1 // SPDX-License-Identifier: GPL-2.0+
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
33 #include <linux/phy/phy.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/usb/otg.h>
42 /*-------------------------------------------------------------------------*/
45 * USB Host Controller Driver framework
47 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
48 * HCD-specific behaviors/bugs.
50 * This does error checks, tracks devices and urbs, and delegates to a
51 * "hc_driver" only for code (and data) that really needs to know about
52 * hardware differences. That includes root hub registers, i/o queues,
53 * and so on ... but as little else as possible.
55 * Shared code includes most of the "root hub" code (these are emulated,
56 * though each HC's hardware works differently) and PCI glue, plus request
57 * tracking overhead. The HCD code should only block on spinlocks or on
58 * hardware handshaking; blocking on software events (such as other kernel
59 * threads releasing resources, or completing actions) is all generic.
61 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
62 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
63 * only by the hub driver ... and that neither should be seen or used by
64 * usb client device drivers.
66 * Contributors of ideas or unattributed patches include: David Brownell,
67 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
70 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
71 * associated cleanup. "usb_hcd" still != "usb_bus".
72 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
75 /*-------------------------------------------------------------------------*/
77 /* Keep track of which host controller drivers are loaded */
78 unsigned long usb_hcds_loaded
;
79 EXPORT_SYMBOL_GPL(usb_hcds_loaded
);
81 /* host controllers we manage */
82 DEFINE_IDR (usb_bus_idr
);
83 EXPORT_SYMBOL_GPL (usb_bus_idr
);
85 /* used when allocating bus numbers */
88 /* used when updating list of hcds */
89 DEFINE_MUTEX(usb_bus_idr_lock
); /* exported only for usbfs */
90 EXPORT_SYMBOL_GPL (usb_bus_idr_lock
);
92 /* used for controlling access to virtual root hubs */
93 static DEFINE_SPINLOCK(hcd_root_hub_lock
);
95 /* used when updating an endpoint's URB list */
96 static DEFINE_SPINLOCK(hcd_urb_list_lock
);
98 /* used to protect against unlinking URBs after the device is gone */
99 static DEFINE_SPINLOCK(hcd_urb_unlink_lock
);
101 /* wait queue for synchronous unlinks */
102 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue
);
104 static inline int is_root_hub(struct usb_device
*udev
)
106 return (udev
->parent
== NULL
);
109 /*-------------------------------------------------------------------------*/
112 * Sharable chunks of root hub code.
115 /*-------------------------------------------------------------------------*/
116 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
117 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
119 /* usb 3.1 root hub device descriptor */
120 static const u8 usb31_rh_dev_descriptor
[18] = {
121 0x12, /* __u8 bLength; */
122 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
123 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
125 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
126 0x00, /* __u8 bDeviceSubClass; */
127 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
128 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
130 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
131 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
132 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
134 0x03, /* __u8 iManufacturer; */
135 0x02, /* __u8 iProduct; */
136 0x01, /* __u8 iSerialNumber; */
137 0x01 /* __u8 bNumConfigurations; */
140 /* usb 3.0 root hub device descriptor */
141 static const u8 usb3_rh_dev_descriptor
[18] = {
142 0x12, /* __u8 bLength; */
143 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
144 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
146 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
147 0x00, /* __u8 bDeviceSubClass; */
148 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
149 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
151 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
152 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
153 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
155 0x03, /* __u8 iManufacturer; */
156 0x02, /* __u8 iProduct; */
157 0x01, /* __u8 iSerialNumber; */
158 0x01 /* __u8 bNumConfigurations; */
161 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
162 static const u8 usb25_rh_dev_descriptor
[18] = {
163 0x12, /* __u8 bLength; */
164 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
165 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
167 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
168 0x00, /* __u8 bDeviceSubClass; */
169 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
170 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
172 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
173 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
174 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
176 0x03, /* __u8 iManufacturer; */
177 0x02, /* __u8 iProduct; */
178 0x01, /* __u8 iSerialNumber; */
179 0x01 /* __u8 bNumConfigurations; */
182 /* usb 2.0 root hub device descriptor */
183 static const u8 usb2_rh_dev_descriptor
[18] = {
184 0x12, /* __u8 bLength; */
185 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
186 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
189 0x00, /* __u8 bDeviceSubClass; */
190 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
194 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
195 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
197 0x03, /* __u8 iManufacturer; */
198 0x02, /* __u8 iProduct; */
199 0x01, /* __u8 iSerialNumber; */
200 0x01 /* __u8 bNumConfigurations; */
203 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
205 /* usb 1.1 root hub device descriptor */
206 static const u8 usb11_rh_dev_descriptor
[18] = {
207 0x12, /* __u8 bLength; */
208 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
209 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
211 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
212 0x00, /* __u8 bDeviceSubClass; */
213 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
214 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
216 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
217 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
218 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
220 0x03, /* __u8 iManufacturer; */
221 0x02, /* __u8 iProduct; */
222 0x01, /* __u8 iSerialNumber; */
223 0x01 /* __u8 bNumConfigurations; */
227 /*-------------------------------------------------------------------------*/
229 /* Configuration descriptors for our root hubs */
231 static const u8 fs_rh_config_descriptor
[] = {
233 /* one configuration */
234 0x09, /* __u8 bLength; */
235 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
236 0x19, 0x00, /* __le16 wTotalLength; */
237 0x01, /* __u8 bNumInterfaces; (1) */
238 0x01, /* __u8 bConfigurationValue; */
239 0x00, /* __u8 iConfiguration; */
240 0xc0, /* __u8 bmAttributes;
245 0x00, /* __u8 MaxPower; */
248 * USB 2.0, single TT organization (mandatory):
249 * one interface, protocol 0
251 * USB 2.0, multiple TT organization (optional):
252 * two interfaces, protocols 1 (like single TT)
253 * and 2 (multiple TT mode) ... config is
259 0x09, /* __u8 if_bLength; */
260 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
261 0x00, /* __u8 if_bInterfaceNumber; */
262 0x00, /* __u8 if_bAlternateSetting; */
263 0x01, /* __u8 if_bNumEndpoints; */
264 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
265 0x00, /* __u8 if_bInterfaceSubClass; */
266 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
267 0x00, /* __u8 if_iInterface; */
269 /* one endpoint (status change endpoint) */
270 0x07, /* __u8 ep_bLength; */
271 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
272 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
273 0x03, /* __u8 ep_bmAttributes; Interrupt */
274 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
275 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
278 static const u8 hs_rh_config_descriptor
[] = {
280 /* one configuration */
281 0x09, /* __u8 bLength; */
282 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
283 0x19, 0x00, /* __le16 wTotalLength; */
284 0x01, /* __u8 bNumInterfaces; (1) */
285 0x01, /* __u8 bConfigurationValue; */
286 0x00, /* __u8 iConfiguration; */
287 0xc0, /* __u8 bmAttributes;
292 0x00, /* __u8 MaxPower; */
295 * USB 2.0, single TT organization (mandatory):
296 * one interface, protocol 0
298 * USB 2.0, multiple TT organization (optional):
299 * two interfaces, protocols 1 (like single TT)
300 * and 2 (multiple TT mode) ... config is
306 0x09, /* __u8 if_bLength; */
307 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
308 0x00, /* __u8 if_bInterfaceNumber; */
309 0x00, /* __u8 if_bAlternateSetting; */
310 0x01, /* __u8 if_bNumEndpoints; */
311 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
312 0x00, /* __u8 if_bInterfaceSubClass; */
313 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
314 0x00, /* __u8 if_iInterface; */
316 /* one endpoint (status change endpoint) */
317 0x07, /* __u8 ep_bLength; */
318 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
319 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
320 0x03, /* __u8 ep_bmAttributes; Interrupt */
321 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
322 * see hub.c:hub_configure() for details. */
323 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
324 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
327 static const u8 ss_rh_config_descriptor
[] = {
328 /* one configuration */
329 0x09, /* __u8 bLength; */
330 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
331 0x1f, 0x00, /* __le16 wTotalLength; */
332 0x01, /* __u8 bNumInterfaces; (1) */
333 0x01, /* __u8 bConfigurationValue; */
334 0x00, /* __u8 iConfiguration; */
335 0xc0, /* __u8 bmAttributes;
340 0x00, /* __u8 MaxPower; */
343 0x09, /* __u8 if_bLength; */
344 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
345 0x00, /* __u8 if_bInterfaceNumber; */
346 0x00, /* __u8 if_bAlternateSetting; */
347 0x01, /* __u8 if_bNumEndpoints; */
348 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
349 0x00, /* __u8 if_bInterfaceSubClass; */
350 0x00, /* __u8 if_bInterfaceProtocol; */
351 0x00, /* __u8 if_iInterface; */
353 /* one endpoint (status change endpoint) */
354 0x07, /* __u8 ep_bLength; */
355 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
356 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
357 0x03, /* __u8 ep_bmAttributes; Interrupt */
358 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
359 * see hub.c:hub_configure() for details. */
360 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
361 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
363 /* one SuperSpeed endpoint companion descriptor */
364 0x06, /* __u8 ss_bLength */
365 USB_DT_SS_ENDPOINT_COMP
, /* __u8 ss_bDescriptorType; SuperSpeed EP */
367 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
368 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
369 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
372 /* authorized_default behaviour:
373 * -1 is authorized for all devices except wireless (old behaviour)
374 * 0 is unauthorized for all devices
375 * 1 is authorized for all devices
376 * 2 is authorized for internal devices
378 #define USB_AUTHORIZE_WIRED -1
379 #define USB_AUTHORIZE_NONE 0
380 #define USB_AUTHORIZE_ALL 1
381 #define USB_AUTHORIZE_INTERNAL 2
383 static int authorized_default
= USB_AUTHORIZE_WIRED
;
384 module_param(authorized_default
, int, S_IRUGO
|S_IWUSR
);
385 MODULE_PARM_DESC(authorized_default
,
386 "Default USB device authorization: 0 is not authorized, 1 is "
387 "authorized, 2 is authorized for internal devices, -1 is "
388 "authorized except for wireless USB (default, old behaviour)");
389 /*-------------------------------------------------------------------------*/
392 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
393 * @s: Null-terminated ASCII (actually ISO-8859-1) string
394 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
395 * @len: Length (in bytes; may be odd) of descriptor buffer.
397 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
401 * USB String descriptors can contain at most 126 characters; input
402 * strings longer than that are truncated.
405 ascii2desc(char const *s
, u8
*buf
, unsigned len
)
407 unsigned n
, t
= 2 + 2*strlen(s
);
410 t
= 254; /* Longest possible UTF string descriptor */
414 t
+= USB_DT_STRING
<< 8; /* Now t is first 16 bits to store */
422 t
= (unsigned char)*s
++;
428 * rh_string() - provides string descriptors for root hub
429 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
430 * @hcd: the host controller for this root hub
431 * @data: buffer for output packet
432 * @len: length of the provided buffer
434 * Produces either a manufacturer, product or serial number string for the
435 * virtual root hub device.
437 * Return: The number of bytes filled in: the length of the descriptor or
438 * of the provided buffer, whichever is less.
