1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
28 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
29 MODULE_DESCRIPTION("Input core");
30 MODULE_LICENSE("GPL");
32 #define INPUT_MAX_CHAR_DEVICES 1024
33 #define INPUT_FIRST_DYNAMIC_DEV 256
34 static DEFINE_IDA(input_ida
);
36 static LIST_HEAD(input_dev_list
);
37 static LIST_HEAD(input_handler_list
);
40 * input_mutex protects access to both input_dev_list and input_handler_list.
41 * This also causes input_[un]register_device and input_[un]register_handler
42 * be mutually exclusive which simplifies locking in drivers implementing
45 static DEFINE_MUTEX(input_mutex
);
47 static const struct input_value input_value_sync
= { EV_SYN
, SYN_REPORT
, 1 };
49 static inline int is_event_supported(unsigned int code
,
50 unsigned long *bm
, unsigned int max
)
52 return code
<= max
&& test_bit(code
, bm
);
55 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
58 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
61 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
62 return (old_val
* 3 + value
) / 4;
64 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
65 return (old_val
+ value
) / 2;
71 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
73 if (test_bit(EV_REP
, dev
->evbit
) &&
74 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
75 dev
->timer
.function
) {
76 dev
->repeat_key
= code
;
77 mod_timer(&dev
->timer
,
78 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
82 static void input_stop_autorepeat(struct input_dev
*dev
)
84 del_timer(&dev
->timer
);
88 * Pass event first through all filters and then, if event has not been
89 * filtered out, through all open handles. This function is called with
90 * dev->event_lock held and interrupts disabled.
92 static unsigned int input_to_handler(struct input_handle
*handle
,
93 struct input_value
*vals
, unsigned int count
)
95 struct input_handler
*handler
= handle
->handler
;
96 struct input_value
*end
= vals
;
97 struct input_value
*v
;
99 if (handler
->filter
) {
100 for (v
= vals
; v
!= vals
+ count
; v
++) {
101 if (handler
->filter(handle
, v
->type
, v
->code
, v
->value
))
114 handler
->events(handle
, vals
, count
);
115 else if (handler
->event
)
116 for (v
= vals
; v
!= vals
+ count
; v
++)
117 handler
->event(handle
, v
->type
, v
->code
, v
->value
);
123 * Pass values first through all filters and then, if event has not been
124 * filtered out, through all open handles. This function is called with
125 * dev->event_lock held and interrupts disabled.
127 static void input_pass_values(struct input_dev
*dev
,
128 struct input_value
*vals
, unsigned int count
)
130 struct input_handle
*handle
;
131 struct input_value
*v
;
138 handle
= rcu_dereference(dev
->grab
);
140 count
= input_to_handler(handle
, vals
, count
);
142 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
)
144 count
= input_to_handler(handle
, vals
, count
);
152 /* trigger auto repeat for key events */
153 if (test_bit(EV_REP
, dev
->evbit
) && test_bit(EV_KEY
, dev
->evbit
)) {
154 for (v
= vals
; v
!= vals
+ count
; v
++) {
155 if (v
->type
== EV_KEY
&& v
->value
!= 2) {
157 input_start_autorepeat(dev
, v
->code
);
159 input_stop_autorepeat(dev
);
165 static void input_pass_event(struct input_dev
*dev
,
166 unsigned int type
, unsigned int code
, int value
)
168 struct input_value vals
[] = { { type
, code
, value
} };
170 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
174 * Generate software autorepeat event. Note that we take
175 * dev->event_lock here to avoid racing with input_event
176 * which may cause keys get "stuck".
178 static void input_repeat_key(struct timer_list
*t
)
180 struct input_dev
*dev
= from_timer(dev
, t
, timer
);
183 spin_lock_irqsave(&dev
->event_lock
, flags
);
185 if (test_bit(dev
->repeat_key
, dev
->key
) &&
186 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
187 struct input_value vals
[] = {
188 { EV_KEY
, dev
->repeat_key
, 2 },
192 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
194 if (dev
->rep
[REP_PERIOD
])
195 mod_timer(&dev
->timer
, jiffies
+
196 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
199 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
202 #define INPUT_IGNORE_EVENT 0
203 #define INPUT_PASS_TO_HANDLERS 1
204 #define INPUT_PASS_TO_DEVICE 2
206 #define INPUT_FLUSH 8
207 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
209 static int input_handle_abs_event(struct input_dev
*dev
,
210 unsigned int code
, int *pval
)
212 struct input_mt
*mt
= dev
->mt
;
216 if (code
== ABS_MT_SLOT
) {
218 * "Stage" the event; we'll flush it later, when we
219 * get actual touch data.
221 if (mt
&& *pval
>= 0 && *pval
< mt
->num_slots
)
224 return INPUT_IGNORE_EVENT
;
227 is_mt_event
= input_is_mt_value(code
);
230 pold
= &dev
->absinfo
[code
].value
;
232 pold
= &mt
->slots
[mt
->slot
].abs
[code
- ABS_MT_FIRST
];
235 * Bypass filtering for multi-touch events when
236 * not employing slots.
242 *pval
= input_defuzz_abs_event(*pval
, *pold
,
243 dev
->absinfo
[code
].fuzz
);
245 return INPUT_IGNORE_EVENT
;
250 /* Flush pending "slot" event */
251 if (is_mt_event
&& mt
&& mt
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
252 input_abs_set_val(dev
, ABS_MT_SLOT
, mt
->slot
);
253 return INPUT_PASS_TO_HANDLERS
| INPUT_SLOT
;
256 return INPUT_PASS_TO_HANDLERS
;
259 static int input_get_disposition(struct input_dev
*dev
,
260 unsigned int type
, unsigned int code
, int *pval
)
262 int disposition
= INPUT_IGNORE_EVENT
;
270 disposition
= INPUT_PASS_TO_ALL
;
274 disposition
= INPUT_PASS_TO_HANDLERS
| INPUT_FLUSH
;
277 disposition
= INPUT_PASS_TO_HANDLERS
;
283 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
)) {
285 /* auto-repeat bypasses state updates */
287 disposition
= INPUT_PASS_TO_HANDLERS
;
291 if (!!test_bit(code
, dev
->key
) != !!value
) {
293 __change_bit(code
, dev
->key
);
294 disposition
= INPUT_PASS_TO_HANDLERS
;
300 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
301 !!test_bit(code
, dev
->sw
) != !!value
) {
303 __change_bit(code
, dev
->sw
);
304 disposition
= INPUT_PASS_TO_HANDLERS
;
309 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
310 disposition
= input_handle_abs_event(dev
, code
, &value
);
315 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
316 disposition
= INPUT_PASS_TO_HANDLERS
;
321 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
322 disposition
= INPUT_PASS_TO_ALL
;
327 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
328 !!test_bit(code
, dev
->led
) != !!value
) {
330 __change_bit(code
, dev
->led
);
331 disposition
= INPUT_PASS_TO_ALL
;
336 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
338 if (!!test_bit(code
, dev
->snd
) != !!value
)
339 __change_bit(code
, dev
->snd
);
340 disposition
= INPUT_PASS_TO_ALL
;
345 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
346 dev
->rep
[code
] = value
;
347 disposition
= INPUT_PASS_TO_ALL
;
353 disposition
= INPUT_PASS_TO_ALL
;
357 disposition
= INPUT_PASS_TO_ALL
;
365 static void input_handle_event(struct input_dev
*dev
,
366 unsigned int type
, unsigned int code
, int value
)
368 int disposition
= input_get_disposition(dev
, type
, code
, &value
);
370 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
371 add_input_randomness(type
, code
, value
);
373 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
374 dev
->event(dev
, type
, code
, value
);
379 if (disposition
& INPUT_PASS_TO_HANDLERS
) {
380 struct input_value
*v
;
382 if (disposition
& INPUT_SLOT
) {
383 v
= &dev
->vals
[dev
->num_vals
++];
385 v
->code
= ABS_MT_SLOT
;
386 v
->value
= dev
->mt
->slot
;
389 v
= &dev
->vals
[dev
->num_vals
++];
395 if (disposition
& INPUT_FLUSH
) {
396 if (dev
->num_vals
>= 2)
397 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
399 } else if (dev
->num_vals
>= dev
->max_vals
- 2) {
400 dev
->vals
[dev
->num_vals
++] = input_value_sync
;
401 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
408 * input_event() - report new input event
409 * @dev: device that generated the event
410 * @type: type of the event
412 * @value: value of the event
414 * This function should be used by drivers implementing various input
415 * devices to report input events. See also input_inject_event().
