Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / regulator / helpers.c
blobb9ae45d2d1996ed13328986407daa2e029fe0509
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * helpers.c -- Voltage/Current Regulator framework helper functions.
5 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 * Copyright 2008 SlimLogic Ltd.
7 */
9 #include <linux/kernel.h>
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/regmap.h>
13 #include <linux/regulator/consumer.h>
14 #include <linux/regulator/driver.h>
15 #include <linux/module.h>
17 /**
18 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
20 * @rdev: regulator to operate on
22 * Regulators that use regmap for their register I/O can set the
23 * enable_reg and enable_mask fields in their descriptor and then use
24 * this as their is_enabled operation, saving some code.
26 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
28 unsigned int val;
29 int ret;
31 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
32 if (ret != 0)
33 return ret;
35 val &= rdev->desc->enable_mask;
37 if (rdev->desc->enable_is_inverted) {
38 if (rdev->desc->enable_val)
39 return val != rdev->desc->enable_val;
40 return val == 0;
41 } else {
42 if (rdev->desc->enable_val)
43 return val == rdev->desc->enable_val;
44 return val != 0;
47 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
49 /**
50 * regulator_enable_regmap - standard enable() for regmap users
52 * @rdev: regulator to operate on
54 * Regulators that use regmap for their register I/O can set the
55 * enable_reg and enable_mask fields in their descriptor and then use
56 * this as their enable() operation, saving some code.
58 int regulator_enable_regmap(struct regulator_dev *rdev)
60 unsigned int val;
62 if (rdev->desc->enable_is_inverted) {
63 val = rdev->desc->disable_val;
64 } else {
65 val = rdev->desc->enable_val;
66 if (!val)
67 val = rdev->desc->enable_mask;
70 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
71 rdev->desc->enable_mask, val);
73 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
75 /**
76 * regulator_disable_regmap - standard disable() for regmap users
78 * @rdev: regulator to operate on
80 * Regulators that use regmap for their register I/O can set the
81 * enable_reg and enable_mask fields in their descriptor and then use
82 * this as their disable() operation, saving some code.
84 int regulator_disable_regmap(struct regulator_dev *rdev)
86 unsigned int val;
88 if (rdev->desc->enable_is_inverted) {
89 val = rdev->desc->enable_val;
90 if (!val)
91 val = rdev->desc->enable_mask;
92 } else {
93 val = rdev->desc->disable_val;
96 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
97 rdev->desc->enable_mask, val);
99 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
101 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
102 unsigned int rval)
104 int i;
106 if (!rdev->desc->linear_range_selectors)
107 return -EINVAL;
109 rval &= rdev->desc->vsel_range_mask;
111 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
112 if (rdev->desc->linear_range_selectors[i] == rval)
113 return i;
115 return -EINVAL;
119 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
121 * @rdev: regulator to operate on
123 * Regulators that use regmap for their register I/O and use pickable
124 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
125 * fields in their descriptor and then use this as their get_voltage_vsel
126 * operation, saving some code.
128 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
130 unsigned int r_val;
131 int range;
132 unsigned int val;
133 int ret, i;
134 unsigned int voltages_in_range = 0;
136 if (!rdev->desc->linear_ranges)
137 return -EINVAL;
139 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
140 if (ret != 0)
141 return ret;
143 ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
144 if (ret != 0)
145 return ret;
147 val &= rdev->desc->vsel_mask;
148 val >>= ffs(rdev->desc->vsel_mask) - 1;
150 range = regulator_range_selector_to_index(rdev, r_val);
151 if (range < 0)
152 return -EINVAL;
154 for (i = 0; i < range; i++)
155 voltages_in_range += (rdev->desc->linear_ranges[i].max_sel -
156 rdev->desc->linear_ranges[i].min_sel) + 1;
158 return val + voltages_in_range;
160 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
163 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
165 * @rdev: regulator to operate on
166 * @sel: Selector to set
168 * Regulators that use regmap for their register I/O and use pickable
169 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
170 * fields in their descriptor and then use this as their set_voltage_vsel
171 * operation, saving some code.