441 rh_string(int id
, struct usb_hcd
const *hcd
, u8
*data
, unsigned len
)
445 static char const langids
[4] = {4, USB_DT_STRING
, 0x09, 0x04};
450 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
451 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
454 memcpy(data
, langids
, len
);
458 s
= hcd
->self
.bus_name
;
462 s
= hcd
->product_desc
;
466 snprintf (buf
, sizeof buf
, "%s %s %s", init_utsname()->sysname
,
467 init_utsname()->release
, hcd
->driver
->description
);
471 /* Can't happen; caller guarantees it */
475 return ascii2desc(s
, data
, len
);
479 /* Root hub control transfers execute synchronously */
480 static int rh_call_control (struct usb_hcd
*hcd
, struct urb
*urb
)
482 struct usb_ctrlrequest
*cmd
;
483 u16 typeReq
, wValue
, wIndex
, wLength
;
484 u8
*ubuf
= urb
->transfer_buffer
;
488 u8 patch_protocol
= 0;
495 spin_lock_irq(&hcd_root_hub_lock
);
496 status
= usb_hcd_link_urb_to_ep(hcd
, urb
);
497 spin_unlock_irq(&hcd_root_hub_lock
);
500 urb
->hcpriv
= hcd
; /* Indicate it's queued */
502 cmd
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
503 typeReq
= (cmd
->bRequestType
<< 8) | cmd
->bRequest
;
504 wValue
= le16_to_cpu (cmd
->wValue
);
505 wIndex
= le16_to_cpu (cmd
->wIndex
);
506 wLength
= le16_to_cpu (cmd
->wLength
);
508 if (wLength
> urb
->transfer_buffer_length
)
512 * tbuf should be at least as big as the
513 * USB hub descriptor.
515 tbuf_size
= max_t(u16
, sizeof(struct usb_hub_descriptor
), wLength
);
516 tbuf
= kzalloc(tbuf_size
, GFP_KERNEL
);
525 urb
->actual_length
= 0;
528 /* DEVICE REQUESTS */
530 /* The root hub's remote wakeup enable bit is implemented using
531 * driver model wakeup flags. If this system supports wakeup
532 * through USB, userspace may change the default "allow wakeup"
533 * policy through sysfs or these calls.
535 * Most root hubs support wakeup from downstream devices, for
536 * runtime power management (disabling USB clocks and reducing
537 * VBUS power usage). However, not all of them do so; silicon,
538 * board, and BIOS bugs here are not uncommon, so these can't
539 * be treated quite like external hubs.
541 * Likewise, not all root hubs will pass wakeup events upstream,
542 * to wake up the whole system. So don't assume root hub and
543 * controller capabilities are identical.
546 case DeviceRequest
| USB_REQ_GET_STATUS
:
547 tbuf
[0] = (device_may_wakeup(&hcd
->self
.root_hub
->dev
)
548 << USB_DEVICE_REMOTE_WAKEUP
)
549 | (1 << USB_DEVICE_SELF_POWERED
);
553 case DeviceOutRequest
| USB_REQ_CLEAR_FEATURE
:
554 if (wValue
== USB_DEVICE_REMOTE_WAKEUP
)
555 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 0);
559 case DeviceOutRequest
| USB_REQ_SET_FEATURE
:
560 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
)
561 && wValue
== USB_DEVICE_REMOTE_WAKEUP
)
562 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 1);
566 case DeviceRequest
| USB_REQ_GET_CONFIGURATION
:
570 case DeviceOutRequest
| USB_REQ_SET_CONFIGURATION
:
572 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
573 switch (wValue
& 0xff00) {
574 case USB_DT_DEVICE
<< 8:
575 switch (hcd
->speed
) {
578 bufp
= usb31_rh_dev_descriptor
;
581 bufp
= usb3_rh_dev_descriptor
;
584 bufp
= usb25_rh_dev_descriptor
;
587 bufp
= usb2_rh_dev_descriptor
;
590 bufp
= usb11_rh_dev_descriptor
;
599 case USB_DT_CONFIG
<< 8:
600 switch (hcd
->speed
) {
604 bufp
= ss_rh_config_descriptor
;
605 len
= sizeof ss_rh_config_descriptor
;
609 bufp
= hs_rh_config_descriptor
;
610 len
= sizeof hs_rh_config_descriptor
;
613 bufp
= fs_rh_config_descriptor
;
614 len
= sizeof fs_rh_config_descriptor
;
619 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
))
622 case USB_DT_STRING
<< 8:
623 if ((wValue
& 0xff) < 4)
624 urb
->actual_length
= rh_string(wValue
& 0xff,
626 else /* unsupported IDs --> "protocol stall" */
629 case USB_DT_BOS
<< 8:
635 case DeviceRequest
| USB_REQ_GET_INTERFACE
:
639 case DeviceOutRequest
| USB_REQ_SET_INTERFACE
:
641 case DeviceOutRequest
| USB_REQ_SET_ADDRESS
:
642 /* wValue == urb->dev->devaddr */
643 dev_dbg (hcd
->self
.controller
, "root hub device address %d\n",
647 /* INTERFACE REQUESTS (no defined feature/status flags) */
649 /* ENDPOINT REQUESTS */
651 case EndpointRequest
| USB_REQ_GET_STATUS
:
652 /* ENDPOINT_HALT flag */
657 case EndpointOutRequest
| USB_REQ_CLEAR_FEATURE
:
658 case EndpointOutRequest
| USB_REQ_SET_FEATURE
:
659 dev_dbg (hcd
->self
.controller
, "no endpoint features yet\n");
662 /* CLASS REQUESTS (and errors) */
666 /* non-generic request */
672 if (wValue
== HUB_PORT_STATUS
)
675 /* other port status types return 8 bytes */
678 case GetHubDescriptor
:
679 len
= sizeof (struct usb_hub_descriptor
);
681 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
682 /* len is returned by hub_control */
685 status
= hcd
->driver
->hub_control (hcd
,
686 typeReq
, wValue
, wIndex
,
689 if (typeReq
== GetHubDescriptor
)
690 usb_hub_adjust_deviceremovable(hcd
->self
.root_hub
,
691 (struct usb_hub_descriptor
*)tbuf
);
694 /* "protocol stall" on error */
700 if (status
!= -EPIPE
) {
701 dev_dbg (hcd
->self
.controller
,
702 "CTRL: TypeReq=0x%x val=0x%x "
703 "idx=0x%x len=%d ==> %d\n",
704 typeReq
, wValue
, wIndex
,
707 } else if (status
> 0) {
708 /* hub_control may return the length of data copied. */
713 if (urb
->transfer_buffer_length
< len
)
714 len
= urb
->transfer_buffer_length
;
715 urb
->actual_length
= len
;
716 /* always USB_DIR_IN, toward host */
717 memcpy (ubuf
, bufp
, len
);
719 /* report whether RH hardware supports remote wakeup */
721 len
> offsetof (struct usb_config_descriptor
,
723 ((struct usb_config_descriptor
*)ubuf
)->bmAttributes
724 |= USB_CONFIG_ATT_WAKEUP
;
726 /* report whether RH hardware has an integrated TT */
727 if (patch_protocol
&&
728 len
> offsetof(struct usb_device_descriptor
,
730 ((struct usb_device_descriptor
*) ubuf
)->
731 bDeviceProtocol
= USB_HUB_PR_HS_SINGLE_TT
;
737 /* any errors get returned through the urb completion */
738 spin_lock_irq(&hcd_root_hub_lock
);
739 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
740 usb_hcd_giveback_urb(hcd
, urb
, status
);
741 spin_unlock_irq(&hcd_root_hub_lock
);
745 /*-------------------------------------------------------------------------*/
748 * Root Hub interrupt transfers are polled using a timer if the
749 * driver requests it; otherwise the driver is responsible for
750 * calling usb_hcd_poll_rh_status() when an event occurs.
752 * Completions are called in_interrupt(), but they may or may not
755 void usb_hcd_poll_rh_status(struct usb_hcd
*hcd
)
760 char buffer
[6]; /* Any root hubs with > 31 ports? */
762 if (unlikely(!hcd
->rh_pollable
))
764 if (!hcd
->uses_new_polling
&& !hcd
->status_urb
)
767 length
= hcd
->driver
->hub_status_data(hcd
, buffer
);
770 /* try to complete the status urb */
771 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
772 urb
= hcd
->status_urb
;
774 clear_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
775 hcd
->status_urb
= NULL
;
776 urb
->actual_length
= length
;
777 memcpy(urb
->transfer_buffer
, buffer
, length
);
779 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
780 usb_hcd_giveback_urb(hcd
, urb
, 0);
783 set_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
785 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
788 /* The USB 2.0 spec says 256 ms. This is close enough and won't
789 * exceed that limit if HZ is 100. The math is more clunky than
790 * maybe expected, this is to make sure that all timers for USB devices
791 * fire at the same time to give the CPU a break in between */
792 if (hcd
->uses_new_polling
? HCD_POLL_RH(hcd
) :
793 (length
== 0 && hcd
->status_urb
!= NULL
))
794 mod_timer (&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
796 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status
);
799 static void rh_timer_func (struct timer_list
*t
)
801 struct usb_hcd
*_hcd
= from_timer(_hcd
, t
, rh_timer
);
803 usb_hcd_poll_rh_status(_hcd
);
806 /*-------------------------------------------------------------------------*/
808 static int rh_queue_status (struct usb_hcd
*hcd
, struct urb
*urb
)
812 unsigned len
= 1 + (urb
->dev
->maxchild
/ 8);
814 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
815 if (hcd
->status_urb
|| urb
->transfer_buffer_length
< len
) {
816 dev_dbg (hcd
->self
.controller
, "not queuing rh status urb\n");
821 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
825 hcd
->status_urb
= urb
;
826 urb
->hcpriv
= hcd
; /* indicate it's queued */
827 if (!hcd
->uses_new_polling
)
828 mod_timer(&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
830 /* If a status change has already occurred, report it ASAP */
831 else if (HCD_POLL_PENDING(hcd
))
832 mod_timer(&hcd
->rh_timer
, jiffies
);
835 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
839 static int rh_urb_enqueue (struct usb_hcd
*hcd
, struct urb
*urb
)
841 if (usb_endpoint_xfer_int(&urb
->ep
->desc
))
842 return rh_queue_status (hcd
, urb
);
843 if (usb_endpoint_xfer_control(&urb
->ep
->desc
))
844 return rh_call_control (hcd
, urb
);
848 /*-------------------------------------------------------------------------*/
850 /* Unlinks of root-hub control URBs are legal, but they don't do anything
851 * since these URBs always execute synchronously.
853 static int usb_rh_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
858 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
859 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
863 if (usb_endpoint_num(&urb
->ep
->desc
) == 0) { /* Control URB */
866 } else { /* Status URB */
867 if (!hcd
->uses_new_polling
)
868 del_timer (&hcd
->rh_timer
);
869 if (urb
== hcd
->status_urb
) {
870 hcd
->status_urb
= NULL
;
871 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
872 usb_hcd_giveback_urb(hcd
, urb
, status
);
876 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
883 * Show & store the current value of authorized_default
885 static ssize_t
authorized_default_show(struct device
*dev
,
886 struct device_attribute
*attr
, char *buf
)
888 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
889 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
892 hcd
= bus_to_hcd(usb_bus
);
893 return snprintf(buf
, PAGE_SIZE
, "%u\n", hcd
->dev_policy
);
896 static ssize_t
authorized_default_store(struct device
*dev
,
897 struct device_attribute
*attr
,
898 const char *buf
, size_t size
)
902 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
903 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
906 hcd
= bus_to_hcd(usb_bus
);
907 result
= sscanf(buf
, "%u\n", &val
);
909 hcd
->dev_policy
= val
<= USB_DEVICE_AUTHORIZE_INTERNAL
?
