1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * helpers.c -- Voltage/Current Regulator framework helper functions.
5 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 * Copyright 2008 SlimLogic Ltd.
9 #include <linux/kernel.h>
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/regmap.h>
13 #include <linux/regulator/consumer.h>
14 #include <linux/regulator/driver.h>
15 #include <linux/module.h>
18 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
20 * @rdev: regulator to operate on
22 * Regulators that use regmap for their register I/O can set the
23 * enable_reg and enable_mask fields in their descriptor and then use
24 * this as their is_enabled operation, saving some code.
26 int regulator_is_enabled_regmap(struct regulator_dev
*rdev
)
31 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->enable_reg
, &val
);
35 val
&= rdev
->desc
->enable_mask
;
37 if (rdev
->desc
->enable_is_inverted
) {
38 if (rdev
->desc
->enable_val
)
39 return val
!= rdev
->desc
->enable_val
;
42 if (rdev
->desc
->enable_val
)
43 return val
== rdev
->desc
->enable_val
;
47 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap
);
50 * regulator_enable_regmap - standard enable() for regmap users
52 * @rdev: regulator to operate on
54 * Regulators that use regmap for their register I/O can set the
55 * enable_reg and enable_mask fields in their descriptor and then use
56 * this as their enable() operation, saving some code.
58 int regulator_enable_regmap(struct regulator_dev
*rdev
)
62 if (rdev
->desc
->enable_is_inverted
) {
63 val
= rdev
->desc
->disable_val
;
65 val
= rdev
->desc
->enable_val
;
67 val
= rdev
->desc
->enable_mask
;
70 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->enable_reg
,
71 rdev
->desc
->enable_mask
, val
);
73 EXPORT_SYMBOL_GPL(regulator_enable_regmap
);
76 * regulator_disable_regmap - standard disable() for regmap users
78 * @rdev: regulator to operate on
80 * Regulators that use regmap for their register I/O can set the
81 * enable_reg and enable_mask fields in their descriptor and then use
82 * this as their disable() operation, saving some code.
84 int regulator_disable_regmap(struct regulator_dev
*rdev
)
88 if (rdev
->desc
->enable_is_inverted
) {
89 val
= rdev
->desc
->enable_val
;
91 val
= rdev
->desc
->enable_mask
;
93 val
= rdev
->desc
->disable_val
;
96 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->enable_reg
,
97 rdev
->desc
->enable_mask
, val
);
99 EXPORT_SYMBOL_GPL(regulator_disable_regmap
);
101 static int regulator_range_selector_to_index(struct regulator_dev
*rdev
,
106 if (!rdev
->desc
->linear_range_selectors
)
109 rval
&= rdev
->desc
->vsel_range_mask
;
111 for (i
= 0; i
< rdev
->desc
->n_linear_ranges
; i
++) {
112 if (rdev
->desc
->linear_range_selectors
[i
] == rval
)
119 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
121 * @rdev: regulator to operate on
123 * Regulators that use regmap for their register I/O and use pickable
124 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
125 * fields in their descriptor and then use this as their get_voltage_vsel
126 * operation, saving some code.
128 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev
*rdev
)
134 unsigned int voltages_in_range
= 0;
136 if (!rdev
->desc
->linear_ranges
)
139 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->vsel_reg
, &val
);
143 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->vsel_range_reg
, &r_val
);
147 val
&= rdev
->desc
->vsel_mask
;
148 val
>>= ffs(rdev
->desc
->vsel_mask
) - 1;
150 range
= regulator_range_selector_to_index(rdev
, r_val
);
154 for (i
= 0; i
< range
; i
++)
155 voltages_in_range
+= (rdev
->desc
->linear_ranges
[i
].max_sel
-
156 rdev
->desc
->linear_ranges
[i
].min_sel
) + 1;
158 return val
+ voltages_in_range
;
160 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap
);
163 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
165 * @rdev: regulator to operate on
166 * @sel: Selector to set
168 * Regulators that use regmap for their register I/O and use pickable
169 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
170 * fields in their descriptor and then use this as their set_voltage_vsel
171 * operation, saving some code.
