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1206 error = mutex_lock_interruptible(&input_mutex);
1207 if (error) {
1208 state->mutex_acquired = false;
1209 return ERR_PTR(error);
1212 state->mutex_acquired = true;
1213 state->pos = *pos;
1215 return seq_list_start(&input_handler_list, *pos);
1218 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1220 union input_seq_state *state = (union input_seq_state *)&seq->private;
1222 state->pos = *pos + 1;
1223 return seq_list_next(v, &input_handler_list, pos);
1226 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1228 struct input_handler *handler = container_of(v, struct input_handler, node);
1229 union input_seq_state *state = (union input_seq_state *)&seq->private;
1231 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1232 if (handler->filter)
1233 seq_puts(seq, " (filter)");
1234 if (handler->legacy_minors)
1235 seq_printf(seq, " Minor=%d", handler->minor);
1236 seq_putc(seq, '\n');
1238 return 0;
1241 static const struct seq_operations input_handlers_seq_ops = {
1242 .start = input_handlers_seq_start,
1243 .next = input_handlers_seq_next,
1244 .stop = input_seq_stop,
1245 .show = input_handlers_seq_show,
1248 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1250 return seq_open(file, &input_handlers_seq_ops);
1253 static const struct file_operations input_handlers_fileops = {
1254 .owner = THIS_MODULE,
1255 .open = input_proc_handlers_open,
1256 .read = seq_read,
1257 .llseek = seq_lseek,
1258 .release = seq_release,
1261 static int __init input_proc_init(void)
1263 struct proc_dir_entry *entry;
1265 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1266 if (!proc_bus_input_dir)
1267 return -ENOMEM;
1269 entry = proc_create("devices", 0, proc_bus_input_dir,
1270 &input_devices_fileops);
1271 if (!entry)
1272 goto fail1;
1274 entry = proc_create("handlers", 0, proc_bus_input_dir,
1275 &input_handlers_fileops);
1276 if (!entry)
1277 goto fail2;
1279 return 0;
1281 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1282 fail1: remove_proc_entry("bus/input", NULL);
1283 return -ENOMEM;
1286 static void input_proc_exit(void)
1288 remove_proc_entry("devices", proc_bus_input_dir);
1289 remove_proc_entry("handlers", proc_bus_input_dir);
1290 remove_proc_entry("bus/input", NULL);
1293 #else /* !CONFIG_PROC_FS */
1294 static inline void input_wakeup_procfs_readers(void) { }
1295 static inline int input_proc_init(void) { return 0; }
1296 static inline void input_proc_exit(void) { }
1297 #endif
1299 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1300 static ssize_t input_dev_show_##name(struct device *dev, \
1301 struct device_attribute *attr, \
1302 char *buf) \
1304 struct input_dev *input_dev = to_input_dev(dev); \
1306 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1307 input_dev->name ? input_dev->name : ""); \
1309 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1311 INPUT_DEV_STRING_ATTR_SHOW(name);
1312 INPUT_DEV_STRING_ATTR_SHOW(phys);
1313 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1315 static int input_print_modalias_bits(char *buf, int size,
1316 char name, unsigned long *bm,
1317 unsigned int min_bit, unsigned int max_bit)
1319 int len = 0, i;
1321 len += snprintf(buf, max(size, 0), "%c", name);
1322 for (i = min_bit; i < max_bit; i++)
1323 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1324 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1325 return len;
1328 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1329 int add_cr)
1331 int len;
1333 len = snprintf(buf, max(size, 0),
1334 "input:b%04Xv%04Xp%04Xe%04X-",
1335 id->id.bustype, id->id.vendor,
1336 id->id.product, id->id.version);
1338 len += input_print_modalias_bits(buf + len, size - len,
1339 'e', id->evbit, 0, EV_MAX);
1340 len += input_print_modalias_bits(buf + len, size - len,
1341 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1342 len += input_print_modalias_bits(buf + len, size - len,
1343 'r', id->relbit, 0, REL_MAX);
1344 len += input_print_modalias_bits(buf + len, size - len,
1345 'a', id->absbit, 0, ABS_MAX);
1346 len += input_print_modalias_bits(buf + len, size - len,
1347 'm', id->mscbit, 0, MSC_MAX);
1348 len += input_print_modalias_bits(buf + len, size - len,
1349 'l', id->ledbit, 0, LED_MAX);
1350 len += input_print_modalias_bits(buf + len, size - len,
1351 's', id->sndbit, 0, SND_MAX);
1352 len += input_print_modalias_bits(buf + len, size - len,