910 val
: USB_DEVICE_AUTHORIZE_ALL
;
917 static DEVICE_ATTR_RW(authorized_default
);
920 * interface_authorized_default_show - show default authorization status
923 * note: interface_authorized_default is the default value
924 * for initializing the authorized attribute of interfaces
926 static ssize_t
interface_authorized_default_show(struct device
*dev
,
927 struct device_attribute
*attr
, char *buf
)
929 struct usb_device
*usb_dev
= to_usb_device(dev
);
930 struct usb_hcd
*hcd
= bus_to_hcd(usb_dev
->bus
);
932 return sprintf(buf
, "%u\n", !!HCD_INTF_AUTHORIZED(hcd
));
936 * interface_authorized_default_store - store default authorization status
939 * note: interface_authorized_default is the default value
940 * for initializing the authorized attribute of interfaces
942 static ssize_t
interface_authorized_default_store(struct device
*dev
,
943 struct device_attribute
*attr
, const char *buf
, size_t count
)
945 struct usb_device
*usb_dev
= to_usb_device(dev
);
946 struct usb_hcd
*hcd
= bus_to_hcd(usb_dev
->bus
);
950 if (strtobool(buf
, &val
) != 0)
954 set_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
956 clear_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
960 static DEVICE_ATTR_RW(interface_authorized_default
);
962 /* Group all the USB bus attributes */
963 static struct attribute
*usb_bus_attrs
[] = {
964 &dev_attr_authorized_default
.attr
,
965 &dev_attr_interface_authorized_default
.attr
,
969 static const struct attribute_group usb_bus_attr_group
= {
970 .name
= NULL
, /* we want them in the same directory */
971 .attrs
= usb_bus_attrs
,
976 /*-------------------------------------------------------------------------*/
979 * usb_bus_init - shared initialization code
980 * @bus: the bus structure being initialized
982 * This code is used to initialize a usb_bus structure, memory for which is
983 * separately managed.
985 static void usb_bus_init (struct usb_bus
*bus
)
987 memset (&bus
->devmap
, 0, sizeof(struct usb_devmap
));
989 bus
->devnum_next
= 1;
991 bus
->root_hub
= NULL
;
993 bus
->bandwidth_allocated
= 0;
994 bus
->bandwidth_int_reqs
= 0;
995 bus
->bandwidth_isoc_reqs
= 0;
996 mutex_init(&bus
->devnum_next_mutex
);
999 /*-------------------------------------------------------------------------*/
1002 * usb_register_bus - registers the USB host controller with the usb core
1003 * @bus: pointer to the bus to register
1004 * Context: !in_interrupt()
1006 * Assigns a bus number, and links the controller into usbcore data
1007 * structures so that it can be seen by scanning the bus list.
1009 * Return: 0 if successful. A negative error code otherwise.
1011 static int usb_register_bus(struct usb_bus
*bus
)
1013 int result
= -E2BIG
;
1016 mutex_lock(&usb_bus_idr_lock
);
1017 busnum
= idr_alloc(&usb_bus_idr
, bus
, 1, USB_MAXBUS
, GFP_KERNEL
);
1019 pr_err("%s: failed to get bus number\n", usbcore_name
);
1020 goto error_find_busnum
;
1022 bus
->busnum
= busnum
;
1023 mutex_unlock(&usb_bus_idr_lock
);
1025 usb_notify_add_bus(bus
);
1027 dev_info (bus
->controller
, "new USB bus registered, assigned bus "
1028 "number %d\n", bus
->busnum
);
1032 mutex_unlock(&usb_bus_idr_lock
);
1037 * usb_deregister_bus - deregisters the USB host controller
1038 * @bus: pointer to the bus to deregister
1039 * Context: !in_interrupt()
1041 * Recycles the bus number, and unlinks the controller from usbcore data
1042 * structures so that it won't be seen by scanning the bus list.
1044 static void usb_deregister_bus (struct usb_bus
*bus
)
1046 dev_info (bus
->controller
, "USB bus %d deregistered\n", bus
->busnum
);
1049 * NOTE: make sure that all the devices are removed by the
1050 * controller code, as well as having it call this when cleaning
1053 mutex_lock(&usb_bus_idr_lock
);
1054 idr_remove(&usb_bus_idr
, bus
->busnum
);
1055 mutex_unlock(&usb_bus_idr_lock
);
1057 usb_notify_remove_bus(bus
);
1061 * register_root_hub - called by usb_add_hcd() to register a root hub
1062 * @hcd: host controller for this root hub
1064 * This function registers the root hub with the USB subsystem. It sets up
1065 * the device properly in the device tree and then calls usb_new_device()
1066 * to register the usb device. It also assigns the root hub's USB address
1069 * Return: 0 if successful. A negative error code otherwise.
1071 static int register_root_hub(struct usb_hcd
*hcd
)
1073 struct device
*parent_dev
= hcd
->self
.controller
;
1074 struct usb_device
*usb_dev
= hcd
->self
.root_hub
;
1075 const int devnum
= 1;
1078 usb_dev
->devnum
= devnum
;
1079 usb_dev
->bus
->devnum_next
= devnum
+ 1;
1080 set_bit (devnum
, usb_dev
->bus
->devmap
.devicemap
);
1081 usb_set_device_state(usb_dev
, USB_STATE_ADDRESS
);
1083 mutex_lock(&usb_bus_idr_lock
);
1085 usb_dev
->ep0
.desc
.wMaxPacketSize
= cpu_to_le16(64);
1086 retval
= usb_get_device_descriptor(usb_dev
, USB_DT_DEVICE_SIZE
);
1087 if (retval
!= sizeof usb_dev
->descriptor
) {
1088 mutex_unlock(&usb_bus_idr_lock
);
1089 dev_dbg (parent_dev
, "can't read %s device descriptor %d\n",
1090 dev_name(&usb_dev
->dev
), retval
);
1091 return (retval
< 0) ? retval
: -EMSGSIZE
;
1094 if (le16_to_cpu(usb_dev
->descriptor
.bcdUSB
) >= 0x0201) {
1095 retval
= usb_get_bos_descriptor(usb_dev
);
1097 usb_dev
->lpm_capable
= usb_device_supports_lpm(usb_dev
);
1098 } else if (usb_dev
->speed
>= USB_SPEED_SUPER
) {
1099 mutex_unlock(&usb_bus_idr_lock
);
1100 dev_dbg(parent_dev
, "can't read %s bos descriptor %d\n",
1101 dev_name(&usb_dev
->dev
), retval
);
1106 retval
= usb_new_device (usb_dev
);
1108 dev_err (parent_dev
, "can't register root hub for %s, %d\n",
1109 dev_name(&usb_dev
->dev
), retval
);
1111 spin_lock_irq (&hcd_root_hub_lock
);
1112 hcd
->rh_registered
= 1;
1113 spin_unlock_irq (&hcd_root_hub_lock
);
1115 /* Did the HC die before the root hub was registered? */
1117 usb_hc_died (hcd
); /* This time clean up */
1119 mutex_unlock(&usb_bus_idr_lock
);
1125 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1126 * @bus: the bus which the root hub belongs to
1127 * @portnum: the port which is being resumed
1129 * HCDs should call this function when they know that a resume signal is
1130 * being sent to a root-hub port. The root hub will be prevented from
1131 * going into autosuspend until usb_hcd_end_port_resume() is called.
1133 * The bus's private lock must be held by the caller.
1135 void usb_hcd_start_port_resume(struct usb_bus
*bus
, int portnum
)
1137 unsigned bit
= 1 << portnum
;
1139 if (!(bus
->resuming_ports
& bit
)) {
1140 bus
->resuming_ports
|= bit
;
1141 pm_runtime_get_noresume(&bus
->root_hub
->dev
);
1144 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume
);
1147 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1148 * @bus: the bus which the root hub belongs to
1149 * @portnum: the port which is being resumed
1151 * HCDs should call this function when they know that a resume signal has
1152 * stopped being sent to a root-hub port. The root hub will be allowed to
1153 * autosuspend again.
1155 * The bus's private lock must be held by the caller.
1157 void usb_hcd_end_port_resume(struct usb_bus
*bus
, int portnum
)
1159 unsigned bit
= 1 << portnum
;
1161 if (bus
->resuming_ports
& bit
) {
1162 bus
->resuming_ports
&= ~bit
;
1163 pm_runtime_put_noidle(&bus
->root_hub
->dev
);
1166 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume
);
1168 /*-------------------------------------------------------------------------*/
1171 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1172 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1173 * @is_input: true iff the transaction sends data to the host
1174 * @isoc: true for isochronous transactions, false for interrupt ones
1175 * @bytecount: how many bytes in the transaction.
1177 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1180 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1181 * scheduled in software, this function is only used for such scheduling.
1183 long usb_calc_bus_time (int speed
, int is_input
, int isoc
, int bytecount
)
1188 case USB_SPEED_LOW
: /* INTR only */
1190 tmp
= (67667L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1191 return 64060L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1193 tmp
= (66700L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1194 return 64107L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1196 case USB_SPEED_FULL
: /* ISOC or INTR */
1198 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1199 return ((is_input
) ? 7268L : 6265L) + BW_HOST_DELAY
+ tmp
;
1201 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1202 return 9107L + BW_HOST_DELAY
+ tmp
;
1204 case USB_SPEED_HIGH
: /* ISOC or INTR */
1205 /* FIXME adjust for input vs output */
1207 tmp
= HS_NSECS_ISO (bytecount
);
1209 tmp
= HS_NSECS (bytecount
);
1212 pr_debug ("%s: bogus device speed!\n", usbcore_name
);
1216 EXPORT_SYMBOL_GPL(usb_calc_bus_time
);
1219 /*-------------------------------------------------------------------------*/
1222 * Generic HC operations.
1225 /*-------------------------------------------------------------------------*/
1228 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1229 * @hcd: host controller to which @urb was submitted
1230 * @urb: URB being submitted
1232 * Host controller drivers should call this routine in their enqueue()
1233 * method. The HCD's private spinlock must be held and interrupts must
1234 * be disabled. The actions carried out here are required for URB
1235 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1237 * Return: 0 for no error, otherwise a negative error code (in which case
1238 * the enqueue() method must fail). If no error occurs but enqueue() fails
1239 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1240 * the private spinlock and returning.
1242 int usb_hcd_link_urb_to_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1246 spin_lock(&hcd_urb_list_lock
);
1248 /* Check that the URB isn't being killed */
1249 if (unlikely(atomic_read(&urb
->reject
))) {
1254 if (unlikely(!urb
->ep
->enabled
)) {
1259 if (unlikely(!urb
->dev
->can_submit
)) {
1265 * Check the host controller's state and add the URB to the
1268 if (HCD_RH_RUNNING(hcd
)) {
1270 list_add_tail(&urb
->urb_list
, &urb
->ep
->urb_list
);
1276 spin_unlock(&hcd_urb_list_lock
);
1279 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep
);
1282 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1283 * @hcd: host controller to which @urb was submitted
1284 * @urb: URB being checked for unlinkability
1285 * @status: error code to store in @urb if the unlink succeeds
1287 * Host controller drivers should call this routine in their dequeue()
1288 * method. The HCD's private spinlock must be held and interrupts must
1289 * be disabled. The actions carried out here are required for making
1290 * sure than an unlink is valid.