173 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
174 unsigned int sel)
176 unsigned int range;
177 int ret, i;
178 unsigned int voltages_in_range = 0;
180 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
181 voltages_in_range = (rdev->desc->linear_ranges[i].max_sel -
182 rdev->desc->linear_ranges[i].min_sel) + 1;
183 if (sel < voltages_in_range)
184 break;
185 sel -= voltages_in_range;
188 if (i == rdev->desc->n_linear_ranges)
189 return -EINVAL;
191 sel <<= ffs(rdev->desc->vsel_mask) - 1;
192 sel += rdev->desc->linear_ranges[i].min_sel;
194 range = rdev->desc->linear_range_selectors[i];
196 if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
197 ret = regmap_update_bits(rdev->regmap,
198 rdev->desc->vsel_reg,
199 rdev->desc->vsel_range_mask |
200 rdev->desc->vsel_mask, sel | range);
201 } else {
202 ret = regmap_update_bits(rdev->regmap,
203 rdev->desc->vsel_range_reg,
204 rdev->desc->vsel_range_mask, range);
205 if (ret)
206 return ret;
208 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
209 rdev->desc->vsel_mask, sel);
212 if (ret)
213 return ret;
215 if (rdev->desc->apply_bit)
216 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
217 rdev->desc->apply_bit,
218 rdev->desc->apply_bit);
219 return ret;
221 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
224 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
226 * @rdev: regulator to operate on
228 * Regulators that use regmap for their register I/O can set the
229 * vsel_reg and vsel_mask fields in their descriptor and then use this
230 * as their get_voltage_vsel operation, saving some code.
232 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
234 unsigned int val;
235 int ret;
237 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
238 if (ret != 0)
239 return ret;
241 val &= rdev->desc->vsel_mask;
242 val >>= ffs(rdev->desc->vsel_mask) - 1;
244 return val;
246 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
249 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
251 * @rdev: regulator to operate on
252 * @sel: Selector to set
254 * Regulators that use regmap for their register I/O can set the
255 * vsel_reg and vsel_mask fields in their descriptor and then use this
256 * as their set_voltage_vsel operation, saving some code.
258 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
260 int ret;
262 sel <<= ffs(rdev->desc->vsel_mask) - 1;
264 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
265 rdev->desc->vsel_mask, sel);
266 if (ret)
267 return ret;
269 if (rdev->desc->apply_bit)
270 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
271 rdev->desc->apply_bit,
272 rdev->desc->apply_bit);
273 return ret;
275 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
278 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
280 * @rdev: Regulator to operate on
281 * @min_uV: Lower bound for voltage
282 * @max_uV: Upper bound for voltage
284 * Drivers implementing set_voltage_sel() and list_voltage() can use
285 * this as their map_voltage() operation. It will find a suitable
286 * voltage by calling list_voltage() until it gets something in bounds
287 * for the requested voltages.
289 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
290 int min_uV, int max_uV)
292 int best_val = INT_MAX;
293 int selector = 0;
294 int i, ret;
296 /* Find the smallest voltage that falls within the specified
297 * range.
299 for (i = 0; i < rdev->desc->n_voltages; i++) {
300 ret = rdev->desc->ops->list_voltage(rdev, i);
301 if (ret < 0)
302 continue;
304 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
305 best_val = ret;
306 selector = i;
310 if (best_val != INT_MAX)
311 return selector;
312 else
313 return -EINVAL;
315 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
318 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
320 * @rdev: Regulator to operate on
321 * @min_uV: Lower bound for voltage
322 * @max_uV: Upper bound for voltage
324 * Drivers that have ascendant voltage list can use this as their
325 * map_voltage() operation.
327 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
328 int min_uV, int max_uV)
330 int i, ret;
332 for (i = 0; i < rdev->desc->n_voltages; i++) {
333 ret = rdev->desc->ops->list_voltage(rdev, i);
334 if (ret < 0)
335 continue;
337 if (ret > max_uV)
338 break;
340 if (ret >= min_uV && ret <= max_uV)
341 return i;
344 return -EINVAL;
346 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
349 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
351 * @rdev: Regulator to operate on
352 * @min_uV: Lower bound for voltage
353 * @max_uV: Upper bound for voltage
355 * Drivers providing min_uV and uV_step in their regulator_desc can
356 * use this as their map_voltage() operation.