1353 'f', id->ffbit, 0, FF_MAX);
1354 len += input_print_modalias_bits(buf + len, size - len,
1355 'w', id->swbit, 0, SW_MAX);
1357 if (add_cr)
1358 len += snprintf(buf + len, max(size - len, 0), "\n");
1360 return len;
1363 static ssize_t input_dev_show_modalias(struct device *dev,
1364 struct device_attribute *attr,
1365 char *buf)
1367 struct input_dev *id = to_input_dev(dev);
1368 ssize_t len;
1370 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1372 return min_t(int, len, PAGE_SIZE);
1374 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1376 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1377 int max, int add_cr);
1379 static ssize_t input_dev_show_properties(struct device *dev,
1380 struct device_attribute *attr,
1381 char *buf)
1383 struct input_dev *input_dev = to_input_dev(dev);
1384 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1385 INPUT_PROP_MAX, true);
1386 return min_t(int, len, PAGE_SIZE);
1388 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1390 static struct attribute *input_dev_attrs[] = {
1391 &dev_attr_name.attr,
1392 &dev_attr_phys.attr,
1393 &dev_attr_uniq.attr,
1394 &dev_attr_modalias.attr,
1395 &dev_attr_properties.attr,
1396 NULL
1399 static const struct attribute_group input_dev_attr_group = {
1400 .attrs = input_dev_attrs,
1403 #define INPUT_DEV_ID_ATTR(name) \
1404 static ssize_t input_dev_show_id_##name(struct device *dev, \
1405 struct device_attribute *attr, \
1406 char *buf) \
1408 struct input_dev *input_dev = to_input_dev(dev); \
1409 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1411 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1413 INPUT_DEV_ID_ATTR(bustype);
1414 INPUT_DEV_ID_ATTR(vendor);
1415 INPUT_DEV_ID_ATTR(product);
1416 INPUT_DEV_ID_ATTR(version);
1418 static struct attribute *input_dev_id_attrs[] = {
1419 &dev_attr_bustype.attr,
1420 &dev_attr_vendor.attr,
1421 &dev_attr_product.attr,
1422 &dev_attr_version.attr,
1423 NULL
1426 static const struct attribute_group input_dev_id_attr_group = {
1427 .name = "id",
1428 .attrs = input_dev_id_attrs,
1431 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1432 int max, int add_cr)
1434 int i;
1435 int len = 0;
1436 bool skip_empty = true;
1438 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1439 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1440 bitmap[i], skip_empty);
1441 if (len) {
1442 skip_empty = false;
1443 if (i > 0)
1444 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1449 * If no output was produced print a single 0.
1451 if (len == 0)
1452 len = snprintf(buf, buf_size, "%d", 0);
1454 if (add_cr)
1455 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1457 return len;
1460 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1461 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1462 struct device_attribute *attr, \
1463 char *buf) \
1465 struct input_dev *input_dev = to_input_dev(dev); \
1466 int len = input_print_bitmap(buf, PAGE_SIZE, \
1467 input_dev->bm##bit, ev##_MAX, \
1468 true); \
1469 return min_t(int, len, PAGE_SIZE); \
1471 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1473 INPUT_DEV_CAP_ATTR(EV, ev);
1474 INPUT_DEV_CAP_ATTR(KEY, key);
1475 INPUT_DEV_CAP_ATTR(REL, rel);
1476 INPUT_DEV_CAP_ATTR(ABS, abs);
1477 INPUT_DEV_CAP_ATTR(MSC, msc);
1478 INPUT_DEV_CAP_ATTR(LED, led);
1479 INPUT_DEV_CAP_ATTR(SND, snd);
1480 INPUT_DEV_CAP_ATTR(FF, ff);
1481 INPUT_DEV_CAP_ATTR(SW, sw);
1483 static struct attribute *input_dev_caps_attrs[] = {
1484 &dev_attr_ev.attr,
1485 &dev_attr_key.attr,
1486 &dev_attr_rel.attr,
1487 &dev_attr_abs.attr,
1488 &dev_attr_msc.attr,
1489 &dev_attr_led.attr,
1490 &dev_attr_snd.attr,
1491 &dev_attr_ff.attr,
1492 &dev_attr_sw.attr,
1493 NULL
1496 static const struct attribute_group input_dev_caps_attr_group = {
1497 .name = "capabilities",
1498 .attrs = input_dev_caps_attrs,
1501 static const struct attribute_group *input_dev_attr_groups[] = {
1502 &input_dev_attr_group,
1503 &input_dev_id_attr_group,
1504 &input_dev_caps_attr_group,
1505 NULL
1508 static void input_dev_release(struct device *device)
1510 struct input_dev *dev = to_input_dev(device);
1512 input_ff_destroy(dev);
1513 input_mt_destroy_slots(dev);
1514 kfree(dev->absinfo);
1515 kfree(dev->vals);
1516 kfree(dev);
1518 module_put(THIS_MODULE);
1522 * Input uevent interface - loading event handlers based on
1523 * device bitfields.