417 * NOTE: input_event() may be safely used right after input device was
418 * allocated with input_allocate_device(), even before it is registered
419 * with input_register_device(), but the event will not reach any of the
420 * input handlers. Such early invocation of input_event() may be used
421 * to 'seed' initial state of a switch or initial position of absolute
424 void input_event(struct input_dev
*dev
,
425 unsigned int type
, unsigned int code
, int value
)
429 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
431 spin_lock_irqsave(&dev
->event_lock
, flags
);
432 input_handle_event(dev
, type
, code
, value
);
433 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
436 EXPORT_SYMBOL(input_event
);
439 * input_inject_event() - send input event from input handler
440 * @handle: input handle to send event through
441 * @type: type of the event
443 * @value: value of the event
445 * Similar to input_event() but will ignore event if device is
446 * "grabbed" and handle injecting event is not the one that owns
449 void input_inject_event(struct input_handle
*handle
,
450 unsigned int type
, unsigned int code
, int value
)
452 struct input_dev
*dev
= handle
->dev
;
453 struct input_handle
*grab
;
456 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
457 spin_lock_irqsave(&dev
->event_lock
, flags
);
460 grab
= rcu_dereference(dev
->grab
);
461 if (!grab
|| grab
== handle
)
462 input_handle_event(dev
, type
, code
, value
);
465 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
468 EXPORT_SYMBOL(input_inject_event
);
471 * input_alloc_absinfo - allocates array of input_absinfo structs
472 * @dev: the input device emitting absolute events
474 * If the absinfo struct the caller asked for is already allocated, this
475 * functions will not do anything.
477 void input_alloc_absinfo(struct input_dev
*dev
)
482 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(*dev
->absinfo
), GFP_KERNEL
);
484 dev_err(dev
->dev
.parent
?: &dev
->dev
,
485 "%s: unable to allocate memory\n", __func__
);
487 * We will handle this allocation failure in
488 * input_register_device() when we refuse to register input
489 * device with ABS bits but without absinfo.
493 EXPORT_SYMBOL(input_alloc_absinfo
);
495 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
496 int min
, int max
, int fuzz
, int flat
)
498 struct input_absinfo
*absinfo
;
500 input_alloc_absinfo(dev
);
504 absinfo
= &dev
->absinfo
[axis
];
505 absinfo
->minimum
= min
;
506 absinfo
->maximum
= max
;
507 absinfo
->fuzz
= fuzz
;
508 absinfo
->flat
= flat
;
510 __set_bit(EV_ABS
, dev
->evbit
);
511 __set_bit(axis
, dev
->absbit
);
513 EXPORT_SYMBOL(input_set_abs_params
);
517 * input_grab_device - grabs device for exclusive use
518 * @handle: input handle that wants to own the device
520 * When a device is grabbed by an input handle all events generated by
521 * the device are delivered only to this handle. Also events injected
522 * by other input handles are ignored while device is grabbed.
524 int input_grab_device(struct input_handle
*handle
)
526 struct input_dev
*dev
= handle
->dev
;
529 retval
= mutex_lock_interruptible(&dev
->mutex
);
538 rcu_assign_pointer(dev
->grab
, handle
);
541 mutex_unlock(&dev
->mutex
);
544 EXPORT_SYMBOL(input_grab_device
);
546 static void __input_release_device(struct input_handle
*handle
)
548 struct input_dev
*dev
= handle
->dev
;
549 struct input_handle
*grabber
;
551 grabber
= rcu_dereference_protected(dev
->grab
,
552 lockdep_is_held(&dev
->mutex
));
553 if (grabber
== handle
) {
554 rcu_assign_pointer(dev
->grab
, NULL
);
555 /* Make sure input_pass_event() notices that grab is gone */
558 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
559 if (handle
->open
&& handle
->handler
->start
)
560 handle
->handler
->start(handle
);
565 * input_release_device - release previously grabbed device
566 * @handle: input handle that owns the device
568 * Releases previously grabbed device so that other input handles can
569 * start receiving input events. Upon release all handlers attached
570 * to the device have their start() method called so they have a change
571 * to synchronize device state with the rest of the system.
573 void input_release_device(struct input_handle
*handle
)
575 struct input_dev
*dev
= handle
->dev
;
577 mutex_lock(&dev
->mutex
);
578 __input_release_device(handle
);
579 mutex_unlock(&dev
->mutex
);
581 EXPORT_SYMBOL(input_release_device
);
584 * input_open_device - open input device
585 * @handle: handle through which device is being accessed
587 * This function should be called by input handlers when they
588 * want to start receive events from given input device.
590 int input_open_device(struct input_handle
*handle
)
592 struct input_dev
*dev
= handle
->dev
;
595 retval
= mutex_lock_interruptible(&dev
->mutex
);
599 if (dev
->going_away
) {
606 if (!dev
->users
++ && dev
->open
)
607 retval
= dev
->open(dev
);
611 if (!--handle
->open
) {
613 * Make sure we are not delivering any more events
614 * through this handle
621 mutex_unlock(&dev
->mutex
);
624 EXPORT_SYMBOL(input_open_device
);
626 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
628 struct input_dev
*dev
= handle
->dev
;
631 retval
= mutex_lock_interruptible(&dev
->mutex
);
636 retval
= dev
->flush(dev
, file
);
638 mutex_unlock(&dev
->mutex
);
641 EXPORT_SYMBOL(input_flush_device
);
644 * input_close_device - close input device
645 * @handle: handle through which device is being accessed
647 * This function should be called by input handlers when they
648 * want to stop receive events from given input device.