173 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev
*rdev
,
178 unsigned int voltages_in_range
= 0;
180 for (i
= 0; i
< rdev
->desc
->n_linear_ranges
; i
++) {
181 voltages_in_range
= (rdev
->desc
->linear_ranges
[i
].max_sel
-
182 rdev
->desc
->linear_ranges
[i
].min_sel
) + 1;
183 if (sel
< voltages_in_range
)
185 sel
-= voltages_in_range
;
188 if (i
== rdev
->desc
->n_linear_ranges
)
191 sel
<<= ffs(rdev
->desc
->vsel_mask
) - 1;
192 sel
+= rdev
->desc
->linear_ranges
[i
].min_sel
;
194 range
= rdev
->desc
->linear_range_selectors
[i
];
196 if (rdev
->desc
->vsel_reg
== rdev
->desc
->vsel_range_reg
) {
197 ret
= regmap_update_bits(rdev
->regmap
,
198 rdev
->desc
->vsel_reg
,
199 rdev
->desc
->vsel_range_mask
|
200 rdev
->desc
->vsel_mask
, sel
| range
);
202 ret
= regmap_update_bits(rdev
->regmap
,
203 rdev
->desc
->vsel_range_reg
,
204 rdev
->desc
->vsel_range_mask
, range
);
208 ret
= regmap_update_bits(rdev
->regmap
, rdev
->desc
->vsel_reg
,
209 rdev
->desc
->vsel_mask
, sel
);
215 if (rdev
->desc
->apply_bit
)
216 ret
= regmap_update_bits(rdev
->regmap
, rdev
->desc
->apply_reg
,
217 rdev
->desc
->apply_bit
,
218 rdev
->desc
->apply_bit
);
221 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap
);
224 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
226 * @rdev: regulator to operate on
228 * Regulators that use regmap for their register I/O can set the
229 * vsel_reg and vsel_mask fields in their descriptor and then use this
230 * as their get_voltage_vsel operation, saving some code.
232 int regulator_get_voltage_sel_regmap(struct regulator_dev
*rdev
)
237 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->vsel_reg
, &val
);
241 val
&= rdev
->desc
->vsel_mask
;
242 val
>>= ffs(rdev
->desc
->vsel_mask
) - 1;
246 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap
);
249 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
251 * @rdev: regulator to operate on
252 * @sel: Selector to set
254 * Regulators that use regmap for their register I/O can set the
255 * vsel_reg and vsel_mask fields in their descriptor and then use this
256 * as their set_voltage_vsel operation, saving some code.
258 int regulator_set_voltage_sel_regmap(struct regulator_dev
*rdev
, unsigned sel
)
262 sel
<<= ffs(rdev
->desc
->vsel_mask
) - 1;
264 ret
= regmap_update_bits(rdev
->regmap
, rdev
->desc
->vsel_reg
,
265 rdev
->desc
->vsel_mask
, sel
);
269 if (rdev
->desc
->apply_bit
)
270 ret
= regmap_update_bits(rdev
->regmap
, rdev
->desc
->apply_reg
,
271 rdev
->desc
->apply_bit
,
272 rdev
->desc
->apply_bit
);
275 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap
);
278 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
280 * @rdev: Regulator to operate on
281 * @min_uV: Lower bound for voltage
282 * @max_uV: Upper bound for voltage
284 * Drivers implementing set_voltage_sel() and list_voltage() can use
285 * this as their map_voltage() operation. It will find a suitable
286 * voltage by calling list_voltage() until it gets something in bounds
287 * for the requested voltages.
289 int regulator_map_voltage_iterate(struct regulator_dev
*rdev
,
290 int min_uV
, int max_uV
)
292 int best_val
= INT_MAX
;
296 /* Find the smallest voltage that falls within the specified
299 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
300 ret
= rdev
->desc
->ops
->list_voltage(rdev
, i
);
304 if (ret
< best_val
&& ret
>= min_uV
&& ret
<= max_uV
) {
310 if (best_val
!= INT_MAX
)
315 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate
);
318 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
320 * @rdev: Regulator to operate on
321 * @min_uV: Lower bound for voltage
322 * @max_uV: Upper bound for voltage
324 * Drivers that have ascendant voltage list can use this as their
325 * map_voltage() operation.
327 int regulator_map_voltage_ascend(struct regulator_dev
*rdev
,
328 int min_uV
, int max_uV
)
332 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
333 ret
= rdev
->desc
->ops
->list_voltage(rdev
, i
);
340 if (ret
>= min_uV
&& ret
<= max_uV
)
346 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend
);
349 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
351 * @rdev: Regulator to operate on
352 * @min_uV: Lower bound for voltage
353 * @max_uV: Upper bound for voltage
355 * Drivers providing min_uV and uV_step in their regulator_desc can
356 * use this as their map_voltage() operation.