1525 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1526 const char *name, unsigned long *bitmap, int max)
1528 int len;
1530 if (add_uevent_var(env, "%s", name))
1531 return -ENOMEM;
1533 len = input_print_bitmap(&env->buf[env->buflen - 1],
1534 sizeof(env->buf) - env->buflen,
1535 bitmap, max, false);
1536 if (len >= (sizeof(env->buf) - env->buflen))
1537 return -ENOMEM;
1539 env->buflen += len;
1540 return 0;
1543 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1544 struct input_dev *dev)
1546 int len;
1548 if (add_uevent_var(env, "MODALIAS="))
1549 return -ENOMEM;
1551 len = input_print_modalias(&env->buf[env->buflen - 1],
1552 sizeof(env->buf) - env->buflen,
1553 dev, 0);
1554 if (len >= (sizeof(env->buf) - env->buflen))
1555 return -ENOMEM;
1557 env->buflen += len;
1558 return 0;
1561 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1562 do { \
1563 int err = add_uevent_var(env, fmt, val); \
1564 if (err) \
1565 return err; \
1566 } while (0)
1568 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1569 do { \
1570 int err = input_add_uevent_bm_var(env, name, bm, max); \
1571 if (err) \
1572 return err; \
1573 } while (0)
1575 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1576 do { \
1577 int err = input_add_uevent_modalias_var(env, dev); \
1578 if (err) \
1579 return err; \
1580 } while (0)
1582 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1584 struct input_dev *dev = to_input_dev(device);
1586 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1587 dev->id.bustype, dev->id.vendor,
1588 dev->id.product, dev->id.version);
1589 if (dev->name)
1590 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1591 if (dev->phys)
1592 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1593 if (dev->uniq)
1594 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1596 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1598 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1599 if (test_bit(EV_KEY, dev->evbit))
1600 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1601 if (test_bit(EV_REL, dev->evbit))
1602 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1603 if (test_bit(EV_ABS, dev->evbit))
1604 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1605 if (test_bit(EV_MSC, dev->evbit))
1606 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1607 if (test_bit(EV_LED, dev->evbit))
1608 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1609 if (test_bit(EV_SND, dev->evbit))
1610 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1611 if (test_bit(EV_FF, dev->evbit))
1612 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1613 if (test_bit(EV_SW, dev->evbit))
1614 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1616 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1618 return 0;
1621 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1622 do { \
1623 int i; \
1624 bool active; \
1626 if (!test_bit(EV_##type, dev->evbit)) \
1627 break; \
1629 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1630 active = test_bit(i, dev->bits); \
1631 if (!active && !on) \
1632 continue; \
1634 dev->event(dev, EV_##type, i, on ? active : 0); \
1636 } while (0)
1638 static void input_dev_toggle(struct input_dev *dev, bool activate)
1640 if (!dev->event)
1641 return;
1643 INPUT_DO_TOGGLE(dev, LED, led, activate);
1644 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1646 if (activate && test_bit(EV_REP, dev->evbit)) {
1647 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1648 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1653 * input_reset_device() - reset/restore the state of input device
1654 * @dev: input device whose state needs to be reset
1656 * This function tries to reset the state of an opened input device and
1657 * bring internal state and state if the hardware in sync with each other.
1658 * We mark all keys as released, restore LED state, repeat rate, etc.