1292 * Return: 0 for no error, otherwise a negative error code (in which case
1293 * the dequeue() method must fail). The possible error codes are:
1295 * -EIDRM: @urb was not submitted or has already completed.
1296 * The completion function may not have been called yet.
1298 * -EBUSY: @urb has already been unlinked.
1300 int usb_hcd_check_unlink_urb(struct usb_hcd
*hcd
, struct urb
*urb
,
1303 struct list_head
*tmp
;
1305 /* insist the urb is still queued */
1306 list_for_each(tmp
, &urb
->ep
->urb_list
) {
1307 if (tmp
== &urb
->urb_list
)
1310 if (tmp
!= &urb
->urb_list
)
1313 /* Any status except -EINPROGRESS means something already started to
1314 * unlink this URB from the hardware. So there's no more work to do.
1318 urb
->unlinked
= status
;
1321 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb
);
1324 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1325 * @hcd: host controller to which @urb was submitted
1326 * @urb: URB being unlinked
1328 * Host controller drivers should call this routine before calling
1329 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1330 * interrupts must be disabled. The actions carried out here are required
1331 * for URB completion.
1333 void usb_hcd_unlink_urb_from_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1335 /* clear all state linking urb to this dev (and hcd) */
1336 spin_lock(&hcd_urb_list_lock
);
1337 list_del_init(&urb
->urb_list
);
1338 spin_unlock(&hcd_urb_list_lock
);
1340 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep
);
1343 * Some usb host controllers can only perform dma using a small SRAM area.
1344 * The usb core itself is however optimized for host controllers that can dma
1345 * using regular system memory - like pci devices doing bus mastering.
1347 * To support host controllers with limited dma capabilities we provide dma
1348 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1349 * For this to work properly the host controller code must first use the
1350 * function dma_declare_coherent_memory() to point out which memory area
1351 * that should be used for dma allocations.
1353 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1354 * dma using dma_alloc_coherent() which in turn allocates from the memory
1355 * area pointed out with dma_declare_coherent_memory().
1357 * So, to summarize...
1359 * - We need "local" memory, canonical example being
1360 * a small SRAM on a discrete controller being the
1361 * only memory that the controller can read ...
1362 * (a) "normal" kernel memory is no good, and
1363 * (b) there's not enough to share
1365 * - The only *portable* hook for such stuff in the
1366 * DMA framework is dma_declare_coherent_memory()
1368 * - So we use that, even though the primary requirement
1369 * is that the memory be "local" (hence addressable
1370 * by that device), not "coherent".
1374 static int hcd_alloc_coherent(struct usb_bus
*bus
,
1375 gfp_t mem_flags
, dma_addr_t
*dma_handle
,
1376 void **vaddr_handle
, size_t size
,
1377 enum dma_data_direction dir
)
1379 unsigned char *vaddr
;
1381 if (*vaddr_handle
== NULL
) {
1386 vaddr
= hcd_buffer_alloc(bus
, size
+ sizeof(vaddr
),
1387 mem_flags
, dma_handle
);
1392 * Store the virtual address of the buffer at the end
1393 * of the allocated dma buffer. The size of the buffer
1394 * may be uneven so use unaligned functions instead
1395 * of just rounding up. It makes sense to optimize for
1396 * memory footprint over access speed since the amount
1397 * of memory available for dma may be limited.
1399 put_unaligned((unsigned long)*vaddr_handle
,
1400 (unsigned long *)(vaddr
+ size
));
1402 if (dir
== DMA_TO_DEVICE
)
1403 memcpy(vaddr
, *vaddr_handle
, size
);
1405 *vaddr_handle
= vaddr
;
1409 static void hcd_free_coherent(struct usb_bus
*bus
, dma_addr_t
*dma_handle
,
1410 void **vaddr_handle
, size_t size
,
1411 enum dma_data_direction dir
)
1413 unsigned char *vaddr
= *vaddr_handle
;
1415 vaddr
= (void *)get_unaligned((unsigned long *)(vaddr
+ size
));
1417 if (dir
== DMA_FROM_DEVICE
)
1418 memcpy(vaddr
, *vaddr_handle
, size
);
1420 hcd_buffer_free(bus
, size
+ sizeof(vaddr
), *vaddr_handle
, *dma_handle
);
1422 *vaddr_handle
= vaddr
;
1426 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1428 if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1429 (urb
->transfer_flags
& URB_SETUP_MAP_SINGLE
))
1430 dma_unmap_single(hcd
->self
.sysdev
,
1432 sizeof(struct usb_ctrlrequest
),
1434 else if (urb
->transfer_flags
& URB_SETUP_MAP_LOCAL
)
1435 hcd_free_coherent(urb
->dev
->bus
,
1437 (void **) &urb
->setup_packet
,
1438 sizeof(struct usb_ctrlrequest
),
1441 /* Make it safe to call this routine more than once */
1442 urb
->transfer_flags
&= ~(URB_SETUP_MAP_SINGLE
| URB_SETUP_MAP_LOCAL
);
1444 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma
);
1446 static void unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1448 if (hcd
->driver
->unmap_urb_for_dma
)
1449 hcd
->driver
->unmap_urb_for_dma(hcd
, urb
);
1451 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1454 void usb_hcd_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1456 enum dma_data_direction dir
;
1458 usb_hcd_unmap_urb_setup_for_dma(hcd
, urb
);
1460 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1461 if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1462 (urb
->transfer_flags
& URB_DMA_MAP_SG
))
1463 dma_unmap_sg(hcd
->self
.sysdev
,
1467 else if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1468 (urb
->transfer_flags
& URB_DMA_MAP_PAGE
))
1469 dma_unmap_page(hcd
->self
.sysdev
,
1471 urb
->transfer_buffer_length
,
1473 else if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1474 (urb
->transfer_flags
& URB_DMA_MAP_SINGLE
))
1475 dma_unmap_single(hcd
->self
.sysdev
,
1477 urb
->transfer_buffer_length
,
1479 else if (urb
->transfer_flags
& URB_MAP_LOCAL
)
1480 hcd_free_coherent(urb
->dev
->bus
,
1482 &urb
->transfer_buffer
,
1483 urb
->transfer_buffer_length
,
1486 /* Make it safe to call this routine more than once */
1487 urb
->transfer_flags
&= ~(URB_DMA_MAP_SG
| URB_DMA_MAP_PAGE
|
1488 URB_DMA_MAP_SINGLE
| URB_MAP_LOCAL
);
1490 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma
);
1492 static int map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1495 if (hcd
->driver
->map_urb_for_dma
)
1496 return hcd
->driver
->map_urb_for_dma(hcd
, urb
, mem_flags
);
1498 return usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
1501 int usb_hcd_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1504 enum dma_data_direction dir
;
1507 /* Map the URB's buffers for DMA access.
1508 * Lower level HCD code should use *_dma exclusively,
1509 * unless it uses pio or talks to another transport,
1510 * or uses the provided scatter gather list for bulk.
1513 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1514 if (hcd
->self
.uses_pio_for_control
)
1516 if (IS_ENABLED(CONFIG_HAS_DMA
) && hcd
->self
.uses_dma
) {
1517 if (is_vmalloc_addr(urb
->setup_packet
)) {
1518 WARN_ONCE(1, "setup packet is not dma capable\n");
1520 } else if (object_is_on_stack(urb
->setup_packet
)) {
1521 WARN_ONCE(1, "setup packet is on stack\n");
1525 urb
->setup_dma
= dma_map_single(
1528 sizeof(struct usb_ctrlrequest
),
1530 if (dma_mapping_error(hcd
->self
.sysdev
,
1533 urb
->transfer_flags
|= URB_SETUP_MAP_SINGLE
;
1534 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1535 ret
= hcd_alloc_coherent(
1536 urb
->dev
->bus
, mem_flags
,
1538 (void **)&urb
->setup_packet
,
1539 sizeof(struct usb_ctrlrequest
),
1543 urb
->transfer_flags
|= URB_SETUP_MAP_LOCAL
;
1547 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1548 if (urb
->transfer_buffer_length
!= 0
1549 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1550 if (IS_ENABLED(CONFIG_HAS_DMA
) && hcd
->self
.uses_dma
) {
1554 /* We don't support sg for isoc transfers ! */
1555 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
)) {
1568 urb
->transfer_flags
|= URB_DMA_MAP_SG
;
1569 urb
->num_mapped_sgs
= n
;
1570 if (n
!= urb
->num_sgs
)
1571 urb
->transfer_flags
|=
1572 URB_DMA_SG_COMBINED
;
1573 } else if (urb
->sg
) {
1574 struct scatterlist
*sg
= urb
->sg
;
1575 urb
->transfer_dma
= dma_map_page(
1579 urb
->transfer_buffer_length
,
1581 if (dma_mapping_error(hcd
->self
.sysdev
,
1585 urb
->transfer_flags
|= URB_DMA_MAP_PAGE
;
1586 } else if (is_vmalloc_addr(urb
->transfer_buffer
)) {
1587 WARN_ONCE(1, "transfer buffer not dma capable\n");
1589 } else if (object_is_on_stack(urb
->transfer_buffer
)) {
1590 WARN_ONCE(1, "transfer buffer is on stack\n");
1593 urb
->transfer_dma
= dma_map_single(
1595 urb
->transfer_buffer
,
1596 urb
->transfer_buffer_length
,
1598 if (dma_mapping_error(hcd
->self
.sysdev
,
1602 urb
->transfer_flags
|= URB_DMA_MAP_SINGLE
;
1604 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1605 ret
= hcd_alloc_coherent(
1606 urb
->dev
->bus
, mem_flags
,
1608 &urb
->transfer_buffer
,
1609 urb
->transfer_buffer_length
,
1612 urb
->transfer_flags
|= URB_MAP_LOCAL
;
1614 if (ret
&& (urb
->transfer_flags
& (URB_SETUP_MAP_SINGLE
|
1615 URB_SETUP_MAP_LOCAL
)))
1616 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1620 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma
);
1622 /*-------------------------------------------------------------------------*/
1624 /* may be called in any context with a valid urb->dev usecount
1625 * caller surrenders "ownership" of urb
1626 * expects usb_submit_urb() to have sanity checked and conditioned all
1629 int usb_hcd_submit_urb (struct urb
*urb
, gfp_t mem_flags
)
1632 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1634 /* increment urb's reference count as part of giving it to the HCD
1635 * (which will control it). HCD guarantees that it either returns
1636 * an error or calls giveback(), but not both.
1639 atomic_inc(&urb
->use_count
);
1640 atomic_inc(&urb
->dev
->urbnum
);
1641 usbmon_urb_submit(&hcd
->self
, urb
);
1643 /* NOTE requirements on root-hub callers (usbfs and the hub
1644 * driver, for now): URBs' urb->transfer_buffer must be
1645 * valid and usb_buffer_{sync,unmap}() not be needed, since
1646 * they could clobber root hub response data. Also, control
1647 * URBs must be submitted in process context with interrupts
1651 if (is_root_hub(urb
->dev
)) {
1652 status
= rh_urb_enqueue(hcd
, urb
);
1654 status
= map_urb_for_dma(hcd
, urb
, mem_flags
);
1655 if (likely(status
== 0)) {
1656 status
= hcd
->driver
->urb_enqueue(hcd
, urb
, mem_flags
);
1657 if (unlikely(status
))
1658 unmap_urb_for_dma(hcd
, urb
);
1662 if (unlikely(status
)) {
1663 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1665 INIT_LIST_HEAD(&urb
->urb_list
);
1666 atomic_dec(&urb
->use_count
);
1667 atomic_dec(&urb
->dev
->urbnum
);
1668 if (atomic_read(&urb
->reject
))
1669 wake_up(&usb_kill_urb_queue
);
1675 /*-------------------------------------------------------------------------*/
1677 /* this makes the hcd giveback() the urb more quickly, by kicking it
1678 * off hardware queues (which may take a while) and returning it as
1679 * soon as practical. we've already set up the urb's return status,
1680 * but we can't know if the callback completed already.
