Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / net / fddi / defza.c
blobc5cae8e74dc40720eb2db3a3d91118a8ceece281
1 // SPDX-License-Identifier: GPL-2.0+
2 /* FDDI network adapter driver for DEC FDDIcontroller 700/700-C devices.
4 * Copyright (c) 2018 Maciej W. Rozycki
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * References:
13 * Dave Sawyer & Phil Weeks & Frank Itkowsky,
14 * "DEC FDDIcontroller 700 Port Specification",
15 * Revision 1.1, Digital Equipment Corporation
18 /* ------------------------------------------------------------------------- */
19 /* FZA configurable parameters. */
21 /* The number of transmit ring descriptors; either 0 for 512 or 1 for 1024. */
22 #define FZA_RING_TX_MODE 0
24 /* The number of receive ring descriptors; from 2 up to 256. */
25 #define FZA_RING_RX_SIZE 256
27 /* End of FZA configurable parameters. No need to change anything below. */
28 /* ------------------------------------------------------------------------- */
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/ioport.h>
37 #include <linux/kernel.h>
38 #include <linux/list.h>
39 #include <linux/module.h>
40 #include <linux/netdevice.h>
41 #include <linux/fddidevice.h>
42 #include <linux/sched.h>
43 #include <linux/skbuff.h>
44 #include <linux/spinlock.h>
45 #include <linux/stat.h>
46 #include <linux/tc.h>
47 #include <linux/timer.h>
48 #include <linux/types.h>
49 #include <linux/wait.h>
51 #include <asm/barrier.h>
53 #include "defza.h"
55 #define DRV_NAME "defza"
56 #define DRV_VERSION "v.1.1.4"
57 #define DRV_RELDATE "Oct 6 2018"
59 static const char version[] =
60 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE " Maciej W. Rozycki\n";
62 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
63 MODULE_DESCRIPTION("DEC FDDIcontroller 700 (DEFZA-xx) driver");
64 MODULE_LICENSE("GPL");
66 static int loopback;
67 module_param(loopback, int, 0644);
69 /* Ring Purger Multicast */
70 static u8 hw_addr_purger[8] = { 0x09, 0x00, 0x2b, 0x02, 0x01, 0x05 };
71 /* Directed Beacon Multicast */
72 static u8 hw_addr_beacon[8] = { 0x01, 0x80, 0xc2, 0x00, 0x01, 0x00 };
74 /* Shorthands for MMIO accesses that we require to be strongly ordered
75 * WRT preceding MMIO accesses.
77 #define readw_o readw_relaxed
78 #define readl_o readl_relaxed
80 #define writew_o writew_relaxed
81 #define writel_o writel_relaxed
83 /* Shorthands for MMIO accesses that we are happy with being weakly ordered
84 * WRT preceding MMIO accesses.
86 #define readw_u readw_relaxed
87 #define readl_u readl_relaxed
88 #define readq_u readq_relaxed
90 #define writew_u writew_relaxed
91 #define writel_u writel_relaxed
92 #define writeq_u writeq_relaxed
94 static inline struct sk_buff *fza_alloc_skb_irq(struct net_device *dev,
95 unsigned int length)
97 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
100 static inline struct sk_buff *fza_alloc_skb(struct net_device *dev,
101 unsigned int length)
103 return __netdev_alloc_skb(dev, length, GFP_KERNEL);
106 static inline void fza_skb_align(struct sk_buff *skb, unsigned int v)
108 unsigned long x, y;
110 x = (unsigned long)skb->data;
111 y = ALIGN(x, v);
113 skb_reserve(skb, y - x);
116 static inline void fza_reads(const void __iomem *from, void *to,
117 unsigned long size)
119 if (sizeof(unsigned long) == 8) {
120 const u64 __iomem *src = from;
121 const u32 __iomem *src_trail;
122 u64 *dst = to;
123 u32 *dst_trail;
125 for (size = (size + 3) / 4; size > 1; size -= 2)
126 *dst++ = readq_u(src++);
127 if (size) {
128 src_trail = (u32 __iomem *)src;
129 dst_trail = (u32 *)dst;
130 *dst_trail = readl_u(src_trail);
132 } else {
133 const u32 __iomem *src = from;
134 u32 *dst = to;
136 for (size = (size + 3) / 4; size; size--)
137 *dst++ = readl_u(src++);
141 static inline void fza_writes(const void *from, void __iomem *to,
142 unsigned long size)
144 if (sizeof(unsigned long) == 8) {
145 const u64 *src = from;
146 const u32 *src_trail;
147 u64 __iomem *dst = to;
148 u32 __iomem *dst_trail;
150 for (size = (size + 3) / 4; size > 1; size -= 2)
151 writeq_u(*src++, dst++);
152 if (size) {
153 src_trail = (u32 *)src;
154 dst_trail = (u32 __iomem *)dst;
155 writel_u(*src_trail, dst_trail);
157 } else {
158 const u32 *src = from;
159 u32 __iomem *dst = to;
161 for (size = (size + 3) / 4; size; size--)
162 writel_u(*src++, dst++);
166 static inline void fza_moves(const void __iomem *from, void __iomem *to,
167 unsigned long size)
169 if (sizeof(unsigned long) == 8) {
170 const u64 __iomem *src = from;
171 const u32 __iomem *src_trail;
172 u64 __iomem *dst = to;
173 u32 __iomem *dst_trail;
175 for (size = (size + 3) / 4; size > 1; size -= 2)
176 writeq_u(readq_u(src++), dst++);
177 if (size) {
178 src_trail = (u32 __iomem *)src;
179 dst_trail = (u32 __iomem *)dst;
180 writel_u(readl_u(src_trail), dst_trail);
182 } else {
183 const u32 __iomem *src = from;
184 u32 __iomem *dst = to;
186 for (size = (size + 3) / 4; size; size--)
187 writel_u(readl_u(src++), dst++);
191 static inline void fza_zeros(void __iomem *to, unsigned long size)
193 if (sizeof(unsigned long) == 8) {
194 u64 __iomem *dst = to;
195 u32 __iomem *dst_trail;
197 for (size = (size + 3) / 4; size > 1; size -= 2)
198 writeq_u(0, dst++);
199 if (size) {
200 dst_trail = (u32 __iomem *)dst;
201 writel_u(0, dst_trail);
203 } else {
204 u32 __iomem *dst = to;
206 for (size = (size + 3) / 4; size; size--)
207 writel_u(0, dst++);
211 static inline void fza_regs_dump(struct fza_private *fp)
213 pr_debug("%s: iomem registers:\n", fp->name);
214 pr_debug(" reset: 0x%04x\n", readw_o(&fp->regs->reset));
215 pr_debug(" interrupt event: 0x%04x\n", readw_u(&fp->regs->int_event));
216 pr_debug(" status: 0x%04x\n", readw_u(&fp->regs->status));
217 pr_debug(" interrupt mask: 0x%04x\n", readw_u(&fp->regs->int_mask));
218 pr_debug(" control A: 0x%04x\n", readw_u(&fp->regs->control_a));
219 pr_debug(" control B: 0x%04x\n", readw_u(&fp->regs->control_b));
222 static inline void fza_do_reset(struct fza_private *fp)
224 /* Reset the board. */
225 writew_o(FZA_RESET_INIT, &fp->regs->reset);
226 readw_o(&fp->regs->reset); /* Synchronize. */
227 readw_o(&fp->regs->reset); /* Read it back for a small delay. */
228 writew_o(FZA_RESET_CLR, &fp->regs->reset);
230 /* Enable all interrupt events we handle. */
231 writew_o(fp->int_mask, &fp->regs->int_mask);
232 readw_o(&fp->regs->int_mask); /* Synchronize. */
235 static inline void fza_do_shutdown(struct fza_private *fp)
237 /* Disable the driver mode. */
238 writew_o(FZA_CONTROL_B_IDLE, &fp->regs->control_b);
240 /* And reset the board. */
241 writew_o(FZA_RESET_INIT, &fp->regs->reset);
242 readw_o(&fp->regs->reset); /* Synchronize. */
243 writew_o(FZA_RESET_CLR, &fp->regs->reset);
244 readw_o(&fp->regs->reset); /* Synchronize. */
247 static int fza_reset(struct fza_private *fp)
249 unsigned long flags;
250 uint status, state;
251 long t;
253 pr_info("%s: resetting the board...\n", fp->name);
255 spin_lock_irqsave(&fp->lock, flags);
256 fp->state_chg_flag = 0;
257 fza_do_reset(fp);
258 spin_unlock_irqrestore(&fp->lock, flags);
260 /* DEC says RESET needs up to 30 seconds to complete. My DEFZA-AA
261 * rev. C03 happily finishes in 9.7 seconds. :-) But we need to
262 * be on the safe side...