1660 void input_reset_device(struct input_dev *dev)
1662 unsigned long flags;
1664 mutex_lock(&dev->mutex);
1665 spin_lock_irqsave(&dev->event_lock, flags);
1667 input_dev_toggle(dev, true);
1668 input_dev_release_keys(dev);
1670 spin_unlock_irqrestore(&dev->event_lock, flags);
1671 mutex_unlock(&dev->mutex);
1673 EXPORT_SYMBOL(input_reset_device);
1675 #ifdef CONFIG_PM_SLEEP
1676 static int input_dev_suspend(struct device *dev)
1678 struct input_dev *input_dev = to_input_dev(dev);
1680 spin_lock_irq(&input_dev->event_lock);
1683 * Keys that are pressed now are unlikely to be
1684 * still pressed when we resume.
1686 input_dev_release_keys(input_dev);
1688 /* Turn off LEDs and sounds, if any are active. */
1689 input_dev_toggle(input_dev, false);
1691 spin_unlock_irq(&input_dev->event_lock);
1693 return 0;
1696 static int input_dev_resume(struct device *dev)
1698 struct input_dev *input_dev = to_input_dev(dev);
1700 spin_lock_irq(&input_dev->event_lock);
1702 /* Restore state of LEDs and sounds, if any were active. */
1703 input_dev_toggle(input_dev, true);
1705 spin_unlock_irq(&input_dev->event_lock);
1707 return 0;
1710 static int input_dev_freeze(struct device *dev)
1712 struct input_dev *input_dev = to_input_dev(dev);
1714 spin_lock_irq(&input_dev->event_lock);
1717 * Keys that are pressed now are unlikely to be
1718 * still pressed when we resume.
1720 input_dev_release_keys(input_dev);
1722 spin_unlock_irq(&input_dev->event_lock);
1724 return 0;
1727 static int input_dev_poweroff(struct device *dev)
1729 struct input_dev *input_dev = to_input_dev(dev);
1731 spin_lock_irq(&input_dev->event_lock);
1733 /* Turn off LEDs and sounds, if any are active. */
1734 input_dev_toggle(input_dev, false);
1736 spin_unlock_irq(&input_dev->event_lock);
1738 return 0;
1741 static const struct dev_pm_ops input_dev_pm_ops = {
1742 .suspend = input_dev_suspend,
1743 .resume = input_dev_resume,
1744 .freeze = input_dev_freeze,
1745 .poweroff = input_dev_poweroff,
1746 .restore = input_dev_resume,
1748 #endif /* CONFIG_PM */
1750 static const struct device_type input_dev_type = {
1751 .groups = input_dev_attr_groups,
1752 .release = input_dev_release,
1753 .uevent = input_dev_uevent,
1754 #ifdef CONFIG_PM_SLEEP
1755 .pm = &input_dev_pm_ops,
1756 #endif
1759 static char *input_devnode(struct device *dev, umode_t *mode)
1761 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1764 struct class input_class = {
1765 .name = "input",
1766 .devnode = input_devnode,
1768 EXPORT_SYMBOL_GPL(input_class);
1771 * input_allocate_device - allocate memory for new input device
1773 * Returns prepared struct input_dev or %NULL.
1775 * NOTE: Use input_free_device() to free devices that have not been
1776 * registered; input_unregister_device() should be used for already
1777 * registered devices.
1779 struct input_dev *input_allocate_device(void)
1781 static atomic_t input_no = ATOMIC_INIT(-1);
1782 struct input_dev *dev;
1784 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1785 if (dev) {
1786 dev->dev.type = &input_dev_type;
1787 dev->dev.class = &input_class;
1788 device_initialize(&dev->dev);
1789 mutex_init(&dev->mutex);
1790 spin_lock_init(&dev->event_lock);
1791 timer_setup(&dev->timer, NULL, 0);
1792 INIT_LIST_HEAD(&dev->h_list);
1793 INIT_LIST_HEAD(&dev->node);
1795 dev_set_name(&dev->dev, "input%lu",
1796 (unsigned long)atomic_inc_return(&input_no));
1798 __module_get(THIS_MODULE);
1801 return dev;
1803 EXPORT_SYMBOL(input_allocate_device);
1805 struct input_devres {
1806 struct input_dev *input;
1809 static int devm_input_device_match(struct device *dev, void *res, void *data)
1811 struct input_devres *devres = res;
1813 return devres->input == data;
1816 static void devm_input_device_release(struct device *dev, void *res)
1818 struct input_devres *devres = res;
1819 struct input_dev *input = devres->input;
1821 dev_dbg(dev, "%s: dropping reference to %s\n",
1822 __func__, dev_name(&input->dev));
1823 input_put_device(input);
1827 * devm_input_allocate_device - allocate managed input device
1828 * @dev: device owning the input device being created
1830 * Returns prepared struct input_dev or %NULL.