1682 static int unlink1(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1686 if (is_root_hub(urb
->dev
))
1687 value
= usb_rh_urb_dequeue(hcd
, urb
, status
);
1690 /* The only reason an HCD might fail this call is if
1691 * it has not yet fully queued the urb to begin with.
1692 * Such failures should be harmless. */
1693 value
= hcd
->driver
->urb_dequeue(hcd
, urb
, status
);
1699 * called in any context
1701 * caller guarantees urb won't be recycled till both unlink()
1702 * and the urb's completion function return
1704 int usb_hcd_unlink_urb (struct urb
*urb
, int status
)
1706 struct usb_hcd
*hcd
;
1707 struct usb_device
*udev
= urb
->dev
;
1708 int retval
= -EIDRM
;
1709 unsigned long flags
;
1711 /* Prevent the device and bus from going away while
1712 * the unlink is carried out. If they are already gone
1713 * then urb->use_count must be 0, since disconnected
1714 * devices can't have any active URBs.
1716 spin_lock_irqsave(&hcd_urb_unlink_lock
, flags
);
1717 if (atomic_read(&urb
->use_count
) > 0) {
1721 spin_unlock_irqrestore(&hcd_urb_unlink_lock
, flags
);
1723 hcd
= bus_to_hcd(urb
->dev
->bus
);
1724 retval
= unlink1(hcd
, urb
, status
);
1726 retval
= -EINPROGRESS
;
1727 else if (retval
!= -EIDRM
&& retval
!= -EBUSY
)
1728 dev_dbg(&udev
->dev
, "hcd_unlink_urb %pK fail %d\n",
1735 /*-------------------------------------------------------------------------*/
1737 static void __usb_hcd_giveback_urb(struct urb
*urb
)
1739 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1740 struct usb_anchor
*anchor
= urb
->anchor
;
1741 int status
= urb
->unlinked
;
1744 if (unlikely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
1745 urb
->actual_length
< urb
->transfer_buffer_length
&&
1747 status
= -EREMOTEIO
;
1749 unmap_urb_for_dma(hcd
, urb
);
1750 usbmon_urb_complete(&hcd
->self
, urb
, status
);
1751 usb_anchor_suspend_wakeups(anchor
);
1752 usb_unanchor_urb(urb
);
1753 if (likely(status
== 0))
1754 usb_led_activity(USB_LED_EVENT_HOST
);
1756 /* pass ownership to the completion handler */
1757 urb
->status
= status
;
1760 usb_anchor_resume_wakeups(anchor
);
1761 atomic_dec(&urb
->use_count
);
1762 if (unlikely(atomic_read(&urb
->reject
)))
1763 wake_up(&usb_kill_urb_queue
);
1767 static void usb_giveback_urb_bh(unsigned long param
)
1769 struct giveback_urb_bh
*bh
= (struct giveback_urb_bh
*)param
;
1770 struct list_head local_list
;
1772 spin_lock_irq(&bh
->lock
);
1775 list_replace_init(&bh
->head
, &local_list
);
1776 spin_unlock_irq(&bh
->lock
);
1778 while (!list_empty(&local_list
)) {
1781 urb
= list_entry(local_list
.next
, struct urb
, urb_list
);
1782 list_del_init(&urb
->urb_list
);
1783 bh
->completing_ep
= urb
->ep
;
1784 __usb_hcd_giveback_urb(urb
);
1785 bh
->completing_ep
= NULL
;
1788 /* check if there are new URBs to giveback */
1789 spin_lock_irq(&bh
->lock
);
1790 if (!list_empty(&bh
->head
))
1792 bh
->running
= false;
1793 spin_unlock_irq(&bh
->lock
);
1797 * usb_hcd_giveback_urb - return URB from HCD to device driver
1798 * @hcd: host controller returning the URB
1799 * @urb: urb being returned to the USB device driver.
1800 * @status: completion status code for the URB.
1801 * Context: in_interrupt()
1803 * This hands the URB from HCD to its USB device driver, using its
1804 * completion function. The HCD has freed all per-urb resources
1805 * (and is done using urb->hcpriv). It also released all HCD locks;
1806 * the device driver won't cause problems if it frees, modifies,
1807 * or resubmits this URB.
1809 * If @urb was unlinked, the value of @status will be overridden by
1810 * @urb->unlinked. Erroneous short transfers are detected in case
1811 * the HCD hasn't checked for them.
1813 void usb_hcd_giveback_urb(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1815 struct giveback_urb_bh
*bh
;
1816 bool running
, high_prio_bh
;
1818 /* pass status to tasklet via unlinked */
1819 if (likely(!urb
->unlinked
))
1820 urb
->unlinked
= status
;
1822 if (!hcd_giveback_urb_in_bh(hcd
) && !is_root_hub(urb
->dev
)) {
1823 __usb_hcd_giveback_urb(urb
);
1827 if (usb_pipeisoc(urb
->pipe
) || usb_pipeint(urb
->pipe
)) {
1828 bh
= &hcd
->high_prio_bh
;
1829 high_prio_bh
= true;
1831 bh
= &hcd
->low_prio_bh
;
1832 high_prio_bh
= false;
1835 spin_lock(&bh
->lock
);
1836 list_add_tail(&urb
->urb_list
, &bh
->head
);
1837 running
= bh
->running
;
1838 spin_unlock(&bh
->lock
);
1842 else if (high_prio_bh
)
1843 tasklet_hi_schedule(&bh
->bh
);
1845 tasklet_schedule(&bh
->bh
);
1847 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb
);
1849 /*-------------------------------------------------------------------------*/
1851 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1852 * queue to drain completely. The caller must first insure that no more
1853 * URBs can be submitted for this endpoint.
1855 void usb_hcd_flush_endpoint(struct usb_device
*udev
,
1856 struct usb_host_endpoint
*ep
)
1858 struct usb_hcd
*hcd
;
1864 hcd
= bus_to_hcd(udev
->bus
);
1866 /* No more submits can occur */
1867 spin_lock_irq(&hcd_urb_list_lock
);
1869 list_for_each_entry_reverse(urb
, &ep
->urb_list
, urb_list
) {
1875 is_in
= usb_urb_dir_in(urb
);
1876 spin_unlock(&hcd_urb_list_lock
);
1879 unlink1(hcd
, urb
, -ESHUTDOWN
);
1880 dev_dbg (hcd
->self
.controller
,
1881 "shutdown urb %pK ep%d%s-%s\n",
1882 urb
, usb_endpoint_num(&ep
->desc
),
1883 is_in
? "in" : "out",
1884 usb_ep_type_string(usb_endpoint_type(&ep
->desc
)));
1887 /* list contents may have changed */
1888 spin_lock(&hcd_urb_list_lock
);
1891 spin_unlock_irq(&hcd_urb_list_lock
);
1893 /* Wait until the endpoint queue is completely empty */
1894 while (!list_empty (&ep
->urb_list
)) {
1895 spin_lock_irq(&hcd_urb_list_lock
);
1897 /* The list may have changed while we acquired the spinlock */
1899 if (!list_empty (&ep
->urb_list
)) {
1900 urb
= list_entry (ep
->urb_list
.prev
, struct urb
,
1904 spin_unlock_irq(&hcd_urb_list_lock
);
1914 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1916 * @udev: target &usb_device
1917 * @new_config: new configuration to install
1918 * @cur_alt: the current alternate interface setting
1919 * @new_alt: alternate interface setting that is being installed
1921 * To change configurations, pass in the new configuration in new_config,
1922 * and pass NULL for cur_alt and new_alt.
1924 * To reset a device's configuration (put the device in the ADDRESSED state),
1925 * pass in NULL for new_config, cur_alt, and new_alt.
1927 * To change alternate interface settings, pass in NULL for new_config,
1928 * pass in the current alternate interface setting in cur_alt,
1929 * and pass in the new alternate interface setting in new_alt.
1931 * Return: An error if the requested bandwidth change exceeds the
1932 * bus bandwidth or host controller internal resources.
1934 int usb_hcd_alloc_bandwidth(struct usb_device
*udev
,
1935 struct usb_host_config
*new_config
,
1936 struct usb_host_interface
*cur_alt
,
1937 struct usb_host_interface
*new_alt
)
1939 int num_intfs
, i
, j
;
1940 struct usb_host_interface
*alt
= NULL
;
1942 struct usb_hcd
*hcd
;
1943 struct usb_host_endpoint
*ep
;
1945 hcd
= bus_to_hcd(udev
->bus
);
1946 if (!hcd
->driver
->check_bandwidth
)
1949 /* Configuration is being removed - set configuration 0 */
1950 if (!new_config
&& !cur_alt
) {
1951 for (i
= 1; i
< 16; ++i
) {
1952 ep
= udev
->ep_out
[i
];
1954 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1955 ep
= udev
->ep_in
[i
];
1957 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1959 hcd
->driver
->check_bandwidth(hcd
, udev
);
1962 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1963 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1964 * of the bus. There will always be bandwidth for endpoint 0, so it's
1968 num_intfs
= new_config
->desc
.bNumInterfaces
;
1969 /* Remove endpoints (except endpoint 0, which is always on the
1970 * schedule) from the old config from the schedule
1972 for (i
= 1; i
< 16; ++i
) {
1973 ep
= udev
->ep_out
[i
];
1975 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1979 ep
= udev
->ep_in
[i
];
1981 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1986 for (i
= 0; i
< num_intfs
; ++i
) {
1987 struct usb_host_interface
*first_alt
;
1990 first_alt
= &new_config
->intf_cache
[i
]->altsetting
[0];
1991 iface_num
= first_alt
->desc
.bInterfaceNumber
;
1992 /* Set up endpoints for alternate interface setting 0 */
1993 alt
= usb_find_alt_setting(new_config
, iface_num
, 0);
1995 /* No alt setting 0? Pick the first setting. */
1998 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
1999 ret
= hcd
->driver
->add_endpoint(hcd
, udev
, &alt
->endpoint
[j
]);
2005 if (cur_alt
&& new_alt
) {
2006 struct usb_interface
*iface
= usb_ifnum_to_if(udev
,
2007 cur_alt
->desc
.bInterfaceNumber
);
2011 if (iface
->resetting_device
) {
2013 * The USB core just reset the device, so the xHCI host
2014 * and the device will think alt setting 0 is installed.