650 void input_close_device(struct input_handle
*handle
)
652 struct input_dev
*dev
= handle
->dev
;
654 mutex_lock(&dev
->mutex
);
656 __input_release_device(handle
);
658 if (!--dev
->users
&& dev
->close
)
661 if (!--handle
->open
) {
663 * synchronize_rcu() makes sure that input_pass_event()
664 * completed and that no more input events are delivered
665 * through this handle
670 mutex_unlock(&dev
->mutex
);
672 EXPORT_SYMBOL(input_close_device
);
675 * Simulate keyup events for all keys that are marked as pressed.
676 * The function must be called with dev->event_lock held.
678 static void input_dev_release_keys(struct input_dev
*dev
)
680 bool need_sync
= false;
683 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
684 for_each_set_bit(code
, dev
->key
, KEY_CNT
) {
685 input_pass_event(dev
, EV_KEY
, code
, 0);
690 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
692 memset(dev
->key
, 0, sizeof(dev
->key
));
697 * Prepare device for unregistering
699 static void input_disconnect_device(struct input_dev
*dev
)
701 struct input_handle
*handle
;
704 * Mark device as going away. Note that we take dev->mutex here
705 * not to protect access to dev->going_away but rather to ensure
706 * that there are no threads in the middle of input_open_device()
708 mutex_lock(&dev
->mutex
);
709 dev
->going_away
= true;
710 mutex_unlock(&dev
->mutex
);
712 spin_lock_irq(&dev
->event_lock
);
715 * Simulate keyup events for all pressed keys so that handlers
716 * are not left with "stuck" keys. The driver may continue
717 * generate events even after we done here but they will not
718 * reach any handlers.
720 input_dev_release_keys(dev
);
722 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
725 spin_unlock_irq(&dev
->event_lock
);
729 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
730 * @ke: keymap entry containing scancode to be converted.
731 * @scancode: pointer to the location where converted scancode should
734 * This function is used to convert scancode stored in &struct keymap_entry
735 * into scalar form understood by legacy keymap handling methods. These
736 * methods expect scancodes to be represented as 'unsigned int'.
738 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
739 unsigned int *scancode
)
743 *scancode
= *((u8
*)ke
->scancode
);
747 *scancode
= *((u16
*)ke
->scancode
);
751 *scancode
= *((u32
*)ke
->scancode
);
760 EXPORT_SYMBOL(input_scancode_to_scalar
);
763 * Those routines handle the default case where no [gs]etkeycode() is
764 * defined. In this case, an array indexed by the scancode is used.
767 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
770 switch (dev
->keycodesize
) {
772 return ((u8
*)dev
->keycode
)[index
];
775 return ((u16
*)dev
->keycode
)[index
];
778 return ((u32
*)dev
->keycode
)[index
];
782 static int input_default_getkeycode(struct input_dev
*dev
,
783 struct input_keymap_entry
*ke
)
788 if (!dev
->keycodesize
)
791 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
794 error
= input_scancode_to_scalar(ke
, &index
);
799 if (index
>= dev
->keycodemax
)
802 ke
->keycode
= input_fetch_keycode(dev
, index
);
804 ke
->len
= sizeof(index
);
805 memcpy(ke
->scancode
, &index
, sizeof(index
));
810 static int input_default_setkeycode(struct input_dev
*dev
,
811 const struct input_keymap_entry
*ke
,
812 unsigned int *old_keycode
)
818 if (!dev
->keycodesize
)
821 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
824 error
= input_scancode_to_scalar(ke
, &index
);
829 if (index
>= dev
->keycodemax
)
832 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
833 (ke
->keycode
>> (dev
->keycodesize
* 8)))
836 switch (dev
->keycodesize
) {
838 u8
*k
= (u8
*)dev
->keycode
;
839 *old_keycode
= k
[index
];
840 k
[index
] = ke
->keycode
;
844 u16
*k
= (u16
*)dev
->keycode
;
845 *old_keycode
= k
[index
];
846 k
[index
] = ke
->keycode
;
850 u32
*k
= (u32
*)dev
->keycode
;
851 *old_keycode
= k
[index
];
852 k
[index
] = ke
->keycode
;
857 __clear_bit(*old_keycode
, dev
->keybit
);
858 __set_bit(ke
->keycode
, dev
->keybit
);
860 for (i
= 0; i
< dev
->keycodemax
; i
++) {
861 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
862 __set_bit(*old_keycode
, dev
->keybit
);
863 break; /* Setting the bit twice is useless, so break */
871 * input_get_keycode - retrieve keycode currently mapped to a given scancode
872 * @dev: input device which keymap is being queried
875 * This function should be called by anyone interested in retrieving current
876 * keymap. Presently evdev handlers use it.
878 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
883 spin_lock_irqsave(&dev
->event_lock
, flags
);
884 retval
= dev
->getkeycode(dev
, ke
);
885 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
889 EXPORT_SYMBOL(input_get_keycode
);
892 * input_set_keycode - attribute a keycode to a given scancode
893 * @dev: input device which keymap is being updated
894 * @ke: new keymap entry
896 * This function should be called by anyone needing to update current
897 * keymap. Presently keyboard and evdev handlers use it.
899 int input_set_keycode(struct input_dev
*dev
,
900 const struct input_keymap_entry
*ke
)
903 unsigned int old_keycode
;
906 if (ke
->keycode
> KEY_MAX
)
909 spin_lock_irqsave(&dev
->event_lock
, flags
);
911 retval
= dev
->setkeycode(dev
, ke
, &old_keycode
);
915 /* Make sure KEY_RESERVED did not get enabled. */
916 __clear_bit(KEY_RESERVED
, dev
->keybit
);
919 * Simulate keyup event if keycode is not present
920 * in the keymap anymore
922 if (test_bit(EV_KEY
, dev
->evbit
) &&
923 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
924 __test_and_clear_bit(old_keycode
, dev
->key
)) {
925 struct input_value vals
[] = {
926 { EV_KEY
, old_keycode
, 0 },
930 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
934 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
938 EXPORT_SYMBOL(input_set_keycode
);
940 bool input_match_device_id(const struct input_dev
*dev
,
941 const struct input_device_id
*id
)
943 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
944 if (id
->bustype
!= dev
->id
.bustype
)
947 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
948 if (id
->vendor
!= dev
->id
.vendor
)
951 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
952 if (id
->product
!= dev
->id
.product
)
955 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
956 if (id
->version
!= dev
->id
.version
)
959 if (!bitmap_subset(id
->evbit
, dev
->evbit
, EV_MAX
) ||
960 !bitmap_subset(id
->keybit
, dev
->keybit
, KEY_MAX
) ||
961 !bitmap_subset(id
->relbit
, dev
->relbit
, REL_MAX
) ||
962 !bitmap_subset(id
->absbit
, dev
->absbit
, ABS_MAX
) ||
963 !bitmap_subset(id
->mscbit
, dev
->mscbit
, MSC_MAX
) ||
964 !bitmap_subset(id
->ledbit
, dev
->ledbit
, LED_MAX
) ||
965 !bitmap_subset(id
->sndbit
, dev
->sndbit
, SND_MAX
) ||
966 !bitmap_subset(id
->ffbit
, dev
->ffbit
, FF_MAX
) ||
967 !bitmap_subset(id
->swbit
, dev
->swbit
, SW_MAX
) ||
968 !bitmap_subset(id
->propbit
, dev
->propbit
, INPUT_PROP_MAX
)) {
974 EXPORT_SYMBOL(input_match_device_id
);
976 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
977 struct input_dev
*dev
)
979 const struct input_device_id
*id
;
981 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
982 if (input_match_device_id(dev
, id
) &&
983 (!handler
->match
|| handler
->match(handler
, dev
))) {
991 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
993 const struct input_device_id
*id
;
996 id
= input_match_device(handler
, dev
);
1000 error
= handler
->connect(handler
, dev
, id
);
1001 if (error
&& error
!= -ENODEV
)
1002 pr_err("failed to attach handler %s to device %s, error: %d\n",
1003 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
1008 #ifdef CONFIG_COMPAT
1010 static int input_bits_to_string(char *buf
, int buf_size
,
1011 unsigned long bits
, bool skip_empty
)
1015 if (in_compat_syscall()) {
1016 u32 dword
= bits
>> 32;
1017 if (dword
|| !skip_empty
)
1018 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
1020 dword
= bits
& 0xffffffffUL
;
1021 if (dword
|| !skip_empty
|| len
)
1022 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
1025 if (bits
|| !skip_empty
)
1026 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
1032 #else /* !CONFIG_COMPAT */
1034 static int input_bits_to_string(char *buf
, int buf_size
,
1035 unsigned long bits
, bool skip_empty
)
1037 return bits
|| !skip_empty
?
