Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / net / vrf.c
blob311b0cc6eb986ad96107cad57d8202cfedc3c68b
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ip.h>
17 #include <linux/init.h>
18 #include <linux/moduleparam.h>
19 #include <linux/netfilter.h>
20 #include <linux/rtnetlink.h>
21 #include <net/rtnetlink.h>
22 #include <linux/u64_stats_sync.h>
23 #include <linux/hashtable.h>
25 #include <linux/inetdevice.h>
26 #include <net/arp.h>
27 #include <net/ip.h>
28 #include <net/ip_fib.h>
29 #include <net/ip6_fib.h>
30 #include <net/ip6_route.h>
31 #include <net/route.h>
32 #include <net/addrconf.h>
33 #include <net/l3mdev.h>
34 #include <net/fib_rules.h>
35 #include <net/netns/generic.h>
37 #define DRV_NAME "vrf"
38 #define DRV_VERSION "1.0"
40 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
42 static unsigned int vrf_net_id;
44 struct net_vrf {
45 struct rtable __rcu *rth;
46 struct rt6_info __rcu *rt6;
47 #if IS_ENABLED(CONFIG_IPV6)
48 struct fib6_table *fib6_table;
49 #endif
50 u32 tb_id;
53 struct pcpu_dstats {
54 u64 tx_pkts;
55 u64 tx_bytes;
56 u64 tx_drps;
57 u64 rx_pkts;
58 u64 rx_bytes;
59 u64 rx_drps;
60 struct u64_stats_sync syncp;
63 static void vrf_rx_stats(struct net_device *dev, int len)
65 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67 u64_stats_update_begin(&dstats->syncp);
68 dstats->rx_pkts++;
69 dstats->rx_bytes += len;
70 u64_stats_update_end(&dstats->syncp);
73 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 vrf_dev->stats.tx_errors++;
76 kfree_skb(skb);
79 static void vrf_get_stats64(struct net_device *dev,
80 struct rtnl_link_stats64 *stats)
82 int i;
84 for_each_possible_cpu(i) {
85 const struct pcpu_dstats *dstats;
86 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
87 unsigned int start;
89 dstats = per_cpu_ptr(dev->dstats, i);
90 do {
91 start = u64_stats_fetch_begin_irq(&dstats->syncp);
92 tbytes = dstats->tx_bytes;
93 tpkts = dstats->tx_pkts;
94 tdrops = dstats->tx_drps;
95 rbytes = dstats->rx_bytes;
96 rpkts = dstats->rx_pkts;
97 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
98 stats->tx_bytes += tbytes;
99 stats->tx_packets += tpkts;
100 stats->tx_dropped += tdrops;
101 stats->rx_bytes += rbytes;
102 stats->rx_packets += rpkts;
106 /* by default VRF devices do not have a qdisc and are expected
107 * to be created with only a single queue.
109 static bool qdisc_tx_is_default(const struct net_device *dev)
111 struct netdev_queue *txq;
112 struct Qdisc *qdisc;
114 if (dev->num_tx_queues > 1)
115 return false;
117 txq = netdev_get_tx_queue(dev, 0);
118 qdisc = rcu_access_pointer(txq->qdisc);
120 return !qdisc->enqueue;
123 /* Local traffic destined to local address. Reinsert the packet to rx
124 * path, similar to loopback handling.