358 int regulator_map_voltage_linear(struct regulator_dev *rdev,
359 int min_uV, int max_uV)
361 int ret, voltage;
363 /* Allow uV_step to be 0 for fixed voltage */
364 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
365 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
366 return 0;
367 else
368 return -EINVAL;
371 if (!rdev->desc->uV_step) {
372 BUG_ON(!rdev->desc->uV_step);
373 return -EINVAL;
376 if (min_uV < rdev->desc->min_uV)
377 min_uV = rdev->desc->min_uV;
379 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
380 if (ret < 0)
381 return ret;
383 ret += rdev->desc->linear_min_sel;
385 /* Map back into a voltage to verify we're still in bounds */
386 voltage = rdev->desc->ops->list_voltage(rdev, ret);
387 if (voltage < min_uV || voltage > max_uV)
388 return -EINVAL;
390 return ret;
392 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
395 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
397 * @rdev: Regulator to operate on
398 * @min_uV: Lower bound for voltage
399 * @max_uV: Upper bound for voltage
401 * Drivers providing linear_ranges in their descriptor can use this as
402 * their map_voltage() callback.
404 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
405 int min_uV, int max_uV)
407 const struct regulator_linear_range *range;
408 int ret = -EINVAL;
409 int voltage, i;
411 if (!rdev->desc->n_linear_ranges) {
412 BUG_ON(!rdev->desc->n_linear_ranges);
413 return -EINVAL;
416 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
417 int linear_max_uV;
419 range = &rdev->desc->linear_ranges[i];
420 linear_max_uV = range->min_uV +
421 (range->max_sel - range->min_sel) * range->uV_step;
423 if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV))
424 continue;
426 if (min_uV <= range->min_uV)
427 min_uV = range->min_uV;
429 /* range->uV_step == 0 means fixed voltage range */
430 if (range->uV_step == 0) {
431 ret = 0;
432 } else {
433 ret = DIV_ROUND_UP(min_uV - range->min_uV,
434 range->uV_step);
435 if (ret < 0)
436 return ret;
439 ret += range->min_sel;
442 * Map back into a voltage to verify we're still in bounds.
443 * If we are not, then continue checking rest of the ranges.
445 voltage = rdev->desc->ops->list_voltage(rdev, ret);
446 if (voltage >= min_uV && voltage <= max_uV)
447 break;
450 if (i == rdev->desc->n_linear_ranges)
451 return -EINVAL;
453 return ret;
455 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
458 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
460 * @rdev: Regulator to operate on
461 * @min_uV: Lower bound for voltage
462 * @max_uV: Upper bound for voltage
464 * Drivers providing pickable linear_ranges in their descriptor can use
465 * this as their map_voltage() callback.
467 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
468 int min_uV, int max_uV)
470 const struct regulator_linear_range *range;
471 int ret = -EINVAL;
472 int voltage, i;
473 unsigned int selector = 0;
475 if (!rdev->desc->n_linear_ranges) {
476 BUG_ON(!rdev->desc->n_linear_ranges);
477 return -EINVAL;
480 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
481 int linear_max_uV;
483 range = &rdev->desc->linear_ranges[i];
484 linear_max_uV = range->min_uV +
485 (range->max_sel - range->min_sel) * range->uV_step;
487 if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV)) {
488 selector += (range->max_sel - range->min_sel + 1);
489 continue;
492 if (min_uV <= range->min_uV)
493 min_uV = range->min_uV;
495 /* range->uV_step == 0 means fixed voltage range */
496 if (range->uV_step == 0) {
497 ret = 0;
498 } else {
499 ret = DIV_ROUND_UP(min_uV - range->min_uV,
500 range->uV_step);
501 if (ret < 0)
502 return ret;
505 ret += selector;
507 voltage = rdev->desc->ops->list_voltage(rdev, ret);
510 * Map back into a voltage to verify we're still in bounds.
511 * We may have overlapping voltage ranges. Hence we don't
512 * exit but retry until we have checked all ranges.
514 if (voltage < min_uV || voltage > max_uV)
515 selector += (range->max_sel - range->min_sel + 1);
516 else
517 break;
520 if (i == rdev->desc->n_linear_ranges)
521 return -EINVAL;
523 return ret;
525 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
528 * regulator_list_voltage_linear - List voltages with simple calculation
530 * @rdev: Regulator device
531 * @selector: Selector to convert into a voltage
533 * Regulators with a simple linear mapping between voltages and
534 * selectors can set min_uV and uV_step in the regulator descriptor
535 * and then use this function as their list_voltage() operation,
537 int regulator_list_voltage_linear(struct regulator_dev *rdev,
538 unsigned int selector)
540 if (selector >= rdev->desc->n_voltages)
541 return -EINVAL;
542 if (selector < rdev->desc->linear_min_sel)
543 return 0;
545 selector -= rdev->desc->linear_min_sel;
547 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
549 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
552 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
554 * @rdev: Regulator device
555 * @selector: Selector to convert into a voltage
557 * list_voltage() operation, intended to be used by drivers utilizing pickable
558 * ranges helpers.
560 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
561 unsigned int selector)
563 const struct regulator_linear_range *range;
564 int i;
565 unsigned int all_sels = 0;
567 if (!rdev->desc->n_linear_ranges) {
568 BUG_ON(!rdev->desc->n_linear_ranges);
569 return -EINVAL;
572 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
573 unsigned int sels_in_range;
575 range = &rdev->desc->linear_ranges[i];
577 sels_in_range = range->max_sel - range->min_sel;
579 if (all_sels + sels_in_range >= selector) {
580 selector -= all_sels;
581 return range->min_uV + (range->uV_step * selector);
584 all_sels += (sels_in_range + 1);
587 return -EINVAL;
589 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
592 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
594 * @desc: Regulator desc for regulator which volatges are to be listed
595 * @selector: Selector to convert into a voltage
597 * Regulators with a series of simple linear mappings between voltages
598 * and selectors who have set linear_ranges in the regulator descriptor
599 * can use this function prior regulator registration to list voltages.
600 * This is useful when voltages need to be listed during device-tree
601 * parsing.
603 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
604 unsigned int selector)
606 const struct regulator_linear_range *range;
607 int i;
609 if (!desc->n_linear_ranges) {
610 BUG_ON(!desc->n_linear_ranges);
611 return -EINVAL;
614 for (i = 0; i < desc->n_linear_ranges; i++) {
615 range = &desc->linear_ranges[i];
617 if (!(selector >= range->min_sel &&
618 selector <= range->max_sel))
619 continue;
621 selector -= range->min_sel;
623 return range->min_uV + (range->uV_step * selector);
626 return -EINVAL;
628 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
631 * regulator_list_voltage_linear_range - List voltages for linear ranges
633 * @rdev: Regulator device
634 * @selector: Selector to convert into a voltage
636 * Regulators with a series of simple linear mappings between voltages
637 * and selectors can set linear_ranges in the regulator descriptor and
638 * then use this function as their list_voltage() operation,
640 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
641 unsigned int selector)
643 return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
645 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
648 * regulator_list_voltage_table - List voltages with table based mapping
650 * @rdev: Regulator device
651 * @selector: Selector to convert into a voltage
653 * Regulators with table based mapping between voltages and
654 * selectors can set volt_table in the regulator descriptor
655 * and then use this function as their list_voltage() operation.
657 int regulator_list_voltage_table(struct regulator_dev *rdev,
658 unsigned int selector)
660 if (!rdev->desc->volt_table) {
661 BUG_ON(!rdev->desc->volt_table);
662 return -EINVAL;
665 if (selector >= rdev->desc->n_voltages)
666 return -EINVAL;
668 return rdev->desc->volt_table[selector];
670 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
673 * regulator_set_bypass_regmap - Default set_bypass() using regmap
675 * @rdev: device to operate on.
676 * @enable: state to set.