264 t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
265 45 * HZ);
266 status = readw_u(&fp->regs->status);
267 state = FZA_STATUS_GET_STATE(status);
268 if (fp->state_chg_flag == 0) {
269 pr_err("%s: RESET timed out!, state %x\n", fp->name, state);
270 return -EIO;
272 if (state != FZA_STATE_UNINITIALIZED) {
273 pr_err("%s: RESET failed!, state %x, failure ID %x\n",
274 fp->name, state, FZA_STATUS_GET_TEST(status));
275 return -EIO;
277 pr_info("%s: OK\n", fp->name);
278 pr_debug("%s: RESET: %lums elapsed\n", fp->name,
279 (45 * HZ - t) * 1000 / HZ);
281 return 0;
284 static struct fza_ring_cmd __iomem *fza_cmd_send(struct net_device *dev,
285 int command)
287 struct fza_private *fp = netdev_priv(dev);
288 struct fza_ring_cmd __iomem *ring = fp->ring_cmd + fp->ring_cmd_index;
289 unsigned int old_mask, new_mask;
290 union fza_cmd_buf __iomem *buf;
291 struct netdev_hw_addr *ha;
292 int i;
294 old_mask = fp->int_mask;
295 new_mask = old_mask & ~FZA_MASK_STATE_CHG;
296 writew_u(new_mask, &fp->regs->int_mask);
297 readw_o(&fp->regs->int_mask); /* Synchronize. */
298 fp->int_mask = new_mask;
300 buf = fp->mmio + readl_u(&ring->buffer);
302 if ((readl_u(&ring->cmd_own) & FZA_RING_OWN_MASK) !=
303 FZA_RING_OWN_HOST) {
304 pr_warn("%s: command buffer full, command: %u!\n", fp->name,
305 command);
306 return NULL;
309 switch (command) {
310 case FZA_RING_CMD_INIT:
311 writel_u(FZA_RING_TX_MODE, &buf->init.tx_mode);
312 writel_u(FZA_RING_RX_SIZE, &buf->init.hst_rx_size);
313 fza_zeros(&buf->init.counters, sizeof(buf->init.counters));
314 break;
316 case FZA_RING_CMD_MODCAM:
317 i = 0;
318 fza_writes(&hw_addr_purger, &buf->cam.hw_addr[i++],
319 sizeof(*buf->cam.hw_addr));
320 fza_writes(&hw_addr_beacon, &buf->cam.hw_addr[i++],
321 sizeof(*buf->cam.hw_addr));
322 netdev_for_each_mc_addr(ha, dev) {
323 if (i >= FZA_CMD_CAM_SIZE)
324 break;
325 fza_writes(ha->addr, &buf->cam.hw_addr[i++],
326 sizeof(*buf->cam.hw_addr));
328 while (i < FZA_CMD_CAM_SIZE)
329 fza_zeros(&buf->cam.hw_addr[i++],
330 sizeof(*buf->cam.hw_addr));
331 break;
333 case FZA_RING_CMD_PARAM:
334 writel_u(loopback, &buf->param.loop_mode);
335 writel_u(fp->t_max, &buf->param.t_max);
336 writel_u(fp->t_req, &buf->param.t_req);
337 writel_u(fp->tvx, &buf->param.tvx);
338 writel_u(fp->lem_threshold, &buf->param.lem_threshold);
339 fza_writes(&fp->station_id, &buf->param.station_id,
340 sizeof(buf->param.station_id));
341 /* Convert to milliseconds due to buggy firmware. */
342 writel_u(fp->rtoken_timeout / 12500,
343 &buf->param.rtoken_timeout);
344 writel_u(fp->ring_purger, &buf->param.ring_purger);
345 break;
347 case FZA_RING_CMD_MODPROM:
348 if (dev->flags & IFF_PROMISC) {
349 writel_u(1, &buf->modprom.llc_prom);
350 writel_u(1, &buf->modprom.smt_prom);
351 } else {
352 writel_u(0, &buf->modprom.llc_prom);
353 writel_u(0, &buf->modprom.smt_prom);
355 if (dev->flags & IFF_ALLMULTI ||
356 netdev_mc_count(dev) > FZA_CMD_CAM_SIZE - 2)
357 writel_u(1, &buf->modprom.llc_multi);
358 else
359 writel_u(0, &buf->modprom.llc_multi);
360 writel_u(1, &buf->modprom.llc_bcast);
361 break;
364 /* Trigger the command. */
365 writel_u(FZA_RING_OWN_FZA | command, &ring->cmd_own);
366 writew_o(FZA_CONTROL_A_CMD_POLL, &fp->regs->control_a);
368 fp->ring_cmd_index = (fp->ring_cmd_index + 1) % FZA_RING_CMD_SIZE;
370 fp->int_mask = old_mask;
371 writew_u(fp->int_mask, &fp->regs->int_mask);
373 return ring;
376 static int fza_init_send(struct net_device *dev,
377 struct fza_cmd_init *__iomem *init)
379 struct fza_private *fp = netdev_priv(dev);
380 struct fza_ring_cmd __iomem *ring;
381 unsigned long flags;
382 u32 stat;
383 long t;
385 spin_lock_irqsave(&fp->lock, flags);
386 fp->cmd_done_flag = 0;
387 ring = fza_cmd_send(dev, FZA_RING_CMD_INIT);
388 spin_unlock_irqrestore(&fp->lock, flags);
389 if (!ring)
390 /* This should never happen in the uninitialized state,
391 * so do not try to recover and just consider it fatal.