1832 * Managed input devices do not need to be explicitly unregistered or
1833 * freed as it will be done automatically when owner device unbinds from
1834 * its driver (or binding fails). Once managed input device is allocated,
1835 * it is ready to be set up and registered in the same fashion as regular
1836 * input device. There are no special devm_input_device_[un]register()
1837 * variants, regular ones work with both managed and unmanaged devices,
1838 * should you need them. In most cases however, managed input device need
1839 * not be explicitly unregistered or freed.
1841 * NOTE: the owner device is set up as parent of input device and users
1842 * should not override it.
1844 struct input_dev *devm_input_allocate_device(struct device *dev)
1846 struct input_dev *input;
1847 struct input_devres *devres;
1849 devres = devres_alloc(devm_input_device_release,
1850 sizeof(*devres), GFP_KERNEL);
1851 if (!devres)
1852 return NULL;
1854 input = input_allocate_device();
1855 if (!input) {
1856 devres_free(devres);
1857 return NULL;
1860 input->dev.parent = dev;
1861 input->devres_managed = true;
1863 devres->input = input;
1864 devres_add(dev, devres);
1866 return input;
1868 EXPORT_SYMBOL(devm_input_allocate_device);
1871 * input_free_device - free memory occupied by input_dev structure
1872 * @dev: input device to free
1874 * This function should only be used if input_register_device()
1875 * was not called yet or if it failed. Once device was registered
1876 * use input_unregister_device() and memory will be freed once last
1877 * reference to the device is dropped.
1879 * Device should be allocated by input_allocate_device().
1881 * NOTE: If there are references to the input device then memory
1882 * will not be freed until last reference is dropped.
1884 void input_free_device(struct input_dev *dev)
1886 if (dev) {
1887 if (dev->devres_managed)
1888 WARN_ON(devres_destroy(dev->dev.parent,
1889 devm_input_device_release,
1890 devm_input_device_match,
1891 dev));
1892 input_put_device(dev);
1895 EXPORT_SYMBOL(input_free_device);
1898 * input_set_capability - mark device as capable of a certain event
1899 * @dev: device that is capable of emitting or accepting event
1900 * @type: type of the event (EV_KEY, EV_REL, etc...)
1901 * @code: event code
1903 * In addition to setting up corresponding bit in appropriate capability
1904 * bitmap the function also adjusts dev->evbit.
1906 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1908 switch (type) {
1909 case EV_KEY:
1910 __set_bit(code, dev->keybit);
1911 break;
1913 case EV_REL:
1914 __set_bit(code, dev->relbit);
1915 break;
1917 case EV_ABS:
1918 input_alloc_absinfo(dev);
1919 if (!dev->absinfo)
1920 return;
1922 __set_bit(code, dev->absbit);
1923 break;
1925 case EV_MSC:
1926 __set_bit(code, dev->mscbit);
1927 break;
1929 case EV_SW:
1930 __set_bit(code, dev->swbit);
1931 break;
1933 case EV_LED:
1934 __set_bit(code, dev->ledbit);
1935 break;
1937 case EV_SND:
1938 __set_bit(code, dev->sndbit);
1939 break;
1941 case EV_FF:
1942 __set_bit(code, dev->ffbit);
1943 break;
1945 case EV_PWR:
1946 /* do nothing */
1947 break;
1949 default:
1950 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
1951 dump_stack();
1952 return;
1955 __set_bit(type, dev->evbit);
1957 EXPORT_SYMBOL(input_set_capability);
1959 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1961 int mt_slots;
1962 int i;
1963 unsigned int events;
1965 if (dev->mt) {
1966 mt_slots = dev->mt->num_slots;
1967 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1968 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1969 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1970 mt_slots = clamp(mt_slots, 2, 32);
1971 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1972 mt_slots = 2;
1973 } else {
1974 mt_slots = 0;
1977 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1979 if (test_bit(EV_ABS, dev->evbit))
1980 for_each_set_bit(i, dev->absbit, ABS_CNT)
1981 events += input_is_mt_axis(i) ? mt_slots : 1;
1983 if (test_bit(EV_REL, dev->evbit))
1984 events += bitmap_weight(dev->relbit, REL_CNT);
1986 /* Make room for KEY and MSC events */
1987 events += 7;
1989 return events;
1992 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1993 do { \
1994 if (!test_bit(EV_##type, dev->evbit)) \
1995 memset(dev->bits##bit, 0, \