678 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
680 unsigned int val;
682 if (enable) {
683 val = rdev->desc->bypass_val_on;
684 if (!val)
685 val = rdev->desc->bypass_mask;
686 } else {
687 val = rdev->desc->bypass_val_off;
690 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
691 rdev->desc->bypass_mask, val);
693 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
696 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
698 * @rdev: device to operate on.
700 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
702 unsigned int val;
704 val = rdev->desc->soft_start_val_on;
705 if (!val)
706 val = rdev->desc->soft_start_mask;
708 return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
709 rdev->desc->soft_start_mask, val);
711 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
714 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
716 * @rdev: device to operate on.
718 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
720 unsigned int val;
722 val = rdev->desc->pull_down_val_on;
723 if (!val)
724 val = rdev->desc->pull_down_mask;
726 return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
727 rdev->desc->pull_down_mask, val);
729 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
732 * regulator_get_bypass_regmap - Default get_bypass() using regmap
734 * @rdev: device to operate on.
735 * @enable: current state.
737 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
739 unsigned int val;
740 unsigned int val_on = rdev->desc->bypass_val_on;
741 int ret;
743 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
744 if (ret != 0)
745 return ret;
747 if (!val_on)
748 val_on = rdev->desc->bypass_mask;
750 *enable = (val & rdev->desc->bypass_mask) == val_on;
752 return 0;
754 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
757 * regulator_set_active_discharge_regmap - Default set_active_discharge()
758 * using regmap
760 * @rdev: device to operate on.
761 * @enable: state to set, 0 to disable and 1 to enable.
763 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
764 bool enable)
766 unsigned int val;
768 if (enable)
769 val = rdev->desc->active_discharge_on;
770 else
771 val = rdev->desc->active_discharge_off;
773 return regmap_update_bits(rdev->regmap,
774 rdev->desc->active_discharge_reg,
775 rdev->desc->active_discharge_mask, val);
777 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
780 * regulator_set_current_limit_regmap - set_current_limit for regmap users
782 * @rdev: regulator to operate on
783 * @min_uA: Lower bound for current limit
784 * @max_uA: Upper bound for current limit
786 * Regulators that use regmap for their register I/O can set curr_table,
787 * csel_reg and csel_mask fields in their descriptor and then use this
788 * as their set_current_limit operation, saving some code.
790 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
791 int min_uA, int max_uA)
793 unsigned int n_currents = rdev->desc->n_current_limits;
794 int i, sel = -1;
796 if (n_currents == 0)
797 return -EINVAL;
799 if (rdev->desc->curr_table) {
800 const unsigned int *curr_table = rdev->desc->curr_table;
801 bool ascend = curr_table[n_currents - 1] > curr_table[0];
803 /* search for closest to maximum */
804 if (ascend) {
805 for (i = n_currents - 1; i >= 0; i--) {
806 if (min_uA <= curr_table[i] &&
807 curr_table[i] <= max_uA) {
808 sel = i;
809 break;
812 } else {
813 for (i = 0; i < n_currents; i++) {
814 if (min_uA <= curr_table[i] &&
815 curr_table[i] <= max_uA) {
816 sel = i;
817 break;
823 if (sel < 0)
824 return -EINVAL;
826 sel <<= ffs(rdev->desc->csel_mask) - 1;
828 return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
829 rdev->desc->csel_mask, sel);
831 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
834 * regulator_get_current_limit_regmap - get_current_limit for regmap users
836 * @rdev: regulator to operate on
838 * Regulators that use regmap for their register I/O can set the
839 * csel_reg and csel_mask fields in their descriptor and then use this
840 * as their get_current_limit operation, saving some code.
842 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
844 unsigned int val;
845 int ret;
847 ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
848 if (ret != 0)
849 return ret;
851 val &= rdev->desc->csel_mask;
852 val >>= ffs(rdev->desc->csel_mask) - 1;
854 if (rdev->desc->curr_table) {
855 if (val >= rdev->desc->n_current_limits)
856 return -EINVAL;
858 return rdev->desc->curr_table[val];
861 return -EINVAL;
863 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);