393 return -ENOBUFS;
395 /* INIT may take quite a long time (160ms for my C03). */
396 t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
397 if (fp->cmd_done_flag == 0) {
398 pr_err("%s: INIT command timed out!, state %x\n", fp->name,
399 FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
400 return -EIO;
402 stat = readl_u(&ring->stat);
403 if (stat != FZA_RING_STAT_SUCCESS) {
404 pr_err("%s: INIT command failed!, status %02x, state %x\n",
405 fp->name, stat,
406 FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
407 return -EIO;
409 pr_debug("%s: INIT: %lums elapsed\n", fp->name,
410 (3 * HZ - t) * 1000 / HZ);
412 if (init)
413 *init = fp->mmio + readl_u(&ring->buffer);
414 return 0;
417 static void fza_rx_init(struct fza_private *fp)
419 int i;
421 /* Fill the host receive descriptor ring. */
422 for (i = 0; i < FZA_RING_RX_SIZE; i++) {
423 writel_o(0, &fp->ring_hst_rx[i].rmc);
424 writel_o((fp->rx_dma[i] + 0x1000) >> 9,
425 &fp->ring_hst_rx[i].buffer1);
426 writel_o(fp->rx_dma[i] >> 9 | FZA_RING_OWN_FZA,
427 &fp->ring_hst_rx[i].buf0_own);
431 static void fza_set_rx_mode(struct net_device *dev)
433 fza_cmd_send(dev, FZA_RING_CMD_MODCAM);
434 fza_cmd_send(dev, FZA_RING_CMD_MODPROM);
437 union fza_buffer_txp {
438 struct fza_buffer_tx *data_ptr;
439 struct fza_buffer_tx __iomem *mmio_ptr;
442 static int fza_do_xmit(union fza_buffer_txp ub, int len,
443 struct net_device *dev, int smt)
445 struct fza_private *fp = netdev_priv(dev);
446 struct fza_buffer_tx __iomem *rmc_tx_ptr;
447 int i, first, frag_len, left_len;
448 u32 own, rmc;
450 if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
451 fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
452 FZA_TX_BUFFER_SIZE) < len)
453 return 1;
455 first = fp->ring_rmc_tx_index;
457 left_len = len;
458 frag_len = FZA_TX_BUFFER_SIZE;
459 /* First descriptor is relinquished last. */
460 own = FZA_RING_TX_OWN_HOST;
461 /* First descriptor carries frame length; we don't use cut-through. */
462 rmc = FZA_RING_TX_SOP | FZA_RING_TX_VBC | len;
463 do {
464 i = fp->ring_rmc_tx_index;
465 rmc_tx_ptr = &fp->buffer_tx[i];
467 if (left_len < FZA_TX_BUFFER_SIZE)
468 frag_len = left_len;
469 left_len -= frag_len;
471 /* Length must be a multiple of 4 as only word writes are
472 * permitted!
474 frag_len = (frag_len + 3) & ~3;
475 if (smt)
476 fza_moves(ub.mmio_ptr, rmc_tx_ptr, frag_len);
477 else
478 fza_writes(ub.data_ptr, rmc_tx_ptr, frag_len);
480 if (left_len == 0)
481 rmc |= FZA_RING_TX_EOP; /* Mark last frag. */
483 writel_o(rmc, &fp->ring_rmc_tx[i].rmc);
484 writel_o(own, &fp->ring_rmc_tx[i].own);
486 ub.data_ptr++;
487 fp->ring_rmc_tx_index = (fp->ring_rmc_tx_index + 1) %
488 fp->ring_rmc_tx_size;
490 /* Settings for intermediate frags. */
491 own = FZA_RING_TX_OWN_RMC;
492 rmc = 0;
493 } while (left_len > 0);
495 if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
496 fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
497 FZA_TX_BUFFER_SIZE) < dev->mtu + dev->hard_header_len) {
498 netif_stop_queue(dev);
499 pr_debug("%s: queue stopped\n", fp->name);
502 writel_o(FZA_RING_TX_OWN_RMC, &fp->ring_rmc_tx[first].own);
504 /* Go, go, go! */
505 writew_o(FZA_CONTROL_A_TX_POLL, &fp->regs->control_a);
507 return 0;
510 static int fza_do_recv_smt(struct fza_buffer_tx *data_ptr, int len,
511 u32 rmc, struct net_device *dev)
513 struct fza_private *fp = netdev_priv(dev);
514 struct fza_buffer_tx __iomem *smt_rx_ptr;
515 u32 own;
516 int i;
518 i = fp->ring_smt_rx_index;
519 own = readl_o(&fp->ring_smt_rx[i].own);
520 if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
521 return 1;
523 smt_rx_ptr = fp->mmio + readl_u(&fp->ring_smt_rx[i].buffer);
525 /* Length must be a multiple of 4 as only word writes are permitted! */
526 fza_writes(data_ptr, smt_rx_ptr, (len + 3) & ~3);
528 writel_o(rmc, &fp->ring_smt_rx[i].rmc);
529 writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_rx[i].own);
531 fp->ring_smt_rx_index =
532 (fp->ring_smt_rx_index + 1) % fp->ring_smt_rx_size;
534 /* Grab it! */
535 writew_o(FZA_CONTROL_A_SMT_RX_POLL, &fp->regs->control_a);
537 return 0;
540 static void fza_tx(struct net_device *dev)
542 struct fza_private *fp = netdev_priv(dev);
543 u32 own, rmc;
544 int i;
546 while (1) {
547 i = fp->ring_rmc_txd_index;
548 if (i == fp->ring_rmc_tx_index)
549 break;
550 own = readl_o(&fp->ring_rmc_tx[i].own);
551 if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC)
552 break;
554 rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
555 /* Only process the first descriptor. */
556 if ((rmc & FZA_RING_TX_SOP) != 0) {
557 if ((rmc & FZA_RING_TX_DCC_MASK) ==
558 FZA_RING_TX_DCC_SUCCESS) {
559 int pkt_len = (rmc & FZA_RING_PBC_MASK) - 3;
560 /* Omit PRH. */
562 fp->stats.tx_packets++;
563 fp->stats.tx_bytes += pkt_len;
564 } else {
565 fp->stats.tx_errors++;
566 switch (rmc & FZA_RING_TX_DCC_MASK) {
567 case FZA_RING_TX_DCC_DTP_SOP:
568 case FZA_RING_TX_DCC_DTP:
569 case FZA_RING_TX_DCC_ABORT:
570 fp->stats.tx_aborted_errors++;
571 break;
572 case FZA_RING_TX_DCC_UNDRRUN:
573 fp->stats.tx_fifo_errors++;
574 break;
575 case FZA_RING_TX_DCC_PARITY:
576 default:
577 break;
582 fp->ring_rmc_txd_index = (fp->ring_rmc_txd_index + 1) %
583 fp->ring_rmc_tx_size;
586 if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
587 fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
588 FZA_TX_BUFFER_SIZE) >= dev->mtu + dev->hard_header_len) {
589 if (fp->queue_active) {
590 netif_wake_queue(dev);
591 pr_debug("%s: queue woken\n", fp->name);
596 static inline int fza_rx_err(struct fza_private *fp,
597 const u32 rmc, const u8 fc)
599 int len, min_len, max_len;