1038 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
1043 #ifdef CONFIG_PROC_FS
1045 static struct proc_dir_entry
*proc_bus_input_dir
;
1046 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
1047 static int input_devices_state
;
1049 static inline void input_wakeup_procfs_readers(void)
1051 input_devices_state
++;
1052 wake_up(&input_devices_poll_wait
);
1055 static __poll_t
input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
1057 poll_wait(file
, &input_devices_poll_wait
, wait
);
1058 if (file
->f_version
!= input_devices_state
) {
1059 file
->f_version
= input_devices_state
;
1060 return EPOLLIN
| EPOLLRDNORM
;
1066 union input_seq_state
{
1069 bool mutex_acquired
;
1074 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1076 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1079 /* We need to fit into seq->private pointer */
1080 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1082 error
= mutex_lock_interruptible(&input_mutex
);
1084 state
->mutex_acquired
= false;
1085 return ERR_PTR(error
);
1088 state
->mutex_acquired
= true;
1090 return seq_list_start(&input_dev_list
, *pos
);
1093 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1095 return seq_list_next(v
, &input_dev_list
, pos
);
1098 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1100 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1102 if (state
->mutex_acquired
)
1103 mutex_unlock(&input_mutex
);
1106 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1107 unsigned long *bitmap
, int max
)
1110 bool skip_empty
= true;
1113 seq_printf(seq
, "B: %s=", name
);
1115 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1116 if (input_bits_to_string(buf
, sizeof(buf
),
1117 bitmap
[i
], skip_empty
)) {
1119 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1124 * If no output was produced print a single 0.
1129 seq_putc(seq
, '\n');
1132 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1134 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1135 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1136 struct input_handle
*handle
;
1138 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1139 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1141 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1142 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1143 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1144 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1145 seq_puts(seq
, "H: Handlers=");
1147 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1148 seq_printf(seq
, "%s ", handle
->name
);
1149 seq_putc(seq
, '\n');
1151 input_seq_print_bitmap(seq
, "PROP", dev
->propbit
, INPUT_PROP_MAX
);
1153 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1154 if (test_bit(EV_KEY
, dev
->evbit
))
1155 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1156 if (test_bit(EV_REL
, dev
->evbit
))
1157 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1158 if (test_bit(EV_ABS
, dev
->evbit
))
1159 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1160 if (test_bit(EV_MSC
, dev
->evbit
))
1161 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1162 if (test_bit(EV_LED
, dev
->evbit
))
1163 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1164 if (test_bit(EV_SND
, dev
->evbit
))
1165 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1166 if (test_bit(EV_FF
, dev
->evbit
))
1167 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1168 if (test_bit(EV_SW
, dev
->evbit
))
1169 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1171 seq_putc(seq
, '\n');
1177 static const struct seq_operations input_devices_seq_ops
= {
1178 .start
= input_devices_seq_start
,
1179 .next
= input_devices_seq_next
,
1180 .stop
= input_seq_stop
,
1181 .show
= input_devices_seq_show
,
1184 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1186 return seq_open(file
, &input_devices_seq_ops
);
1189 static const struct file_operations input_devices_fileops
= {
1190 .owner
= THIS_MODULE
,
1191 .open
= input_proc_devices_open
,
1192 .poll
= input_proc_devices_poll
,
1194 .llseek
= seq_lseek
,
1195 .release
= seq_release
,
1198 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1200 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1203 /* We need to fit into seq->private pointer */
1204 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1206 error
= mutex_lock_interruptible(&input_mutex
);
1208 state
->mutex_acquired
= false;
1209 return ERR_PTR(error
);
1212 state
->mutex_acquired
= true;
1215 return seq_list_start(&input_handler_list
, *pos
);
1218 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1220 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1222 state
->pos
= *pos
+ 1;
1223 return seq_list_next(v
, &input_handler_list
, pos
);
1226 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1228 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1229 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1231 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1232 if (handler
->filter
)
1233 seq_puts(seq
, " (filter)");
1234 if (handler
->legacy_minors
)
1235 seq_printf(seq
, " Minor=%d", handler
->minor
);
1236 seq_putc(seq
, '\n');
1241 static const struct seq_operations input_handlers_seq_ops
= {
1242 .start
= input_handlers_seq_start
,
1243 .next
= input_handlers_seq_next
,
1244 .stop
= input_seq_stop
,
1245 .show
= input_handlers_seq_show
,
1248 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1250 return seq_open(file
, &input_handlers_seq_ops
);
1253 static const struct file_operations input_handlers_fileops
= {
1254 .owner
= THIS_MODULE
,
1255 .open
= input_proc_handlers_open
,
1257 .llseek
= seq_lseek
,
1258 .release
= seq_release
,
1261 static int __init
input_proc_init(void)
1263 struct proc_dir_entry
*entry
;
1265 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1266 if (!proc_bus_input_dir
)
1269 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1270 &input_devices_fileops
);
1274 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1275 &input_handlers_fileops
);
1281 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1282 fail1
: remove_proc_entry("bus/input", NULL
);
1286 static void input_proc_exit(void)
1288 remove_proc_entry("devices", proc_bus_input_dir
);
1289 remove_proc_entry("handlers", proc_bus_input_dir
);
1290 remove_proc_entry("bus/input", NULL
);
1293 #else /* !CONFIG_PROC_FS */
1294 static inline void input_wakeup_procfs_readers(void) { }
1295 static inline int input_proc_init(void) { return 0; }
1296 static inline void input_proc_exit(void) { }
1299 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1300 static ssize_t input_dev_show_##name(struct device *dev, \
1301 struct device_attribute *attr, \
1304 struct input_dev *input_dev = to_input_dev(dev); \
1306 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1307 input_dev->name ? input_dev->name : ""); \
1309 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1311 INPUT_DEV_STRING_ATTR_SHOW(name
);
1312 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1313 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1315 static int input_print_modalias_bits(char *buf
, int size
,
1316 char name
, unsigned long *bm
,
1317 unsigned int min_bit
, unsigned int max_bit
)
1321 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1322 for (i
= min_bit
; i
< max_bit
; i
++)
1323 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1324 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1328 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1333 len
= snprintf(buf
, max(size
, 0),
1334 "input:b%04Xv%04Xp%04Xe%04X-",
1335 id
->id
.bustype
, id
->id
.vendor
,
1336 id
->id
.product
, id
->id
.version
);
1338 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1339 'e', id
->evbit
, 0, EV_MAX
);