1996 sizeof(dev->bits##bit)); \
1997 } while (0)
1999 static void input_cleanse_bitmasks(struct input_dev *dev)
2001 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2002 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2003 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2004 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2005 INPUT_CLEANSE_BITMASK(dev, LED, led);
2006 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2007 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2008 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2011 static void __input_unregister_device(struct input_dev *dev)
2013 struct input_handle *handle, *next;
2015 input_disconnect_device(dev);
2017 mutex_lock(&input_mutex);
2019 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2020 handle->handler->disconnect(handle);
2021 WARN_ON(!list_empty(&dev->h_list));
2023 del_timer_sync(&dev->timer);
2024 list_del_init(&dev->node);
2026 input_wakeup_procfs_readers();
2028 mutex_unlock(&input_mutex);
2030 device_del(&dev->dev);
2033 static void devm_input_device_unregister(struct device *dev, void *res)
2035 struct input_devres *devres = res;
2036 struct input_dev *input = devres->input;
2038 dev_dbg(dev, "%s: unregistering device %s\n",
2039 __func__, dev_name(&input->dev));
2040 __input_unregister_device(input);
2044 * input_enable_softrepeat - enable software autorepeat
2045 * @dev: input device
2046 * @delay: repeat delay
2047 * @period: repeat period
2049 * Enable software autorepeat on the input device.
2051 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2053 dev->timer.function = input_repeat_key;
2054 dev->rep[REP_DELAY] = delay;
2055 dev->rep[REP_PERIOD] = period;
2057 EXPORT_SYMBOL(input_enable_softrepeat);
2060 * input_register_device - register device with input core
2061 * @dev: device to be registered
2063 * This function registers device with input core. The device must be
2064 * allocated with input_allocate_device() and all it's capabilities
2065 * set up before registering.
2066 * If function fails the device must be freed with input_free_device().
2067 * Once device has been successfully registered it can be unregistered
2068 * with input_unregister_device(); input_free_device() should not be
2069 * called in this case.
2071 * Note that this function is also used to register managed input devices
2072 * (ones allocated with devm_input_allocate_device()). Such managed input
2073 * devices need not be explicitly unregistered or freed, their tear down
2074 * is controlled by the devres infrastructure. It is also worth noting
2075 * that tear down of managed input devices is internally a 2-step process:
2076 * registered managed input device is first unregistered, but stays in
2077 * memory and can still handle input_event() calls (although events will
2078 * not be delivered anywhere). The freeing of managed input device will
2079 * happen later, when devres stack is unwound to the point where device
2080 * allocation was made.
2082 int input_register_device(struct input_dev *dev)
2084 struct input_devres *devres = NULL;
2085 struct input_handler *handler;
2086 unsigned int packet_size;
2087 const char *path;
2088 int error;
2090 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2091 dev_err(&dev->dev,
2092 "Absolute device without dev->absinfo, refusing to register\n");
2093 return -EINVAL;
2096 if (dev->devres_managed) {
2097 devres = devres_alloc(devm_input_device_unregister,
2098 sizeof(*devres), GFP_KERNEL);
2099 if (!devres)
2100 return -ENOMEM;
2102 devres->input = dev;
2105 /* Every input device generates EV_SYN/SYN_REPORT events. */
2106 __set_bit(EV_SYN, dev->evbit);
2108 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2109 __clear_bit(KEY_RESERVED, dev->keybit);
2111 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2112 input_cleanse_bitmasks(dev);
2114 packet_size = input_estimate_events_per_packet(dev);
2115 if (dev->hint_events_per_packet < packet_size)
2116 dev->hint_events_per_packet = packet_size;
2118 dev->max_vals = dev->hint_events_per_packet + 2;
2119 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2120 if (!dev->vals) {
2121 error = -ENOMEM;
2122 goto err_devres_free;
2126 * If delay and period are pre-set by the driver, then autorepeating
2127 * is handled by the driver itself and we don't do it in input.c.