601 len = rmc & FZA_RING_PBC_MASK;
603 if (unlikely((rmc & FZA_RING_RX_BAD) != 0)) {
604 fp->stats.rx_errors++;
606 /* Check special status codes. */
607 if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
608 FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
609 (FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
610 FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_ALIAS)) {
611 if (len >= 8190)
612 fp->stats.rx_length_errors++;
613 return 1;
615 if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
616 FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
617 (FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
618 FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_CAM)) {
619 /* Halt the interface to trigger a reset. */
620 writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
621 readw_o(&fp->regs->control_a); /* Synchronize. */
622 return 1;
625 /* Check the MAC status. */
626 switch (rmc & FZA_RING_RX_RRR_MASK) {
627 case FZA_RING_RX_RRR_OK:
628 if ((rmc & FZA_RING_RX_CRC) != 0)
629 fp->stats.rx_crc_errors++;
630 else if ((rmc & FZA_RING_RX_FSC_MASK) == 0 ||
631 (rmc & FZA_RING_RX_FSB_ERR) != 0)
632 fp->stats.rx_frame_errors++;
633 return 1;
634 case FZA_RING_RX_RRR_SADDR:
635 case FZA_RING_RX_RRR_DADDR:
636 case FZA_RING_RX_RRR_ABORT:
637 /* Halt the interface to trigger a reset. */
638 writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
639 readw_o(&fp->regs->control_a); /* Synchronize. */
640 return 1;
641 case FZA_RING_RX_RRR_LENGTH:
642 fp->stats.rx_frame_errors++;
643 return 1;
644 default:
645 return 1;
649 /* Packet received successfully; validate the length. */
650 switch (fc & FDDI_FC_K_FORMAT_MASK) {
651 case FDDI_FC_K_FORMAT_MANAGEMENT:
652 if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_ASYNC)
653 min_len = 37;
654 else
655 min_len = 17;
656 break;
657 case FDDI_FC_K_FORMAT_LLC:
658 min_len = 20;
659 break;
660 default:
661 min_len = 17;
662 break;
664 max_len = 4495;
665 if (len < min_len || len > max_len) {
666 fp->stats.rx_errors++;
667 fp->stats.rx_length_errors++;
668 return 1;
671 return 0;
674 static void fza_rx(struct net_device *dev)
676 struct fza_private *fp = netdev_priv(dev);
677 struct sk_buff *skb, *newskb;
678 struct fza_fddihdr *frame;
679 dma_addr_t dma, newdma;
680 u32 own, rmc, buf;
681 int i, len;
682 u8 fc;
684 while (1) {
685 i = fp->ring_hst_rx_index;
686 own = readl_o(&fp->ring_hst_rx[i].buf0_own);
687 if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
688 break;
690 rmc = readl_u(&fp->ring_hst_rx[i].rmc);
691 skb = fp->rx_skbuff[i];
692 dma = fp->rx_dma[i];
694 /* The RMC doesn't count the preamble and the starting
695 * delimiter. We fix it up here for a total of 3 octets.
697 dma_rmb();
698 len = (rmc & FZA_RING_PBC_MASK) + 3;
699 frame = (struct fza_fddihdr *)skb->data;
701 /* We need to get at real FC. */
702 dma_sync_single_for_cpu(fp->bdev,
703 dma +
704 ((u8 *)&frame->hdr.fc - (u8 *)frame),
705 sizeof(frame->hdr.fc),
706 DMA_FROM_DEVICE);
707 fc = frame->hdr.fc;
709 if (fza_rx_err(fp, rmc, fc))
710 goto err_rx;
712 /* We have to 512-byte-align RX buffers... */
713 newskb = fza_alloc_skb_irq(dev, FZA_RX_BUFFER_SIZE + 511);
714 if (newskb) {
715 fza_skb_align(newskb, 512);
716 newdma = dma_map_single(fp->bdev, newskb->data,
717 FZA_RX_BUFFER_SIZE,
718 DMA_FROM_DEVICE);
719 if (dma_mapping_error(fp->bdev, newdma)) {
720 dev_kfree_skb_irq(newskb);
721 newskb = NULL;
724 if (newskb) {
725 int pkt_len = len - 7; /* Omit P, SD and FCS. */
726 int is_multi;
727 int rx_stat;
729 dma_unmap_single(fp->bdev, dma, FZA_RX_BUFFER_SIZE,
730 DMA_FROM_DEVICE);
732 /* Queue SMT frames to the SMT receive ring. */
733 if ((fc & (FDDI_FC_K_CLASS_MASK |
734 FDDI_FC_K_FORMAT_MASK)) ==
735 (FDDI_FC_K_CLASS_ASYNC |
736 FDDI_FC_K_FORMAT_MANAGEMENT) &&
737 (rmc & FZA_RING_RX_DA_MASK) !=
738 FZA_RING_RX_DA_PROM) {
739 if (fza_do_recv_smt((struct fza_buffer_tx *)
740 skb->data, len, rmc,
741 dev)) {
742 writel_o(FZA_CONTROL_A_SMT_RX_OVFL,
743 &fp->regs->control_a);
747 is_multi = ((frame->hdr.daddr[0] & 0x01) != 0);
749 skb_reserve(skb, 3); /* Skip over P and SD. */
750 skb_put(skb, pkt_len); /* And cut off FCS. */
751 skb->protocol = fddi_type_trans(skb, dev);
753 rx_stat = netif_rx(skb);
754 if (rx_stat != NET_RX_DROP) {
755 fp->stats.rx_packets++;
756 fp->stats.rx_bytes += pkt_len;
757 if (is_multi)
758 fp->stats.multicast++;
759 } else {
760 fp->stats.rx_dropped++;
763 skb = newskb;
764 dma = newdma;
765 fp->rx_skbuff[i] = skb;
766 fp->rx_dma[i] = dma;
767 } else {
768 fp->stats.rx_dropped++;
769 pr_notice("%s: memory squeeze, dropping packet\n",
770 fp->name);
773 err_rx:
774 writel_o(0, &fp->ring_hst_rx[i].rmc);
775 buf = (dma + 0x1000) >> 9;
776 writel_o(buf, &fp->ring_hst_rx[i].buffer1);
777 buf = dma >> 9 | FZA_RING_OWN_FZA;
778 writel_o(buf, &fp->ring_hst_rx[i].buf0_own);
779 fp->ring_hst_rx_index =
780 (fp->ring_hst_rx_index + 1) % fp->ring_hst_rx_size;
784 static void fza_tx_smt(struct net_device *dev)
786 struct fza_private *fp = netdev_priv(dev);
787 struct fza_buffer_tx __iomem *smt_tx_ptr;
788 int i, len;
789 u32 own;
791 while (1) {
792 i = fp->ring_smt_tx_index;
793 own = readl_o(&fp->ring_smt_tx[i].own);
794 if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
795 break;
797 smt_tx_ptr = fp->mmio + readl_u(&fp->ring_smt_tx[i].buffer);
798 len = readl_u(&fp->ring_smt_tx[i].rmc) & FZA_RING_PBC_MASK;
800 if (!netif_queue_stopped(dev)) {
801 if (dev_nit_active(dev)) {
802 struct fza_buffer_tx *skb_data_ptr;
803 struct sk_buff *skb;
805 /* Length must be a multiple of 4 as only word
806 * reads are permitted!
