Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / net / hyperv / netvsc_drv.c
blobafdcc5664ea6a0c69cadd71034aaf3d15ceaf9b5
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
29 #include <net/arp.h>
30 #include <net/route.h>
31 #include <net/sock.h>
32 #include <net/pkt_sched.h>
33 #include <net/checksum.h>
34 #include <net/ip6_checksum.h>
36 #include "hyperv_net.h"
38 #define RING_SIZE_MIN 64
39 #define RETRY_US_LO 5000
40 #define RETRY_US_HI 10000
41 #define RETRY_MAX 2000 /* >10 sec */
43 #define LINKCHANGE_INT (2 * HZ)
44 #define VF_TAKEOVER_INT (HZ / 10)
46 static unsigned int ring_size __ro_after_init = 128;
47 module_param(ring_size, uint, 0444);
48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49 unsigned int netvsc_ring_bytes __ro_after_init;
51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 NETIF_MSG_TX_ERR;
56 static int debug = -1;
57 module_param(debug, int, 0444);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60 static LIST_HEAD(netvsc_dev_list);
62 static void netvsc_change_rx_flags(struct net_device *net, int change)
64 struct net_device_context *ndev_ctx = netdev_priv(net);
65 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66 int inc;
68 if (!vf_netdev)
69 return;
71 if (change & IFF_PROMISC) {
72 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73 dev_set_promiscuity(vf_netdev, inc);
76 if (change & IFF_ALLMULTI) {
77 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78 dev_set_allmulti(vf_netdev, inc);
82 static void netvsc_set_rx_mode(struct net_device *net)
84 struct net_device_context *ndev_ctx = netdev_priv(net);
85 struct net_device *vf_netdev;
86 struct netvsc_device *nvdev;
88 rcu_read_lock();
89 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 if (vf_netdev) {
91 dev_uc_sync(vf_netdev, net);
92 dev_mc_sync(vf_netdev, net);
95 nvdev = rcu_dereference(ndev_ctx->nvdev);
96 if (nvdev)
97 rndis_filter_update(nvdev);
98 rcu_read_unlock();
101 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102 struct net_device *ndev)
104 nvscdev->tx_disable = false;
105 virt_wmb(); /* ensure queue wake up mechanism is on */
107 netif_tx_wake_all_queues(ndev);
110 static int netvsc_open(struct net_device *net)
112 struct net_device_context *ndev_ctx = netdev_priv(net);
113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115 struct rndis_device *rdev;
116 int ret = 0;
118 netif_carrier_off(net);
120 /* Open up the device */
121 ret = rndis_filter_open(nvdev);
122 if (ret != 0) {
123 netdev_err(net, "unable to open device (ret %d).\n", ret);
124 return ret;
127 rdev = nvdev->extension;
128 if (!rdev->link_state) {
129 netif_carrier_on(net);
130 netvsc_tx_enable(nvdev, net);
133 if (vf_netdev) {
134 /* Setting synthetic device up transparently sets
135 * slave as up. If open fails, then slave will be
136 * still be offline (and not used).
138 ret = dev_open(vf_netdev, NULL);
139 if (ret)
140 netdev_warn(net,
141 "unable to open slave: %s: %d\n",
142 vf_netdev->name, ret);
144 return 0;
147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
149 unsigned int retry = 0;
150 int i;
152 /* Ensure pending bytes in ring are read */
153 for (;;) {
154 u32 aread = 0;
156 for (i = 0; i < nvdev->num_chn; i++) {
157 struct vmbus_channel *chn
158 = nvdev->chan_table[i].channel;
160 if (!chn)
161 continue;
163 /* make sure receive not running now */
164 napi_synchronize(&nvdev->chan_table[i].napi);
166 aread = hv_get_bytes_to_read(&chn->inbound);
167 if (aread)
168 break;
170 aread = hv_get_bytes_to_read(&chn->outbound);
171 if (aread)
172 break;
175 if (aread == 0)
176 return 0;
178 if (++retry > RETRY_MAX)
179 return -ETIMEDOUT;
181 usleep_range(RETRY_US_LO, RETRY_US_HI);
185 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186 struct net_device *ndev)
188 if (nvscdev) {
189 nvscdev->tx_disable = true;
190 virt_wmb(); /* ensure txq will not wake up after stop */
193 netif_tx_disable(ndev);
196 static int netvsc_close(struct net_device *net)
198 struct net_device_context *net_device_ctx = netdev_priv(net);
199 struct net_device *vf_netdev
200 = rtnl_dereference(net_device_ctx->vf_netdev);
201 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202 int ret;
204 netvsc_tx_disable(nvdev, net);
206 /* No need to close rndis filter if it is removed already */
207 if (!nvdev)
208 return 0;
210 ret = rndis_filter_close(nvdev);
211 if (ret != 0) {
212 netdev_err(net, "unable to close device (ret %d).\n", ret);
213 return ret;
216 ret = netvsc_wait_until_empty(nvdev);
217 if (ret)
218 netdev_err(net, "Ring buffer not empty after closing rndis\n");
220 if (vf_netdev)
221 dev_close(vf_netdev);
223 return ret;
226 static inline void *init_ppi_data(struct rndis_message *msg,
227 u32 ppi_size, u32 pkt_type)
229 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230 struct rndis_per_packet_info *ppi;
232 rndis_pkt->data_offset += ppi_size;
233 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234 + rndis_pkt->per_pkt_info_len;
236 ppi->size = ppi_size;
237 ppi->type = pkt_type;
238 ppi->internal = 0;
239 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
241 rndis_pkt->per_pkt_info_len += ppi_size;
243 return ppi + 1;
246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247 * packets. We can use ethtool to change UDP hash level when necessary.
249 static inline u32 netvsc_get_hash(
250 struct sk_buff *skb,
251 const struct net_device_context *ndc)
253 struct flow_keys flow;
254 u32 hash, pkt_proto = 0;
255 static u32 hashrnd __read_mostly;
257 net_get_random_once(&hashrnd, sizeof(hashrnd));
259 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260 return 0;
262 switch (flow.basic.ip_proto) {
263 case IPPROTO_TCP:
264 if (flow.basic.n_proto == htons(ETH_P_IP))
265 pkt_proto = HV_TCP4_L4HASH;
266 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267 pkt_proto = HV_TCP6_L4HASH;
269 break;
271 case IPPROTO_UDP:
272 if (flow.basic.n_proto == htons(ETH_P_IP))
273 pkt_proto = HV_UDP4_L4HASH;
274 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 pkt_proto = HV_UDP6_L4HASH;
277 break;
280 if (pkt_proto & ndc->l4_hash) {
281 return skb_get_hash(skb);
282 } else {
283 if (flow.basic.n_proto == htons(ETH_P_IP))
284 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287 else
288 hash = 0;
290 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
293 return hash;
296 static inline int netvsc_get_tx_queue(struct net_device *ndev,
297 struct sk_buff *skb, int old_idx)
299 const struct net_device_context *ndc = netdev_priv(ndev);
300 struct sock *sk = skb->sk;
301 int q_idx;
303 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304 (VRSS_SEND_TAB_SIZE - 1)];
306 /* If queue index changed record the new value */
307 if (q_idx != old_idx &&
308 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309 sk_tx_queue_set(sk, q_idx);
311 return q_idx;
315 * Select queue for transmit.
317 * If a valid queue has already been assigned, then use that.
318 * Otherwise compute tx queue based on hash and the send table.
320 * This is basically similar to default (netdev_pick_tx) with the added step
321 * of using the host send_table when no other queue has been assigned.
323 * TODO support XPS - but get_xps_queue not exported
325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
327 int q_idx = sk_tx_queue_get(skb->sk);
329 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330 /* If forwarding a packet, we use the recorded queue when
331 * available for better cache locality.
333 if (skb_rx_queue_recorded(skb))
334 q_idx = skb_get_rx_queue(skb);
335 else
336 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
339 return q_idx;
342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343 struct net_device *sb_dev)
345 struct net_device_context *ndc = netdev_priv(ndev);
346 struct net_device *vf_netdev;
347 u16 txq;
349 rcu_read_lock();
350 vf_netdev = rcu_dereference(ndc->vf_netdev);
351 if (vf_netdev) {
352 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
354 if (vf_ops->ndo_select_queue)
355 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 else
357 txq = netdev_pick_tx(vf_netdev, skb, NULL);
359 /* Record the queue selected by VF so that it can be
360 * used for common case where VF has more queues than
361 * the synthetic device.