2129 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2130 input_enable_softrepeat(dev, 250, 33);
2132 if (!dev->getkeycode)
2133 dev->getkeycode = input_default_getkeycode;
2135 if (!dev->setkeycode)
2136 dev->setkeycode = input_default_setkeycode;
2138 error = device_add(&dev->dev);
2139 if (error)
2140 goto err_free_vals;
2142 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2143 pr_info("%s as %s\n",
2144 dev->name ? dev->name : "Unspecified device",
2145 path ? path : "N/A");
2146 kfree(path);
2148 error = mutex_lock_interruptible(&input_mutex);
2149 if (error)
2150 goto err_device_del;
2152 list_add_tail(&dev->node, &input_dev_list);
2154 list_for_each_entry(handler, &input_handler_list, node)
2155 input_attach_handler(dev, handler);
2157 input_wakeup_procfs_readers();
2159 mutex_unlock(&input_mutex);
2161 if (dev->devres_managed) {
2162 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2163 __func__, dev_name(&dev->dev));
2164 devres_add(dev->dev.parent, devres);
2166 return 0;
2168 err_device_del:
2169 device_del(&dev->dev);
2170 err_free_vals:
2171 kfree(dev->vals);
2172 dev->vals = NULL;
2173 err_devres_free:
2174 devres_free(devres);
2175 return error;
2177 EXPORT_SYMBOL(input_register_device);
2180 * input_unregister_device - unregister previously registered device
2181 * @dev: device to be unregistered
2183 * This function unregisters an input device. Once device is unregistered
2184 * the caller should not try to access it as it may get freed at any moment.
2186 void input_unregister_device(struct input_dev *dev)
2188 if (dev->devres_managed) {
2189 WARN_ON(devres_destroy(dev->dev.parent,
2190 devm_input_device_unregister,
2191 devm_input_device_match,
2192 dev));
2193 __input_unregister_device(dev);
2195 * We do not do input_put_device() here because it will be done
2196 * when 2nd devres fires up.
2198 } else {
2199 __input_unregister_device(dev);
2200 input_put_device(dev);
2203 EXPORT_SYMBOL(input_unregister_device);
2206 * input_register_handler - register a new input handler
2207 * @handler: handler to be registered
2209 * This function registers a new input handler (interface) for input
2210 * devices in the system and attaches it to all input devices that
2211 * are compatible with the handler.
2213 int input_register_handler(struct input_handler *handler)
2215 struct input_dev *dev;
2216 int error;
2218 error = mutex_lock_interruptible(&input_mutex);
2219 if (error)
2220 return error;
2222 INIT_LIST_HEAD(&handler->h_list);
2224 list_add_tail(&handler->node, &input_handler_list);
2226 list_for_each_entry(dev, &input_dev_list, node)
2227 input_attach_handler(dev, handler);
2229 input_wakeup_procfs_readers();
2231 mutex_unlock(&input_mutex);
2232 return 0;
2234 EXPORT_SYMBOL(input_register_handler);
2237 * input_unregister_handler - unregisters an input handler
2238 * @handler: handler to be unregistered
2240 * This function disconnects a handler from its input devices and
2241 * removes it from lists of known handlers.
2243 void input_unregister_handler(struct input_handler *handler)
2245 struct input_handle *handle, *next;
2247 mutex_lock(&input_mutex);
2249 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2250 handler->disconnect(handle);
2251 WARN_ON(!list_empty(&handler->h_list));
2253 list_del_init(&handler->node);
2255 input_wakeup_procfs_readers();
2257 mutex_unlock(&input_mutex);
2259 EXPORT_SYMBOL(input_unregister_handler);
2262 * input_handler_for_each_handle - handle iterator
2263 * @handler: input handler to iterate
2264 * @data: data for the callback
2265 * @fn: function to be called for each handle
2267 * Iterate over @bus's list of devices, and call @fn for each, passing
2268 * it @data and stop when @fn returns a non-zero value. The function is
2269 * using RCU to traverse the list and therefore may be using in atomic
2270 * contexts. The @fn callback is invoked from RCU critical section and
2271 * thus must not sleep.