126 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
127 struct dst_entry *dst)
129 int len = skb->len;
131 skb_orphan(skb);
133 skb_dst_set(skb, dst);
135 /* set pkt_type to avoid skb hitting packet taps twice -
136 * once on Tx and again in Rx processing
138 skb->pkt_type = PACKET_LOOPBACK;
140 skb->protocol = eth_type_trans(skb, dev);
142 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
143 vrf_rx_stats(dev, len);
144 else
145 this_cpu_inc(dev->dstats->rx_drps);
147 return NETDEV_TX_OK;
150 #if IS_ENABLED(CONFIG_IPV6)
151 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
152 struct sk_buff *skb)
154 int err;
156 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
157 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
159 if (likely(err == 1))
160 err = dst_output(net, sk, skb);
162 return err;
165 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
166 struct net_device *dev)
168 const struct ipv6hdr *iph = ipv6_hdr(skb);
169 struct net *net = dev_net(skb->dev);
170 struct flowi6 fl6 = {
171 /* needed to match OIF rule */
172 .flowi6_oif = dev->ifindex,
173 .flowi6_iif = LOOPBACK_IFINDEX,
174 .daddr = iph->daddr,
175 .saddr = iph->saddr,
176 .flowlabel = ip6_flowinfo(iph),
177 .flowi6_mark = skb->mark,
178 .flowi6_proto = iph->nexthdr,
179 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
181 int ret = NET_XMIT_DROP;
182 struct dst_entry *dst;
183 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
185 dst = ip6_route_output(net, NULL, &fl6);
186 if (dst == dst_null)
187 goto err;
189 skb_dst_drop(skb);
191 /* if dst.dev is loopback or the VRF device again this is locally
192 * originated traffic destined to a local address. Short circuit
193 * to Rx path
195 if (dst->dev == dev)
196 return vrf_local_xmit(skb, dev, dst);
198 skb_dst_set(skb, dst);
200 /* strip the ethernet header added for pass through VRF device */
201 __skb_pull(skb, skb_network_offset(skb));
203 ret = vrf_ip6_local_out(net, skb->sk, skb);
204 if (unlikely(net_xmit_eval(ret)))
205 dev->stats.tx_errors++;
206 else
207 ret = NET_XMIT_SUCCESS;
209 return ret;
210 err:
211 vrf_tx_error(dev, skb);
212 return NET_XMIT_DROP;
214 #else
215 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
216 struct net_device *dev)
218 vrf_tx_error(dev, skb);
219 return NET_XMIT_DROP;
221 #endif
223 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
224 static int vrf_ip_local_out(struct net *net, struct sock *sk,
225 struct sk_buff *skb)
227 int err;
229 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
230 skb, NULL, skb_dst(skb)->dev, dst_output);
231 if (likely(err == 1))
232 err = dst_output(net, sk, skb);
234 return err;
237 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
238 struct net_device *vrf_dev)
240 struct iphdr *ip4h = ip_hdr(skb);
241 int ret = NET_XMIT_DROP;
242 struct flowi4 fl4 = {
243 /* needed to match OIF rule */
244 .flowi4_oif = vrf_dev->ifindex,
245 .flowi4_iif = LOOPBACK_IFINDEX,
246 .flowi4_tos = RT_TOS(ip4h->tos),
247 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
248 .flowi4_proto = ip4h->protocol,
249 .daddr = ip4h->daddr,
250 .saddr = ip4h->saddr,
252 struct net *net = dev_net(vrf_dev);
253 struct rtable *rt;
255 rt = ip_route_output_flow(net, &fl4, NULL);
256 if (IS_ERR(rt))
257 goto err;
259 skb_dst_drop(skb);
261 /* if dst.dev is loopback or the VRF device again this is locally
262 * originated traffic destined to a local address. Short circuit
263 * to Rx path
265 if (rt->dst.dev == vrf_dev)
266 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
268 skb_dst_set(skb, &rt->dst);
270 /* strip the ethernet header added for pass through VRF device */
271 __skb_pull(skb, skb_network_offset(skb));
273 if (!ip4h->saddr) {
274 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
275 RT_SCOPE_LINK);
278 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
279 if (unlikely(net_xmit_eval(ret)))
280 vrf_dev->stats.tx_errors++;
281 else
282 ret = NET_XMIT_SUCCESS;
284 out:
285 return ret;
286 err:
287 vrf_tx_error(vrf_dev, skb);
288 goto out;
291 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
293 switch (skb->protocol) {
294 case htons(ETH_P_IP):
295 return vrf_process_v4_outbound(skb, dev);
296 case htons(ETH_P_IPV6):
297 return vrf_process_v6_outbound(skb, dev);
298 default:
299 vrf_tx_error(dev, skb);
300 return NET_XMIT_DROP;
304 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
306 int len = skb->len;
307 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
309 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
310 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
312 u64_stats_update_begin(&dstats->syncp);
313 dstats->tx_pkts++;
314 dstats->tx_bytes += len;
315 u64_stats_update_end(&dstats->syncp);
316 } else {
317 this_cpu_inc(dev->dstats->tx_drps);
320 return ret;
323 static int vrf_finish_direct(struct net *net, struct sock *sk,
324 struct sk_buff *skb)
326 struct net_device *vrf_dev = skb->dev;
328 if (!list_empty(&vrf_dev->ptype_all) &&
329 likely(skb_headroom(skb) >= ETH_HLEN)) {
330 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
332 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
333 eth_zero_addr(eth->h_dest);
334 eth->h_proto = skb->protocol;
336 rcu_read_lock_bh();
337 dev_queue_xmit_nit(skb, vrf_dev);
338 rcu_read_unlock_bh();
340 skb_pull(skb, ETH_HLEN);
343 return 1;
346 #if IS_ENABLED(CONFIG_IPV6)
347 /* modelled after ip6_finish_output2 */
348 static int vrf_finish_output6(struct net *net, struct sock *sk,
349 struct sk_buff *skb)
351 struct dst_entry *dst = skb_dst(skb);
352 struct net_device *dev = dst->dev;
353 const struct in6_addr *nexthop;
354 struct neighbour *neigh;
355 int ret;
357 nf_reset(skb);
359 skb->protocol = htons(ETH_P_IPV6);
360 skb->dev = dev;
362 rcu_read_lock_bh();
363 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
364 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
365 if (unlikely(!neigh))
366 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
367 if (!IS_ERR(neigh)) {
368 sock_confirm_neigh(skb, neigh);
369 ret = neigh_output(neigh, skb, false);
370 rcu_read_unlock_bh();
371 return ret;
373 rcu_read_unlock_bh();
375 IP6_INC_STATS(dev_net(dst->dev),
376 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
377 kfree_skb(skb);
378 return -EINVAL;
381 /* modelled after ip6_output */
382 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
384 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
385 net, sk, skb, NULL, skb_dst(skb)->dev,
386 vrf_finish_output6,
387 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
390 /* set dst on skb to send packet to us via dev_xmit path. Allows
391 * packet to go through device based features such as qdisc, netfilter
392 * hooks and packet sockets with skb->dev set to vrf device.