358 int regulator_map_voltage_linear(struct regulator_dev
*rdev
,
359 int min_uV
, int max_uV
)
363 /* Allow uV_step to be 0 for fixed voltage */
364 if (rdev
->desc
->n_voltages
== 1 && rdev
->desc
->uV_step
== 0) {
365 if (min_uV
<= rdev
->desc
->min_uV
&& rdev
->desc
->min_uV
<= max_uV
)
371 if (!rdev
->desc
->uV_step
) {
372 BUG_ON(!rdev
->desc
->uV_step
);
376 if (min_uV
< rdev
->desc
->min_uV
)
377 min_uV
= rdev
->desc
->min_uV
;
379 ret
= DIV_ROUND_UP(min_uV
- rdev
->desc
->min_uV
, rdev
->desc
->uV_step
);
383 ret
+= rdev
->desc
->linear_min_sel
;
385 /* Map back into a voltage to verify we're still in bounds */
386 voltage
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
387 if (voltage
< min_uV
|| voltage
> max_uV
)
392 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear
);
395 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
397 * @rdev: Regulator to operate on
398 * @min_uV: Lower bound for voltage
399 * @max_uV: Upper bound for voltage
401 * Drivers providing linear_ranges in their descriptor can use this as
402 * their map_voltage() callback.
404 int regulator_map_voltage_linear_range(struct regulator_dev
*rdev
,
405 int min_uV
, int max_uV
)
407 const struct regulator_linear_range
*range
;
411 if (!rdev
->desc
->n_linear_ranges
) {
412 BUG_ON(!rdev
->desc
->n_linear_ranges
);
416 for (i
= 0; i
< rdev
->desc
->n_linear_ranges
; i
++) {
419 range
= &rdev
->desc
->linear_ranges
[i
];
420 linear_max_uV
= range
->min_uV
+
421 (range
->max_sel
- range
->min_sel
) * range
->uV_step
;
423 if (!(min_uV
<= linear_max_uV
&& max_uV
>= range
->min_uV
))
426 if (min_uV
<= range
->min_uV
)
427 min_uV
= range
->min_uV
;
429 /* range->uV_step == 0 means fixed voltage range */
430 if (range
->uV_step
== 0) {
433 ret
= DIV_ROUND_UP(min_uV
- range
->min_uV
,
439 ret
+= range
->min_sel
;
442 * Map back into a voltage to verify we're still in bounds.
443 * If we are not, then continue checking rest of the ranges.
445 voltage
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
446 if (voltage
>= min_uV
&& voltage
<= max_uV
)
450 if (i
== rdev
->desc
->n_linear_ranges
)
455 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range
);
458 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
460 * @rdev: Regulator to operate on
461 * @min_uV: Lower bound for voltage
462 * @max_uV: Upper bound for voltage
464 * Drivers providing pickable linear_ranges in their descriptor can use
465 * this as their map_voltage() callback.
467 int regulator_map_voltage_pickable_linear_range(struct regulator_dev
*rdev
,
468 int min_uV
, int max_uV
)
470 const struct regulator_linear_range
*range
;
473 unsigned int selector
= 0;
475 if (!rdev
->desc
->n_linear_ranges
) {
476 BUG_ON(!rdev
->desc
->n_linear_ranges
);
480 for (i
= 0; i
< rdev
->desc
->n_linear_ranges
; i
++) {
483 range
= &rdev
->desc
->linear_ranges
[i
];
484 linear_max_uV
= range
->min_uV
+
485 (range
->max_sel
- range
->min_sel
) * range
->uV_step
;
487 if (!(min_uV
<= linear_max_uV
&& max_uV
>= range
->min_uV
)) {
488 selector
+= (range
->max_sel
- range
->min_sel
+ 1);
492 if (min_uV
<= range
->min_uV
)
493 min_uV
= range
->min_uV
;
495 /* range->uV_step == 0 means fixed voltage range */
496 if (range
->uV_step
== 0) {
499 ret
= DIV_ROUND_UP(min_uV
- range
->min_uV
,
507 voltage
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
510 * Map back into a voltage to verify we're still in bounds.
511 * We may have overlapping voltage ranges. Hence we don't
512 * exit but retry until we have checked all ranges.
514 if (voltage
< min_uV
|| voltage
> max_uV
)
515 selector
+= (range
->max_sel
- range
->min_sel
+ 1);
520 if (i
== rdev
->desc
->n_linear_ranges
)
525 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range
);
528 * regulator_list_voltage_linear - List voltages with simple calculation
530 * @rdev: Regulator device
531 * @selector: Selector to convert into a voltage
533 * Regulators with a simple linear mapping between voltages and
534 * selectors can set min_uV and uV_step in the regulator descriptor
535 * and then use this function as their list_voltage() operation,
537 int regulator_list_voltage_linear(struct regulator_dev
*rdev
,
538 unsigned int selector
)
540 if (selector
>= rdev
->desc
->n_voltages
)
542 if (selector
< rdev
->desc
->linear_min_sel
)
545 selector
-= rdev
->desc
->linear_min_sel
;
547 return rdev
->desc
->min_uV
+ (rdev
->desc
->uV_step
* selector
);
549 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear
);
552 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
554 * @rdev: Regulator device
555 * @selector: Selector to convert into a voltage
557 * list_voltage() operation, intended to be used by drivers utilizing pickable
560 int regulator_list_voltage_pickable_linear_range(struct regulator_dev
*rdev
,
561 unsigned int selector
)
563 const struct regulator_linear_range
*range
;
565 unsigned int all_sels
= 0;
567 if (!rdev
->desc
->n_linear_ranges
) {
568 BUG_ON(!rdev
->desc
->n_linear_ranges
);
572 for (i
= 0; i
< rdev
->desc
->n_linear_ranges
; i
++) {
573 unsigned int sels_in_range
;
575 range
= &rdev
->desc
->linear_ranges
[i
];
577 sels_in_range
= range
->max_sel
- range
->min_sel
;
579 if (all_sels
+ sels_in_range
>= selector
) {
580 selector
-= all_sels
;
581 return range
->min_uV
+ (range
->uV_step
* selector
);
584 all_sels
+= (sels_in_range
+ 1);
589 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range
);
592 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
594 * @desc: Regulator desc for regulator which volatges are to be listed
595 * @selector: Selector to convert into a voltage
597 * Regulators with a series of simple linear mappings between voltages
598 * and selectors who have set linear_ranges in the regulator descriptor
599 * can use this function prior regulator registration to list voltages.
600 * This is useful when voltages need to be listed during device-tree
603 int regulator_desc_list_voltage_linear_range(const struct regulator_desc
*desc
,
604 unsigned int selector
)
606 const struct regulator_linear_range
*range
;
609 if (!desc
->n_linear_ranges
) {
610 BUG_ON(!desc
->n_linear_ranges
);
614 for (i
= 0; i
< desc
->n_linear_ranges
; i
++) {
615 range
= &desc
->linear_ranges
[i
];
617 if (!(selector
>= range
->min_sel
&&
618 selector
<= range
->max_sel
))
621 selector
-= range
->min_sel
;
623 return range
->min_uV
+ (range
->uV_step
* selector
);
628 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range
);
631 * regulator_list_voltage_linear_range - List voltages for linear ranges
633 * @rdev: Regulator device
634 * @selector: Selector to convert into a voltage
636 * Regulators with a series of simple linear mappings between voltages
637 * and selectors can set linear_ranges in the regulator descriptor and
638 * then use this function as their list_voltage() operation,
640 int regulator_list_voltage_linear_range(struct regulator_dev
*rdev
,
641 unsigned int selector
)
643 return regulator_desc_list_voltage_linear_range(rdev
->desc
, selector
);
645 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range
);
648 * regulator_list_voltage_table - List voltages with table based mapping
650 * @rdev: Regulator device
651 * @selector: Selector to convert into a voltage
653 * Regulators with table based mapping between voltages and
654 * selectors can set volt_table in the regulator descriptor
655 * and then use this function as their list_voltage() operation.
657 int regulator_list_voltage_table(struct regulator_dev
*rdev
,
658 unsigned int selector
)
660 if (!rdev
->desc
->volt_table
) {
661 BUG_ON(!rdev
->desc
->volt_table
);
665 if (selector
>= rdev
->desc
->n_voltages
)
668 return rdev
->desc
->volt_table
[selector
];
670 EXPORT_SYMBOL_GPL(regulator_list_voltage_table
);
673 * regulator_set_bypass_regmap - Default set_bypass() using regmap
675 * @rdev: device to operate on.
676 * @enable: state to set.
678 int regulator_set_bypass_regmap(struct regulator_dev
*rdev
, bool enable
)
683 val
= rdev
->desc
->bypass_val_on
;
685 val
= rdev
->desc
->bypass_mask
;
687 val
= rdev
->desc
->bypass_val_off
;
690 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->bypass_reg
,
691 rdev
->desc
->bypass_mask
, val
);
693 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap
);
696 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
698 * @rdev: device to operate on.
700 int regulator_set_soft_start_regmap(struct regulator_dev
*rdev
)
704 val
= rdev
->desc
->soft_start_val_on
;
706 val
= rdev
->desc
->soft_start_mask
;
708 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->soft_start_reg
,
709 rdev
->desc
->soft_start_mask
, val
);
711 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap
);
714 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
716 * @rdev: device to operate on.
718 int regulator_set_pull_down_regmap(struct regulator_dev
*rdev
)
722 val
= rdev
->desc
->pull_down_val_on
;
724 val
= rdev
->desc
->pull_down_mask
;
726 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->pull_down_reg
,
727 rdev
->desc
->pull_down_mask
, val
);
729 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap
);
732 * regulator_get_bypass_regmap - Default get_bypass() using regmap
734 * @rdev: device to operate on.
735 * @enable: current state.
737 int regulator_get_bypass_regmap(struct regulator_dev
*rdev
, bool *enable
)
740 unsigned int val_on
= rdev
->desc
->bypass_val_on
;
743 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->bypass_reg
, &val
);
748 val_on
= rdev
->desc
->bypass_mask
;
750 *enable
= (val
& rdev
->desc
->bypass_mask
) == val_on
;
754 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap
);
757 * regulator_set_active_discharge_regmap - Default set_active_discharge()
760 * @rdev: device to operate on.
761 * @enable: state to set, 0 to disable and 1 to enable.
763 int regulator_set_active_discharge_regmap(struct regulator_dev
*rdev
,
769 val
= rdev
->desc
->active_discharge_on
;
771 val
= rdev
->desc
->active_discharge_off
;
773 return regmap_update_bits(rdev
->regmap
,
774 rdev
->desc
->active_discharge_reg
,
775 rdev
->desc
->active_discharge_mask
, val
);
777 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap
);
780 * regulator_set_current_limit_regmap - set_current_limit for regmap users
782 * @rdev: regulator to operate on
783 * @min_uA: Lower bound for current limit
784 * @max_uA: Upper bound for current limit
786 * Regulators that use regmap for their register I/O can set curr_table,
787 * csel_reg and csel_mask fields in their descriptor and then use this
788 * as their set_current_limit operation, saving some code.
790 int regulator_set_current_limit_regmap(struct regulator_dev
*rdev
,
791 int min_uA
, int max_uA
)
793 unsigned int n_currents
= rdev
->desc
->n_current_limits
;
799 if (rdev
->desc
->curr_table
) {
800 const unsigned int *curr_table
= rdev
->desc
->curr_table
;
801 bool ascend
= curr_table
[n_currents
- 1] > curr_table
[0];
803 /* search for closest to maximum */
805 for (i
= n_currents
- 1; i
>= 0; i
--) {
806 if (min_uA
<= curr_table
[i
] &&
807 curr_table
[i
] <= max_uA
) {
813 for (i
= 0; i
< n_currents
; i
++) {
814 if (min_uA
<= curr_table
[i
] &&
815 curr_table
[i
] <= max_uA
) {
826 sel
<<= ffs(rdev
->desc
->csel_mask
) - 1;
828 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->csel_reg
,
829 rdev
->desc
->csel_mask
, sel
);
831 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap
);
834 * regulator_get_current_limit_regmap - get_current_limit for regmap users
836 * @rdev: regulator to operate on
838 * Regulators that use regmap for their register I/O can set the
839 * csel_reg and csel_mask fields in their descriptor and then use this
840 * as their get_current_limit operation, saving some code.
842 int regulator_get_current_limit_regmap(struct regulator_dev
*rdev
)
847 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->csel_reg
, &val
);
851 val
&= rdev
->desc
->csel_mask
;
852 val
>>= ffs(rdev
->desc
->csel_mask
) - 1;
854 if (rdev
->desc
->curr_table
) {
855 if (val
>= rdev
->desc
->n_current_limits
)
858 return rdev
->desc
->curr_table
[val
];
863 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap
);