1340 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1341 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1342 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1343 'r', id
->relbit
, 0, REL_MAX
);
1344 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1345 'a', id
->absbit
, 0, ABS_MAX
);
1346 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1347 'm', id
->mscbit
, 0, MSC_MAX
);
1348 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1349 'l', id
->ledbit
, 0, LED_MAX
);
1350 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1351 's', id
->sndbit
, 0, SND_MAX
);
1352 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1353 'f', id
->ffbit
, 0, FF_MAX
);
1354 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1355 'w', id
->swbit
, 0, SW_MAX
);
1358 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1363 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1364 struct device_attribute
*attr
,
1367 struct input_dev
*id
= to_input_dev(dev
);
1370 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1372 return min_t(int, len
, PAGE_SIZE
);
1374 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1376 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1377 int max
, int add_cr
);
1379 static ssize_t
input_dev_show_properties(struct device
*dev
,
1380 struct device_attribute
*attr
,
1383 struct input_dev
*input_dev
= to_input_dev(dev
);
1384 int len
= input_print_bitmap(buf
, PAGE_SIZE
, input_dev
->propbit
,
1385 INPUT_PROP_MAX
, true);
1386 return min_t(int, len
, PAGE_SIZE
);
1388 static DEVICE_ATTR(properties
, S_IRUGO
, input_dev_show_properties
, NULL
);
1390 static struct attribute
*input_dev_attrs
[] = {
1391 &dev_attr_name
.attr
,
1392 &dev_attr_phys
.attr
,
1393 &dev_attr_uniq
.attr
,
1394 &dev_attr_modalias
.attr
,
1395 &dev_attr_properties
.attr
,
1399 static const struct attribute_group input_dev_attr_group
= {
1400 .attrs
= input_dev_attrs
,
1403 #define INPUT_DEV_ID_ATTR(name) \
1404 static ssize_t input_dev_show_id_##name(struct device *dev, \
1405 struct device_attribute *attr, \
1408 struct input_dev *input_dev = to_input_dev(dev); \
1409 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1411 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1413 INPUT_DEV_ID_ATTR(bustype
);
1414 INPUT_DEV_ID_ATTR(vendor
);
1415 INPUT_DEV_ID_ATTR(product
);
1416 INPUT_DEV_ID_ATTR(version
);
1418 static struct attribute
*input_dev_id_attrs
[] = {
1419 &dev_attr_bustype
.attr
,
1420 &dev_attr_vendor
.attr
,
1421 &dev_attr_product
.attr
,
1422 &dev_attr_version
.attr
,
1426 static const struct attribute_group input_dev_id_attr_group
= {
1428 .attrs
= input_dev_id_attrs
,
1431 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1432 int max
, int add_cr
)
1436 bool skip_empty
= true;
1438 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1439 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1440 bitmap
[i
], skip_empty
);
1444 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1449 * If no output was produced print a single 0.
1452 len
= snprintf(buf
, buf_size
, "%d", 0);
1455 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1460 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1461 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1462 struct device_attribute *attr, \
1465 struct input_dev *input_dev = to_input_dev(dev); \
1466 int len = input_print_bitmap(buf, PAGE_SIZE, \
1467 input_dev->bm##bit, ev##_MAX, \
1469 return min_t(int, len, PAGE_SIZE); \
1471 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1473 INPUT_DEV_CAP_ATTR(EV
, ev
);
1474 INPUT_DEV_CAP_ATTR(KEY
, key
);
1475 INPUT_DEV_CAP_ATTR(REL
, rel
);
1476 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1477 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1478 INPUT_DEV_CAP_ATTR(LED
, led
);
1479 INPUT_DEV_CAP_ATTR(SND
, snd
);
1480 INPUT_DEV_CAP_ATTR(FF
, ff
);
1481 INPUT_DEV_CAP_ATTR(SW
, sw
);
1483 static struct attribute
*input_dev_caps_attrs
[] = {
1496 static const struct attribute_group input_dev_caps_attr_group
= {
1497 .name
= "capabilities",
1498 .attrs
= input_dev_caps_attrs
,
1501 static const struct attribute_group
*input_dev_attr_groups
[] = {
1502 &input_dev_attr_group
,
1503 &input_dev_id_attr_group
,
1504 &input_dev_caps_attr_group
,
1508 static void input_dev_release(struct device
*device
)
1510 struct input_dev
*dev
= to_input_dev(device
);
1512 input_ff_destroy(dev
);
1513 input_mt_destroy_slots(dev
);
1514 kfree(dev
->absinfo
);
1518 module_put(THIS_MODULE
);
1522 * Input uevent interface - loading event handlers based on
1525 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1526 const char *name
, unsigned long *bitmap
, int max
)
1530 if (add_uevent_var(env
, "%s", name
))
1533 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1534 sizeof(env
->buf
) - env
->buflen
,
1535 bitmap
, max
, false);
1536 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1543 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1544 struct input_dev
*dev
)
1548 if (add_uevent_var(env
, "MODALIAS="))
1551 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1552 sizeof(env
->buf
) - env
->buflen
,
1554 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1561 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1563 int err = add_uevent_var(env, fmt, val); \
1568 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1570 int err = input_add_uevent_bm_var(env, name, bm, max); \
1575 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1577 int err = input_add_uevent_modalias_var(env, dev); \
1582 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1584 struct input_dev
*dev
= to_input_dev(device
);
1586 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1587 dev
->id
.bustype
, dev
->id
.vendor
,
1588 dev
->id
.product
, dev
->id
.version
);
1590 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1592 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1594 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1596 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev
->propbit
, INPUT_PROP_MAX
);
1598 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1599 if (test_bit(EV_KEY
, dev
->evbit
))
1600 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1601 if (test_bit(EV_REL
, dev
->evbit
))
1602 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1603 if (test_bit(EV_ABS
, dev
->evbit
))
1604 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1605 if (test_bit(EV_MSC
, dev
->evbit
))
1606 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1607 if (test_bit(EV_LED
, dev
->evbit
))
1608 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1609 if (test_bit(EV_SND
, dev
->evbit
))
1610 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1611 if (test_bit(EV_FF
, dev
->evbit
))
1612 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1613 if (test_bit(EV_SW
, dev
->evbit
))
1614 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1616 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1621 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1626 if (!test_bit(EV_##type, dev->evbit)) \
1629 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1630 active = test_bit(i, dev->bits); \
1631 if (!active && !on) \
1634 dev->event(dev, EV_##type, i, on ? active : 0); \
1638 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1643 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1644 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1646 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1647 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1648 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1653 * input_reset_device() - reset/restore the state of input device
1654 * @dev: input device whose state needs to be reset
1656 * This function tries to reset the state of an opened input device and
1657 * bring internal state and state if the hardware in sync with each other.