394 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
395 struct sk_buff *skb)
397 struct net_vrf *vrf = netdev_priv(vrf_dev);
398 struct dst_entry *dst = NULL;
399 struct rt6_info *rt6;
401 rcu_read_lock();
403 rt6 = rcu_dereference(vrf->rt6);
404 if (likely(rt6)) {
405 dst = &rt6->dst;
406 dst_hold(dst);
409 rcu_read_unlock();
411 if (unlikely(!dst)) {
412 vrf_tx_error(vrf_dev, skb);
413 return NULL;
416 skb_dst_drop(skb);
417 skb_dst_set(skb, dst);
419 return skb;
422 static int vrf_output6_direct(struct net *net, struct sock *sk,
423 struct sk_buff *skb)
425 skb->protocol = htons(ETH_P_IPV6);
427 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
428 net, sk, skb, NULL, skb->dev,
429 vrf_finish_direct,
430 !(IPCB(skb)->flags & IPSKB_REROUTED));
433 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
434 struct sock *sk,
435 struct sk_buff *skb)
437 struct net *net = dev_net(vrf_dev);
438 int err;
440 skb->dev = vrf_dev;
442 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
443 skb, NULL, vrf_dev, vrf_output6_direct);
445 if (likely(err == 1))
446 err = vrf_output6_direct(net, sk, skb);
448 /* reset skb device */
449 if (likely(err == 1))
450 nf_reset(skb);
451 else
452 skb = NULL;
454 return skb;
457 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
458 struct sock *sk,
459 struct sk_buff *skb)
461 /* don't divert link scope packets */
462 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
463 return skb;
465 if (qdisc_tx_is_default(vrf_dev))
466 return vrf_ip6_out_direct(vrf_dev, sk, skb);
468 return vrf_ip6_out_redirect(vrf_dev, skb);
471 /* holding rtnl */
472 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
474 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
475 struct net *net = dev_net(dev);
476 struct dst_entry *dst;
478 RCU_INIT_POINTER(vrf->rt6, NULL);
479 synchronize_rcu();
481 /* move dev in dst's to loopback so this VRF device can be deleted
482 * - based on dst_ifdown
484 if (rt6) {
485 dst = &rt6->dst;
486 dev_put(dst->dev);
487 dst->dev = net->loopback_dev;
488 dev_hold(dst->dev);
489 dst_release(dst);
493 static int vrf_rt6_create(struct net_device *dev)
495 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
496 struct net_vrf *vrf = netdev_priv(dev);
497 struct net *net = dev_net(dev);
498 struct rt6_info *rt6;
499 int rc = -ENOMEM;
501 /* IPv6 can be CONFIG enabled and then disabled runtime */
502 if (!ipv6_mod_enabled())
503 return 0;
505 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
506 if (!vrf->fib6_table)
507 goto out;
509 /* create a dst for routing packets out a VRF device */
510 rt6 = ip6_dst_alloc(net, dev, flags);
511 if (!rt6)
512 goto out;
514 rt6->dst.output = vrf_output6;
516 rcu_assign_pointer(vrf->rt6, rt6);
518 rc = 0;
519 out:
520 return rc;
522 #else
523 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
524 struct sock *sk,
525 struct sk_buff *skb)
527 return skb;
530 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
534 static int vrf_rt6_create(struct net_device *dev)
536 return 0;
538 #endif
540 /* modelled after ip_finish_output2 */
541 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
543 struct dst_entry *dst = skb_dst(skb);
544 struct rtable *rt = (struct rtable *)dst;
545 struct net_device *dev = dst->dev;
546 unsigned int hh_len = LL_RESERVED_SPACE(dev);
547 struct neighbour *neigh;
548 bool is_v6gw = false;
549 int ret = -EINVAL;
551 nf_reset(skb);
553 /* Be paranoid, rather than too clever. */
554 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
555 struct sk_buff *skb2;
557 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
558 if (!skb2) {
559 ret = -ENOMEM;
560 goto err;
562 if (skb->sk)
563 skb_set_owner_w(skb2, skb->sk);
565 consume_skb(skb);
566 skb = skb2;
569 rcu_read_lock_bh();
571 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
572 if (!IS_ERR(neigh)) {
573 sock_confirm_neigh(skb, neigh);
574 /* if crossing protocols, can not use the cached header */
575 ret = neigh_output(neigh, skb, is_v6gw);
576 rcu_read_unlock_bh();
577 return ret;
580 rcu_read_unlock_bh();
581 err:
582 vrf_tx_error(skb->dev, skb);
583 return ret;
586 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
588 struct net_device *dev = skb_dst(skb)->dev;
590 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
592 skb->dev = dev;
593 skb->protocol = htons(ETH_P_IP);
595 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
596 net, sk, skb, NULL, dev,
597 vrf_finish_output,
598 !(IPCB(skb)->flags & IPSKB_REROUTED));
601 /* set dst on skb to send packet to us via dev_xmit path. Allows
602 * packet to go through device based features such as qdisc, netfilter
603 * hooks and packet sockets with skb->dev set to vrf device.
605 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
606 struct sk_buff *skb)
608 struct net_vrf *vrf = netdev_priv(vrf_dev);
609 struct dst_entry *dst = NULL;
610 struct rtable *rth;
612 rcu_read_lock();
614 rth = rcu_dereference(vrf->rth);
615 if (likely(rth)) {
616 dst = &rth->dst;
617 dst_hold(dst);
620 rcu_read_unlock();
622 if (unlikely(!dst)) {
623 vrf_tx_error(vrf_dev, skb);
624 return NULL;
627 skb_dst_drop(skb);
628 skb_dst_set(skb, dst);
630 return skb;
633 static int vrf_output_direct(struct net *net, struct sock *sk,
634 struct sk_buff *skb)
636 skb->protocol = htons(ETH_P_IP);
638 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
639 net, sk, skb, NULL, skb->dev,
640 vrf_finish_direct,
641 !(IPCB(skb)->flags & IPSKB_REROUTED));
644 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
645 struct sock *sk,
646 struct sk_buff *skb)
648 struct net *net = dev_net(vrf_dev);
649 int err;
651 skb->dev = vrf_dev;
653 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
654 skb, NULL, vrf_dev, vrf_output_direct);
656 if (likely(err == 1))
657 err = vrf_output_direct(net, sk, skb);
659 /* reset skb device */
660 if (likely(err == 1))
661 nf_reset(skb);
662 else
663 skb = NULL;
665 return skb;
668 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
669 struct sock *sk,
670 struct sk_buff *skb)
672 /* don't divert multicast or local broadcast */
673 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
674 ipv4_is_lbcast(ip_hdr(skb)->daddr))
675 return skb;
677 if (qdisc_tx_is_default(vrf_dev))
678 return vrf_ip_out_direct(vrf_dev, sk, skb);
680 return vrf_ip_out_redirect(vrf_dev, skb);
683 /* called with rcu lock held */
684 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
685 struct sock *sk,
686 struct sk_buff *skb,
687 u16 proto)
689 switch (proto) {
690 case AF_INET:
691 return vrf_ip_out(vrf_dev, sk, skb);
692 case AF_INET6:
693 return vrf_ip6_out(vrf_dev, sk, skb);
696 return skb;
699 /* holding rtnl */
700 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
702 struct rtable *rth = rtnl_dereference(vrf->rth);
703 struct net *net = dev_net(dev);
704 struct dst_entry *dst;
706 RCU_INIT_POINTER(vrf->rth, NULL);
707 synchronize_rcu();
709 /* move dev in dst's to loopback so this VRF device can be deleted
710 * - based on dst_ifdown
712 if (rth) {
713 dst = &rth->dst;
714 dev_put(dst->dev);
715 dst->dev = net->loopback_dev;
716 dev_hold(dst->dev);
717 dst_release(dst);
721 static int vrf_rtable_create(struct net_device *dev)
723 struct net_vrf *vrf = netdev_priv(dev);
724 struct rtable *rth;
726 if (!fib_new_table(dev_net(dev), vrf->tb_id))
727 return -ENOMEM;
729 /* create a dst for routing packets out through a VRF device */
730 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
731 if (!rth)
732 return -ENOMEM;
734 rth->dst.output = vrf_output;
736 rcu_assign_pointer(vrf->rth, rth);
738 return 0;
741 /**************************** device handling ********************/
743 /* cycle interface to flush neighbor cache and move routes across tables */
744 static void cycle_netdev(struct net_device *dev,
745 struct netlink_ext_ack *extack)
747 unsigned int flags = dev->flags;
748 int ret;
750 if (!netif_running(dev))
751 return;
753 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
754 if (ret >= 0)
755 ret = dev_change_flags(dev, flags, extack);
757 if (ret < 0) {
758 netdev_err(dev,
759 "Failed to cycle device %s; route tables might be wrong!\n",
760 dev->name);
764 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
765 struct netlink_ext_ack *extack)
767 int ret;
769 /* do not allow loopback device to be enslaved to a VRF.
770 * The vrf device acts as the loopback for the vrf.
772 if (port_dev == dev_net(dev)->loopback_dev) {
773 NL_SET_ERR_MSG(extack,
774 "Can not enslave loopback device to a VRF");
775 return -EOPNOTSUPP;
778 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
779 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
780 if (ret < 0)
781 goto err;
783 cycle_netdev(port_dev, extack);
785 return 0;
787 err:
788 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
789 return ret;
792 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
793 struct netlink_ext_ack *extack)
795 if (netif_is_l3_master(port_dev)) {
796 NL_SET_ERR_MSG(extack,
797 "Can not enslave an L3 master device to a VRF");
798 return -EINVAL;
801 if (netif_is_l3_slave(port_dev))
802 return -EINVAL;
804 return do_vrf_add_slave(dev, port_dev, extack);
807 /* inverse of do_vrf_add_slave */
808 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
810 netdev_upper_dev_unlink(port_dev, dev);
811 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
813 cycle_netdev(port_dev, NULL);
815 return 0;
818 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
820 return do_vrf_del_slave(dev, port_dev);
823 static void vrf_dev_uninit(struct net_device *dev)
825 struct net_vrf *vrf = netdev_priv(dev);
827 vrf_rtable_release(dev, vrf);
828 vrf_rt6_release(dev, vrf);
830 free_percpu(dev->dstats);
831 dev->dstats = NULL;
834 static int vrf_dev_init(struct net_device *dev)
836 struct net_vrf *vrf = netdev_priv(dev);
838 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
839 if (!dev->dstats)
840 goto out_nomem;
842 /* create the default dst which points back to us */
843 if (vrf_rtable_create(dev) != 0)
844 goto out_stats;
846 if (vrf_rt6_create(dev) != 0)
847 goto out_rth;
849 dev->flags = IFF_MASTER | IFF_NOARP;
851 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
852 dev->mtu = 64 * 1024;
854 /* similarly, oper state is irrelevant; set to up to avoid confusion */
855 dev->operstate = IF_OPER_UP;
856 netdev_lockdep_set_classes(dev);
857 return 0;
859 out_rth:
860 vrf_rtable_release(dev, vrf);
861 out_stats:
862 free_percpu(dev->dstats);
863 dev->dstats = NULL;
864 out_nomem:
865 return -ENOMEM;
868 static const struct net_device_ops vrf_netdev_ops = {
869 .ndo_init = vrf_dev_init,
870 .ndo_uninit = vrf_dev_uninit,
871 .ndo_start_xmit = vrf_xmit,
872 .ndo_set_mac_address = eth_mac_addr,
873 .ndo_get_stats64 = vrf_get_stats64,
874 .ndo_add_slave = vrf_add_slave,
875 .ndo_del_slave = vrf_del_slave,
878 static u32 vrf_fib_table(const struct net_device *dev)
880 struct net_vrf *vrf = netdev_priv(dev);
882 return vrf->tb_id;
885 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
887 kfree_skb(skb);
888 return 0;
891 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
892 struct sk_buff *skb,
893 struct net_device *dev)
895 struct net *net = dev_net(dev);
897 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
898 skb = NULL; /* kfree_skb(skb) handled by nf code */
900 return skb;
903 #if IS_ENABLED(CONFIG_IPV6)
904 /* neighbor handling is done with actual device; do not want
905 * to flip skb->dev for those ndisc packets. This really fails
906 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
907 * a start.
909 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
911 const struct ipv6hdr *iph = ipv6_hdr(skb);
912 bool rc = false;
914 if (iph->nexthdr == NEXTHDR_ICMP) {
915 const struct icmp6hdr *icmph;
916 struct icmp6hdr _icmph;
918 icmph = skb_header_pointer(skb, sizeof(*iph),
919 sizeof(_icmph), &_icmph);
920 if (!icmph)
921 goto out;
923 switch (icmph->icmp6_type) {
924 case NDISC_ROUTER_SOLICITATION:
925 case NDISC_ROUTER_ADVERTISEMENT:
926 case NDISC_NEIGHBOUR_SOLICITATION:
927 case NDISC_NEIGHBOUR_ADVERTISEMENT:
928 case NDISC_REDIRECT:
929 rc = true;
930 break;
934 out:
935 return rc;
938 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
939 const struct net_device *dev,
940 struct flowi6 *fl6,
941 int ifindex,
942 const struct sk_buff *skb,
943 int flags)
945 struct net_vrf *vrf = netdev_priv(dev);
947 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
950 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
951 int ifindex)
953 const struct ipv6hdr *iph = ipv6_hdr(skb);
954 struct flowi6 fl6 = {
955 .flowi6_iif = ifindex,
956 .flowi6_mark = skb->mark,
957 .flowi6_proto = iph->nexthdr,
958 .daddr = iph->daddr,
959 .saddr = iph->saddr,
960 .flowlabel = ip6_flowinfo(iph),
962 struct net *net = dev_net(vrf_dev);
963 struct rt6_info *rt6;
965 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
966 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
967 if (unlikely(!rt6))
968 return;
970 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
971 return;
973 skb_dst_set(skb, &rt6->dst);
976 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
977 struct sk_buff *skb)
979 int orig_iif = skb->skb_iif;
980 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
981 bool is_ndisc = ipv6_ndisc_frame(skb);
983 /* loopback, multicast & non-ND link-local traffic; do not push through
984 * packet taps again. Reset pkt_type for upper layers to process skb
986 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
987 skb->dev = vrf_dev;
988 skb->skb_iif = vrf_dev->ifindex;
989 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
990 if (skb->pkt_type == PACKET_LOOPBACK)
991 skb->pkt_type = PACKET_HOST;
992 goto out;
995 /* if packet is NDISC then keep the ingress interface */
996 if (!is_ndisc) {
997 vrf_rx_stats(vrf_dev, skb->len);
998 skb->dev = vrf_dev;
999 skb->skb_iif = vrf_dev->ifindex;
1001 if (!list_empty(&vrf_dev->ptype_all)) {
1002 skb_push(skb, skb->mac_len);
1003 dev_queue_xmit_nit(skb, vrf_dev);
1004 skb_pull(skb, skb->mac_len);
1007 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1010 if (need_strict)
1011 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1013 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1014 out:
1015 return skb;
1018 #else
1019 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1020 struct sk_buff *skb)
1022 return skb;
1024 #endif
1026 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1027 struct sk_buff *skb)
1029 skb->dev = vrf_dev;
1030 skb->skb_iif = vrf_dev->ifindex;
1031 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1033 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1034 goto out;
1036 /* loopback traffic; do not push through packet taps again.
1037 * Reset pkt_type for upper layers to process skb
1039 if (skb->pkt_type == PACKET_LOOPBACK) {
1040 skb->pkt_type = PACKET_HOST;
1041 goto out;
1044 vrf_rx_stats(vrf_dev, skb->len);
1046 if (!list_empty(&vrf_dev->ptype_all)) {
1047 skb_push(skb, skb->mac_len);
1048 dev_queue_xmit_nit(skb, vrf_dev);
1049 skb_pull(skb, skb->mac_len);
1052 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1053 out:
1054 return skb;
1057 /* called with rcu lock held */
1058 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1059 struct sk_buff *skb,
1060 u16 proto)
1062 switch (proto) {
1063 case AF_INET:
1064 return vrf_ip_rcv(vrf_dev, skb);
1065 case AF_INET6:
1066 return vrf_ip6_rcv(vrf_dev, skb);
1069 return skb;
1072 #if IS_ENABLED(CONFIG_IPV6)
1073 /* send to link-local or multicast address via interface enslaved to
1074 * VRF device. Force lookup to VRF table without changing flow struct
1076 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1077 struct flowi6 *fl6)
1079 struct net *net = dev_net(dev);
1080 int flags = RT6_LOOKUP_F_IFACE;
1081 struct dst_entry *dst = NULL;
1082 struct rt6_info *rt;
1084 /* VRF device does not have a link-local address and
1085 * sending packets to link-local or mcast addresses over
1086 * a VRF device does not make sense
1088 if (fl6->flowi6_oif == dev->ifindex) {
1089 dst = &net->ipv6.ip6_null_entry->dst;
1090 dst_hold(dst);
1091 return dst;
1094 if (!ipv6_addr_any(&fl6->saddr))
1095 flags |= RT6_LOOKUP_F_HAS_SADDR;
1097 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1098 if (rt)
1099 dst = &rt->dst;
1101 return dst;
1103 #endif
1105 static const struct l3mdev_ops vrf_l3mdev_ops = {
1106 .l3mdev_fib_table = vrf_fib_table,
1107 .l3mdev_l3_rcv = vrf_l3_rcv,
1108 .l3mdev_l3_out = vrf_l3_out,
1109 #if IS_ENABLED(CONFIG_IPV6)
1110 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1111 #endif
1114 static void vrf_get_drvinfo(struct net_device *dev,
1115 struct ethtool_drvinfo *info)
1117 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1118 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1121 static const struct ethtool_ops vrf_ethtool_ops = {
1122 .get_drvinfo = vrf_get_drvinfo,
1125 static inline size_t vrf_fib_rule_nl_size(void)
1127 size_t sz;
1129 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1130 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1131 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1132 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1134 return sz;
1137 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1139 struct fib_rule_hdr *frh;
1140 struct nlmsghdr *nlh;
1141 struct sk_buff *skb;
1142 int err;
1144 if (family == AF_INET6 && !ipv6_mod_enabled())
1145 return 0;
1147 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1148 if (!skb)
1149 return -ENOMEM;
1151 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1152 if (!nlh)
1153 goto nla_put_failure;
1155 /* rule only needs to appear once */
1156 nlh->nlmsg_flags |= NLM_F_EXCL;
1158 frh = nlmsg_data(nlh);
1159 memset(frh, 0, sizeof(*frh));
1160 frh->family = family;
1161 frh->action = FR_ACT_TO_TBL;
1163 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1164 goto nla_put_failure;
1166 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1167 goto nla_put_failure;
1169 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1170 goto nla_put_failure;
1172 nlmsg_end(skb, nlh);
1174 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1175 skb->sk = dev_net(dev)->rtnl;
1176 if (add_it) {
1177 err = fib_nl_newrule(skb, nlh, NULL);
1178 if (err == -EEXIST)
1179 err = 0;
1180 } else {
1181 err = fib_nl_delrule(skb, nlh, NULL);
1182 if (err == -ENOENT)
1183 err = 0;
1185 nlmsg_free(skb);
1187 return err;
1189 nla_put_failure:
1190 nlmsg_free(skb);
1192 return -EMSGSIZE;
1195 static int vrf_add_fib_rules(const struct net_device *dev)
1197 int err;
1199 err = vrf_fib_rule(dev, AF_INET, true);
1200 if (err < 0)
1201 goto out_err;
1203 err = vrf_fib_rule(dev, AF_INET6, true);
1204 if (err < 0)
1205 goto ipv6_err;
1207 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1208 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1209 if (err < 0)
1210 goto ipmr_err;
1211 #endif
1213 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1214 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1215 if (err < 0)
1216 goto ip6mr_err;
1217 #endif
1219 return 0;
1221 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1222 ip6mr_err:
1223 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1224 #endif
1226 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1227 ipmr_err:
1228 vrf_fib_rule(dev, AF_INET6, false);
1229 #endif
1231 ipv6_err:
1232 vrf_fib_rule(dev, AF_INET, false);
1234 out_err:
1235 netdev_err(dev, "Failed to add FIB rules.\n");
1236 return err;
1239 static void vrf_setup(struct net_device *dev)
1241 ether_setup(dev);
1243 /* Initialize the device structure. */
1244 dev->netdev_ops = &vrf_netdev_ops;
1245 dev->l3mdev_ops = &vrf_l3mdev_ops;
1246 dev->ethtool_ops = &vrf_ethtool_ops;
1247 dev->needs_free_netdev = true;
1249 /* Fill in device structure with ethernet-generic values. */
1250 eth_hw_addr_random(dev);
1252 /* don't acquire vrf device's netif_tx_lock when transmitting */
1253 dev->features |= NETIF_F_LLTX;
1255 /* don't allow vrf devices to change network namespaces. */
1256 dev->features |= NETIF_F_NETNS_LOCAL;
1258 /* does not make sense for a VLAN to be added to a vrf device */
1259 dev->features |= NETIF_F_VLAN_CHALLENGED;
1261 /* enable offload features */
1262 dev->features |= NETIF_F_GSO_SOFTWARE;
1263 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1264 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1266 dev->hw_features = dev->features;
1267 dev->hw_enc_features = dev->features;
1269 /* default to no qdisc; user can add if desired */
1270 dev->priv_flags |= IFF_NO_QUEUE;
1271 dev->priv_flags |= IFF_NO_RX_HANDLER;
1272 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1274 /* VRF devices do not care about MTU, but if the MTU is set
1275 * too low then the ipv4 and ipv6 protocols are disabled
1276 * which breaks networking.
1278 dev->min_mtu = IPV6_MIN_MTU;
1279 dev->max_mtu = ETH_MAX_MTU;
1282 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1283 struct netlink_ext_ack *extack)
1285 if (tb[IFLA_ADDRESS]) {
1286 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1287 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1288 return -EINVAL;
1290 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1291 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1292 return -EADDRNOTAVAIL;
1295 return 0;
1298 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1300 struct net_device *port_dev;
1301 struct list_head *iter;
1303 netdev_for_each_lower_dev(dev, port_dev, iter)
1304 vrf_del_slave(dev, port_dev);
1306 unregister_netdevice_queue(dev, head);
1309 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1310 struct nlattr *tb[], struct nlattr *data[],
1311 struct netlink_ext_ack *extack)
1313 struct net_vrf *vrf = netdev_priv(dev);
1314 bool *add_fib_rules;
1315 struct net *net;
1316 int err;
1318 if (!data || !data[IFLA_VRF_TABLE]) {
1319 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1320 return -EINVAL;
1323 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1324 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1325 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1326 "Invalid VRF table id");
1327 return -EINVAL;
1330 dev->priv_flags |= IFF_L3MDEV_MASTER;
1332 err = register_netdevice(dev);
1333 if (err)
1334 goto out;
1336 net = dev_net(dev);
1337 add_fib_rules = net_generic(net, vrf_net_id);
1338 if (*add_fib_rules) {
1339 err = vrf_add_fib_rules(dev);
1340 if (err) {
1341 unregister_netdevice(dev);
1342 goto out;
1344 *add_fib_rules = false;
1347 out:
1348 return err;
1351 static size_t vrf_nl_getsize(const struct net_device *dev)
1353 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1356 static int vrf_fillinfo(struct sk_buff *skb,
1357 const struct net_device *dev)
1359 struct net_vrf *vrf = netdev_priv(dev);
1361 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1364 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1365 const struct net_device *slave_dev)
1367 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1370 static int vrf_fill_slave_info(struct sk_buff *skb,
1371 const struct net_device *vrf_dev,
1372 const struct net_device *slave_dev)
1374 struct net_vrf *vrf = netdev_priv(vrf_dev);
1376 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1377 return -EMSGSIZE;
1379 return 0;
1382 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1383 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1386 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1387 .kind = DRV_NAME,
1388 .priv_size = sizeof(struct net_vrf),
1390 .get_size = vrf_nl_getsize,
1391 .policy = vrf_nl_policy,
1392 .validate = vrf_validate,
1393 .fill_info = vrf_fillinfo,
1395 .get_slave_size = vrf_get_slave_size,
1396 .fill_slave_info = vrf_fill_slave_info,
1398 .newlink = vrf_newlink,
1399 .dellink = vrf_dellink,
1400 .setup = vrf_setup,
1401 .maxtype = IFLA_VRF_MAX,
1404 static int vrf_device_event(struct notifier_block *unused,
1405 unsigned long event, void *ptr)
1407 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1409 /* only care about unregister events to drop slave references */
1410 if (event == NETDEV_UNREGISTER) {
1411 struct net_device *vrf_dev;
1413 if (!netif_is_l3_slave(dev))
1414 goto out;
1416 vrf_dev = netdev_master_upper_dev_get(dev);
1417 vrf_del_slave(vrf_dev, dev);
1419 out:
1420 return NOTIFY_DONE;
1423 static struct notifier_block vrf_notifier_block __read_mostly = {
1424 .notifier_call = vrf_device_event,
1427 /* Initialize per network namespace state */
1428 static int __net_init vrf_netns_init(struct net *net)
1430 bool *add_fib_rules = net_generic(net, vrf_net_id);
1432 *add_fib_rules = true;
1434 return 0;
1437 static struct pernet_operations vrf_net_ops __net_initdata = {
1438 .init = vrf_netns_init,
1439 .id = &vrf_net_id,
1440 .size = sizeof(bool),
1443 static int __init vrf_init_module(void)
1445 int rc;
1447 register_netdevice_notifier(&vrf_notifier_block);
1449 rc = register_pernet_subsys(&vrf_net_ops);
1450 if (rc < 0)
1451 goto error;
1453 rc = rtnl_link_register(&vrf_link_ops);
1454 if (rc < 0) {
1455 unregister_pernet_subsys(&vrf_net_ops);
1456 goto error;
1459 return 0;
1461 error:
1462 unregister_netdevice_notifier(&vrf_notifier_block);
1463 return rc;
1466 module_init(vrf_init_module);
1467 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1468 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1469 MODULE_LICENSE("GPL");
1470 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1471 MODULE_VERSION(DRV_VERSION);