2273 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2274 int (*fn)(struct input_handle *, void *))
2276 struct input_handle *handle;
2277 int retval = 0;
2279 rcu_read_lock();
2281 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2282 retval = fn(handle, data);
2283 if (retval)
2284 break;
2287 rcu_read_unlock();
2289 return retval;
2291 EXPORT_SYMBOL(input_handler_for_each_handle);
2294 * input_register_handle - register a new input handle
2295 * @handle: handle to register
2297 * This function puts a new input handle onto device's
2298 * and handler's lists so that events can flow through
2299 * it once it is opened using input_open_device().
2301 * This function is supposed to be called from handler's
2302 * connect() method.
2304 int input_register_handle(struct input_handle *handle)
2306 struct input_handler *handler = handle->handler;
2307 struct input_dev *dev = handle->dev;
2308 int error;
2311 * We take dev->mutex here to prevent race with
2312 * input_release_device().
2314 error = mutex_lock_interruptible(&dev->mutex);
2315 if (error)
2316 return error;
2319 * Filters go to the head of the list, normal handlers
2320 * to the tail.
2322 if (handler->filter)
2323 list_add_rcu(&handle->d_node, &dev->h_list);
2324 else
2325 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2327 mutex_unlock(&dev->mutex);
2330 * Since we are supposed to be called from ->connect()
2331 * which is mutually exclusive with ->disconnect()
2332 * we can't be racing with input_unregister_handle()
2333 * and so separate lock is not needed here.
2335 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2337 if (handler->start)
2338 handler->start(handle);
2340 return 0;
2342 EXPORT_SYMBOL(input_register_handle);
2345 * input_unregister_handle - unregister an input handle
2346 * @handle: handle to unregister
2348 * This function removes input handle from device's
2349 * and handler's lists.
2351 * This function is supposed to be called from handler's
2352 * disconnect() method.
2354 void input_unregister_handle(struct input_handle *handle)
2356 struct input_dev *dev = handle->dev;
2358 list_del_rcu(&handle->h_node);
2361 * Take dev->mutex to prevent race with input_release_device().
2363 mutex_lock(&dev->mutex);
2364 list_del_rcu(&handle->d_node);
2365 mutex_unlock(&dev->mutex);
2367 synchronize_rcu();
2369 EXPORT_SYMBOL(input_unregister_handle);
2372 * input_get_new_minor - allocates a new input minor number
2373 * @legacy_base: beginning or the legacy range to be searched
2374 * @legacy_num: size of legacy range
2375 * @allow_dynamic: whether we can also take ID from the dynamic range
2377 * This function allocates a new device minor for from input major namespace.
2378 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2379 * parameters and whether ID can be allocated from dynamic range if there are
2380 * no free IDs in legacy range.
2382 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2383 bool allow_dynamic)
2386 * This function should be called from input handler's ->connect()
2387 * methods, which are serialized with input_mutex, so no additional
2388 * locking is needed here.
2390 if (legacy_base >= 0) {
2391 int minor = ida_simple_get(&input_ida,
2392 legacy_base,
2393 legacy_base + legacy_num,
2394 GFP_KERNEL);
2395 if (minor >= 0 || !allow_dynamic)
2396 return minor;
2399 return ida_simple_get(&input_ida,
2400 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2401 GFP_KERNEL);
2403 EXPORT_SYMBOL(input_get_new_minor);
2406 * input_free_minor - release previously allocated minor
2407 * @minor: minor to be released
2409 * This function releases previously allocated input minor so that it can be
2410 * reused later.
2412 void input_free_minor(unsigned int minor)
2414 ida_simple_remove(&input_ida, minor);
2416 EXPORT_SYMBOL(input_free_minor);
2418 static int __init input_init(void)
2420 int err;
2422 err = class_register(&input_class);
2423 if (err) {
2424 pr_err("unable to register input_dev class\n");
2425 return err;
2428 err = input_proc_init();
2429 if (err)
2430 goto fail1;
2432 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2433 INPUT_MAX_CHAR_DEVICES, "input");
2434 if (err) {
2435 pr_err("unable to register char major %d", INPUT_MAJOR);
2436 goto fail2;
2439 return 0;
2441 fail2: input_proc_exit();
2442 fail1: class_unregister(&input_class);
2443 return err;
2446 static void __exit input_exit(void)
2448 input_proc_exit();
2449 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2450 INPUT_MAX_CHAR_DEVICES);
2451 class_unregister(&input_class);
2454 subsys_initcall(input_init);
2455 module_exit(input_exit);