1658 * We mark all keys as released, restore LED state, repeat rate, etc.
1660 void input_reset_device(struct input_dev
*dev
)
1662 unsigned long flags
;
1664 mutex_lock(&dev
->mutex
);
1665 spin_lock_irqsave(&dev
->event_lock
, flags
);
1667 input_dev_toggle(dev
, true);
1668 input_dev_release_keys(dev
);
1670 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1671 mutex_unlock(&dev
->mutex
);
1673 EXPORT_SYMBOL(input_reset_device
);
1675 #ifdef CONFIG_PM_SLEEP
1676 static int input_dev_suspend(struct device
*dev
)
1678 struct input_dev
*input_dev
= to_input_dev(dev
);
1680 spin_lock_irq(&input_dev
->event_lock
);
1683 * Keys that are pressed now are unlikely to be
1684 * still pressed when we resume.
1686 input_dev_release_keys(input_dev
);
1688 /* Turn off LEDs and sounds, if any are active. */
1689 input_dev_toggle(input_dev
, false);
1691 spin_unlock_irq(&input_dev
->event_lock
);
1696 static int input_dev_resume(struct device
*dev
)
1698 struct input_dev
*input_dev
= to_input_dev(dev
);
1700 spin_lock_irq(&input_dev
->event_lock
);
1702 /* Restore state of LEDs and sounds, if any were active. */
1703 input_dev_toggle(input_dev
, true);
1705 spin_unlock_irq(&input_dev
->event_lock
);
1710 static int input_dev_freeze(struct device
*dev
)
1712 struct input_dev
*input_dev
= to_input_dev(dev
);
1714 spin_lock_irq(&input_dev
->event_lock
);
1717 * Keys that are pressed now are unlikely to be
1718 * still pressed when we resume.
1720 input_dev_release_keys(input_dev
);
1722 spin_unlock_irq(&input_dev
->event_lock
);
1727 static int input_dev_poweroff(struct device
*dev
)
1729 struct input_dev
*input_dev
= to_input_dev(dev
);
1731 spin_lock_irq(&input_dev
->event_lock
);
1733 /* Turn off LEDs and sounds, if any are active. */
1734 input_dev_toggle(input_dev
, false);
1736 spin_unlock_irq(&input_dev
->event_lock
);
1741 static const struct dev_pm_ops input_dev_pm_ops
= {
1742 .suspend
= input_dev_suspend
,
1743 .resume
= input_dev_resume
,
1744 .freeze
= input_dev_freeze
,
1745 .poweroff
= input_dev_poweroff
,
1746 .restore
= input_dev_resume
,
1748 #endif /* CONFIG_PM */
1750 static const struct device_type input_dev_type
= {
1751 .groups
= input_dev_attr_groups
,
1752 .release
= input_dev_release
,
1753 .uevent
= input_dev_uevent
,
1754 #ifdef CONFIG_PM_SLEEP
1755 .pm
= &input_dev_pm_ops
,
1759 static char *input_devnode(struct device
*dev
, umode_t
*mode
)
1761 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1764 struct class input_class
= {
1766 .devnode
= input_devnode
,
1768 EXPORT_SYMBOL_GPL(input_class
);
1771 * input_allocate_device - allocate memory for new input device
1773 * Returns prepared struct input_dev or %NULL.
1775 * NOTE: Use input_free_device() to free devices that have not been
1776 * registered; input_unregister_device() should be used for already
1777 * registered devices.
1779 struct input_dev
*input_allocate_device(void)
1781 static atomic_t input_no
= ATOMIC_INIT(-1);
1782 struct input_dev
*dev
;
1784 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1786 dev
->dev
.type
= &input_dev_type
;
1787 dev
->dev
.class = &input_class
;
1788 device_initialize(&dev
->dev
);
1789 mutex_init(&dev
->mutex
);
1790 spin_lock_init(&dev
->event_lock
);
1791 timer_setup(&dev
->timer
, NULL
, 0);
1792 INIT_LIST_HEAD(&dev
->h_list
);
1793 INIT_LIST_HEAD(&dev
->node
);
1795 dev_set_name(&dev
->dev
, "input%lu",
1796 (unsigned long)atomic_inc_return(&input_no
));
1798 __module_get(THIS_MODULE
);
1803 EXPORT_SYMBOL(input_allocate_device
);
1805 struct input_devres
{
1806 struct input_dev
*input
;
1809 static int devm_input_device_match(struct device
*dev
, void *res
, void *data
)
1811 struct input_devres
*devres
= res
;
1813 return devres
->input
== data
;
1816 static void devm_input_device_release(struct device
*dev
, void *res
)
1818 struct input_devres
*devres
= res
;
1819 struct input_dev
*input
= devres
->input
;
1821 dev_dbg(dev
, "%s: dropping reference to %s\n",
1822 __func__
, dev_name(&input
->dev
));
1823 input_put_device(input
);
1827 * devm_input_allocate_device - allocate managed input device
1828 * @dev: device owning the input device being created
1830 * Returns prepared struct input_dev or %NULL.
1832 * Managed input devices do not need to be explicitly unregistered or
1833 * freed as it will be done automatically when owner device unbinds from
1834 * its driver (or binding fails). Once managed input device is allocated,
1835 * it is ready to be set up and registered in the same fashion as regular
1836 * input device. There are no special devm_input_device_[un]register()
1837 * variants, regular ones work with both managed and unmanaged devices,
1838 * should you need them. In most cases however, managed input device need
1839 * not be explicitly unregistered or freed.
1841 * NOTE: the owner device is set up as parent of input device and users
1842 * should not override it.
1844 struct input_dev
*devm_input_allocate_device(struct device
*dev
)
1846 struct input_dev
*input
;
1847 struct input_devres
*devres
;
1849 devres
= devres_alloc(devm_input_device_release
,
1850 sizeof(*devres
), GFP_KERNEL
);
1854 input
= input_allocate_device();
1856 devres_free(devres
);
1860 input
->dev
.parent
= dev
;
1861 input
->devres_managed
= true;
1863 devres
->input
= input
;
1864 devres_add(dev
, devres
);
1868 EXPORT_SYMBOL(devm_input_allocate_device
);
1871 * input_free_device - free memory occupied by input_dev structure
1872 * @dev: input device to free
1874 * This function should only be used if input_register_device()
1875 * was not called yet or if it failed. Once device was registered
1876 * use input_unregister_device() and memory will be freed once last
1877 * reference to the device is dropped.
1879 * Device should be allocated by input_allocate_device().
1881 * NOTE: If there are references to the input device then memory
1882 * will not be freed until last reference is dropped.
1884 void input_free_device(struct input_dev
*dev
)
1887 if (dev
->devres_managed
)
1888 WARN_ON(devres_destroy(dev
->dev
.parent
,
1889 devm_input_device_release
,
1890 devm_input_device_match
,
1892 input_put_device(dev
);
1895 EXPORT_SYMBOL(input_free_device
);
1898 * input_set_capability - mark device as capable of a certain event
1899 * @dev: device that is capable of emitting or accepting event
1900 * @type: type of the event (EV_KEY, EV_REL, etc...)
1903 * In addition to setting up corresponding bit in appropriate capability
1904 * bitmap the function also adjusts dev->evbit.
1906 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1910 __set_bit(code
, dev
->keybit
);
1914 __set_bit(code
, dev
->relbit
);
1918 input_alloc_absinfo(dev
);
1922 __set_bit(code
, dev
->absbit
);
1926 __set_bit(code
, dev
->mscbit
);
1930 __set_bit(code
, dev
->swbit
);
1934 __set_bit(code
, dev
->ledbit
);
1938 __set_bit(code
, dev
->sndbit
);
1942 __set_bit(code
, dev
->ffbit
);
1950 pr_err("%s: unknown type %u (code %u)\n", __func__
, type
, code
);
1955 __set_bit(type
, dev
->evbit
);
1957 EXPORT_SYMBOL(input_set_capability
);
1959 static unsigned int input_estimate_events_per_packet(struct input_dev
*dev
)
1963 unsigned int events
;
1966 mt_slots
= dev
->mt
->num_slots
;
1967 } else if (test_bit(ABS_MT_TRACKING_ID
, dev
->absbit
)) {
1968 mt_slots
= dev
->absinfo
[ABS_MT_TRACKING_ID
].maximum
-
1969 dev
->absinfo
[ABS_MT_TRACKING_ID
].minimum
+ 1,
1970 mt_slots
= clamp(mt_slots
, 2, 32);
1971 } else if (test_bit(ABS_MT_POSITION_X
, dev
->absbit
)) {
1977 events
= mt_slots
+ 1; /* count SYN_MT_REPORT and SYN_REPORT */
1979 if (test_bit(EV_ABS
, dev
->evbit
))
1980 for_each_set_bit(i
, dev
->absbit
, ABS_CNT
)
1981 events
+= input_is_mt_axis(i
) ? mt_slots
: 1;
1983 if (test_bit(EV_REL
, dev
->evbit
))
1984 events
+= bitmap_weight(dev
->relbit
, REL_CNT
);
1986 /* Make room for KEY and MSC events */
1992 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1994 if (!test_bit(EV_##type, dev->evbit)) \
1995 memset(dev->bits##bit, 0, \
1996 sizeof(dev->bits##bit)); \
1999 static void input_cleanse_bitmasks(struct input_dev
*dev
)
2001 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
2002 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
2003 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
2004 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
2005 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
2006 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
2007 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
2008 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
2011 static void __input_unregister_device(struct input_dev
*dev
)
2013 struct input_handle
*handle
, *next
;
2015 input_disconnect_device(dev
);
2017 mutex_lock(&input_mutex
);
2019 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
2020 handle
->handler
->disconnect(handle
);
2021 WARN_ON(!list_empty(&dev
->h_list
));
2023 del_timer_sync(&dev
->timer
);
2024 list_del_init(&dev
->node
);
2026 input_wakeup_procfs_readers();
2028 mutex_unlock(&input_mutex
);
2030 device_del(&dev
->dev
);
2033 static void devm_input_device_unregister(struct device
*dev
, void *res
)
2035 struct input_devres
*devres
= res
;
2036 struct input_dev
*input
= devres
->input
;
2038 dev_dbg(dev
, "%s: unregistering device %s\n",
2039 __func__
, dev_name(&input
->dev
));
2040 __input_unregister_device(input
);
2044 * input_enable_softrepeat - enable software autorepeat
2045 * @dev: input device
2046 * @delay: repeat delay
2047 * @period: repeat period
2049 * Enable software autorepeat on the input device.
2051 void input_enable_softrepeat(struct input_dev
*dev
, int delay
, int period
)
2053 dev
->timer
.function
= input_repeat_key
;
2054 dev
->rep
[REP_DELAY
] = delay
;
2055 dev
->rep
[REP_PERIOD
] = period
;
2057 EXPORT_SYMBOL(input_enable_softrepeat
);
2060 * input_register_device - register device with input core
2061 * @dev: device to be registered
2063 * This function registers device with input core. The device must be
2064 * allocated with input_allocate_device() and all it's capabilities
2065 * set up before registering.
2066 * If function fails the device must be freed with input_free_device().
2067 * Once device has been successfully registered it can be unregistered
2068 * with input_unregister_device(); input_free_device() should not be
2069 * called in this case.
2071 * Note that this function is also used to register managed input devices
2072 * (ones allocated with devm_input_allocate_device()). Such managed input
2073 * devices need not be explicitly unregistered or freed, their tear down
2074 * is controlled by the devres infrastructure. It is also worth noting
2075 * that tear down of managed input devices is internally a 2-step process:
2076 * registered managed input device is first unregistered, but stays in
2077 * memory and can still handle input_event() calls (although events will
2078 * not be delivered anywhere). The freeing of managed input device will
2079 * happen later, when devres stack is unwound to the point where device
2080 * allocation was made.
2082 int input_register_device(struct input_dev
*dev
)
2084 struct input_devres
*devres
= NULL
;
2085 struct input_handler
*handler
;
2086 unsigned int packet_size
;
2090 if (test_bit(EV_ABS
, dev
->evbit
) && !dev
->absinfo
) {
2092 "Absolute device without dev->absinfo, refusing to register\n");
2096 if (dev
->devres_managed
) {
2097 devres
= devres_alloc(devm_input_device_unregister
,
2098 sizeof(*devres
), GFP_KERNEL
);
2102 devres
->input
= dev
;
2105 /* Every input device generates EV_SYN/SYN_REPORT events. */
2106 __set_bit(EV_SYN
, dev
->evbit
);
2108 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2109 __clear_bit(KEY_RESERVED
, dev
->keybit
);
2111 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2112 input_cleanse_bitmasks(dev
);
2114 packet_size
= input_estimate_events_per_packet(dev
);
2115 if (dev
->hint_events_per_packet
< packet_size
)
2116 dev
->hint_events_per_packet
= packet_size
;
2118 dev
->max_vals
= dev
->hint_events_per_packet
+ 2;
2119 dev
->vals
= kcalloc(dev
->max_vals
, sizeof(*dev
->vals
), GFP_KERNEL
);
2122 goto err_devres_free
;
2126 * If delay and period are pre-set by the driver, then autorepeating
2127 * is handled by the driver itself and we don't do it in input.c.
2129 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
])
2130 input_enable_softrepeat(dev
, 250, 33);
2132 if (!dev
->getkeycode
)
2133 dev
->getkeycode
= input_default_getkeycode
;
2135 if (!dev
->setkeycode
)
2136 dev
->setkeycode
= input_default_setkeycode
;
2138 error
= device_add(&dev
->dev
);
2142 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
2143 pr_info("%s as %s\n",
2144 dev
->name
? dev
->name
: "Unspecified device",
2145 path
? path
: "N/A");
2148 error
= mutex_lock_interruptible(&input_mutex
);
2150 goto err_device_del
;
2152 list_add_tail(&dev
->node
, &input_dev_list
);
2154 list_for_each_entry(handler
, &input_handler_list
, node
)
2155 input_attach_handler(dev
, handler
);
2157 input_wakeup_procfs_readers();
2159 mutex_unlock(&input_mutex
);
2161 if (dev
->devres_managed
) {
2162 dev_dbg(dev
->dev
.parent
, "%s: registering %s with devres.\n",
2163 __func__
, dev_name(&dev
->dev
));
2164 devres_add(dev
->dev
.parent
, devres
);
2169 device_del(&dev
->dev
);
2174 devres_free(devres
);
2177 EXPORT_SYMBOL(input_register_device
);
2180 * input_unregister_device - unregister previously registered device
2181 * @dev: device to be unregistered
2183 * This function unregisters an input device. Once device is unregistered
2184 * the caller should not try to access it as it may get freed at any moment.