2015 * However, the USB core will pass in the alternate
2016 * setting installed before the reset as cur_alt. Dig
2017 * out the alternate setting 0 structure, or the first
2018 * alternate setting if a broken device doesn't have alt
2021 cur_alt
= usb_altnum_to_altsetting(iface
, 0);
2023 cur_alt
= &iface
->altsetting
[0];
2026 /* Drop all the endpoints in the current alt setting */
2027 for (i
= 0; i
< cur_alt
->desc
.bNumEndpoints
; i
++) {
2028 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
,
2029 &cur_alt
->endpoint
[i
]);
2033 /* Add all the endpoints in the new alt setting */
2034 for (i
= 0; i
< new_alt
->desc
.bNumEndpoints
; i
++) {
2035 ret
= hcd
->driver
->add_endpoint(hcd
, udev
,
2036 &new_alt
->endpoint
[i
]);
2041 ret
= hcd
->driver
->check_bandwidth(hcd
, udev
);
2044 hcd
->driver
->reset_bandwidth(hcd
, udev
);
2048 /* Disables the endpoint: synchronizes with the hcd to make sure all
2049 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2050 * have been called previously. Use for set_configuration, set_interface,
2051 * driver removal, physical disconnect.
2053 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2054 * type, maxpacket size, toggle, halt status, and scheduling.
2056 void usb_hcd_disable_endpoint(struct usb_device
*udev
,
2057 struct usb_host_endpoint
*ep
)
2059 struct usb_hcd
*hcd
;
2062 hcd
= bus_to_hcd(udev
->bus
);
2063 if (hcd
->driver
->endpoint_disable
)
2064 hcd
->driver
->endpoint_disable(hcd
, ep
);
2068 * usb_hcd_reset_endpoint - reset host endpoint state
2069 * @udev: USB device.
2070 * @ep: the endpoint to reset.
2072 * Resets any host endpoint state such as the toggle bit, sequence
2073 * number and current window.
2075 void usb_hcd_reset_endpoint(struct usb_device
*udev
,
2076 struct usb_host_endpoint
*ep
)
2078 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2080 if (hcd
->driver
->endpoint_reset
)
2081 hcd
->driver
->endpoint_reset(hcd
, ep
);
2083 int epnum
= usb_endpoint_num(&ep
->desc
);
2084 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
2085 int is_control
= usb_endpoint_xfer_control(&ep
->desc
);
2087 usb_settoggle(udev
, epnum
, is_out
, 0);
2089 usb_settoggle(udev
, epnum
, !is_out
, 0);
2094 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2095 * @interface: alternate setting that includes all endpoints.
2096 * @eps: array of endpoints that need streams.
2097 * @num_eps: number of endpoints in the array.
2098 * @num_streams: number of streams to allocate.
2099 * @mem_flags: flags hcd should use to allocate memory.
2101 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2102 * Drivers may queue multiple transfers to different stream IDs, which may
2103 * complete in a different order than they were queued.
2105 * Return: On success, the number of allocated streams. On failure, a negative
2108 int usb_alloc_streams(struct usb_interface
*interface
,
2109 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2110 unsigned int num_streams
, gfp_t mem_flags
)
2112 struct usb_hcd
*hcd
;
2113 struct usb_device
*dev
;
2116 dev
= interface_to_usbdev(interface
);
2117 hcd
= bus_to_hcd(dev
->bus
);
2118 if (!hcd
->driver
->alloc_streams
|| !hcd
->driver
->free_streams
)
2120 if (dev
->speed
< USB_SPEED_SUPER
)
2122 if (dev
->state
< USB_STATE_CONFIGURED
)
2125 for (i
= 0; i
< num_eps
; i
++) {
2126 /* Streams only apply to bulk endpoints. */
2127 if (!usb_endpoint_xfer_bulk(&eps
[i
]->desc
))
2129 /* Re-alloc is not allowed */
2130 if (eps
[i
]->streams
)
2134 ret
= hcd
->driver
->alloc_streams(hcd
, dev
, eps
, num_eps
,
2135 num_streams
, mem_flags
);
2139 for (i
= 0; i
< num_eps
; i
++)
2140 eps
[i
]->streams
= ret
;
2144 EXPORT_SYMBOL_GPL(usb_alloc_streams
);
2147 * usb_free_streams - free bulk endpoint stream IDs.
2148 * @interface: alternate setting that includes all endpoints.
2149 * @eps: array of endpoints to remove streams from.
2150 * @num_eps: number of endpoints in the array.
2151 * @mem_flags: flags hcd should use to allocate memory.
2153 * Reverts a group of bulk endpoints back to not using stream IDs.
2154 * Can fail if we are given bad arguments, or HCD is broken.
2156 * Return: 0 on success. On failure, a negative error code.
2158 int usb_free_streams(struct usb_interface
*interface
,
2159 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2162 struct usb_hcd
*hcd
;
2163 struct usb_device
*dev
;
2166 dev
= interface_to_usbdev(interface
);
2167 hcd
= bus_to_hcd(dev
->bus
);
2168 if (dev
->speed
< USB_SPEED_SUPER
)
2171 /* Double-free is not allowed */
2172 for (i
= 0; i
< num_eps
; i
++)
2173 if (!eps
[i
] || !eps
[i
]->streams
)
2176 ret
= hcd
->driver
->free_streams(hcd
, dev
, eps
, num_eps
, mem_flags
);
2180 for (i
= 0; i
< num_eps
; i
++)
2181 eps
[i
]->streams
= 0;
2185 EXPORT_SYMBOL_GPL(usb_free_streams
);
2187 /* Protect against drivers that try to unlink URBs after the device
2188 * is gone, by waiting until all unlinks for @udev are finished.
2189 * Since we don't currently track URBs by device, simply wait until
2190 * nothing is running in the locked region of usb_hcd_unlink_urb().
2192 void usb_hcd_synchronize_unlinks(struct usb_device
*udev
)
2194 spin_lock_irq(&hcd_urb_unlink_lock
);
2195 spin_unlock_irq(&hcd_urb_unlink_lock
);
2198 /*-------------------------------------------------------------------------*/
2200 /* called in any context */
2201 int usb_hcd_get_frame_number (struct usb_device
*udev
)
2203 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2205 if (!HCD_RH_RUNNING(hcd
))
2207 return hcd
->driver
->get_frame_number (hcd
);
2210 /*-------------------------------------------------------------------------*/
2214 int hcd_bus_suspend(struct usb_device
*rhdev
, pm_message_t msg
)
2216 struct usb_hcd
*hcd
= bus_to_hcd(rhdev
->bus
);
2218 int old_state
= hcd
->state
;
2220 dev_dbg(&rhdev
->dev
, "bus %ssuspend, wakeup %d\n",
2221 (PMSG_IS_AUTO(msg
) ? "auto-" : ""),
2222 rhdev
->do_remote_wakeup
);
2223 if (HCD_DEAD(hcd
)) {
2224 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "suspend");
2228 if (!hcd
->driver
->bus_suspend
) {
2231 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2232 hcd
->state
= HC_STATE_QUIESCING
;
2233 status
= hcd
->driver
->bus_suspend(hcd
);
2236 usb_set_device_state(rhdev
, USB_STATE_SUSPENDED
);
2237 hcd
->state
= HC_STATE_SUSPENDED
;
2239 if (!PMSG_IS_AUTO(msg
))
2240 usb_phy_roothub_suspend(hcd
->self
.sysdev
,
2243 /* Did we race with a root-hub wakeup event? */
2244 if (rhdev
->do_remote_wakeup
) {
2247 status
= hcd
->driver
->hub_status_data(hcd
, buffer
);
2249 dev_dbg(&rhdev
->dev
, "suspend raced with wakeup event\n");
2250 hcd_bus_resume(rhdev
, PMSG_AUTO_RESUME
);
2255 spin_lock_irq(&hcd_root_hub_lock
);
2256 if (!HCD_DEAD(hcd
)) {
2257 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2258 hcd
->state
= old_state
;
2260 spin_unlock_irq(&hcd_root_hub_lock
);
2261 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2267 int hcd_bus_resume(struct usb_device
*rhdev
, pm_message_t msg
)
2269 struct usb_hcd
*hcd
= bus_to_hcd(rhdev
->bus
);
2271 int old_state
= hcd
->state
;
2273 dev_dbg(&rhdev
->dev
, "usb %sresume\n",
2274 (PMSG_IS_AUTO(msg
) ? "auto-" : ""));
2275 if (HCD_DEAD(hcd
)) {
2276 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "resume");
2280 if (!PMSG_IS_AUTO(msg
)) {
2281 status
= usb_phy_roothub_resume(hcd
->self
.sysdev
,
2287 if (!hcd
->driver
->bus_resume
)
2289 if (HCD_RH_RUNNING(hcd
))
2292 hcd
->state
= HC_STATE_RESUMING
;
2293 status
= hcd
->driver
->bus_resume(hcd
);
2294 clear_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2296 struct usb_device
*udev
;
2299 spin_lock_irq(&hcd_root_hub_lock
);
2300 if (!HCD_DEAD(hcd
)) {
2301 usb_set_device_state(rhdev
, rhdev
->actconfig
2302 ? USB_STATE_CONFIGURED
2303 : USB_STATE_ADDRESS
);
2304 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2305 hcd
->state
= HC_STATE_RUNNING
;
2307 spin_unlock_irq(&hcd_root_hub_lock
);
2310 * Check whether any of the enabled ports on the root hub are
2311 * unsuspended. If they are then a TRSMRCY delay is needed
2312 * (this is what the USB-2 spec calls a "global resume").
2313 * Otherwise we can skip the delay.
2315 usb_hub_for_each_child(rhdev
, port1
, udev
) {
2316 if (udev
->state
!= USB_STATE_NOTATTACHED
&&
2317 !udev
->port_is_suspended
) {
2318 usleep_range(10000, 11000); /* TRSMRCY */
2323 hcd
->state
= old_state
;
2324 usb_phy_roothub_suspend(hcd
->self
.sysdev
, hcd
->phy_roothub
);
2325 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2327 if (status
!= -ESHUTDOWN
)
2333 /* Workqueue routine for root-hub remote wakeup */
2334 static void hcd_resume_work(struct work_struct
*work
)
2336 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, wakeup_work
);
2337 struct usb_device
*udev
= hcd
->self
.root_hub
;
2339 usb_remote_wakeup(udev
);
2343 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2344 * @hcd: host controller for this root hub
2346 * The USB host controller calls this function when its root hub is
2347 * suspended (with the remote wakeup feature enabled) and a remote
2348 * wakeup request is received. The routine submits a workqueue request
2349 * to resume the root hub (that is, manage its downstream ports again).
2351 void usb_hcd_resume_root_hub (struct usb_hcd
*hcd
)
2353 unsigned long flags
;
2355 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2356 if (hcd
->rh_registered
) {
2357 pm_wakeup_event(&hcd
->self
.root_hub
->dev
, 0);
2358 set_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2359 queue_work(pm_wq
, &hcd
->wakeup_work
);
2361 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2363 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub
);
2365 #endif /* CONFIG_PM */
2367 /*-------------------------------------------------------------------------*/
2369 #ifdef CONFIG_USB_OTG
2372 * usb_bus_start_enum - start immediate enumeration (for OTG)
2373 * @bus: the bus (must use hcd framework)
2374 * @port_num: 1-based number of port; usually bus->otg_port
2375 * Context: in_interrupt()
2377 * Starts enumeration, with an immediate reset followed later by
2378 * hub_wq identifying and possibly configuring the device.
2379 * This is needed by OTG controller drivers, where it helps meet
2380 * HNP protocol timing requirements for starting a port reset.
2382 * Return: 0 if successful.
2384 int usb_bus_start_enum(struct usb_bus
*bus
, unsigned port_num
)
2386 struct usb_hcd
*hcd
;
2387 int status
= -EOPNOTSUPP
;
2389 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2390 * boards with root hubs hooked up to internal devices (instead of
2391 * just the OTG port) may need more attention to resetting...