363 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 } else {
365 txq = netvsc_pick_tx(ndev, skb);
367 rcu_read_unlock();
369 while (unlikely(txq >= ndev->real_num_tx_queues))
370 txq -= ndev->real_num_tx_queues;
372 return txq;
375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376 struct hv_page_buffer *pb)
378 int j = 0;
380 /* Deal with compound pages by ignoring unused part
381 * of the page.
383 page += (offset >> PAGE_SHIFT);
384 offset &= ~PAGE_MASK;
386 while (len > 0) {
387 unsigned long bytes;
389 bytes = PAGE_SIZE - offset;
390 if (bytes > len)
391 bytes = len;
392 pb[j].pfn = page_to_pfn(page);
393 pb[j].offset = offset;
394 pb[j].len = bytes;
396 offset += bytes;
397 len -= bytes;
399 if (offset == PAGE_SIZE && len) {
400 page++;
401 offset = 0;
402 j++;
406 return j + 1;
409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410 struct hv_netvsc_packet *packet,
411 struct hv_page_buffer *pb)
413 u32 slots_used = 0;
414 char *data = skb->data;
415 int frags = skb_shinfo(skb)->nr_frags;
416 int i;
418 /* The packet is laid out thus:
419 * 1. hdr: RNDIS header and PPI
420 * 2. skb linear data
421 * 3. skb fragment data
423 slots_used += fill_pg_buf(virt_to_page(hdr),
424 offset_in_page(hdr),
425 len, &pb[slots_used]);
427 packet->rmsg_size = len;
428 packet->rmsg_pgcnt = slots_used;
430 slots_used += fill_pg_buf(virt_to_page(data),
431 offset_in_page(data),
432 skb_headlen(skb), &pb[slots_used]);
434 for (i = 0; i < frags; i++) {
435 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
437 slots_used += fill_pg_buf(skb_frag_page(frag),
438 frag->page_offset,
439 skb_frag_size(frag), &pb[slots_used]);
441 return slots_used;
444 static int count_skb_frag_slots(struct sk_buff *skb)
446 int i, frags = skb_shinfo(skb)->nr_frags;
447 int pages = 0;
449 for (i = 0; i < frags; i++) {
450 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451 unsigned long size = skb_frag_size(frag);
452 unsigned long offset = frag->page_offset;
454 /* Skip unused frames from start of page */
455 offset &= ~PAGE_MASK;
456 pages += PFN_UP(offset + size);
458 return pages;
461 static int netvsc_get_slots(struct sk_buff *skb)
463 char *data = skb->data;
464 unsigned int offset = offset_in_page(data);
465 unsigned int len = skb_headlen(skb);
466 int slots;
467 int frag_slots;
469 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470 frag_slots = count_skb_frag_slots(skb);
471 return slots + frag_slots;
474 static u32 net_checksum_info(struct sk_buff *skb)
476 if (skb->protocol == htons(ETH_P_IP)) {
477 struct iphdr *ip = ip_hdr(skb);
479 if (ip->protocol == IPPROTO_TCP)
480 return TRANSPORT_INFO_IPV4_TCP;
481 else if (ip->protocol == IPPROTO_UDP)
482 return TRANSPORT_INFO_IPV4_UDP;
483 } else {
484 struct ipv6hdr *ip6 = ipv6_hdr(skb);
486 if (ip6->nexthdr == IPPROTO_TCP)
487 return TRANSPORT_INFO_IPV6_TCP;
488 else if (ip6->nexthdr == IPPROTO_UDP)
489 return TRANSPORT_INFO_IPV6_UDP;
492 return TRANSPORT_INFO_NOT_IP;
495 /* Send skb on the slave VF device. */
496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497 struct sk_buff *skb)
499 struct net_device_context *ndev_ctx = netdev_priv(net);
500 unsigned int len = skb->len;
501 int rc;
503 skb->dev = vf_netdev;
504 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
506 rc = dev_queue_xmit(skb);
507 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508 struct netvsc_vf_pcpu_stats *pcpu_stats
509 = this_cpu_ptr(ndev_ctx->vf_stats);
511 u64_stats_update_begin(&pcpu_stats->syncp);
512 pcpu_stats->tx_packets++;
513 pcpu_stats->tx_bytes += len;
514 u64_stats_update_end(&pcpu_stats->syncp);
515 } else {
516 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
519 return rc;
522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
524 struct net_device_context *net_device_ctx = netdev_priv(net);
525 struct hv_netvsc_packet *packet = NULL;
526 int ret;
527 unsigned int num_data_pgs;
528 struct rndis_message *rndis_msg;
529 struct net_device *vf_netdev;
530 u32 rndis_msg_size;
531 u32 hash;
532 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
534 /* if VF is present and up then redirect packets
535 * already called with rcu_read_lock_bh
537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 if (vf_netdev && netif_running(vf_netdev) &&
539 !netpoll_tx_running(net))
540 return netvsc_vf_xmit(net, vf_netdev, skb);
542 /* We will atmost need two pages to describe the rndis
543 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544 * of pages in a single packet. If skb is scattered around
545 * more pages we try linearizing it.
548 num_data_pgs = netvsc_get_slots(skb) + 2;
550 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551 ++net_device_ctx->eth_stats.tx_scattered;
553 if (skb_linearize(skb))
554 goto no_memory;
556 num_data_pgs = netvsc_get_slots(skb) + 2;
557 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558 ++net_device_ctx->eth_stats.tx_too_big;
559 goto drop;
564 * Place the rndis header in the skb head room and
565 * the skb->cb will be used for hv_netvsc_packet
566 * structure.
568 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569 if (ret)
570 goto no_memory;
572 /* Use the skb control buffer for building up the packet */
573 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574 FIELD_SIZEOF(struct sk_buff, cb));
575 packet = (struct hv_netvsc_packet *)skb->cb;
577 packet->q_idx = skb_get_queue_mapping(skb);
579 packet->total_data_buflen = skb->len;
580 packet->total_bytes = skb->len;
581 packet->total_packets = 1;
583 rndis_msg = (struct rndis_message *)skb->head;
585 /* Add the rndis header */
586 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587 rndis_msg->msg_len = packet->total_data_buflen;
589 rndis_msg->msg.pkt = (struct rndis_packet) {
590 .data_offset = sizeof(struct rndis_packet),
591 .data_len = packet->total_data_buflen,
592 .per_pkt_info_offset = sizeof(struct rndis_packet),
595 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
597 hash = skb_get_hash_raw(skb);
598 if (hash != 0 && net->real_num_tx_queues > 1) {
599 u32 *hash_info;
601 rndis_msg_size += NDIS_HASH_PPI_SIZE;
602 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603 NBL_HASH_VALUE);
604 *hash_info = hash;
607 if (skb_vlan_tag_present(skb)) {
608 struct ndis_pkt_8021q_info *vlan;
610 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612 IEEE_8021Q_INFO);
614 vlan->value = 0;
615 vlan->vlanid = skb_vlan_tag_get_id(skb);
616 vlan->cfi = skb_vlan_tag_get_cfi(skb);
617 vlan->pri = skb_vlan_tag_get_prio(skb);
620 if (skb_is_gso(skb)) {
621 struct ndis_tcp_lso_info *lso_info;
623 rndis_msg_size += NDIS_LSO_PPI_SIZE;
624 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625 TCP_LARGESEND_PKTINFO);
627 lso_info->value = 0;
628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 if (skb->protocol == htons(ETH_P_IP)) {
630 lso_info->lso_v2_transmit.ip_version =
631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 ip_hdr(skb)->tot_len = 0;
633 ip_hdr(skb)->check = 0;
634 tcp_hdr(skb)->check =
635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 } else {
638 lso_info->lso_v2_transmit.ip_version =
639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 ipv6_hdr(skb)->payload_len = 0;
641 tcp_hdr(skb)->check =
642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 struct ndis_tcp_ip_checksum_info *csum_info;
651 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 TCPIP_CHKSUM_PKTINFO);
655 csum_info->value = 0;
656 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
658 if (skb->protocol == htons(ETH_P_IP)) {
659 csum_info->transmit.is_ipv4 = 1;
661 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662 csum_info->transmit.tcp_checksum = 1;
663 else
664 csum_info->transmit.udp_checksum = 1;
665 } else {
666 csum_info->transmit.is_ipv6 = 1;
668 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669 csum_info->transmit.tcp_checksum = 1;
670 else
671 csum_info->transmit.udp_checksum = 1;
673 } else {
674 /* Can't do offload of this type of checksum */
675 if (skb_checksum_help(skb))
676 goto drop;
680 /* Start filling in the page buffers with the rndis hdr */
681 rndis_msg->msg_len += rndis_msg_size;
682 packet->total_data_buflen = rndis_msg->msg_len;
683 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684 skb, packet, pb);
686 /* timestamp packet in software */
687 skb_tx_timestamp(skb);
689 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690 if (likely(ret == 0))
691 return NETDEV_TX_OK;
693 if (ret == -EAGAIN) {
694 ++net_device_ctx->eth_stats.tx_busy;
695 return NETDEV_TX_BUSY;
698 if (ret == -ENOSPC)
699 ++net_device_ctx->eth_stats.tx_no_space;
701 drop:
702 dev_kfree_skb_any(skb);
703 net->stats.tx_dropped++;
705 return NETDEV_TX_OK;
707 no_memory:
708 ++net_device_ctx->eth_stats.tx_no_memory;
709 goto drop;
713 * netvsc_linkstatus_callback - Link up/down notification
715 void netvsc_linkstatus_callback(struct net_device *net,
716 struct rndis_message *resp)
718 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719 struct net_device_context *ndev_ctx = netdev_priv(net);
720 struct netvsc_reconfig *event;
721 unsigned long flags;
723 /* Update the physical link speed when changing to another vSwitch */
724 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725 u32 speed;
727 speed = *(u32 *)((void *)indicate
728 + indicate->status_buf_offset) / 10000;
729 ndev_ctx->speed = speed;
730 return;
733 /* Handle these link change statuses below */
734 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737 return;
739 if (net->reg_state != NETREG_REGISTERED)
740 return;
742 event = kzalloc(sizeof(*event), GFP_ATOMIC);
743 if (!event)
744 return;
745 event->event = indicate->status;
747 spin_lock_irqsave(&ndev_ctx->lock, flags);
748 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
751 schedule_delayed_work(&ndev_ctx->dwork, 0);
754 static void netvsc_comp_ipcsum(struct sk_buff *skb)
756 struct iphdr *iph = (struct iphdr *)skb->data;
758 iph->check = 0;
759 iph->check = ip_fast_csum(iph, iph->ihl);
762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763 struct netvsc_channel *nvchan)
765 struct napi_struct *napi = &nvchan->napi;
766 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767 const struct ndis_tcp_ip_checksum_info *csum_info =
768 nvchan->rsc.csum_info;
769 struct sk_buff *skb;
770 int i;
772 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
773 if (!skb)
774 return skb;
777 * Copy to skb. This copy is needed here since the memory pointed by
778 * hv_netvsc_packet cannot be deallocated
780 for (i = 0; i < nvchan->rsc.cnt; i++)
781 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
783 skb->protocol = eth_type_trans(skb, net);
785 /* skb is already created with CHECKSUM_NONE */
786 skb_checksum_none_assert(skb);
788 /* Incoming packets may have IP header checksum verified by the host.
789 * They may not have IP header checksum computed after coalescing.
790 * We compute it here if the flags are set, because on Linux, the IP
791 * checksum is always checked.
793 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
794 csum_info->receive.ip_checksum_succeeded &&
795 skb->protocol == htons(ETH_P_IP))
796 netvsc_comp_ipcsum(skb);
798 /* Do L4 checksum offload if enabled and present.
800 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801 if (csum_info->receive.tcp_checksum_succeeded ||
802 csum_info->receive.udp_checksum_succeeded)
803 skb->ip_summed = CHECKSUM_UNNECESSARY;
806 if (vlan) {
807 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
808 (vlan->cfi ? VLAN_CFI_MASK : 0);
810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
811 vlan_tci);
814 return skb;
818 * netvsc_recv_callback - Callback when we receive a packet from the
819 * "wire" on the specified device.
821 int netvsc_recv_callback(struct net_device *net,
822 struct netvsc_device *net_device,
823 struct netvsc_channel *nvchan)
825 struct net_device_context *net_device_ctx = netdev_priv(net);
826 struct vmbus_channel *channel = nvchan->channel;
827 u16 q_idx = channel->offermsg.offer.sub_channel_index;
828 struct sk_buff *skb;
829 struct netvsc_stats *rx_stats;
831 if (net->reg_state != NETREG_REGISTERED)
832 return NVSP_STAT_FAIL;
834 /* Allocate a skb - TODO direct I/O to pages? */
835 skb = netvsc_alloc_recv_skb(net, nvchan);
837 if (unlikely(!skb)) {
838 ++net_device_ctx->eth_stats.rx_no_memory;
839 rcu_read_unlock();
840 return NVSP_STAT_FAIL;
843 skb_record_rx_queue(skb, q_idx);
846 * Even if injecting the packet, record the statistics
847 * on the synthetic device because modifying the VF device
848 * statistics will not work correctly.
850 rx_stats = &nvchan->rx_stats;
851 u64_stats_update_begin(&rx_stats->syncp);
852 rx_stats->packets++;
853 rx_stats->bytes += nvchan->rsc.pktlen;
855 if (skb->pkt_type == PACKET_BROADCAST)
856 ++rx_stats->broadcast;
857 else if (skb->pkt_type == PACKET_MULTICAST)
858 ++rx_stats->multicast;
859 u64_stats_update_end(&rx_stats->syncp);
861 napi_gro_receive(&nvchan->napi, skb);
862 return NVSP_STAT_SUCCESS;
865 static void netvsc_get_drvinfo(struct net_device *net,
866 struct ethtool_drvinfo *info)
868 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
869 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
872 static void netvsc_get_channels(struct net_device *net,
873 struct ethtool_channels *channel)
875 struct net_device_context *net_device_ctx = netdev_priv(net);
876 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
878 if (nvdev) {
879 channel->max_combined = nvdev->max_chn;
880 channel->combined_count = nvdev->num_chn;
884 /* Alloc struct netvsc_device_info, and initialize it from either existing
885 * struct netvsc_device, or from default values.
887 static struct netvsc_device_info *netvsc_devinfo_get
888 (struct netvsc_device *nvdev)
890 struct netvsc_device_info *dev_info;
892 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
894 if (!dev_info)
895 return NULL;
897 if (nvdev) {
898 dev_info->num_chn = nvdev->num_chn;
899 dev_info->send_sections = nvdev->send_section_cnt;
900 dev_info->send_section_size = nvdev->send_section_size;
901 dev_info->recv_sections = nvdev->recv_section_cnt;
902 dev_info->recv_section_size = nvdev->recv_section_size;
904 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
905 NETVSC_HASH_KEYLEN);
906 } else {
907 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
908 dev_info->send_sections = NETVSC_DEFAULT_TX;
909 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
910 dev_info->recv_sections = NETVSC_DEFAULT_RX;
911 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
914 return dev_info;
917 static int netvsc_detach(struct net_device *ndev,
918 struct netvsc_device *nvdev)
920 struct net_device_context *ndev_ctx = netdev_priv(ndev);
921 struct hv_device *hdev = ndev_ctx->device_ctx;
922 int ret;
924 /* Don't try continuing to try and setup sub channels */
925 if (cancel_work_sync(&nvdev->subchan_work))
926 nvdev->num_chn = 1;
928 /* If device was up (receiving) then shutdown */
929 if (netif_running(ndev)) {
930 netvsc_tx_disable(nvdev, ndev);
932 ret = rndis_filter_close(nvdev);
933 if (ret) {
934 netdev_err(ndev,
935 "unable to close device (ret %d).\n", ret);
936 return ret;
939 ret = netvsc_wait_until_empty(nvdev);
940 if (ret) {
941 netdev_err(ndev,
942 "Ring buffer not empty after closing rndis\n");
943 return ret;
947 netif_device_detach(ndev);
949 rndis_filter_device_remove(hdev, nvdev);
951 return 0;
954 static int netvsc_attach(struct net_device *ndev,
955 struct netvsc_device_info *dev_info)
957 struct net_device_context *ndev_ctx = netdev_priv(ndev);
958 struct hv_device *hdev = ndev_ctx->device_ctx;
959 struct netvsc_device *nvdev;
960 struct rndis_device *rdev;
961 int ret;
963 nvdev = rndis_filter_device_add(hdev, dev_info);
964 if (IS_ERR(nvdev))
965 return PTR_ERR(nvdev);
967 if (nvdev->num_chn > 1) {
968 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
970 /* if unavailable, just proceed with one queue */
971 if (ret) {
972 nvdev->max_chn = 1;
973 nvdev->num_chn = 1;
977 /* In any case device is now ready */
978 netif_device_attach(ndev);
980 /* Note: enable and attach happen when sub-channels setup */
981 netif_carrier_off(ndev);
983 if (netif_running(ndev)) {
984 ret = rndis_filter_open(nvdev);
985 if (ret)
986 return ret;
988 rdev = nvdev->extension;
989 if (!rdev->link_state)
990 netif_carrier_on(ndev);
993 return 0;
996 static int netvsc_set_channels(struct net_device *net,
997 struct ethtool_channels *channels)
999 struct net_device_context *net_device_ctx = netdev_priv(net);
1000 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1001 unsigned int orig, count = channels->combined_count;
1002 struct netvsc_device_info *device_info;
1003 int ret;
1005 /* We do not support separate count for rx, tx, or other */
1006 if (count == 0 ||
1007 channels->rx_count || channels->tx_count || channels->other_count)
1008 return -EINVAL;
1010 if (!nvdev || nvdev->destroy)
1011 return -ENODEV;
1013 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1014 return -EINVAL;
1016 if (count > nvdev->max_chn)
1017 return -EINVAL;
1019 orig = nvdev->num_chn;
1021 device_info = netvsc_devinfo_get(nvdev);
1023 if (!device_info)
1024 return -ENOMEM;
1026 device_info->num_chn = count;
1028 ret = netvsc_detach(net, nvdev);
1029 if (ret)
1030 goto out;
1032 ret = netvsc_attach(net, device_info);
1033 if (ret) {
1034 device_info->num_chn = orig;
1035 if (netvsc_attach(net, device_info))
1036 netdev_err(net, "restoring channel setting failed\n");
1039 out:
1040 kfree(device_info);
1041 return ret;
1044 static bool
1045 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1047 struct ethtool_link_ksettings diff1 = *cmd;
1048 struct ethtool_link_ksettings diff2 = {};
1050 diff1.base.speed = 0;
1051 diff1.base.duplex = 0;
1052 /* advertising and cmd are usually set */
1053 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1054 diff1.base.cmd = 0;
1055 /* We set port to PORT_OTHER */
1056 diff2.base.port = PORT_OTHER;
1058 return !memcmp(&diff1, &diff2, sizeof(diff1));
1061 static void netvsc_init_settings(struct net_device *dev)
1063 struct net_device_context *ndc = netdev_priv(dev);
1065 ndc->l4_hash = HV_DEFAULT_L4HASH;
1067 ndc->speed = SPEED_UNKNOWN;
1068 ndc->duplex = DUPLEX_FULL;
1070 dev->features = NETIF_F_LRO;
1073 static int netvsc_get_link_ksettings(struct net_device *dev,
1074 struct ethtool_link_ksettings *cmd)
1076 struct net_device_context *ndc = netdev_priv(dev);
1078 cmd->base.speed = ndc->speed;
1079 cmd->base.duplex = ndc->duplex;
1080 cmd->base.port = PORT_OTHER;
1082 return 0;
1085 static int netvsc_set_link_ksettings(struct net_device *dev,
1086 const struct ethtool_link_ksettings *cmd)
1088 struct net_device_context *ndc = netdev_priv(dev);
1089 u32 speed;
1091 speed = cmd->base.speed;
1092 if (!ethtool_validate_speed(speed) ||
1093 !ethtool_validate_duplex(cmd->base.duplex) ||
1094 !netvsc_validate_ethtool_ss_cmd(cmd))
1095 return -EINVAL;
1097 ndc->speed = speed;
1098 ndc->duplex = cmd->base.duplex;
1100 return 0;
1103 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1105 struct net_device_context *ndevctx = netdev_priv(ndev);
1106 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1107 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1108 int orig_mtu = ndev->mtu;
1109 struct netvsc_device_info *device_info;
1110 int ret = 0;
1112 if (!nvdev || nvdev->destroy)
1113 return -ENODEV;
1115 device_info = netvsc_devinfo_get(nvdev);
1117 if (!device_info)
1118 return -ENOMEM;
1120 /* Change MTU of underlying VF netdev first. */
1121 if (vf_netdev) {
1122 ret = dev_set_mtu(vf_netdev, mtu);
1123 if (ret)
1124 goto out;
1127 ret = netvsc_detach(ndev, nvdev);
1128 if (ret)
1129 goto rollback_vf;
1131 ndev->mtu = mtu;
1133 ret = netvsc_attach(ndev, device_info);
1134 if (!ret)
1135 goto out;
1137 /* Attempt rollback to original MTU */
1138 ndev->mtu = orig_mtu;
1140 if (netvsc_attach(ndev, device_info))
1141 netdev_err(ndev, "restoring mtu failed\n");
1142 rollback_vf:
1143 if (vf_netdev)
1144 dev_set_mtu(vf_netdev, orig_mtu);
1146 out:
1147 kfree(device_info);
1148 return ret;
1151 static void netvsc_get_vf_stats(struct net_device *net,
1152 struct netvsc_vf_pcpu_stats *tot)
1154 struct net_device_context *ndev_ctx = netdev_priv(net);
1155 int i;
1157 memset(tot, 0, sizeof(*tot));
1159 for_each_possible_cpu(i) {
1160 const struct netvsc_vf_pcpu_stats *stats
1161 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1162 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1163 unsigned int start;
1165 do {
1166 start = u64_stats_fetch_begin_irq(&stats->syncp);
1167 rx_packets = stats->rx_packets;
1168 tx_packets = stats->tx_packets;
1169 rx_bytes = stats->rx_bytes;
1170 tx_bytes = stats->tx_bytes;
1171 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1173 tot->rx_packets += rx_packets;
1174 tot->tx_packets += tx_packets;
1175 tot->rx_bytes += rx_bytes;
1176 tot->tx_bytes += tx_bytes;
1177 tot->tx_dropped += stats->tx_dropped;
1181 static void netvsc_get_pcpu_stats(struct net_device *net,
1182 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1184 struct net_device_context *ndev_ctx = netdev_priv(net);
1185 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1186 int i;
1188 /* fetch percpu stats of vf */
1189 for_each_possible_cpu(i) {
1190 const struct netvsc_vf_pcpu_stats *stats =
1191 per_cpu_ptr(ndev_ctx->vf_stats, i);
1192 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1193 unsigned int start;
1195 do {
1196 start = u64_stats_fetch_begin_irq(&stats->syncp);
1197 this_tot->vf_rx_packets = stats->rx_packets;
1198 this_tot->vf_tx_packets = stats->tx_packets;
1199 this_tot->vf_rx_bytes = stats->rx_bytes;
1200 this_tot->vf_tx_bytes = stats->tx_bytes;
1201 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1202 this_tot->rx_packets = this_tot->vf_rx_packets;
1203 this_tot->tx_packets = this_tot->vf_tx_packets;
1204 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1205 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1208 /* fetch percpu stats of netvsc */
1209 for (i = 0; i < nvdev->num_chn; i++) {
1210 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1211 const struct netvsc_stats *stats;
1212 struct netvsc_ethtool_pcpu_stats *this_tot =
1213 &pcpu_tot[nvchan->channel->target_cpu];
1214 u64 packets, bytes;
1215 unsigned int start;
1217 stats = &nvchan->tx_stats;
1218 do {
1219 start = u64_stats_fetch_begin_irq(&stats->syncp);
1220 packets = stats->packets;
1221 bytes = stats->bytes;
1222 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1224 this_tot->tx_bytes += bytes;
1225 this_tot->tx_packets += packets;
1227 stats = &nvchan->rx_stats;
1228 do {
1229 start = u64_stats_fetch_begin_irq(&stats->syncp);
1230 packets = stats->packets;
1231 bytes = stats->bytes;
1232 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1234 this_tot->rx_bytes += bytes;
1235 this_tot->rx_packets += packets;
1239 static void netvsc_get_stats64(struct net_device *net,
1240 struct rtnl_link_stats64 *t)
1242 struct net_device_context *ndev_ctx = netdev_priv(net);
1243 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1244 struct netvsc_vf_pcpu_stats vf_tot;
1245 int i;
1247 if (!nvdev)
1248 return;
1250 netdev_stats_to_stats64(t, &net->stats);
1252 netvsc_get_vf_stats(net, &vf_tot);
1253 t->rx_packets += vf_tot.rx_packets;
1254 t->tx_packets += vf_tot.tx_packets;
1255 t->rx_bytes += vf_tot.rx_bytes;
1256 t->tx_bytes += vf_tot.tx_bytes;
1257 t->tx_dropped += vf_tot.tx_dropped;
1259 for (i = 0; i < nvdev->num_chn; i++) {
1260 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1261 const struct netvsc_stats *stats;
1262 u64 packets, bytes, multicast;
1263 unsigned int start;
1265 stats = &nvchan->tx_stats;
1266 do {
1267 start = u64_stats_fetch_begin_irq(&stats->syncp);
1268 packets = stats->packets;
1269 bytes = stats->bytes;
1270 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1272 t->tx_bytes += bytes;
1273 t->tx_packets += packets;
1275 stats = &nvchan->rx_stats;
1276 do {
1277 start = u64_stats_fetch_begin_irq(&stats->syncp);
1278 packets = stats->packets;
1279 bytes = stats->bytes;
1280 multicast = stats->multicast + stats->broadcast;
1281 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1283 t->rx_bytes += bytes;
1284 t->rx_packets += packets;
1285 t->multicast += multicast;
1289 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1291 struct net_device_context *ndc = netdev_priv(ndev);
1292 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1293 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1294 struct sockaddr *addr = p;
1295 int err;
1297 err = eth_prepare_mac_addr_change(ndev, p);
1298 if (err)
1299 return err;
1301 if (!nvdev)
1302 return -ENODEV;
1304 if (vf_netdev) {
1305 err = dev_set_mac_address(vf_netdev, addr, NULL);
1306 if (err)
1307 return err;
1310 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1311 if (!err) {
1312 eth_commit_mac_addr_change(ndev, p);
1313 } else if (vf_netdev) {
1314 /* rollback change on VF */
1315 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1316 dev_set_mac_address(vf_netdev, addr, NULL);
1319 return err;
1322 static const struct {
1323 char name[ETH_GSTRING_LEN];
1324 u16 offset;
1325 } netvsc_stats[] = {
1326 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1327 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1328 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1329 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1330 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1331 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1332 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1333 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1334 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1335 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1336 }, pcpu_stats[] = {
1337 { "cpu%u_rx_packets",
1338 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1339 { "cpu%u_rx_bytes",
1340 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1341 { "cpu%u_tx_packets",
1342 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1343 { "cpu%u_tx_bytes",
1344 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1345 { "cpu%u_vf_rx_packets",
1346 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1347 { "cpu%u_vf_rx_bytes",
1348 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1349 { "cpu%u_vf_tx_packets",
1350 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1351 { "cpu%u_vf_tx_bytes",
1352 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1353 }, vf_stats[] = {
1354 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1355 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1356 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1357 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1358 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1361 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1362 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1364 /* statistics per queue (rx/tx packets/bytes) */
1365 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1367 /* 4 statistics per queue (rx/tx packets/bytes) */
1368 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1370 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1372 struct net_device_context *ndc = netdev_priv(dev);
1373 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1375 if (!nvdev)
1376 return -ENODEV;
1378 switch (string_set) {
1379 case ETH_SS_STATS:
1380 return NETVSC_GLOBAL_STATS_LEN
1381 + NETVSC_VF_STATS_LEN
1382 + NETVSC_QUEUE_STATS_LEN(nvdev)
1383 + NETVSC_PCPU_STATS_LEN;
1384 default:
1385 return -EINVAL;
1389 static void netvsc_get_ethtool_stats(struct net_device *dev,
1390 struct ethtool_stats *stats, u64 *data)
1392 struct net_device_context *ndc = netdev_priv(dev);
1393 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1394 const void *nds = &ndc->eth_stats;
1395 const struct netvsc_stats *qstats;
1396 struct netvsc_vf_pcpu_stats sum;
1397 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1398 unsigned int start;
1399 u64 packets, bytes;
1400 int i, j, cpu;
1402 if (!nvdev)
1403 return;
1405 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1406 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1408 netvsc_get_vf_stats(dev, &sum);
1409 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1410 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1412 for (j = 0; j < nvdev->num_chn; j++) {
1413 qstats = &nvdev->chan_table[j].tx_stats;
1415 do {
1416 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1417 packets = qstats->packets;
1418 bytes = qstats->bytes;
1419 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1420 data[i++] = packets;
1421 data[i++] = bytes;
1423 qstats = &nvdev->chan_table[j].rx_stats;
1424 do {
1425 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1426 packets = qstats->packets;
1427 bytes = qstats->bytes;
1428 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1429 data[i++] = packets;
1430 data[i++] = bytes;
1433 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1434 sizeof(struct netvsc_ethtool_pcpu_stats),
1435 GFP_KERNEL);
1436 netvsc_get_pcpu_stats(dev, pcpu_sum);
1437 for_each_present_cpu(cpu) {
1438 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1440 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1441 data[i++] = *(u64 *)((void *)this_sum
1442 + pcpu_stats[j].offset);
1444 kvfree(pcpu_sum);
1447 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1449 struct net_device_context *ndc = netdev_priv(dev);
1450 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1451 u8 *p = data;
1452 int i, cpu;
1454 if (!nvdev)
1455 return;
1457 switch (stringset) {
1458 case ETH_SS_STATS:
1459 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1460 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1461 p += ETH_GSTRING_LEN;
1464 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1465 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1466 p += ETH_GSTRING_LEN;
1469 for (i = 0; i < nvdev->num_chn; i++) {
1470 sprintf(p, "tx_queue_%u_packets", i);
1471 p += ETH_GSTRING_LEN;
1472 sprintf(p, "tx_queue_%u_bytes", i);
1473 p += ETH_GSTRING_LEN;
1474 sprintf(p, "rx_queue_%u_packets", i);
1475 p += ETH_GSTRING_LEN;
1476 sprintf(p, "rx_queue_%u_bytes", i);
1477 p += ETH_GSTRING_LEN;
1480 for_each_present_cpu(cpu) {
1481 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1482 sprintf(p, pcpu_stats[i].name, cpu);
1483 p += ETH_GSTRING_LEN;
1487 break;
1491 static int
1492 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1493 struct ethtool_rxnfc *info)
1495 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1497 info->data = RXH_IP_SRC | RXH_IP_DST;
1499 switch (info->flow_type) {
1500 case TCP_V4_FLOW:
1501 if (ndc->l4_hash & HV_TCP4_L4HASH)
1502 info->data |= l4_flag;
1504 break;
1506 case TCP_V6_FLOW:
1507 if (ndc->l4_hash & HV_TCP6_L4HASH)
1508 info->data |= l4_flag;
1510 break;
1512 case UDP_V4_FLOW:
1513 if (ndc->l4_hash & HV_UDP4_L4HASH)
1514 info->data |= l4_flag;
1516 break;
1518 case UDP_V6_FLOW:
1519 if (ndc->l4_hash & HV_UDP6_L4HASH)
1520 info->data |= l4_flag;
1522 break;
1524 case IPV4_FLOW:
1525 case IPV6_FLOW:
1526 break;
1527 default:
1528 info->data = 0;
1529 break;
1532 return 0;
1535 static int
1536 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1537 u32 *rules)
1539 struct net_device_context *ndc = netdev_priv(dev);
1540 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1542 if (!nvdev)
1543 return -ENODEV;
1545 switch (info->cmd) {
1546 case ETHTOOL_GRXRINGS:
1547 info->data = nvdev->num_chn;
1548 return 0;
1550 case ETHTOOL_GRXFH:
1551 return netvsc_get_rss_hash_opts(ndc, info);
1553 return -EOPNOTSUPP;
1556 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1557 struct ethtool_rxnfc *info)
1559 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1560 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1561 switch (info->flow_type) {
1562 case TCP_V4_FLOW:
1563 ndc->l4_hash |= HV_TCP4_L4HASH;
1564 break;
1566 case TCP_V6_FLOW:
1567 ndc->l4_hash |= HV_TCP6_L4HASH;
1568 break;
1570 case UDP_V4_FLOW:
1571 ndc->l4_hash |= HV_UDP4_L4HASH;
1572 break;
1574 case UDP_V6_FLOW:
1575 ndc->l4_hash |= HV_UDP6_L4HASH;
1576 break;
1578 default:
1579 return -EOPNOTSUPP;
1582 return 0;
1585 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1586 switch (info->flow_type) {
1587 case TCP_V4_FLOW:
1588 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1589 break;
1591 case TCP_V6_FLOW:
1592 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1593 break;
1595 case UDP_V4_FLOW:
1596 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1597 break;
1599 case UDP_V6_FLOW:
1600 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1601 break;
1603 default:
1604 return -EOPNOTSUPP;
1607 return 0;
1610 return -EOPNOTSUPP;
1613 static int
1614 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1616 struct net_device_context *ndc = netdev_priv(ndev);
1618 if (info->cmd == ETHTOOL_SRXFH)
1619 return netvsc_set_rss_hash_opts(ndc, info);
1621 return -EOPNOTSUPP;
1624 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1626 return NETVSC_HASH_KEYLEN;
1629 static u32 netvsc_rss_indir_size(struct net_device *dev)
1631 return ITAB_NUM;
1634 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1635 u8 *hfunc)
1637 struct net_device_context *ndc = netdev_priv(dev);
1638 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1639 struct rndis_device *rndis_dev;
1640 int i;
1642 if (!ndev)
1643 return -ENODEV;
1645 if (hfunc)
1646 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1648 rndis_dev = ndev->extension;
1649 if (indir) {
1650 for (i = 0; i < ITAB_NUM; i++)
1651 indir[i] = rndis_dev->rx_table[i];
1654 if (key)
1655 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1657 return 0;
1660 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1661 const u8 *key, const u8 hfunc)
1663 struct net_device_context *ndc = netdev_priv(dev);
1664 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1665 struct rndis_device *rndis_dev;
1666 int i;
1668 if (!ndev)
1669 return -ENODEV;
1671 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1672 return -EOPNOTSUPP;
1674 rndis_dev = ndev->extension;
1675 if (indir) {
1676 for (i = 0; i < ITAB_NUM; i++)
1677 if (indir[i] >= ndev->num_chn)
1678 return -EINVAL;
1680 for (i = 0; i < ITAB_NUM; i++)
1681 rndis_dev->rx_table[i] = indir[i];
1684 if (!key) {
1685 if (!indir)
1686 return 0;
1688 key = rndis_dev->rss_key;
1691 return rndis_filter_set_rss_param(rndis_dev, key);
1694 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1695 * It does have pre-allocated receive area which is divided into sections.
1697 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1698 struct ethtool_ringparam *ring)
1700 u32 max_buf_size;
1702 ring->rx_pending = nvdev->recv_section_cnt;
1703 ring->tx_pending = nvdev->send_section_cnt;
1705 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1706 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1707 else
1708 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1710 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1711 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1712 / nvdev->send_section_size;
1715 static void netvsc_get_ringparam(struct net_device *ndev,
1716 struct ethtool_ringparam *ring)
1718 struct net_device_context *ndevctx = netdev_priv(ndev);
1719 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1721 if (!nvdev)
1722 return;
1724 __netvsc_get_ringparam(nvdev, ring);
1727 static int netvsc_set_ringparam(struct net_device *ndev,
1728 struct ethtool_ringparam *ring)
1730 struct net_device_context *ndevctx = netdev_priv(ndev);
1731 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1732 struct netvsc_device_info *device_info;
1733 struct ethtool_ringparam orig;
1734 u32 new_tx, new_rx;
1735 int ret = 0;
1737 if (!nvdev || nvdev->destroy)
1738 return -ENODEV;
1740 memset(&orig, 0, sizeof(orig));
1741 __netvsc_get_ringparam(nvdev, &orig);
1743 new_tx = clamp_t(u32, ring->tx_pending,
1744 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1745 new_rx = clamp_t(u32, ring->rx_pending,
1746 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1748 if (new_tx == orig.tx_pending &&
1749 new_rx == orig.rx_pending)
1750 return 0; /* no change */
1752 device_info = netvsc_devinfo_get(nvdev);
1754 if (!device_info)
1755 return -ENOMEM;
1757 device_info->send_sections = new_tx;
1758 device_info->recv_sections = new_rx;
1760 ret = netvsc_detach(ndev, nvdev);
1761 if (ret)
1762 goto out;
1764 ret = netvsc_attach(ndev, device_info);
1765 if (ret) {
1766 device_info->send_sections = orig.tx_pending;
1767 device_info->recv_sections = orig.rx_pending;
1769 if (netvsc_attach(ndev, device_info))
1770 netdev_err(ndev, "restoring ringparam failed");
1773 out:
1774 kfree(device_info);
1775 return ret;
1778 static int netvsc_set_features(struct net_device *ndev,
1779 netdev_features_t features)
1781 netdev_features_t change = features ^ ndev->features;
1782 struct net_device_context *ndevctx = netdev_priv(ndev);
1783 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1784 struct ndis_offload_params offloads;
1786 if (!nvdev || nvdev->destroy)
1787 return -ENODEV;
1789 if (!(change & NETIF_F_LRO))
1790 return 0;
1792 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1794 if (features & NETIF_F_LRO) {
1795 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1796 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1797 } else {
1798 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1799 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1802 return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1805 static u32 netvsc_get_msglevel(struct net_device *ndev)
1807 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1809 return ndev_ctx->msg_enable;
1812 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1814 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1816 ndev_ctx->msg_enable = val;
1819 static const struct ethtool_ops ethtool_ops = {
1820 .get_drvinfo = netvsc_get_drvinfo,
1821 .get_msglevel = netvsc_get_msglevel,
1822 .set_msglevel = netvsc_set_msglevel,
1823 .get_link = ethtool_op_get_link,
1824 .get_ethtool_stats = netvsc_get_ethtool_stats,
1825 .get_sset_count = netvsc_get_sset_count,
1826 .get_strings = netvsc_get_strings,
1827 .get_channels = netvsc_get_channels,
1828 .set_channels = netvsc_set_channels,
1829 .get_ts_info = ethtool_op_get_ts_info,
1830 .get_rxnfc = netvsc_get_rxnfc,
1831 .set_rxnfc = netvsc_set_rxnfc,
1832 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1833 .get_rxfh_indir_size = netvsc_rss_indir_size,
1834 .get_rxfh = netvsc_get_rxfh,
1835 .set_rxfh = netvsc_set_rxfh,
1836 .get_link_ksettings = netvsc_get_link_ksettings,
1837 .set_link_ksettings = netvsc_set_link_ksettings,
1838 .get_ringparam = netvsc_get_ringparam,
1839 .set_ringparam = netvsc_set_ringparam,
1842 static const struct net_device_ops device_ops = {
1843 .ndo_open = netvsc_open,
1844 .ndo_stop = netvsc_close,
1845 .ndo_start_xmit = netvsc_start_xmit,
1846 .ndo_change_rx_flags = netvsc_change_rx_flags,
1847 .ndo_set_rx_mode = netvsc_set_rx_mode,
1848 .ndo_set_features = netvsc_set_features,
1849 .ndo_change_mtu = netvsc_change_mtu,
1850 .ndo_validate_addr = eth_validate_addr,
1851 .ndo_set_mac_address = netvsc_set_mac_addr,
1852 .ndo_select_queue = netvsc_select_queue,
1853 .ndo_get_stats64 = netvsc_get_stats64,
1857 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1858 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1859 * present send GARP packet to network peers with netif_notify_peers().
1861 static void netvsc_link_change(struct work_struct *w)
1863 struct net_device_context *ndev_ctx =
1864 container_of(w, struct net_device_context, dwork.work);
1865 struct hv_device *device_obj = ndev_ctx->device_ctx;
1866 struct net_device *net = hv_get_drvdata(device_obj);
1867 struct netvsc_device *net_device;
1868 struct rndis_device *rdev;
1869 struct netvsc_reconfig *event = NULL;
1870 bool notify = false, reschedule = false;
1871 unsigned long flags, next_reconfig, delay;
1873 /* if changes are happening, comeback later */
1874 if (!rtnl_trylock()) {
1875 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1876 return;
1879 net_device = rtnl_dereference(ndev_ctx->nvdev);
1880 if (!net_device)
1881 goto out_unlock;
1883 rdev = net_device->extension;
1885 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1886 if (time_is_after_jiffies(next_reconfig)) {
1887 /* link_watch only sends one notification with current state
1888 * per second, avoid doing reconfig more frequently. Handle
1889 * wrap around.