808 skb = fza_alloc_skb_irq(dev, (len + 3) & ~3);
809 if (!skb)
810 goto err_no_skb; /* Drop. */
812 skb_data_ptr = (struct fza_buffer_tx *)
813 skb->data;
815 fza_reads(smt_tx_ptr, skb_data_ptr,
816 (len + 3) & ~3);
817 skb->dev = dev;
818 skb_reserve(skb, 3); /* Skip over PRH. */
819 skb_put(skb, len - 3);
820 skb_reset_network_header(skb);
822 dev_queue_xmit_nit(skb, dev);
824 dev_kfree_skb_irq(skb);
826 err_no_skb:
830 /* Queue the frame to the RMC transmit ring. */
831 fza_do_xmit((union fza_buffer_txp)
832 { .mmio_ptr = smt_tx_ptr },
833 len, dev, 1);
836 writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
837 fp->ring_smt_tx_index =
838 (fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
842 static void fza_uns(struct net_device *dev)
844 struct fza_private *fp = netdev_priv(dev);
845 u32 own;
846 int i;
848 while (1) {
849 i = fp->ring_uns_index;
850 own = readl_o(&fp->ring_uns[i].own);
851 if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
852 break;
854 if (readl_u(&fp->ring_uns[i].id) == FZA_RING_UNS_RX_OVER) {
855 fp->stats.rx_errors++;
856 fp->stats.rx_over_errors++;
859 writel_o(FZA_RING_OWN_FZA, &fp->ring_uns[i].own);
860 fp->ring_uns_index =
861 (fp->ring_uns_index + 1) % FZA_RING_UNS_SIZE;
865 static void fza_tx_flush(struct net_device *dev)
867 struct fza_private *fp = netdev_priv(dev);
868 u32 own;
869 int i;
871 /* Clean up the SMT TX ring. */
872 i = fp->ring_smt_tx_index;
873 do {
874 writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
875 fp->ring_smt_tx_index =
876 (fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
878 } while (i != fp->ring_smt_tx_index);
880 /* Clean up the RMC TX ring. */
881 i = fp->ring_rmc_tx_index;
882 do {
883 own = readl_o(&fp->ring_rmc_tx[i].own);
884 if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC) {
885 u32 rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
887 writel_u(rmc | FZA_RING_TX_DTP,
888 &fp->ring_rmc_tx[i].rmc);
890 fp->ring_rmc_tx_index =
891 (fp->ring_rmc_tx_index + 1) % fp->ring_rmc_tx_size;
893 } while (i != fp->ring_rmc_tx_index);
895 /* Done. */
896 writew_o(FZA_CONTROL_A_FLUSH_DONE, &fp->regs->control_a);
899 static irqreturn_t fza_interrupt(int irq, void *dev_id)
901 struct net_device *dev = dev_id;
902 struct fza_private *fp = netdev_priv(dev);
903 uint int_event;
905 /* Get interrupt events. */
906 int_event = readw_o(&fp->regs->int_event) & fp->int_mask;
907 if (int_event == 0)
908 return IRQ_NONE;
910 /* Clear the events. */
911 writew_u(int_event, &fp->regs->int_event);
913 /* Now handle the events. The order matters. */
915 /* Command finished interrupt. */
916 if ((int_event & FZA_EVENT_CMD_DONE) != 0) {
917 fp->irq_count_cmd_done++;
919 spin_lock(&fp->lock);
920 fp->cmd_done_flag = 1;
921 wake_up(&fp->cmd_done_wait);
922 spin_unlock(&fp->lock);
925 /* Transmit finished interrupt. */
926 if ((int_event & FZA_EVENT_TX_DONE) != 0) {
927 fp->irq_count_tx_done++;
928 fza_tx(dev);
931 /* Host receive interrupt. */
932 if ((int_event & FZA_EVENT_RX_POLL) != 0) {
933 fp->irq_count_rx_poll++;
934 fza_rx(dev);
937 /* SMT transmit interrupt. */
938 if ((int_event & FZA_EVENT_SMT_TX_POLL) != 0) {
939 fp->irq_count_smt_tx_poll++;
940 fza_tx_smt(dev);
943 /* Transmit ring flush request. */
944 if ((int_event & FZA_EVENT_FLUSH_TX) != 0) {
945 fp->irq_count_flush_tx++;
946 fza_tx_flush(dev);
949 /* Link status change interrupt. */
950 if ((int_event & FZA_EVENT_LINK_ST_CHG) != 0) {
951 uint status;
953 fp->irq_count_link_st_chg++;
954 status = readw_u(&fp->regs->status);
955 if (FZA_STATUS_GET_LINK(status) == FZA_LINK_ON) {
956 netif_carrier_on(dev);
957 pr_info("%s: link available\n", fp->name);
958 } else {
959 netif_carrier_off(dev);
960 pr_info("%s: link unavailable\n", fp->name);
964 /* Unsolicited event interrupt. */
965 if ((int_event & FZA_EVENT_UNS_POLL) != 0) {
966 fp->irq_count_uns_poll++;
967 fza_uns(dev);
970 /* State change interrupt. */
971 if ((int_event & FZA_EVENT_STATE_CHG) != 0) {
972 uint status, state;
974 fp->irq_count_state_chg++;
976 status = readw_u(&fp->regs->status);
977 state = FZA_STATUS_GET_STATE(status);
978 pr_debug("%s: state change: %x\n", fp->name, state);
979 switch (state) {
980 case FZA_STATE_RESET:
981 break;
983 case FZA_STATE_UNINITIALIZED:
984 netif_carrier_off(dev);
985 del_timer_sync(&fp->reset_timer);
986 fp->ring_cmd_index = 0;
987 fp->ring_uns_index = 0;
988 fp->ring_rmc_tx_index = 0;
989 fp->ring_rmc_txd_index = 0;
990 fp->ring_hst_rx_index = 0;
991 fp->ring_smt_tx_index = 0;
992 fp->ring_smt_rx_index = 0;
993 if (fp->state > state) {
994 pr_info("%s: OK\n", fp->name);
995 fza_cmd_send(dev, FZA_RING_CMD_INIT);
997 break;
999 case FZA_STATE_INITIALIZED:
1000 if (fp->state > state) {
1001 fza_set_rx_mode(dev);
1002 fza_cmd_send(dev, FZA_RING_CMD_PARAM);
1004 break;
1006 case FZA_STATE_RUNNING:
1007 case FZA_STATE_MAINTENANCE:
1008 fp->state = state;
1009 fza_rx_init(fp);
1010 fp->queue_active = 1;
1011 netif_wake_queue(dev);