2186 void input_unregister_device(struct input_dev
*dev
)
2188 if (dev
->devres_managed
) {
2189 WARN_ON(devres_destroy(dev
->dev
.parent
,
2190 devm_input_device_unregister
,
2191 devm_input_device_match
,
2193 __input_unregister_device(dev
);
2195 * We do not do input_put_device() here because it will be done
2196 * when 2nd devres fires up.
2199 __input_unregister_device(dev
);
2200 input_put_device(dev
);
2203 EXPORT_SYMBOL(input_unregister_device
);
2206 * input_register_handler - register a new input handler
2207 * @handler: handler to be registered
2209 * This function registers a new input handler (interface) for input
2210 * devices in the system and attaches it to all input devices that
2211 * are compatible with the handler.
2213 int input_register_handler(struct input_handler
*handler
)
2215 struct input_dev
*dev
;
2218 error
= mutex_lock_interruptible(&input_mutex
);
2222 INIT_LIST_HEAD(&handler
->h_list
);
2224 list_add_tail(&handler
->node
, &input_handler_list
);
2226 list_for_each_entry(dev
, &input_dev_list
, node
)
2227 input_attach_handler(dev
, handler
);
2229 input_wakeup_procfs_readers();
2231 mutex_unlock(&input_mutex
);
2234 EXPORT_SYMBOL(input_register_handler
);
2237 * input_unregister_handler - unregisters an input handler
2238 * @handler: handler to be unregistered
2240 * This function disconnects a handler from its input devices and
2241 * removes it from lists of known handlers.
2243 void input_unregister_handler(struct input_handler
*handler
)
2245 struct input_handle
*handle
, *next
;
2247 mutex_lock(&input_mutex
);
2249 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
2250 handler
->disconnect(handle
);
2251 WARN_ON(!list_empty(&handler
->h_list
));
2253 list_del_init(&handler
->node
);
2255 input_wakeup_procfs_readers();
2257 mutex_unlock(&input_mutex
);
2259 EXPORT_SYMBOL(input_unregister_handler
);
2262 * input_handler_for_each_handle - handle iterator
2263 * @handler: input handler to iterate
2264 * @data: data for the callback
2265 * @fn: function to be called for each handle
2267 * Iterate over @bus's list of devices, and call @fn for each, passing
2268 * it @data and stop when @fn returns a non-zero value. The function is
2269 * using RCU to traverse the list and therefore may be using in atomic
2270 * contexts. The @fn callback is invoked from RCU critical section and
2271 * thus must not sleep.
2273 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
2274 int (*fn
)(struct input_handle
*, void *))
2276 struct input_handle
*handle
;
2281 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2282 retval
= fn(handle
, data
);
2291 EXPORT_SYMBOL(input_handler_for_each_handle
);
2294 * input_register_handle - register a new input handle
2295 * @handle: handle to register
2297 * This function puts a new input handle onto device's
2298 * and handler's lists so that events can flow through
2299 * it once it is opened using input_open_device().
2301 * This function is supposed to be called from handler's
2304 int input_register_handle(struct input_handle
*handle
)
2306 struct input_handler
*handler
= handle
->handler
;
2307 struct input_dev
*dev
= handle
->dev
;
2311 * We take dev->mutex here to prevent race with
2312 * input_release_device().
2314 error
= mutex_lock_interruptible(&dev
->mutex
);
2319 * Filters go to the head of the list, normal handlers
2322 if (handler
->filter
)
2323 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2325 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2327 mutex_unlock(&dev
->mutex
);
2330 * Since we are supposed to be called from ->connect()
2331 * which is mutually exclusive with ->disconnect()
2332 * we can't be racing with input_unregister_handle()
2333 * and so separate lock is not needed here.
2335 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2338 handler
->start(handle
);
2342 EXPORT_SYMBOL(input_register_handle
);
2345 * input_unregister_handle - unregister an input handle
2346 * @handle: handle to unregister
2348 * This function removes input handle from device's
2349 * and handler's lists.
2351 * This function is supposed to be called from handler's
2352 * disconnect() method.
2354 void input_unregister_handle(struct input_handle
*handle
)
2356 struct input_dev
*dev
= handle
->dev
;
2358 list_del_rcu(&handle
->h_node
);
2361 * Take dev->mutex to prevent race with input_release_device().
2363 mutex_lock(&dev
->mutex
);
2364 list_del_rcu(&handle
->d_node
);
2365 mutex_unlock(&dev
->mutex
);
2369 EXPORT_SYMBOL(input_unregister_handle
);
2372 * input_get_new_minor - allocates a new input minor number
2373 * @legacy_base: beginning or the legacy range to be searched
2374 * @legacy_num: size of legacy range
2375 * @allow_dynamic: whether we can also take ID from the dynamic range
2377 * This function allocates a new device minor for from input major namespace.
2378 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2379 * parameters and whether ID can be allocated from dynamic range if there are
2380 * no free IDs in legacy range.
2382 int input_get_new_minor(int legacy_base
, unsigned int legacy_num
,
2386 * This function should be called from input handler's ->connect()
2387 * methods, which are serialized with input_mutex, so no additional
2388 * locking is needed here.
2390 if (legacy_base
>= 0) {
2391 int minor
= ida_simple_get(&input_ida
,
2393 legacy_base
+ legacy_num
,
2395 if (minor
>= 0 || !allow_dynamic
)
2399 return ida_simple_get(&input_ida
,
2400 INPUT_FIRST_DYNAMIC_DEV
, INPUT_MAX_CHAR_DEVICES
,
2403 EXPORT_SYMBOL(input_get_new_minor
);
2406 * input_free_minor - release previously allocated minor
2407 * @minor: minor to be released
2409 * This function releases previously allocated input minor so that it can be
2412 void input_free_minor(unsigned int minor
)
2414 ida_simple_remove(&input_ida
, minor
);
2416 EXPORT_SYMBOL(input_free_minor
);
2418 static int __init
input_init(void)
2422 err
= class_register(&input_class
);
2424 pr_err("unable to register input_dev class\n");
2428 err
= input_proc_init();
2432 err
= register_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2433 INPUT_MAX_CHAR_DEVICES
, "input");
2435 pr_err("unable to register char major %d", INPUT_MAJOR
);
2441 fail2
: input_proc_exit();
2442 fail1
: class_unregister(&input_class
);
2446 static void __exit
input_exit(void)
2449 unregister_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2450 INPUT_MAX_CHAR_DEVICES
);
2451 class_unregister(&input_class
);
2454 subsys_initcall(input_init
);
2455 module_exit(input_exit
);