2393 hcd
= bus_to_hcd(bus
);
2394 if (port_num
&& hcd
->driver
->start_port_reset
)
2395 status
= hcd
->driver
->start_port_reset(hcd
, port_num
);
2397 /* allocate hub_wq shortly after (first) root port reset finishes;
2398 * it may issue others, until at least 50 msecs have passed.
2401 mod_timer(&hcd
->rh_timer
, jiffies
+ msecs_to_jiffies(10));
2404 EXPORT_SYMBOL_GPL(usb_bus_start_enum
);
2408 /*-------------------------------------------------------------------------*/
2411 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2412 * @irq: the IRQ being raised
2413 * @__hcd: pointer to the HCD whose IRQ is being signaled
2415 * If the controller isn't HALTed, calls the driver's irq handler.
2416 * Checks whether the controller is now dead.
2418 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2420 irqreturn_t
usb_hcd_irq (int irq
, void *__hcd
)
2422 struct usb_hcd
*hcd
= __hcd
;
2425 if (unlikely(HCD_DEAD(hcd
) || !HCD_HW_ACCESSIBLE(hcd
)))
2427 else if (hcd
->driver
->irq(hcd
) == IRQ_NONE
)
2434 EXPORT_SYMBOL_GPL(usb_hcd_irq
);
2436 /*-------------------------------------------------------------------------*/
2438 /* Workqueue routine for when the root-hub has died. */
2439 static void hcd_died_work(struct work_struct
*work
)
2441 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, died_work
);
2442 static char *env
[] = {
2447 /* Notify user space that the host controller has died */
2448 kobject_uevent_env(&hcd
->self
.root_hub
->dev
.kobj
, KOBJ_OFFLINE
, env
);
2452 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2453 * @hcd: pointer to the HCD representing the controller
2455 * This is called by bus glue to report a USB host controller that died
2456 * while operations may still have been pending. It's called automatically
2457 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2459 * Only call this function with the primary HCD.
2461 void usb_hc_died (struct usb_hcd
*hcd
)
2463 unsigned long flags
;
2465 dev_err (hcd
->self
.controller
, "HC died; cleaning up\n");
2467 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2468 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2469 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2470 if (hcd
->rh_registered
) {
2471 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2473 /* make hub_wq clean up old urbs and devices */
2474 usb_set_device_state (hcd
->self
.root_hub
,
2475 USB_STATE_NOTATTACHED
);
2476 usb_kick_hub_wq(hcd
->self
.root_hub
);
2478 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->shared_hcd
) {
2479 hcd
= hcd
->shared_hcd
;
2480 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2481 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2482 if (hcd
->rh_registered
) {
2483 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2485 /* make hub_wq clean up old urbs and devices */
2486 usb_set_device_state(hcd
->self
.root_hub
,
2487 USB_STATE_NOTATTACHED
);
2488 usb_kick_hub_wq(hcd
->self
.root_hub
);
2492 /* Handle the case where this function gets called with a shared HCD */
2493 if (usb_hcd_is_primary_hcd(hcd
))
2494 schedule_work(&hcd
->died_work
);
2496 schedule_work(&hcd
->primary_hcd
->died_work
);
2498 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2499 /* Make sure that the other roothub is also deallocated. */
2501 EXPORT_SYMBOL_GPL (usb_hc_died
);
2503 /*-------------------------------------------------------------------------*/
2505 static void init_giveback_urb_bh(struct giveback_urb_bh
*bh
)
2508 spin_lock_init(&bh
->lock
);
2509 INIT_LIST_HEAD(&bh
->head
);
2510 tasklet_init(&bh
->bh
, usb_giveback_urb_bh
, (unsigned long)bh
);
2513 struct usb_hcd
*__usb_create_hcd(const struct hc_driver
*driver
,
2514 struct device
*sysdev
, struct device
*dev
, const char *bus_name
,
2515 struct usb_hcd
*primary_hcd
)
2517 struct usb_hcd
*hcd
;
2519 hcd
= kzalloc(sizeof(*hcd
) + driver
->hcd_priv_size
, GFP_KERNEL
);
2522 if (primary_hcd
== NULL
) {
2523 hcd
->address0_mutex
= kmalloc(sizeof(*hcd
->address0_mutex
),
2525 if (!hcd
->address0_mutex
) {
2527 dev_dbg(dev
, "hcd address0 mutex alloc failed\n");
2530 mutex_init(hcd
->address0_mutex
);
2531 hcd
->bandwidth_mutex
= kmalloc(sizeof(*hcd
->bandwidth_mutex
),
2533 if (!hcd
->bandwidth_mutex
) {
2534 kfree(hcd
->address0_mutex
);
2536 dev_dbg(dev
, "hcd bandwidth mutex alloc failed\n");
2539 mutex_init(hcd
->bandwidth_mutex
);
2540 dev_set_drvdata(dev
, hcd
);
2542 mutex_lock(&usb_port_peer_mutex
);
2543 hcd
->address0_mutex
= primary_hcd
->address0_mutex
;
2544 hcd
->bandwidth_mutex
= primary_hcd
->bandwidth_mutex
;
2545 hcd
->primary_hcd
= primary_hcd
;
2546 primary_hcd
->primary_hcd
= primary_hcd
;
2547 hcd
->shared_hcd
= primary_hcd
;
2548 primary_hcd
->shared_hcd
= hcd
;
2549 mutex_unlock(&usb_port_peer_mutex
);
2552 kref_init(&hcd
->kref
);
2554 usb_bus_init(&hcd
->self
);
2555 hcd
->self
.controller
= dev
;
2556 hcd
->self
.sysdev
= sysdev
;
2557 hcd
->self
.bus_name
= bus_name
;
2558 hcd
->self
.uses_dma
= (sysdev
->dma_mask
!= NULL
);
2560 timer_setup(&hcd
->rh_timer
, rh_timer_func
, 0);
2562 INIT_WORK(&hcd
->wakeup_work
, hcd_resume_work
);
2565 INIT_WORK(&hcd
->died_work
, hcd_died_work
);
2567 hcd
->driver
= driver
;
2568 hcd
->speed
= driver
->flags
& HCD_MASK
;
2569 hcd
->product_desc
= (driver
->product_desc
) ? driver
->product_desc
:
2570 "USB Host Controller";
2573 EXPORT_SYMBOL_GPL(__usb_create_hcd
);
2576 * usb_create_shared_hcd - create and initialize an HCD structure
2577 * @driver: HC driver that will use this hcd
2578 * @dev: device for this HC, stored in hcd->self.controller
2579 * @bus_name: value to store in hcd->self.bus_name
2580 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2581 * PCI device. Only allocate certain resources for the primary HCD
2582 * Context: !in_interrupt()
2584 * Allocate a struct usb_hcd, with extra space at the end for the
2585 * HC driver's private data. Initialize the generic members of the
2588 * Return: On success, a pointer to the created and initialized HCD structure.
2589 * On failure (e.g. if memory is unavailable), %NULL.
2591 struct usb_hcd
*usb_create_shared_hcd(const struct hc_driver
*driver
,
2592 struct device
*dev
, const char *bus_name
,
2593 struct usb_hcd
*primary_hcd
)
2595 return __usb_create_hcd(driver
, dev
, dev
, bus_name
, primary_hcd
);
2597 EXPORT_SYMBOL_GPL(usb_create_shared_hcd
);
2600 * usb_create_hcd - create and initialize an HCD structure
2601 * @driver: HC driver that will use this hcd
2602 * @dev: device for this HC, stored in hcd->self.controller
2603 * @bus_name: value to store in hcd->self.bus_name
2604 * Context: !in_interrupt()
2606 * Allocate a struct usb_hcd, with extra space at the end for the
2607 * HC driver's private data. Initialize the generic members of the
2610 * Return: On success, a pointer to the created and initialized HCD
2611 * structure. On failure (e.g. if memory is unavailable), %NULL.
2613 struct usb_hcd
*usb_create_hcd(const struct hc_driver
*driver
,
2614 struct device
*dev
, const char *bus_name
)
2616 return __usb_create_hcd(driver
, dev
, dev
, bus_name
, NULL
);
2618 EXPORT_SYMBOL_GPL(usb_create_hcd
);
2621 * Roothubs that share one PCI device must also share the bandwidth mutex.
2622 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2625 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2626 * freed. When hcd_release() is called for either hcd in a peer set,
2627 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2629 static void hcd_release(struct kref
*kref
)
2631 struct usb_hcd
*hcd
= container_of (kref
, struct usb_hcd
, kref
);
2633 mutex_lock(&usb_port_peer_mutex
);
2634 if (hcd
->shared_hcd
) {
2635 struct usb_hcd
*peer
= hcd
->shared_hcd
;
2637 peer
->shared_hcd
= NULL
;
2638 peer
->primary_hcd
= NULL
;
2640 kfree(hcd
->address0_mutex
);
2641 kfree(hcd
->bandwidth_mutex
);
2643 mutex_unlock(&usb_port_peer_mutex
);
2647 struct usb_hcd
*usb_get_hcd (struct usb_hcd
*hcd
)
2650 kref_get (&hcd
->kref
);
2653 EXPORT_SYMBOL_GPL(usb_get_hcd
);
2655 void usb_put_hcd (struct usb_hcd
*hcd
)
2658 kref_put (&hcd
->kref
, hcd_release
);
2660 EXPORT_SYMBOL_GPL(usb_put_hcd
);
2662 int usb_hcd_is_primary_hcd(struct usb_hcd
*hcd
)
2664 if (!hcd
->primary_hcd
)
2666 return hcd
== hcd
->primary_hcd
;
2668 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd
);
2670 int usb_hcd_find_raw_port_number(struct usb_hcd
*hcd
, int port1
)
2672 if (!hcd
->driver
->find_raw_port_number
)
2675 return hcd
->driver
->find_raw_port_number(hcd
, port1
);
2678 static int usb_hcd_request_irqs(struct usb_hcd
*hcd
,
2679 unsigned int irqnum
, unsigned long irqflags
)
2683 if (hcd
->driver
->irq
) {
2685 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
2686 hcd
->driver
->description
, hcd
->self
.busnum
);
2687 retval
= request_irq(irqnum
, &usb_hcd_irq
, irqflags
,
2688 hcd
->irq_descr
, hcd
);
2690 dev_err(hcd
->self
.controller
,
2691 "request interrupt %d failed\n",
2696 dev_info(hcd
->self
.controller
, "irq %d, %s 0x%08llx\n", irqnum
,
2697 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2698 "io mem" : "io base",
2699 (unsigned long long)hcd
->rsrc_start
);
2702 if (hcd
->rsrc_start
)
2703 dev_info(hcd
->self
.controller
, "%s 0x%08llx\n",
2704 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2705 "io mem" : "io base",
2706 (unsigned long long)hcd
->rsrc_start
);
2712 * Before we free this root hub, flush in-flight peering attempts
2713 * and disable peer lookups
2715 static void usb_put_invalidate_rhdev(struct usb_hcd
*hcd
)
2717 struct usb_device
*rhdev
;
2719 mutex_lock(&usb_port_peer_mutex
);
2720 rhdev
= hcd
->self
.root_hub
;
2721 hcd
->self
.root_hub
= NULL
;
2722 mutex_unlock(&usb_port_peer_mutex
);
2727 * usb_add_hcd - finish generic HCD structure initialization and register
2728 * @hcd: the usb_hcd structure to initialize
2729 * @irqnum: Interrupt line to allocate
2730 * @irqflags: Interrupt type flags
2732 * Finish the remaining parts of generic HCD initialization: allocate the
2733 * buffers of consistent memory, register the bus, request the IRQ line,
2734 * and call the driver's reset() and start() routines.