1891 delay = next_reconfig - jiffies;
1892 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1893 schedule_delayed_work(&ndev_ctx->dwork, delay);
1894 goto out_unlock;
1896 ndev_ctx->last_reconfig = jiffies;
1898 spin_lock_irqsave(&ndev_ctx->lock, flags);
1899 if (!list_empty(&ndev_ctx->reconfig_events)) {
1900 event = list_first_entry(&ndev_ctx->reconfig_events,
1901 struct netvsc_reconfig, list);
1902 list_del(&event->list);
1903 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1905 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1907 if (!event)
1908 goto out_unlock;
1910 switch (event->event) {
1911 /* Only the following events are possible due to the check in
1912 * netvsc_linkstatus_callback()
1914 case RNDIS_STATUS_MEDIA_CONNECT:
1915 if (rdev->link_state) {
1916 rdev->link_state = false;
1917 netif_carrier_on(net);
1918 netvsc_tx_enable(net_device, net);
1919 } else {
1920 notify = true;
1922 kfree(event);
1923 break;
1924 case RNDIS_STATUS_MEDIA_DISCONNECT:
1925 if (!rdev->link_state) {
1926 rdev->link_state = true;
1927 netif_carrier_off(net);
1928 netvsc_tx_disable(net_device, net);
1930 kfree(event);
1931 break;
1932 case RNDIS_STATUS_NETWORK_CHANGE:
1933 /* Only makes sense if carrier is present */
1934 if (!rdev->link_state) {
1935 rdev->link_state = true;
1936 netif_carrier_off(net);
1937 netvsc_tx_disable(net_device, net);
1938 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1939 spin_lock_irqsave(&ndev_ctx->lock, flags);
1940 list_add(&event->list, &ndev_ctx->reconfig_events);
1941 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1942 reschedule = true;
1944 break;
1947 rtnl_unlock();
1949 if (notify)
1950 netdev_notify_peers(net);
1952 /* link_watch only sends one notification with current state per
1953 * second, handle next reconfig event in 2 seconds.
1955 if (reschedule)
1956 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1958 return;
1960 out_unlock:
1961 rtnl_unlock();
1964 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1966 struct net_device_context *net_device_ctx;
1967 struct net_device *dev;
1969 dev = netdev_master_upper_dev_get(vf_netdev);
1970 if (!dev || dev->netdev_ops != &device_ops)
1971 return NULL; /* not a netvsc device */
1973 net_device_ctx = netdev_priv(dev);
1974 if (!rtnl_dereference(net_device_ctx->nvdev))
1975 return NULL; /* device is removed */
1977 return dev;
1980 /* Called when VF is injecting data into network stack.
1981 * Change the associated network device from VF to netvsc.
1982 * note: already called with rcu_read_lock
1984 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1986 struct sk_buff *skb = *pskb;
1987 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1988 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1989 struct netvsc_vf_pcpu_stats *pcpu_stats
1990 = this_cpu_ptr(ndev_ctx->vf_stats);
1992 skb = skb_share_check(skb, GFP_ATOMIC);
1993 if (unlikely(!skb))
1994 return RX_HANDLER_CONSUMED;
1996 *pskb = skb;
1998 skb->dev = ndev;
2000 u64_stats_update_begin(&pcpu_stats->syncp);
2001 pcpu_stats->rx_packets++;
2002 pcpu_stats->rx_bytes += skb->len;
2003 u64_stats_update_end(&pcpu_stats->syncp);
2005 return RX_HANDLER_ANOTHER;
2008 static int netvsc_vf_join(struct net_device *vf_netdev,
2009 struct net_device *ndev)
2011 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2012 int ret;
2014 ret = netdev_rx_handler_register(vf_netdev,
2015 netvsc_vf_handle_frame, ndev);
2016 if (ret != 0) {
2017 netdev_err(vf_netdev,
2018 "can not register netvsc VF receive handler (err = %d)\n",
2019 ret);
2020 goto rx_handler_failed;
2023 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2024 NULL, NULL, NULL);
2025 if (ret != 0) {
2026 netdev_err(vf_netdev,
2027 "can not set master device %s (err = %d)\n",
2028 ndev->name, ret);
2029 goto upper_link_failed;
2032 /* set slave flag before open to prevent IPv6 addrconf */
2033 vf_netdev->flags |= IFF_SLAVE;
2035 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2037 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2039 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2040 return 0;
2042 upper_link_failed:
2043 netdev_rx_handler_unregister(vf_netdev);
2044 rx_handler_failed:
2045 return ret;
2048 static void __netvsc_vf_setup(struct net_device *ndev,
2049 struct net_device *vf_netdev)
2051 int ret;
2053 /* Align MTU of VF with master */
2054 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2055 if (ret)
2056 netdev_warn(vf_netdev,
2057 "unable to change mtu to %u\n", ndev->mtu);
2059 /* set multicast etc flags on VF */
2060 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2062 /* sync address list from ndev to VF */
2063 netif_addr_lock_bh(ndev);
2064 dev_uc_sync(vf_netdev, ndev);
2065 dev_mc_sync(vf_netdev, ndev);
2066 netif_addr_unlock_bh(ndev);
2068 if (netif_running(ndev)) {
2069 ret = dev_open(vf_netdev, NULL);
2070 if (ret)
2071 netdev_warn(vf_netdev,
2072 "unable to open: %d\n", ret);
2076 /* Setup VF as slave of the synthetic device.
2077 * Runs in workqueue to avoid recursion in netlink callbacks.
2079 static void netvsc_vf_setup(struct work_struct *w)
2081 struct net_device_context *ndev_ctx
2082 = container_of(w, struct net_device_context, vf_takeover.work);
2083 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2084 struct net_device *vf_netdev;
2086 if (!rtnl_trylock()) {
2087 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2088 return;
2091 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2092 if (vf_netdev)
2093 __netvsc_vf_setup(ndev, vf_netdev);
2095 rtnl_unlock();
2098 /* Find netvsc by VF serial number.
2099 * The PCI hyperv controller records the serial number as the slot kobj name.
2101 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2103 struct device *parent = vf_netdev->dev.parent;
2104 struct net_device_context *ndev_ctx;
2105 struct pci_dev *pdev;
2106 u32 serial;
2108 if (!parent || !dev_is_pci(parent))
2109 return NULL; /* not a PCI device */
2111 pdev = to_pci_dev(parent);
2112 if (!pdev->slot) {
2113 netdev_notice(vf_netdev, "no PCI slot information\n");
2114 return NULL;
2117 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2118 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2119 pci_slot_name(pdev->slot));
2120 return NULL;
2123 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2124 if (!ndev_ctx->vf_alloc)
2125 continue;
2127 if (ndev_ctx->vf_serial == serial)
2128 return hv_get_drvdata(ndev_ctx->device_ctx);
2131 netdev_notice(vf_netdev,
2132 "no netdev found for vf serial:%u\n", serial);
2133 return NULL;
2136 static int netvsc_register_vf(struct net_device *vf_netdev)
2138 struct net_device_context *net_device_ctx;
2139 struct netvsc_device *netvsc_dev;
2140 struct net_device *ndev;
2141 int ret;
2143 if (vf_netdev->addr_len != ETH_ALEN)
2144 return NOTIFY_DONE;
2146 ndev = get_netvsc_byslot(vf_netdev);
2147 if (!ndev)
2148 return NOTIFY_DONE;
2150 net_device_ctx = netdev_priv(ndev);
2151 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2152 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2153 return NOTIFY_DONE;
2155 /* if synthetic interface is a different namespace,
2156 * then move the VF to that namespace; join will be
2157 * done again in that context.
2159 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2160 ret = dev_change_net_namespace(vf_netdev,
2161 dev_net(ndev), "eth%d");
2162 if (ret)
2163 netdev_err(vf_netdev,
2164 "could not move to same namespace as %s: %d\n",
2165 ndev->name, ret);
2166 else
2167 netdev_info(vf_netdev,
2168 "VF moved to namespace with: %s\n",
2169 ndev->name);
2170 return NOTIFY_DONE;
2173 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2175 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2176 return NOTIFY_DONE;
2178 dev_hold(vf_netdev);
2179 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2180 return NOTIFY_OK;
2183 /* VF up/down change detected, schedule to change data path */
2184 static int netvsc_vf_changed(struct net_device *vf_netdev)
2186 struct net_device_context *net_device_ctx;
2187 struct netvsc_device *netvsc_dev;
2188 struct net_device *ndev;
2189 bool vf_is_up = netif_running(vf_netdev);
2191 ndev = get_netvsc_byref(vf_netdev);
2192 if (!ndev)
2193 return NOTIFY_DONE;
2195 net_device_ctx = netdev_priv(ndev);
2196 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2197 if (!netvsc_dev)
2198 return NOTIFY_DONE;
2200 netvsc_switch_datapath(ndev, vf_is_up);
2201 netdev_info(ndev, "Data path switched %s VF: %s\n",
2202 vf_is_up ? "to" : "from", vf_netdev->name);
2204 return NOTIFY_OK;
2207 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2209 struct net_device *ndev;
2210 struct net_device_context *net_device_ctx;
2212 ndev = get_netvsc_byref(vf_netdev);
2213 if (!ndev)
2214 return NOTIFY_DONE;
2216 net_device_ctx = netdev_priv(ndev);
2217 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2219 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2221 netdev_rx_handler_unregister(vf_netdev);
2222 netdev_upper_dev_unlink(vf_netdev, ndev);
2223 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2224 dev_put(vf_netdev);
2226 return NOTIFY_OK;
2229 static int netvsc_probe(struct hv_device *dev,
2230 const struct hv_vmbus_device_id *dev_id)
2232 struct net_device *net = NULL;
2233 struct net_device_context *net_device_ctx;
2234 struct netvsc_device_info *device_info = NULL;
2235 struct netvsc_device *nvdev;
2236 int ret = -ENOMEM;
2238 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2239 VRSS_CHANNEL_MAX);
2240 if (!net)
2241 goto no_net;
2243 netif_carrier_off(net);
2245 netvsc_init_settings(net);
2247 net_device_ctx = netdev_priv(net);
2248 net_device_ctx->device_ctx = dev;
2249 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2250 if (netif_msg_probe(net_device_ctx))
2251 netdev_dbg(net, "netvsc msg_enable: %d\n",
2252 net_device_ctx->msg_enable);
2254 hv_set_drvdata(dev, net);
2256 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2258 spin_lock_init(&net_device_ctx->lock);
2259 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2260 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2262 net_device_ctx->vf_stats
2263 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2264 if (!net_device_ctx->vf_stats)
2265 goto no_stats;
2267 net->netdev_ops = &device_ops;
2268 net->ethtool_ops = &ethtool_ops;
2269 SET_NETDEV_DEV(net, &dev->device);
2271 /* We always need headroom for rndis header */
2272 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2274 /* Initialize the number of queues to be 1, we may change it if more
2275 * channels are offered later.
2277 netif_set_real_num_tx_queues(net, 1);
2278 netif_set_real_num_rx_queues(net, 1);
2280 /* Notify the netvsc driver of the new device */
2281 device_info = netvsc_devinfo_get(NULL);
2283 if (!device_info) {
2284 ret = -ENOMEM;
2285 goto devinfo_failed;
2288 nvdev = rndis_filter_device_add(dev, device_info);
2289 if (IS_ERR(nvdev)) {
2290 ret = PTR_ERR(nvdev);
2291 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2292 goto rndis_failed;
2295 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2297 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2298 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2299 * all subchannels to show up, but that may not happen because
2300 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2301 * -> ... -> device_add() -> ... -> __device_attach() can't get
2302 * the device lock, so all the subchannels can't be processed --
2303 * finally netvsc_subchan_work() hangs forever.
2305 rtnl_lock();
2307 if (nvdev->num_chn > 1)
2308 schedule_work(&nvdev->subchan_work);
2310 /* hw_features computed in rndis_netdev_set_hwcaps() */
2311 net->features = net->hw_features |
2312 NETIF_F_HIGHDMA | NETIF_F_SG |
2313 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2314 net->vlan_features = net->features;
2316 netdev_lockdep_set_classes(net);
2318 /* MTU range: 68 - 1500 or 65521 */
2319 net->min_mtu = NETVSC_MTU_MIN;
2320 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2321 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2322 else
2323 net->max_mtu = ETH_DATA_LEN;
2325 ret = register_netdevice(net);
2326 if (ret != 0) {
2327 pr_err("Unable to register netdev.\n");
2328 goto register_failed;
2331 list_add(&net_device_ctx->list, &netvsc_dev_list);
2332 rtnl_unlock();
2334 kfree(device_info);
2335 return 0;
2337 register_failed:
2338 rtnl_unlock();
2339 rndis_filter_device_remove(dev, nvdev);
2340 rndis_failed:
2341 kfree(device_info);
2342 devinfo_failed:
2343 free_percpu(net_device_ctx->vf_stats);
2344 no_stats:
2345 hv_set_drvdata(dev, NULL);
2346 free_netdev(net);
2347 no_net:
2348 return ret;
2351 static int netvsc_remove(struct hv_device *dev)
2353 struct net_device_context *ndev_ctx;
2354 struct net_device *vf_netdev, *net;
2355 struct netvsc_device *nvdev;
2357 net = hv_get_drvdata(dev);
2358 if (net == NULL) {
2359 dev_err(&dev->device, "No net device to remove\n");
2360 return 0;
2363 ndev_ctx = netdev_priv(net);
2365 cancel_delayed_work_sync(&ndev_ctx->dwork);
2367 rtnl_lock();
2368 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2369 if (nvdev)
2370 cancel_work_sync(&nvdev->subchan_work);
2373 * Call to the vsc driver to let it know that the device is being
2374 * removed. Also blocks mtu and channel changes.
2376 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2377 if (vf_netdev)
2378 netvsc_unregister_vf(vf_netdev);
2380 if (nvdev)
2381 rndis_filter_device_remove(dev, nvdev);
2383 unregister_netdevice(net);
2384 list_del(&ndev_ctx->list);
2386 rtnl_unlock();
2388 hv_set_drvdata(dev, NULL);
2390 free_percpu(ndev_ctx->vf_stats);
2391 free_netdev(net);
2392 return 0;
2395 static const struct hv_vmbus_device_id id_table[] = {
2396 /* Network guid */
2397 { HV_NIC_GUID, },
2398 { },
2401 MODULE_DEVICE_TABLE(vmbus, id_table);
2403 /* The one and only one */
2404 static struct hv_driver netvsc_drv = {
2405 .name = KBUILD_MODNAME,
2406 .id_table = id_table,
2407 .probe = netvsc_probe,
2408 .remove = netvsc_remove,
2409 .driver = {
2410 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2415 * On Hyper-V, every VF interface is matched with a corresponding
2416 * synthetic interface. The synthetic interface is presented first
2417 * to the guest. When the corresponding VF instance is registered,
2418 * we will take care of switching the data path.
2420 static int netvsc_netdev_event(struct notifier_block *this,
2421 unsigned long event, void *ptr)
2423 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2425 /* Skip our own events */
2426 if (event_dev->netdev_ops == &device_ops)
2427 return NOTIFY_DONE;
2429 /* Avoid non-Ethernet type devices */
2430 if (event_dev->type != ARPHRD_ETHER)
2431 return NOTIFY_DONE;
2433 /* Avoid Vlan dev with same MAC registering as VF */
2434 if (is_vlan_dev(event_dev))
2435 return NOTIFY_DONE;
2437 /* Avoid Bonding master dev with same MAC registering as VF */
2438 if ((event_dev->priv_flags & IFF_BONDING) &&
2439 (event_dev->flags & IFF_MASTER))
2440 return NOTIFY_DONE;
2442 switch (event) {
2443 case NETDEV_REGISTER:
2444 return netvsc_register_vf(event_dev);
2445 case NETDEV_UNREGISTER:
2446 return netvsc_unregister_vf(event_dev);
2447 case NETDEV_UP:
2448 case NETDEV_DOWN:
2449 return netvsc_vf_changed(event_dev);
2450 default:
2451 return NOTIFY_DONE;
2455 static struct notifier_block netvsc_netdev_notifier = {
2456 .notifier_call = netvsc_netdev_event,
2459 static void __exit netvsc_drv_exit(void)
2461 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2462 vmbus_driver_unregister(&netvsc_drv);
2465 static int __init netvsc_drv_init(void)
2467 int ret;
2469 if (ring_size < RING_SIZE_MIN) {
2470 ring_size = RING_SIZE_MIN;
2471 pr_info("Increased ring_size to %u (min allowed)\n",
2472 ring_size);
2474 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2476 ret = vmbus_driver_register(&netvsc_drv);
2477 if (ret)
2478 return ret;
2480 register_netdevice_notifier(&netvsc_netdev_notifier);
2481 return 0;
2484 MODULE_LICENSE("GPL");
2485 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2487 module_init(netvsc_drv_init);
2488 module_exit(netvsc_drv_exit);