1012 pr_debug("%s: queue woken\n", fp->name);
1013 break;
1015 case FZA_STATE_HALTED:
1016 fp->queue_active = 0;
1017 netif_stop_queue(dev);
1018 pr_debug("%s: queue stopped\n", fp->name);
1019 del_timer_sync(&fp->reset_timer);
1020 pr_warn("%s: halted, reason: %x\n", fp->name,
1021 FZA_STATUS_GET_HALT(status));
1022 fza_regs_dump(fp);
1023 pr_info("%s: resetting the board...\n", fp->name);
1024 fza_do_reset(fp);
1025 fp->timer_state = 0;
1026 fp->reset_timer.expires = jiffies + 45 * HZ;
1027 add_timer(&fp->reset_timer);
1028 break;
1030 default:
1031 pr_warn("%s: undefined state: %x\n", fp->name, state);
1032 break;
1035 spin_lock(&fp->lock);
1036 fp->state_chg_flag = 1;
1037 wake_up(&fp->state_chg_wait);
1038 spin_unlock(&fp->lock);
1041 return IRQ_HANDLED;
1044 static void fza_reset_timer(struct timer_list *t)
1046 struct fza_private *fp = from_timer(fp, t, reset_timer);
1048 if (!fp->timer_state) {
1049 pr_err("%s: RESET timed out!\n", fp->name);
1050 pr_info("%s: trying harder...\n", fp->name);
1052 /* Assert the board reset. */
1053 writew_o(FZA_RESET_INIT, &fp->regs->reset);
1054 readw_o(&fp->regs->reset); /* Synchronize. */
1056 fp->timer_state = 1;
1057 fp->reset_timer.expires = jiffies + HZ;
1058 } else {
1059 /* Clear the board reset. */
1060 writew_u(FZA_RESET_CLR, &fp->regs->reset);
1062 /* Enable all interrupt events we handle. */
1063 writew_o(fp->int_mask, &fp->regs->int_mask);
1064 readw_o(&fp->regs->int_mask); /* Synchronize. */
1066 fp->timer_state = 0;
1067 fp->reset_timer.expires = jiffies + 45 * HZ;
1069 add_timer(&fp->reset_timer);
1072 static int fza_set_mac_address(struct net_device *dev, void *addr)
1074 return -EOPNOTSUPP;
1077 static netdev_tx_t fza_start_xmit(struct sk_buff *skb, struct net_device *dev)
1079 struct fza_private *fp = netdev_priv(dev);
1080 unsigned int old_mask, new_mask;
1081 int ret;
1082 u8 fc;
1084 skb_push(skb, 3); /* Make room for PRH. */
1086 /* Decode FC to set PRH. */
1087 fc = skb->data[3];
1088 skb->data[0] = 0;
1089 skb->data[1] = 0;
1090 skb->data[2] = FZA_PRH2_NORMAL;
1091 if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_SYNC)
1092 skb->data[0] |= FZA_PRH0_FRAME_SYNC;
1093 switch (fc & FDDI_FC_K_FORMAT_MASK) {
1094 case FDDI_FC_K_FORMAT_MANAGEMENT:
1095 if ((fc & FDDI_FC_K_CONTROL_MASK) == 0) {
1096 /* Token. */
1097 skb->data[0] |= FZA_PRH0_TKN_TYPE_IMM;
1098 skb->data[1] |= FZA_PRH1_TKN_SEND_NONE;
1099 } else {
1100 /* SMT or MAC. */
1101 skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1102 skb->data[1] |= FZA_PRH1_TKN_SEND_UNR;
1104 skb->data[1] |= FZA_PRH1_CRC_NORMAL;
1105 break;
1106 case FDDI_FC_K_FORMAT_LLC:
1107 case FDDI_FC_K_FORMAT_FUTURE:
1108 skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1109 skb->data[1] |= FZA_PRH1_CRC_NORMAL | FZA_PRH1_TKN_SEND_UNR;
1110 break;
1111 case FDDI_FC_K_FORMAT_IMPLEMENTOR:
1112 skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1113 skb->data[1] |= FZA_PRH1_TKN_SEND_ORIG;
1114 break;
1117 /* SMT transmit interrupts may sneak frames into the RMC
1118 * transmit ring. We disable them while queueing a frame
1119 * to maintain consistency.
1121 old_mask = fp->int_mask;
1122 new_mask = old_mask & ~FZA_MASK_SMT_TX_POLL;
1123 writew_u(new_mask, &fp->regs->int_mask);
1124 readw_o(&fp->regs->int_mask); /* Synchronize. */
1125 fp->int_mask = new_mask;
1126 ret = fza_do_xmit((union fza_buffer_txp)
1127 { .data_ptr = (struct fza_buffer_tx *)skb->data },
1128 skb->len, dev, 0);
1129 fp->int_mask = old_mask;
1130 writew_u(fp->int_mask, &fp->regs->int_mask);
1132 if (ret) {
1133 /* Probably an SMT packet filled the remaining space,
1134 * so just stop the queue, but don't report it as an error.
1136 netif_stop_queue(dev);
1137 pr_debug("%s: queue stopped\n", fp->name);
1138 fp->stats.tx_dropped++;
1141 dev_kfree_skb(skb);
1143 return ret;
1146 static int fza_open(struct net_device *dev)
1148 struct fza_private *fp = netdev_priv(dev);
1149 struct fza_ring_cmd __iomem *ring;
1150 struct sk_buff *skb;
1151 unsigned long flags;
1152 dma_addr_t dma;
1153 int ret, i;
1154 u32 stat;
1155 long t;
1157 for (i = 0; i < FZA_RING_RX_SIZE; i++) {
1158 /* We have to 512-byte-align RX buffers... */
1159 skb = fza_alloc_skb(dev, FZA_RX_BUFFER_SIZE + 511);
1160 if (skb) {
1161 fza_skb_align(skb, 512);
1162 dma = dma_map_single(fp->bdev, skb->data,
1163 FZA_RX_BUFFER_SIZE,
1164 DMA_FROM_DEVICE);
1165 if (dma_mapping_error(fp->bdev, dma)) {
1166 dev_kfree_skb(skb);
1167 skb = NULL;
1170 if (!skb) {
1171 for (--i; i >= 0; i--) {
1172 dma_unmap_single(fp->bdev, fp->rx_dma[i],
1173 FZA_RX_BUFFER_SIZE,
1174 DMA_FROM_DEVICE);
1175 dev_kfree_skb(fp->rx_skbuff[i]);
1176 fp->rx_dma[i] = 0;
1177 fp->rx_skbuff[i] = NULL;
1179 return -ENOMEM;
1181 fp->rx_skbuff[i] = skb;
1182 fp->rx_dma[i] = dma;
1185 ret = fza_init_send(dev, NULL);
1186 if (ret != 0)
1187 return ret;
1189 /* Purger and Beacon multicasts need to be supplied before PARAM. */
1190 fza_set_rx_mode(dev);
1192 spin_lock_irqsave(&fp->lock, flags);
1193 fp->cmd_done_flag = 0;
1194 ring = fza_cmd_send(dev, FZA_RING_CMD_PARAM);
1195 spin_unlock_irqrestore(&fp->lock, flags);
1196 if (!ring)
1197 return -ENOBUFS;
1199 t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
1200 if (fp->cmd_done_flag == 0) {
1201 pr_err("%s: PARAM command timed out!, state %x\n", fp->name,
1202 FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
1203 return -EIO;
1205 stat = readl_u(&ring->stat);
1206 if (stat != FZA_RING_STAT_SUCCESS) {
1207 pr_err("%s: PARAM command failed!, status %02x, state %x\n",
1208 fp->name, stat,
1209 FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
1210 return -EIO;
1212 pr_debug("%s: PARAM: %lums elapsed\n", fp->name,
1213 (3 * HZ - t) * 1000 / HZ);
1215 return 0;
1218 static int fza_close(struct net_device *dev)
1220 struct fza_private *fp = netdev_priv(dev);
1221 unsigned long flags;
1222 uint state;
1223 long t;
1224 int i;
1226 netif_stop_queue(dev);
1227 pr_debug("%s: queue stopped\n", fp->name);
1229 del_timer_sync(&fp->reset_timer);
1230 spin_lock_irqsave(&fp->lock, flags);
1231 fp->state = FZA_STATE_UNINITIALIZED;
1232 fp->state_chg_flag = 0;
1233 /* Shut the interface down. */
1234 writew_o(FZA_CONTROL_A_SHUT, &fp->regs->control_a);
1235 readw_o(&fp->regs->control_a); /* Synchronize. */
1236 spin_unlock_irqrestore(&fp->lock, flags);
1238 /* DEC says SHUT needs up to 10 seconds to complete. */
1239 t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
1240 15 * HZ);
1241 state = FZA_STATUS_GET_STATE(readw_o(&fp->regs->status));
1242 if (fp->state_chg_flag == 0) {
1243 pr_err("%s: SHUT timed out!, state %x\n", fp->name, state);
1244 return -EIO;
1246 if (state != FZA_STATE_UNINITIALIZED) {
1247 pr_err("%s: SHUT failed!, state %x\n", fp->name, state);
1248 return -EIO;
1250 pr_debug("%s: SHUT: %lums elapsed\n", fp->name,
1251 (15 * HZ - t) * 1000 / HZ);
1253 for (i = 0; i < FZA_RING_RX_SIZE; i++)
1254 if (fp->rx_skbuff[i]) {
1255 dma_unmap_single(fp->bdev, fp->rx_dma[i],
1256 FZA_RX_BUFFER_SIZE, DMA_FROM_DEVICE);
1257 dev_kfree_skb(fp->rx_skbuff[i]);
1258 fp->rx_dma[i] = 0;
1259 fp->rx_skbuff[i] = NULL;
1262 return 0;
1265 static struct net_device_stats *fza_get_stats(struct net_device *dev)
1267 struct fza_private *fp = netdev_priv(dev);
1269 return &fp->stats;
1272 static int fza_probe(struct device *bdev)
1274 static const struct net_device_ops netdev_ops = {
1275 .ndo_open = fza_open,
1276 .ndo_stop = fza_close,
1277 .ndo_start_xmit = fza_start_xmit,
1278 .ndo_set_rx_mode = fza_set_rx_mode,
1279 .ndo_set_mac_address = fza_set_mac_address,
1280 .ndo_get_stats = fza_get_stats,
1282 static int version_printed;
1283 char rom_rev[4], fw_rev[4], rmc_rev[4];
1284 struct tc_dev *tdev = to_tc_dev(bdev);
1285 struct fza_cmd_init __iomem *init;
1286 resource_size_t start, len;
1287 struct net_device *dev;
1288 struct fza_private *fp;
1289 uint smt_ver, pmd_type;
1290 void __iomem *mmio;
1291 uint hw_addr[2];
1292 int ret, i;
1294 if (!version_printed) {
1295 pr_info("%s", version);
1296 version_printed = 1;
1299 dev = alloc_fddidev(sizeof(*fp));
1300 if (!dev)
1301 return -ENOMEM;
1302 SET_NETDEV_DEV(dev, bdev);
1304 fp = netdev_priv(dev);
1305 dev_set_drvdata(bdev, dev);
1307 fp->bdev = bdev;
1308 fp->name = dev_name(bdev);
1310 /* Request the I/O MEM resource. */
1311 start = tdev->resource.start;
1312 len = tdev->resource.end - start + 1;
1313 if (!request_mem_region(start, len, dev_name(bdev))) {
1314 pr_err("%s: cannot reserve MMIO region\n", fp->name);
1315 ret = -EBUSY;
1316 goto err_out_kfree;
1319 /* MMIO mapping setup. */
1320 mmio = ioremap_nocache(start, len);
1321 if (!mmio) {
1322 pr_err("%s: cannot map MMIO\n", fp->name);
1323 ret = -ENOMEM;
1324 goto err_out_resource;
1327 /* Initialize the new device structure. */
1328 switch (loopback) {
1329 case FZA_LOOP_NORMAL:
1330 case FZA_LOOP_INTERN:
1331 case FZA_LOOP_EXTERN:
1332 break;
1333 default:
1334 loopback = FZA_LOOP_NORMAL;
1337 fp->mmio = mmio;
1338 dev->irq = tdev->interrupt;
1340 pr_info("%s: DEC FDDIcontroller 700 or 700-C at 0x%08llx, irq %d\n",
1341 fp->name, (long long)tdev->resource.start, dev->irq);
1342 pr_debug("%s: mapped at: 0x%p\n", fp->name, mmio);
1344 fp->regs = mmio + FZA_REG_BASE;
1345 fp->ring_cmd = mmio + FZA_RING_CMD;
1346 fp->ring_uns = mmio + FZA_RING_UNS;
1348 init_waitqueue_head(&fp->state_chg_wait);
1349 init_waitqueue_head(&fp->cmd_done_wait);
1350 spin_lock_init(&fp->lock);
1351 fp->int_mask = FZA_MASK_NORMAL;
1353 timer_setup(&fp->reset_timer, fza_reset_timer, 0);
1355 /* Sanitize the board. */
1356 fza_regs_dump(fp);
1357 fza_do_shutdown(fp);
1359 ret = request_irq(dev->irq, fza_interrupt, IRQF_SHARED, fp->name, dev);
1360 if (ret != 0) {
1361 pr_err("%s: unable to get IRQ %d!\n", fp->name, dev->irq);
1362 goto err_out_map;
1365 /* Enable the driver mode. */
1366 writew_o(FZA_CONTROL_B_DRIVER, &fp->regs->control_b);
1368 /* For some reason transmit done interrupts can trigger during
1369 * reset. This avoids a division error in the handler.
1371 fp->ring_rmc_tx_size = FZA_RING_TX_SIZE;
1373 ret = fza_reset(fp);
1374 if (ret != 0)
1375 goto err_out_irq;
1377 ret = fza_init_send(dev, &init);
1378 if (ret != 0)
1379 goto err_out_irq;
1381 fza_reads(&init->hw_addr, &hw_addr, sizeof(hw_addr));
1382 memcpy(dev->dev_addr, &hw_addr, FDDI_K_ALEN);
1384 fza_reads(&init->rom_rev, &rom_rev, sizeof(rom_rev));
1385 fza_reads(&init->fw_rev, &fw_rev, sizeof(fw_rev));
1386 fza_reads(&init->rmc_rev, &rmc_rev, sizeof(rmc_rev));
1387 for (i = 3; i >= 0 && rom_rev[i] == ' '; i--)
1388 rom_rev[i] = 0;
1389 for (i = 3; i >= 0 && fw_rev[i] == ' '; i--)
1390 fw_rev[i] = 0;
1391 for (i = 3; i >= 0 && rmc_rev[i] == ' '; i--)
1392 rmc_rev[i] = 0;
1394 fp->ring_rmc_tx = mmio + readl_u(&init->rmc_tx);
1395 fp->ring_rmc_tx_size = readl_u(&init->rmc_tx_size);
1396 fp->ring_hst_rx = mmio + readl_u(&init->hst_rx);
1397 fp->ring_hst_rx_size = readl_u(&init->hst_rx_size);
1398 fp->ring_smt_tx = mmio + readl_u(&init->smt_tx);
1399 fp->ring_smt_tx_size = readl_u(&init->smt_tx_size);
1400 fp->ring_smt_rx = mmio + readl_u(&init->smt_rx);
1401 fp->ring_smt_rx_size = readl_u(&init->smt_rx_size);
1403 fp->buffer_tx = mmio + FZA_TX_BUFFER_ADDR(readl_u(&init->rmc_tx));
1405 fp->t_max = readl_u(&init->def_t_max);
1406 fp->t_req = readl_u(&init->def_t_req);
1407 fp->tvx = readl_u(&init->def_tvx);
1408 fp->lem_threshold = readl_u(&init->lem_threshold);
1409 fza_reads(&init->def_station_id, &fp->station_id,
1410 sizeof(fp->station_id));
1411 fp->rtoken_timeout = readl_u(&init->rtoken_timeout);
1412 fp->ring_purger = readl_u(&init->ring_purger);
1414 smt_ver = readl_u(&init->smt_ver);
1415 pmd_type = readl_u(&init->pmd_type);
1417 pr_debug("%s: INIT parameters:\n", fp->name);
1418 pr_debug(" tx_mode: %u\n", readl_u(&init->tx_mode));
1419 pr_debug(" hst_rx_size: %u\n", readl_u(&init->hst_rx_size));
1420 pr_debug(" rmc_rev: %.4s\n", rmc_rev);
1421 pr_debug(" rom_rev: %.4s\n", rom_rev);
1422 pr_debug(" fw_rev: %.4s\n", fw_rev);
1423 pr_debug(" mop_type: %u\n", readl_u(&init->mop_type));
1424 pr_debug(" hst_rx: 0x%08x\n", readl_u(&init->hst_rx));
1425 pr_debug(" rmc_tx: 0x%08x\n", readl_u(&init->rmc_tx));
1426 pr_debug(" rmc_tx_size: %u\n", readl_u(&init->rmc_tx_size));
1427 pr_debug(" smt_tx: 0x%08x\n", readl_u(&init->smt_tx));
1428 pr_debug(" smt_tx_size: %u\n", readl_u(&init->smt_tx_size));
1429 pr_debug(" smt_rx: 0x%08x\n", readl_u(&init->smt_rx));
1430 pr_debug(" smt_rx_size: %u\n", readl_u(&init->smt_rx_size));
1431 /* TC systems are always LE, so don't bother swapping. */
1432 pr_debug(" hw_addr: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1433 (readl_u(&init->hw_addr[0]) >> 0) & 0xff,
1434 (readl_u(&init->hw_addr[0]) >> 8) & 0xff,
1435 (readl_u(&init->hw_addr[0]) >> 16) & 0xff,
1436 (readl_u(&init->hw_addr[0]) >> 24) & 0xff,
1437 (readl_u(&init->hw_addr[1]) >> 0) & 0xff,
1438 (readl_u(&init->hw_addr[1]) >> 8) & 0xff,
1439 (readl_u(&init->hw_addr[1]) >> 16) & 0xff,
1440 (readl_u(&init->hw_addr[1]) >> 24) & 0xff);
1441 pr_debug(" def_t_req: %u\n", readl_u(&init->def_t_req));
1442 pr_debug(" def_tvx: %u\n", readl_u(&init->def_tvx));
1443 pr_debug(" def_t_max: %u\n", readl_u(&init->def_t_max));
1444 pr_debug(" lem_threshold: %u\n", readl_u(&init->lem_threshold));
1445 /* Don't bother swapping, see above. */
1446 pr_debug(" def_station_id: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1447 (readl_u(&init->def_station_id[0]) >> 0) & 0xff,
1448 (readl_u(&init->def_station_id[0]) >> 8) & 0xff,
1449 (readl_u(&init->def_station_id[0]) >> 16) & 0xff,
1450 (readl_u(&init->def_station_id[0]) >> 24) & 0xff,
1451 (readl_u(&init->def_station_id[1]) >> 0) & 0xff,
1452 (readl_u(&init->def_station_id[1]) >> 8) & 0xff,
1453 (readl_u(&init->def_station_id[1]) >> 16) & 0xff,
1454 (readl_u(&init->def_station_id[1]) >> 24) & 0xff);
1455 pr_debug(" pmd_type_alt: %u\n", readl_u(&init->pmd_type_alt));
1456 pr_debug(" smt_ver: %u\n", readl_u(&init->smt_ver));
1457 pr_debug(" rtoken_timeout: %u\n", readl_u(&init->rtoken_timeout));
1458 pr_debug(" ring_purger: %u\n", readl_u(&init->ring_purger));
1459 pr_debug(" smt_ver_max: %u\n", readl_u(&init->smt_ver_max));
1460 pr_debug(" smt_ver_min: %u\n", readl_u(&init->smt_ver_min));
1461 pr_debug(" pmd_type: %u\n", readl_u(&init->pmd_type));
1463 pr_info("%s: model %s, address %pMF\n",
1464 fp->name,
1465 pmd_type == FZA_PMD_TYPE_TW ?
1466 "700-C (DEFZA-CA), ThinWire PMD selected" :
1467 pmd_type == FZA_PMD_TYPE_STP ?
1468 "700-C (DEFZA-CA), STP PMD selected" :
1469 "700 (DEFZA-AA), MMF PMD",
1470 dev->dev_addr);
1471 pr_info("%s: ROM rev. %.4s, firmware rev. %.4s, RMC rev. %.4s, "
1472 "SMT ver. %u\n", fp->name, rom_rev, fw_rev, rmc_rev, smt_ver);
1474 /* Now that we fetched initial parameters just shut the interface
1475 * until opened.
1477 ret = fza_close(dev);
1478 if (ret != 0)
1479 goto err_out_irq;
1481 /* The FZA-specific entries in the device structure. */
1482 dev->netdev_ops = &netdev_ops;
1484 ret = register_netdev(dev);
1485 if (ret != 0)
1486 goto err_out_irq;
1488 pr_info("%s: registered as %s\n", fp->name, dev->name);
1489 fp->name = (const char *)dev->name;
1491 get_device(bdev);
1492 return 0;
1494 err_out_irq:
1495 del_timer_sync(&fp->reset_timer);
1496 fza_do_shutdown(fp);
1497 free_irq(dev->irq, dev);
1499 err_out_map:
1500 iounmap(mmio);
1502 err_out_resource:
1503 release_mem_region(start, len);
1505 err_out_kfree:
1506 free_netdev(dev);
1508 pr_err("%s: initialization failure, aborting!\n", fp->name);
1509 return ret;
1512 static int fza_remove(struct device *bdev)
1514 struct net_device *dev = dev_get_drvdata(bdev);
1515 struct fza_private *fp = netdev_priv(dev);
1516 struct tc_dev *tdev = to_tc_dev(bdev);
1517 resource_size_t start, len;
1519 put_device(bdev);
1521 unregister_netdev(dev);
1523 del_timer_sync(&fp->reset_timer);
1524 fza_do_shutdown(fp);
1525 free_irq(dev->irq, dev);
1527 iounmap(fp->mmio);
1529 start = tdev->resource.start;
1530 len = tdev->resource.end - start + 1;
1531 release_mem_region(start, len);
1533 free_netdev(dev);
1535 return 0;
1538 static struct tc_device_id const fza_tc_table[] = {
1539 { "DEC ", "PMAF-AA " },
1542 MODULE_DEVICE_TABLE(tc, fza_tc_table);
1544 static struct tc_driver fza_driver = {
1545 .id_table = fza_tc_table,
1546 .driver = {
1547 .name = "defza",
1548 .bus = &tc_bus_type,
1549 .probe = fza_probe,
1550 .remove = fza_remove,
1554 static int fza_init(void)
1556 return tc_register_driver(&fza_driver);
1559 static void fza_exit(void)
1561 tc_unregister_driver(&fza_driver);
1564 module_init(fza_init);
1565 module_exit(fza_exit);