2736 int usb_add_hcd(struct usb_hcd
*hcd
,
2737 unsigned int irqnum
, unsigned long irqflags
)
2740 struct usb_device
*rhdev
;
2742 if (!hcd
->skip_phy_initialization
&& usb_hcd_is_primary_hcd(hcd
)) {
2743 hcd
->phy_roothub
= usb_phy_roothub_alloc(hcd
->self
.sysdev
);
2744 if (IS_ERR(hcd
->phy_roothub
))
2745 return PTR_ERR(hcd
->phy_roothub
);
2747 retval
= usb_phy_roothub_init(hcd
->phy_roothub
);
2751 retval
= usb_phy_roothub_set_mode(hcd
->phy_roothub
,
2752 PHY_MODE_USB_HOST_SS
);
2754 retval
= usb_phy_roothub_set_mode(hcd
->phy_roothub
,
2757 goto err_usb_phy_roothub_power_on
;
2759 retval
= usb_phy_roothub_power_on(hcd
->phy_roothub
);
2761 goto err_usb_phy_roothub_power_on
;
2764 dev_info(hcd
->self
.controller
, "%s\n", hcd
->product_desc
);
2766 switch (authorized_default
) {
2767 case USB_AUTHORIZE_NONE
:
2768 hcd
->dev_policy
= USB_DEVICE_AUTHORIZE_NONE
;
2771 case USB_AUTHORIZE_ALL
:
2772 hcd
->dev_policy
= USB_DEVICE_AUTHORIZE_ALL
;
2775 case USB_AUTHORIZE_INTERNAL
:
2776 hcd
->dev_policy
= USB_DEVICE_AUTHORIZE_INTERNAL
;
2779 case USB_AUTHORIZE_WIRED
:
2781 hcd
->dev_policy
= hcd
->wireless
?
2782 USB_DEVICE_AUTHORIZE_NONE
: USB_DEVICE_AUTHORIZE_ALL
;
2786 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
2788 /* per default all interfaces are authorized */
2789 set_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
2791 /* HC is in reset state, but accessible. Now do the one-time init,
2792 * bottom up so that hcds can customize the root hubs before hub_wq
2793 * starts talking to them. (Note, bus id is assigned early too.)
2795 retval
= hcd_buffer_create(hcd
);
2797 dev_dbg(hcd
->self
.sysdev
, "pool alloc failed\n");
2798 goto err_create_buf
;
2801 retval
= usb_register_bus(&hcd
->self
);
2803 goto err_register_bus
;
2805 rhdev
= usb_alloc_dev(NULL
, &hcd
->self
, 0);
2806 if (rhdev
== NULL
) {
2807 dev_err(hcd
->self
.sysdev
, "unable to allocate root hub\n");
2809 goto err_allocate_root_hub
;
2811 mutex_lock(&usb_port_peer_mutex
);
2812 hcd
->self
.root_hub
= rhdev
;
2813 mutex_unlock(&usb_port_peer_mutex
);
2815 rhdev
->rx_lanes
= 1;
2816 rhdev
->tx_lanes
= 1;
2818 switch (hcd
->speed
) {
2820 rhdev
->speed
= USB_SPEED_FULL
;
2823 rhdev
->speed
= USB_SPEED_HIGH
;
2826 rhdev
->speed
= USB_SPEED_WIRELESS
;
2829 rhdev
->speed
= USB_SPEED_SUPER
;
2832 rhdev
->rx_lanes
= 2;
2833 rhdev
->tx_lanes
= 2;
2836 rhdev
->speed
= USB_SPEED_SUPER_PLUS
;
2840 goto err_set_rh_speed
;
2843 /* wakeup flag init defaults to "everything works" for root hubs,
2844 * but drivers can override it in reset() if needed, along with
2845 * recording the overall controller's system wakeup capability.
2847 device_set_wakeup_capable(&rhdev
->dev
, 1);
2849 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2850 * registered. But since the controller can die at any time,
2851 * let's initialize the flag before touching the hardware.
2853 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2855 /* "reset" is misnamed; its role is now one-time init. the controller
2856 * should already have been reset (and boot firmware kicked off etc).
2858 if (hcd
->driver
->reset
) {
2859 retval
= hcd
->driver
->reset(hcd
);
2861 dev_err(hcd
->self
.controller
, "can't setup: %d\n",
2863 goto err_hcd_driver_setup
;
2866 hcd
->rh_pollable
= 1;
2868 /* NOTE: root hub and controller capabilities may not be the same */
2869 if (device_can_wakeup(hcd
->self
.controller
)
2870 && device_can_wakeup(&hcd
->self
.root_hub
->dev
))
2871 dev_dbg(hcd
->self
.controller
, "supports USB remote wakeup\n");
2873 /* initialize tasklets */
2874 init_giveback_urb_bh(&hcd
->high_prio_bh
);
2875 init_giveback_urb_bh(&hcd
->low_prio_bh
);
2877 /* enable irqs just before we start the controller,
2878 * if the BIOS provides legacy PCI irqs.
2880 if (usb_hcd_is_primary_hcd(hcd
) && irqnum
) {
2881 retval
= usb_hcd_request_irqs(hcd
, irqnum
, irqflags
);
2883 goto err_request_irq
;
2886 hcd
->state
= HC_STATE_RUNNING
;
2887 retval
= hcd
->driver
->start(hcd
);
2889 dev_err(hcd
->self
.controller
, "startup error %d\n", retval
);
2890 goto err_hcd_driver_start
;
2893 /* starting here, usbcore will pay attention to this root hub */
2894 retval
= register_root_hub(hcd
);
2896 goto err_register_root_hub
;
2898 retval
= sysfs_create_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2900 printk(KERN_ERR
"Cannot register USB bus sysfs attributes: %d\n",
2902 goto error_create_attr_group
;
2904 if (hcd
->uses_new_polling
&& HCD_POLL_RH(hcd
))
2905 usb_hcd_poll_rh_status(hcd
);
2909 error_create_attr_group
:
2910 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2911 if (HC_IS_RUNNING(hcd
->state
))
2912 hcd
->state
= HC_STATE_QUIESCING
;
2913 spin_lock_irq(&hcd_root_hub_lock
);
2914 hcd
->rh_registered
= 0;
2915 spin_unlock_irq(&hcd_root_hub_lock
);
2918 cancel_work_sync(&hcd
->wakeup_work
);
2920 cancel_work_sync(&hcd
->died_work
);
2921 mutex_lock(&usb_bus_idr_lock
);
2922 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2923 mutex_unlock(&usb_bus_idr_lock
);
2924 err_register_root_hub
:
2925 hcd
->rh_pollable
= 0;
2926 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2927 del_timer_sync(&hcd
->rh_timer
);
2928 hcd
->driver
->stop(hcd
);
2929 hcd
->state
= HC_STATE_HALT
;
2930 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2931 del_timer_sync(&hcd
->rh_timer
);
2932 err_hcd_driver_start
:
2933 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->irq
> 0)
2934 free_irq(irqnum
, hcd
);
2936 err_hcd_driver_setup
:
2938 usb_put_invalidate_rhdev(hcd
);
2939 err_allocate_root_hub
:
2940 usb_deregister_bus(&hcd
->self
);
2942 hcd_buffer_destroy(hcd
);
2944 usb_phy_roothub_power_off(hcd
->phy_roothub
);
2945 err_usb_phy_roothub_power_on
:
2946 usb_phy_roothub_exit(hcd
->phy_roothub
);
2950 EXPORT_SYMBOL_GPL(usb_add_hcd
);
2953 * usb_remove_hcd - shutdown processing for generic HCDs
2954 * @hcd: the usb_hcd structure to remove
2955 * Context: !in_interrupt()
2957 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2958 * invoking the HCD's stop() method.
2960 void usb_remove_hcd(struct usb_hcd
*hcd
)
2962 struct usb_device
*rhdev
= hcd
->self
.root_hub
;
2964 dev_info(hcd
->self
.controller
, "remove, state %x\n", hcd
->state
);
2967 sysfs_remove_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2969 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2970 if (HC_IS_RUNNING (hcd
->state
))
2971 hcd
->state
= HC_STATE_QUIESCING
;
2973 dev_dbg(hcd
->self
.controller
, "roothub graceful disconnect\n");
2974 spin_lock_irq (&hcd_root_hub_lock
);
2975 hcd
->rh_registered
= 0;
2976 spin_unlock_irq (&hcd_root_hub_lock
);
2979 cancel_work_sync(&hcd
->wakeup_work
);
2981 cancel_work_sync(&hcd
->died_work
);
2983 mutex_lock(&usb_bus_idr_lock
);
2984 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2985 mutex_unlock(&usb_bus_idr_lock
);
2988 * tasklet_kill() isn't needed here because:
2989 * - driver's disconnect() called from usb_disconnect() should
2990 * make sure its URBs are completed during the disconnect()
2993 * - it is too late to run complete() here since driver may have
2994 * been removed already now
2997 /* Prevent any more root-hub status calls from the timer.
2998 * The HCD might still restart the timer (if a port status change
2999 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3000 * the hub_status_data() callback.
3002 hcd
->rh_pollable
= 0;
3003 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
3004 del_timer_sync(&hcd
->rh_timer
);
3006 hcd
->driver
->stop(hcd
);
3007 hcd
->state
= HC_STATE_HALT
;
3009 /* In case the HCD restarted the timer, stop it again. */
3010 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
3011 del_timer_sync(&hcd
->rh_timer
);
3013 if (usb_hcd_is_primary_hcd(hcd
)) {
3015 free_irq(hcd
->irq
, hcd
);
3018 usb_deregister_bus(&hcd
->self
);
3019 hcd_buffer_destroy(hcd
);
3021 usb_phy_roothub_power_off(hcd
->phy_roothub
);
3022 usb_phy_roothub_exit(hcd
->phy_roothub
);
3024 usb_put_invalidate_rhdev(hcd
);
3027 EXPORT_SYMBOL_GPL(usb_remove_hcd
);
3030 usb_hcd_platform_shutdown(struct platform_device
*dev
)
3032 struct usb_hcd
*hcd
= platform_get_drvdata(dev
);
3034 /* No need for pm_runtime_put(), we're shutting down */
3035 pm_runtime_get_sync(&dev
->dev
);
3037 if (hcd
->driver
->shutdown
)
3038 hcd
->driver
->shutdown(hcd
);
3040 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown
);
3042 /*-------------------------------------------------------------------------*/
3044 #if IS_ENABLED(CONFIG_USB_MON)
3046 const struct usb_mon_operations
*mon_ops
;
3049 * The registration is unlocked.
3050 * We do it this way because we do not want to lock in hot paths.
3052 * Notice that the code is minimally error-proof. Because usbmon needs
3053 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3056 int usb_mon_register(const struct usb_mon_operations
*ops
)
3066 EXPORT_SYMBOL_GPL (usb_mon_register
);
3068 void usb_mon_deregister (void)
3071 if (mon_ops
== NULL
) {
3072 printk(KERN_ERR
"USB: monitor was not registered\n");
3078 EXPORT_SYMBOL_GPL (usb_mon_deregister
);
3080 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */