1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
5 * Copyright (C) 2004-2013 Synopsys, Inc.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 * This file contains the core HCD code, and implements the Linux hc_driver
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
59 static void dwc2_port_resume(struct dwc2_hsotg
*hsotg
);
62 * =========================================================================
63 * Host Core Layer Functions
64 * =========================================================================
68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69 * used in both device and host modes
71 * @hsotg: Programming view of the DWC_otg controller
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg
*hsotg
)
77 /* Clear any pending OTG Interrupts */
78 dwc2_writel(hsotg
, 0xffffffff, GOTGINT
);
80 /* Clear any pending interrupts */
81 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
83 /* Enable the interrupts in the GINTMSK */
84 intmsk
= GINTSTS_MODEMIS
| GINTSTS_OTGINT
;
86 if (!hsotg
->params
.host_dma
)
87 intmsk
|= GINTSTS_RXFLVL
;
88 if (!hsotg
->params
.external_id_pin_ctl
)
89 intmsk
|= GINTSTS_CONIDSTSCHNG
;
91 intmsk
|= GINTSTS_WKUPINT
| GINTSTS_USBSUSP
|
94 if (dwc2_is_device_mode(hsotg
) && hsotg
->params
.lpm
)
95 intmsk
|= GINTSTS_LPMTRANRCVD
;
97 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
100 static int dwc2_gahbcfg_init(struct dwc2_hsotg
*hsotg
)
102 u32 ahbcfg
= dwc2_readl(hsotg
, GAHBCFG
);
104 switch (hsotg
->hw_params
.arch
) {
105 case GHWCFG2_EXT_DMA_ARCH
:
106 dev_err(hsotg
->dev
, "External DMA Mode not supported\n");
109 case GHWCFG2_INT_DMA_ARCH
:
110 dev_dbg(hsotg
->dev
, "Internal DMA Mode\n");
111 if (hsotg
->params
.ahbcfg
!= -1) {
112 ahbcfg
&= GAHBCFG_CTRL_MASK
;
113 ahbcfg
|= hsotg
->params
.ahbcfg
&
118 case GHWCFG2_SLAVE_ONLY_ARCH
:
120 dev_dbg(hsotg
->dev
, "Slave Only Mode\n");
124 if (hsotg
->params
.host_dma
)
125 ahbcfg
|= GAHBCFG_DMA_EN
;
127 hsotg
->params
.dma_desc_enable
= false;
129 dwc2_writel(hsotg
, ahbcfg
, GAHBCFG
);
134 static void dwc2_gusbcfg_init(struct dwc2_hsotg
*hsotg
)
138 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
139 usbcfg
&= ~(GUSBCFG_HNPCAP
| GUSBCFG_SRPCAP
);
141 switch (hsotg
->hw_params
.op_mode
) {
142 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE
:
143 if (hsotg
->params
.otg_cap
==
144 DWC2_CAP_PARAM_HNP_SRP_CAPABLE
)
145 usbcfg
|= GUSBCFG_HNPCAP
;
146 if (hsotg
->params
.otg_cap
!=
147 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE
)
148 usbcfg
|= GUSBCFG_SRPCAP
;
151 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE
:
152 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE
:
153 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST
:
154 if (hsotg
->params
.otg_cap
!=
155 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE
)
156 usbcfg
|= GUSBCFG_SRPCAP
;
159 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE
:
160 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE
:
161 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST
:
166 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
169 static int dwc2_vbus_supply_init(struct dwc2_hsotg
*hsotg
)
171 if (hsotg
->vbus_supply
)
172 return regulator_enable(hsotg
->vbus_supply
);
177 static int dwc2_vbus_supply_exit(struct dwc2_hsotg
*hsotg
)
179 if (hsotg
->vbus_supply
)
180 return regulator_disable(hsotg
->vbus_supply
);
186 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
188 * @hsotg: Programming view of DWC_otg controller
190 static void dwc2_enable_host_interrupts(struct dwc2_hsotg
*hsotg
)
194 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
196 /* Disable all interrupts */
197 dwc2_writel(hsotg
, 0, GINTMSK
);
198 dwc2_writel(hsotg
, 0, HAINTMSK
);
200 /* Enable the common interrupts */
201 dwc2_enable_common_interrupts(hsotg
);
203 /* Enable host mode interrupts without disturbing common interrupts */
204 intmsk
= dwc2_readl(hsotg
, GINTMSK
);
205 intmsk
|= GINTSTS_DISCONNINT
| GINTSTS_PRTINT
| GINTSTS_HCHINT
;
206 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
210 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
212 * @hsotg: Programming view of DWC_otg controller
214 static void dwc2_disable_host_interrupts(struct dwc2_hsotg
*hsotg
)
216 u32 intmsk
= dwc2_readl(hsotg
, GINTMSK
);
218 /* Disable host mode interrupts without disturbing common interrupts */
219 intmsk
&= ~(GINTSTS_SOF
| GINTSTS_PRTINT
| GINTSTS_HCHINT
|
220 GINTSTS_PTXFEMP
| GINTSTS_NPTXFEMP
| GINTSTS_DISCONNINT
);
221 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
225 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
226 * For system that have a total fifo depth that is smaller than the default
229 * @hsotg: Programming view of DWC_otg controller
231 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg
*hsotg
)
233 struct dwc2_core_params
*params
= &hsotg
->params
;
234 struct dwc2_hw_params
*hw
= &hsotg
->hw_params
;
235 u32 rxfsiz
, nptxfsiz
, ptxfsiz
, total_fifo_size
;
237 total_fifo_size
= hw
->total_fifo_size
;
238 rxfsiz
= params
->host_rx_fifo_size
;
239 nptxfsiz
= params
->host_nperio_tx_fifo_size
;
240 ptxfsiz
= params
->host_perio_tx_fifo_size
;
243 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
244 * allocation with support for high bandwidth endpoints. Synopsys
245 * defines MPS(Max Packet size) for a periodic EP=1024, and for
246 * non-periodic as 512.
248 if (total_fifo_size
< (rxfsiz
+ nptxfsiz
+ ptxfsiz
)) {
250 * For Buffer DMA mode/Scatter Gather DMA mode
251 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
252 * with n = number of host channel.
253 * 2 * ((1024/4) + 2) = 516
255 rxfsiz
= 516 + hw
->host_channels
;
258 * min non-periodic tx fifo depth
259 * 2 * (largest non-periodic USB packet used / 4)
265 * min periodic tx fifo depth
266 * (largest packet size*MC)/4
271 params
->host_rx_fifo_size
= rxfsiz
;
272 params
->host_nperio_tx_fifo_size
= nptxfsiz
;
273 params
->host_perio_tx_fifo_size
= ptxfsiz
;
277 * If the summation of RX, NPTX and PTX fifo sizes is still
278 * bigger than the total_fifo_size, then we have a problem.
280 * We won't be able to allocate as many endpoints. Right now,
281 * we're just printing an error message, but ideally this FIFO
282 * allocation algorithm would be improved in the future.
284 * FIXME improve this FIFO allocation algorithm.
286 if (unlikely(total_fifo_size
< (rxfsiz
+ nptxfsiz
+ ptxfsiz
)))
287 dev_err(hsotg
->dev
, "invalid fifo sizes\n");
290 static void dwc2_config_fifos(struct dwc2_hsotg
*hsotg
)
292 struct dwc2_core_params
*params
= &hsotg
->params
;
293 u32 nptxfsiz
, hptxfsiz
, dfifocfg
, grxfsiz
;
295 if (!params
->enable_dynamic_fifo
)
298 dwc2_calculate_dynamic_fifo(hsotg
);
301 grxfsiz
= dwc2_readl(hsotg
, GRXFSIZ
);
302 dev_dbg(hsotg
->dev
, "initial grxfsiz=%08x\n", grxfsiz
);
303 grxfsiz
&= ~GRXFSIZ_DEPTH_MASK
;
304 grxfsiz
|= params
->host_rx_fifo_size
<<
305 GRXFSIZ_DEPTH_SHIFT
& GRXFSIZ_DEPTH_MASK
;
306 dwc2_writel(hsotg
, grxfsiz
, GRXFSIZ
);
307 dev_dbg(hsotg
->dev
, "new grxfsiz=%08x\n",
308 dwc2_readl(hsotg
, GRXFSIZ
));
310 /* Non-periodic Tx FIFO */
311 dev_dbg(hsotg
->dev
, "initial gnptxfsiz=%08x\n",
312 dwc2_readl(hsotg
, GNPTXFSIZ
));
313 nptxfsiz
= params
->host_nperio_tx_fifo_size
<<
314 FIFOSIZE_DEPTH_SHIFT
& FIFOSIZE_DEPTH_MASK
;
315 nptxfsiz
|= params
->host_rx_fifo_size
<<
316 FIFOSIZE_STARTADDR_SHIFT
& FIFOSIZE_STARTADDR_MASK
;
317 dwc2_writel(hsotg
, nptxfsiz
, GNPTXFSIZ
);
318 dev_dbg(hsotg
->dev
, "new gnptxfsiz=%08x\n",
319 dwc2_readl(hsotg
, GNPTXFSIZ
));
321 /* Periodic Tx FIFO */
322 dev_dbg(hsotg
->dev
, "initial hptxfsiz=%08x\n",
323 dwc2_readl(hsotg
, HPTXFSIZ
));
324 hptxfsiz
= params
->host_perio_tx_fifo_size
<<
325 FIFOSIZE_DEPTH_SHIFT
& FIFOSIZE_DEPTH_MASK
;
326 hptxfsiz
|= (params
->host_rx_fifo_size
+
327 params
->host_nperio_tx_fifo_size
) <<
328 FIFOSIZE_STARTADDR_SHIFT
& FIFOSIZE_STARTADDR_MASK
;
329 dwc2_writel(hsotg
, hptxfsiz
, HPTXFSIZ
);
330 dev_dbg(hsotg
->dev
, "new hptxfsiz=%08x\n",
331 dwc2_readl(hsotg
, HPTXFSIZ
));
333 if (hsotg
->params
.en_multiple_tx_fifo
&&
334 hsotg
->hw_params
.snpsid
>= DWC2_CORE_REV_2_91a
) {
336 * This feature was implemented in 2.91a version
337 * Global DFIFOCFG calculation for Host mode -
338 * include RxFIFO, NPTXFIFO and HPTXFIFO
340 dfifocfg
= dwc2_readl(hsotg
, GDFIFOCFG
);
341 dfifocfg
&= ~GDFIFOCFG_EPINFOBASE_MASK
;
342 dfifocfg
|= (params
->host_rx_fifo_size
+
343 params
->host_nperio_tx_fifo_size
+
344 params
->host_perio_tx_fifo_size
) <<
345 GDFIFOCFG_EPINFOBASE_SHIFT
&
346 GDFIFOCFG_EPINFOBASE_MASK
;
347 dwc2_writel(hsotg
, dfifocfg
, GDFIFOCFG
);
352 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
353 * the HFIR register according to PHY type and speed
355 * @hsotg: Programming view of DWC_otg controller
357 * NOTE: The caller can modify the value of the HFIR register only after the
358 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
361 u32
dwc2_calc_frame_interval(struct dwc2_hsotg
*hsotg
)
365 int clock
= 60; /* default value */
367 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
368 hprt0
= dwc2_readl(hsotg
, HPRT0
);
370 if (!(usbcfg
& GUSBCFG_PHYSEL
) && (usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) &&
371 !(usbcfg
& GUSBCFG_PHYIF16
))
373 if ((usbcfg
& GUSBCFG_PHYSEL
) && hsotg
->hw_params
.fs_phy_type
==
374 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI
)
376 if (!(usbcfg
& GUSBCFG_PHY_LP_CLK_SEL
) && !(usbcfg
& GUSBCFG_PHYSEL
) &&
377 !(usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) && (usbcfg
& GUSBCFG_PHYIF16
))
379 if (!(usbcfg
& GUSBCFG_PHY_LP_CLK_SEL
) && !(usbcfg
& GUSBCFG_PHYSEL
) &&
380 !(usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) && !(usbcfg
& GUSBCFG_PHYIF16
))
382 if ((usbcfg
& GUSBCFG_PHY_LP_CLK_SEL
) && !(usbcfg
& GUSBCFG_PHYSEL
) &&
383 !(usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) && (usbcfg
& GUSBCFG_PHYIF16
))
385 if ((usbcfg
& GUSBCFG_PHYSEL
) && !(usbcfg
& GUSBCFG_PHYIF16
) &&
386 hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_SHARED_UTMI
)
388 if ((usbcfg
& GUSBCFG_PHYSEL
) &&
389 hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_DEDICATED
)
392 if ((hprt0
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
== HPRT0_SPD_HIGH_SPEED
)
393 /* High speed case */
394 return 125 * clock
- 1;
397 return 1000 * clock
- 1;
401 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
404 * @hsotg: Programming view of DWC_otg controller
405 * @dest: Destination buffer for the packet
406 * @bytes: Number of bytes to copy to the destination
408 void dwc2_read_packet(struct dwc2_hsotg
*hsotg
, u8
*dest
, u16 bytes
)
410 u32
*data_buf
= (u32
*)dest
;
411 int word_count
= (bytes
+ 3) / 4;
415 * Todo: Account for the case where dest is not dword aligned. This
416 * requires reading data from the FIFO into a u32 temp buffer, then
417 * moving it into the data buffer.
420 dev_vdbg(hsotg
->dev
, "%s(%p,%p,%d)\n", __func__
, hsotg
, dest
, bytes
);
422 for (i
= 0; i
< word_count
; i
++, data_buf
++)
423 *data_buf
= dwc2_readl(hsotg
, HCFIFO(0));
427 * dwc2_dump_channel_info() - Prints the state of a host channel
429 * @hsotg: Programming view of DWC_otg controller
430 * @chan: Pointer to the channel to dump
432 * Must be called with interrupt disabled and spinlock held
434 * NOTE: This function will be removed once the peripheral controller code
435 * is integrated and the driver is stable
437 static void dwc2_dump_channel_info(struct dwc2_hsotg
*hsotg
,
438 struct dwc2_host_chan
*chan
)
441 int num_channels
= hsotg
->params
.host_channels
;
452 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
453 hcsplt
= dwc2_readl(hsotg
, HCSPLT(chan
->hc_num
));
454 hctsiz
= dwc2_readl(hsotg
, HCTSIZ(chan
->hc_num
));
455 hc_dma
= dwc2_readl(hsotg
, HCDMA(chan
->hc_num
));
457 dev_dbg(hsotg
->dev
, " Assigned to channel %p:\n", chan
);
458 dev_dbg(hsotg
->dev
, " hcchar 0x%08x, hcsplt 0x%08x\n",
460 dev_dbg(hsotg
->dev
, " hctsiz 0x%08x, hc_dma 0x%08x\n",
462 dev_dbg(hsotg
->dev
, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
463 chan
->dev_addr
, chan
->ep_num
, chan
->ep_is_in
);
464 dev_dbg(hsotg
->dev
, " ep_type: %d\n", chan
->ep_type
);
465 dev_dbg(hsotg
->dev
, " max_packet: %d\n", chan
->max_packet
);
466 dev_dbg(hsotg
->dev
, " data_pid_start: %d\n", chan
->data_pid_start
);
467 dev_dbg(hsotg
->dev
, " xfer_started: %d\n", chan
->xfer_started
);
468 dev_dbg(hsotg
->dev
, " halt_status: %d\n", chan
->halt_status
);
469 dev_dbg(hsotg
->dev
, " xfer_buf: %p\n", chan
->xfer_buf
);
470 dev_dbg(hsotg
->dev
, " xfer_dma: %08lx\n",
471 (unsigned long)chan
->xfer_dma
);
472 dev_dbg(hsotg
->dev
, " xfer_len: %d\n", chan
->xfer_len
);
473 dev_dbg(hsotg
->dev
, " qh: %p\n", chan
->qh
);
474 dev_dbg(hsotg
->dev
, " NP inactive sched:\n");
475 list_for_each_entry(qh
, &hsotg
->non_periodic_sched_inactive
,
477 dev_dbg(hsotg
->dev
, " %p\n", qh
);
478 dev_dbg(hsotg
->dev
, " NP waiting sched:\n");
479 list_for_each_entry(qh
, &hsotg
->non_periodic_sched_waiting
,
481 dev_dbg(hsotg
->dev
, " %p\n", qh
);
482 dev_dbg(hsotg
->dev
, " NP active sched:\n");
483 list_for_each_entry(qh
, &hsotg
->non_periodic_sched_active
,
485 dev_dbg(hsotg
->dev
, " %p\n", qh
);
486 dev_dbg(hsotg
->dev
, " Channels:\n");
487 for (i
= 0; i
< num_channels
; i
++) {
488 struct dwc2_host_chan
*chan
= hsotg
->hc_ptr_array
[i
];
490 dev_dbg(hsotg
->dev
, " %2d: %p\n", i
, chan
);
492 #endif /* VERBOSE_DEBUG */
495 static int _dwc2_hcd_start(struct usb_hcd
*hcd
);
497 static void dwc2_host_start(struct dwc2_hsotg
*hsotg
)
499 struct usb_hcd
*hcd
= dwc2_hsotg_to_hcd(hsotg
);
501 hcd
->self
.is_b_host
= dwc2_hcd_is_b_host(hsotg
);
502 _dwc2_hcd_start(hcd
);
505 static void dwc2_host_disconnect(struct dwc2_hsotg
*hsotg
)
507 struct usb_hcd
*hcd
= dwc2_hsotg_to_hcd(hsotg
);
509 hcd
->self
.is_b_host
= 0;
512 static void dwc2_host_hub_info(struct dwc2_hsotg
*hsotg
, void *context
,
513 int *hub_addr
, int *hub_port
)
515 struct urb
*urb
= context
;
518 *hub_addr
= urb
->dev
->tt
->hub
->devnum
;
521 *hub_port
= urb
->dev
->ttport
;
525 * =========================================================================
526 * Low Level Host Channel Access Functions
527 * =========================================================================
530 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg
*hsotg
,
531 struct dwc2_host_chan
*chan
)
533 u32 hcintmsk
= HCINTMSK_CHHLTD
;
535 switch (chan
->ep_type
) {
536 case USB_ENDPOINT_XFER_CONTROL
:
537 case USB_ENDPOINT_XFER_BULK
:
538 dev_vdbg(hsotg
->dev
, "control/bulk\n");
539 hcintmsk
|= HCINTMSK_XFERCOMPL
;
540 hcintmsk
|= HCINTMSK_STALL
;
541 hcintmsk
|= HCINTMSK_XACTERR
;
542 hcintmsk
|= HCINTMSK_DATATGLERR
;
543 if (chan
->ep_is_in
) {
544 hcintmsk
|= HCINTMSK_BBLERR
;
546 hcintmsk
|= HCINTMSK_NAK
;
547 hcintmsk
|= HCINTMSK_NYET
;
549 hcintmsk
|= HCINTMSK_ACK
;
552 if (chan
->do_split
) {
553 hcintmsk
|= HCINTMSK_NAK
;
554 if (chan
->complete_split
)
555 hcintmsk
|= HCINTMSK_NYET
;
557 hcintmsk
|= HCINTMSK_ACK
;
560 if (chan
->error_state
)
561 hcintmsk
|= HCINTMSK_ACK
;
564 case USB_ENDPOINT_XFER_INT
:
566 dev_vdbg(hsotg
->dev
, "intr\n");
567 hcintmsk
|= HCINTMSK_XFERCOMPL
;
568 hcintmsk
|= HCINTMSK_NAK
;
569 hcintmsk
|= HCINTMSK_STALL
;
570 hcintmsk
|= HCINTMSK_XACTERR
;
571 hcintmsk
|= HCINTMSK_DATATGLERR
;
572 hcintmsk
|= HCINTMSK_FRMOVRUN
;
575 hcintmsk
|= HCINTMSK_BBLERR
;
576 if (chan
->error_state
)
577 hcintmsk
|= HCINTMSK_ACK
;
578 if (chan
->do_split
) {
579 if (chan
->complete_split
)
580 hcintmsk
|= HCINTMSK_NYET
;
582 hcintmsk
|= HCINTMSK_ACK
;
586 case USB_ENDPOINT_XFER_ISOC
:
588 dev_vdbg(hsotg
->dev
, "isoc\n");
589 hcintmsk
|= HCINTMSK_XFERCOMPL
;
590 hcintmsk
|= HCINTMSK_FRMOVRUN
;
591 hcintmsk
|= HCINTMSK_ACK
;
593 if (chan
->ep_is_in
) {
594 hcintmsk
|= HCINTMSK_XACTERR
;
595 hcintmsk
|= HCINTMSK_BBLERR
;
599 dev_err(hsotg
->dev
, "## Unknown EP type ##\n");
603 dwc2_writel(hsotg
, hcintmsk
, HCINTMSK(chan
->hc_num
));
605 dev_vdbg(hsotg
->dev
, "set HCINTMSK to %08x\n", hcintmsk
);
608 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg
*hsotg
,
609 struct dwc2_host_chan
*chan
)
611 u32 hcintmsk
= HCINTMSK_CHHLTD
;
614 * For Descriptor DMA mode core halts the channel on AHB error.
615 * Interrupt is not required.
617 if (!hsotg
->params
.dma_desc_enable
) {
619 dev_vdbg(hsotg
->dev
, "desc DMA disabled\n");
620 hcintmsk
|= HCINTMSK_AHBERR
;
623 dev_vdbg(hsotg
->dev
, "desc DMA enabled\n");
624 if (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
625 hcintmsk
|= HCINTMSK_XFERCOMPL
;
628 if (chan
->error_state
&& !chan
->do_split
&&
629 chan
->ep_type
!= USB_ENDPOINT_XFER_ISOC
) {
631 dev_vdbg(hsotg
->dev
, "setting ACK\n");
632 hcintmsk
|= HCINTMSK_ACK
;
633 if (chan
->ep_is_in
) {
634 hcintmsk
|= HCINTMSK_DATATGLERR
;
635 if (chan
->ep_type
!= USB_ENDPOINT_XFER_INT
)
636 hcintmsk
|= HCINTMSK_NAK
;
640 dwc2_writel(hsotg
, hcintmsk
, HCINTMSK(chan
->hc_num
));
642 dev_vdbg(hsotg
->dev
, "set HCINTMSK to %08x\n", hcintmsk
);
645 static void dwc2_hc_enable_ints(struct dwc2_hsotg
*hsotg
,
646 struct dwc2_host_chan
*chan
)
650 if (hsotg
->params
.host_dma
) {
652 dev_vdbg(hsotg
->dev
, "DMA enabled\n");
653 dwc2_hc_enable_dma_ints(hsotg
, chan
);
656 dev_vdbg(hsotg
->dev
, "DMA disabled\n");
657 dwc2_hc_enable_slave_ints(hsotg
, chan
);
660 /* Enable the top level host channel interrupt */
661 intmsk
= dwc2_readl(hsotg
, HAINTMSK
);
662 intmsk
|= 1 << chan
->hc_num
;
663 dwc2_writel(hsotg
, intmsk
, HAINTMSK
);
665 dev_vdbg(hsotg
->dev
, "set HAINTMSK to %08x\n", intmsk
);
667 /* Make sure host channel interrupts are enabled */
668 intmsk
= dwc2_readl(hsotg
, GINTMSK
);
669 intmsk
|= GINTSTS_HCHINT
;
670 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
672 dev_vdbg(hsotg
->dev
, "set GINTMSK to %08x\n", intmsk
);
676 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
677 * a specific endpoint
679 * @hsotg: Programming view of DWC_otg controller
680 * @chan: Information needed to initialize the host channel
682 * The HCCHARn register is set up with the characteristics specified in chan.
683 * Host channel interrupts that may need to be serviced while this transfer is
684 * in progress are enabled.
686 static void dwc2_hc_init(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
)
688 u8 hc_num
= chan
->hc_num
;
694 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
696 /* Clear old interrupt conditions for this host channel */
697 hcintmsk
= 0xffffffff;
698 hcintmsk
&= ~HCINTMSK_RESERVED14_31
;
699 dwc2_writel(hsotg
, hcintmsk
, HCINT(hc_num
));
701 /* Enable channel interrupts required for this transfer */
702 dwc2_hc_enable_ints(hsotg
, chan
);
705 * Program the HCCHARn register with the endpoint characteristics for
706 * the current transfer
708 hcchar
= chan
->dev_addr
<< HCCHAR_DEVADDR_SHIFT
& HCCHAR_DEVADDR_MASK
;
709 hcchar
|= chan
->ep_num
<< HCCHAR_EPNUM_SHIFT
& HCCHAR_EPNUM_MASK
;
711 hcchar
|= HCCHAR_EPDIR
;
712 if (chan
->speed
== USB_SPEED_LOW
)
713 hcchar
|= HCCHAR_LSPDDEV
;
714 hcchar
|= chan
->ep_type
<< HCCHAR_EPTYPE_SHIFT
& HCCHAR_EPTYPE_MASK
;
715 hcchar
|= chan
->max_packet
<< HCCHAR_MPS_SHIFT
& HCCHAR_MPS_MASK
;
716 dwc2_writel(hsotg
, hcchar
, HCCHAR(hc_num
));
718 dev_vdbg(hsotg
->dev
, "set HCCHAR(%d) to %08x\n",
721 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n",
723 dev_vdbg(hsotg
->dev
, " Dev Addr: %d\n",
725 dev_vdbg(hsotg
->dev
, " Ep Num: %d\n",
727 dev_vdbg(hsotg
->dev
, " Is In: %d\n",
729 dev_vdbg(hsotg
->dev
, " Is Low Speed: %d\n",
730 chan
->speed
== USB_SPEED_LOW
);
731 dev_vdbg(hsotg
->dev
, " Ep Type: %d\n",
733 dev_vdbg(hsotg
->dev
, " Max Pkt: %d\n",
737 /* Program the HCSPLT register for SPLITs */
738 if (chan
->do_split
) {
741 "Programming HC %d with split --> %s\n",
743 chan
->complete_split
? "CSPLIT" : "SSPLIT");
744 if (chan
->complete_split
)
745 hcsplt
|= HCSPLT_COMPSPLT
;
746 hcsplt
|= chan
->xact_pos
<< HCSPLT_XACTPOS_SHIFT
&
748 hcsplt
|= chan
->hub_addr
<< HCSPLT_HUBADDR_SHIFT
&
750 hcsplt
|= chan
->hub_port
<< HCSPLT_PRTADDR_SHIFT
&
753 dev_vdbg(hsotg
->dev
, " comp split %d\n",
754 chan
->complete_split
);
755 dev_vdbg(hsotg
->dev
, " xact pos %d\n",
757 dev_vdbg(hsotg
->dev
, " hub addr %d\n",
759 dev_vdbg(hsotg
->dev
, " hub port %d\n",
761 dev_vdbg(hsotg
->dev
, " is_in %d\n",
763 dev_vdbg(hsotg
->dev
, " Max Pkt %d\n",
765 dev_vdbg(hsotg
->dev
, " xferlen %d\n",
770 dwc2_writel(hsotg
, hcsplt
, HCSPLT(hc_num
));
774 * dwc2_hc_halt() - Attempts to halt a host channel
776 * @hsotg: Controller register interface
777 * @chan: Host channel to halt
778 * @halt_status: Reason for halting the channel
780 * This function should only be called in Slave mode or to abort a transfer in
781 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
782 * controller halts the channel when the transfer is complete or a condition
783 * occurs that requires application intervention.
785 * In slave mode, checks for a free request queue entry, then sets the Channel
786 * Enable and Channel Disable bits of the Host Channel Characteristics
787 * register of the specified channel to intiate the halt. If there is no free
788 * request queue entry, sets only the Channel Disable bit of the HCCHARn
789 * register to flush requests for this channel. In the latter case, sets a
790 * flag to indicate that the host channel needs to be halted when a request
791 * queue slot is open.
793 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
794 * HCCHARn register. The controller ensures there is space in the request
795 * queue before submitting the halt request.
797 * Some time may elapse before the core flushes any posted requests for this
798 * host channel and halts. The Channel Halted interrupt handler completes the
799 * deactivation of the host channel.
801 void dwc2_hc_halt(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
,
802 enum dwc2_halt_status halt_status
)
804 u32 nptxsts
, hptxsts
, hcchar
;
807 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
810 * In buffer DMA or external DMA mode channel can't be halted
811 * for non-split periodic channels. At the end of the next
812 * uframe/frame (in the worst case), the core generates a channel
813 * halted and disables the channel automatically.
815 if ((hsotg
->params
.g_dma
&& !hsotg
->params
.g_dma_desc
) ||
816 hsotg
->hw_params
.arch
== GHWCFG2_EXT_DMA_ARCH
) {
817 if (!chan
->do_split
&&
818 (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
||
819 chan
->ep_type
== USB_ENDPOINT_XFER_INT
)) {
820 dev_err(hsotg
->dev
, "%s() Channel can't be halted\n",
826 if (halt_status
== DWC2_HC_XFER_NO_HALT_STATUS
)
827 dev_err(hsotg
->dev
, "!!! halt_status = %d !!!\n", halt_status
);
829 if (halt_status
== DWC2_HC_XFER_URB_DEQUEUE
||
830 halt_status
== DWC2_HC_XFER_AHB_ERR
) {
832 * Disable all channel interrupts except Ch Halted. The QTD
833 * and QH state associated with this transfer has been cleared
834 * (in the case of URB_DEQUEUE), so the channel needs to be
835 * shut down carefully to prevent crashes.
837 u32 hcintmsk
= HCINTMSK_CHHLTD
;
839 dev_vdbg(hsotg
->dev
, "dequeue/error\n");
840 dwc2_writel(hsotg
, hcintmsk
, HCINTMSK(chan
->hc_num
));
843 * Make sure no other interrupts besides halt are currently
844 * pending. Handling another interrupt could cause a crash due
845 * to the QTD and QH state.
847 dwc2_writel(hsotg
, ~hcintmsk
, HCINT(chan
->hc_num
));
850 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
851 * even if the channel was already halted for some other
854 chan
->halt_status
= halt_status
;
856 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
857 if (!(hcchar
& HCCHAR_CHENA
)) {
859 * The channel is either already halted or it hasn't
860 * started yet. In DMA mode, the transfer may halt if
861 * it finishes normally or a condition occurs that
862 * requires driver intervention. Don't want to halt
863 * the channel again. In either Slave or DMA mode,
864 * it's possible that the transfer has been assigned
865 * to a channel, but not started yet when an URB is
866 * dequeued. Don't want to halt a channel that hasn't
872 if (chan
->halt_pending
) {
874 * A halt has already been issued for this channel. This might
875 * happen when a transfer is aborted by a higher level in
879 "*** %s: Channel %d, chan->halt_pending already set ***\n",
880 __func__
, chan
->hc_num
);
884 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
886 /* No need to set the bit in DDMA for disabling the channel */
887 /* TODO check it everywhere channel is disabled */
888 if (!hsotg
->params
.dma_desc_enable
) {
890 dev_vdbg(hsotg
->dev
, "desc DMA disabled\n");
891 hcchar
|= HCCHAR_CHENA
;
894 dev_dbg(hsotg
->dev
, "desc DMA enabled\n");
896 hcchar
|= HCCHAR_CHDIS
;
898 if (!hsotg
->params
.host_dma
) {
900 dev_vdbg(hsotg
->dev
, "DMA not enabled\n");
901 hcchar
|= HCCHAR_CHENA
;
903 /* Check for space in the request queue to issue the halt */
904 if (chan
->ep_type
== USB_ENDPOINT_XFER_CONTROL
||
905 chan
->ep_type
== USB_ENDPOINT_XFER_BULK
) {
906 dev_vdbg(hsotg
->dev
, "control/bulk\n");
907 nptxsts
= dwc2_readl(hsotg
, GNPTXSTS
);
908 if ((nptxsts
& TXSTS_QSPCAVAIL_MASK
) == 0) {
909 dev_vdbg(hsotg
->dev
, "Disabling channel\n");
910 hcchar
&= ~HCCHAR_CHENA
;
914 dev_vdbg(hsotg
->dev
, "isoc/intr\n");
915 hptxsts
= dwc2_readl(hsotg
, HPTXSTS
);
916 if ((hptxsts
& TXSTS_QSPCAVAIL_MASK
) == 0 ||
917 hsotg
->queuing_high_bandwidth
) {
919 dev_vdbg(hsotg
->dev
, "Disabling channel\n");
920 hcchar
&= ~HCCHAR_CHENA
;
925 dev_vdbg(hsotg
->dev
, "DMA enabled\n");
928 dwc2_writel(hsotg
, hcchar
, HCCHAR(chan
->hc_num
));
929 chan
->halt_status
= halt_status
;
931 if (hcchar
& HCCHAR_CHENA
) {
933 dev_vdbg(hsotg
->dev
, "Channel enabled\n");
934 chan
->halt_pending
= 1;
935 chan
->halt_on_queue
= 0;
938 dev_vdbg(hsotg
->dev
, "Channel disabled\n");
939 chan
->halt_on_queue
= 1;
943 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
945 dev_vdbg(hsotg
->dev
, " hcchar: 0x%08x\n",
947 dev_vdbg(hsotg
->dev
, " halt_pending: %d\n",
949 dev_vdbg(hsotg
->dev
, " halt_on_queue: %d\n",
950 chan
->halt_on_queue
);
951 dev_vdbg(hsotg
->dev
, " halt_status: %d\n",
957 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
959 * @hsotg: Programming view of DWC_otg controller
960 * @chan: Identifies the host channel to clean up
962 * This function is normally called after a transfer is done and the host
963 * channel is being released
965 void dwc2_hc_cleanup(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
)
969 chan
->xfer_started
= 0;
971 list_del_init(&chan
->split_order_list_entry
);
974 * Clear channel interrupt enables and any unhandled channel interrupt
977 dwc2_writel(hsotg
, 0, HCINTMSK(chan
->hc_num
));
978 hcintmsk
= 0xffffffff;
979 hcintmsk
&= ~HCINTMSK_RESERVED14_31
;
980 dwc2_writel(hsotg
, hcintmsk
, HCINT(chan
->hc_num
));
984 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
985 * which frame a periodic transfer should occur
987 * @hsotg: Programming view of DWC_otg controller
988 * @chan: Identifies the host channel to set up and its properties
989 * @hcchar: Current value of the HCCHAR register for the specified host channel
991 * This function has no effect on non-periodic transfers
993 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg
*hsotg
,
994 struct dwc2_host_chan
*chan
, u32
*hcchar
)
996 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
997 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
1007 * Try to figure out if we're an even or odd frame. If we set
1008 * even and the current frame number is even the the transfer
1009 * will happen immediately. Similar if both are odd. If one is
1010 * even and the other is odd then the transfer will happen when
1011 * the frame number ticks.
1013 * There's a bit of a balancing act to get this right.
1014 * Sometimes we may want to send data in the current frame (AK
1015 * right away). We might want to do this if the frame number
1016 * _just_ ticked, but we might also want to do this in order
1017 * to continue a split transaction that happened late in a
1018 * microframe (so we didn't know to queue the next transfer
1019 * until the frame number had ticked). The problem is that we
1020 * need a lot of knowledge to know if there's actually still
1021 * time to send things or if it would be better to wait until
1024 * We can look at how much time is left in the current frame
1025 * and make a guess about whether we'll have time to transfer.
1029 /* Get speed host is running at */
1030 host_speed
= (chan
->speed
!= USB_SPEED_HIGH
&&
1031 !chan
->do_split
) ? chan
->speed
: USB_SPEED_HIGH
;
1033 /* See how many bytes are in the periodic FIFO right now */
1034 fifo_space
= (dwc2_readl(hsotg
, HPTXSTS
) &
1035 TXSTS_FSPCAVAIL_MASK
) >> TXSTS_FSPCAVAIL_SHIFT
;
1036 bytes_in_fifo
= sizeof(u32
) *
1037 (hsotg
->params
.host_perio_tx_fifo_size
-
1041 * Roughly estimate bus time for everything in the periodic
1042 * queue + our new transfer. This is "rough" because we're
1043 * using a function that makes takes into account IN/OUT
1044 * and INT/ISO and we're just slamming in one value for all
1045 * transfers. This should be an over-estimate and that should
1046 * be OK, but we can probably tighten it.
1048 xfer_ns
= usb_calc_bus_time(host_speed
, false, false,
1049 chan
->xfer_len
+ bytes_in_fifo
);
1050 xfer_us
= NS_TO_US(xfer_ns
);
1052 /* See what frame number we'll be at by the time we finish */
1053 frame_number
= dwc2_hcd_get_future_frame_number(hsotg
, xfer_us
);
1055 /* This is when we were scheduled to be on the wire */
1056 wire_frame
= dwc2_frame_num_inc(chan
->qh
->next_active_frame
, 1);
1059 * If we'd finish _after_ the frame we're scheduled in then
1060 * it's hopeless. Just schedule right away and hope for the
1061 * best. Note that it _might_ be wise to call back into the
1062 * scheduler to pick a better frame, but this is better than
1065 if (dwc2_frame_num_gt(frame_number
, wire_frame
)) {
1066 dwc2_sch_vdbg(hsotg
,
1067 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1068 chan
->qh
, wire_frame
, frame_number
,
1069 dwc2_frame_num_dec(frame_number
,
1071 wire_frame
= frame_number
;
1074 * We picked a different frame number; communicate this
1075 * back to the scheduler so it doesn't try to schedule
1076 * another in the same frame.
1078 * Remember that next_active_frame is 1 before the wire
1081 chan
->qh
->next_active_frame
=
1082 dwc2_frame_num_dec(frame_number
, 1);
1086 *hcchar
|= HCCHAR_ODDFRM
;
1088 *hcchar
&= ~HCCHAR_ODDFRM
;
1092 static void dwc2_set_pid_isoc(struct dwc2_host_chan
*chan
)
1094 /* Set up the initial PID for the transfer */
1095 if (chan
->speed
== USB_SPEED_HIGH
) {
1096 if (chan
->ep_is_in
) {
1097 if (chan
->multi_count
== 1)
1098 chan
->data_pid_start
= DWC2_HC_PID_DATA0
;
1099 else if (chan
->multi_count
== 2)
1100 chan
->data_pid_start
= DWC2_HC_PID_DATA1
;
1102 chan
->data_pid_start
= DWC2_HC_PID_DATA2
;
1104 if (chan
->multi_count
== 1)
1105 chan
->data_pid_start
= DWC2_HC_PID_DATA0
;
1107 chan
->data_pid_start
= DWC2_HC_PID_MDATA
;
1110 chan
->data_pid_start
= DWC2_HC_PID_DATA0
;
1115 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1118 * @hsotg: Programming view of DWC_otg controller
1119 * @chan: Information needed to initialize the host channel
1121 * This function should only be called in Slave mode. For a channel associated
1122 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1123 * associated with a periodic EP, the periodic Tx FIFO is written.
1125 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1126 * the number of bytes written to the Tx FIFO.
1128 static void dwc2_hc_write_packet(struct dwc2_hsotg
*hsotg
,
1129 struct dwc2_host_chan
*chan
)
1132 u32 remaining_count
;
1135 u32
*data_buf
= (u32
*)chan
->xfer_buf
;
1138 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1140 remaining_count
= chan
->xfer_len
- chan
->xfer_count
;
1141 if (remaining_count
> chan
->max_packet
)
1142 byte_count
= chan
->max_packet
;
1144 byte_count
= remaining_count
;
1146 dword_count
= (byte_count
+ 3) / 4;
1148 if (((unsigned long)data_buf
& 0x3) == 0) {
1149 /* xfer_buf is DWORD aligned */
1150 for (i
= 0; i
< dword_count
; i
++, data_buf
++)
1151 dwc2_writel(hsotg
, *data_buf
, HCFIFO(chan
->hc_num
));
1153 /* xfer_buf is not DWORD aligned */
1154 for (i
= 0; i
< dword_count
; i
++, data_buf
++) {
1155 u32 data
= data_buf
[0] | data_buf
[1] << 8 |
1156 data_buf
[2] << 16 | data_buf
[3] << 24;
1157 dwc2_writel(hsotg
, data
, HCFIFO(chan
->hc_num
));
1161 chan
->xfer_count
+= byte_count
;
1162 chan
->xfer_buf
+= byte_count
;
1166 * dwc2_hc_do_ping() - Starts a PING transfer
1168 * @hsotg: Programming view of DWC_otg controller
1169 * @chan: Information needed to initialize the host channel
1171 * This function should only be called in Slave mode. The Do Ping bit is set in
1172 * the HCTSIZ register, then the channel is enabled.
1174 static void dwc2_hc_do_ping(struct dwc2_hsotg
*hsotg
,
1175 struct dwc2_host_chan
*chan
)
1181 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1184 hctsiz
= TSIZ_DOPNG
;
1185 hctsiz
|= 1 << TSIZ_PKTCNT_SHIFT
;
1186 dwc2_writel(hsotg
, hctsiz
, HCTSIZ(chan
->hc_num
));
1188 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
1189 hcchar
|= HCCHAR_CHENA
;
1190 hcchar
&= ~HCCHAR_CHDIS
;
1191 dwc2_writel(hsotg
, hcchar
, HCCHAR(chan
->hc_num
));
1195 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1196 * channel and starts the transfer
1198 * @hsotg: Programming view of DWC_otg controller
1199 * @chan: Information needed to initialize the host channel. The xfer_len value
1200 * may be reduced to accommodate the max widths of the XferSize and
1201 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1202 * changed to reflect the final xfer_len value.
1204 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1205 * the caller must ensure that there is sufficient space in the request queue
1208 * For an OUT transfer in Slave mode, it loads a data packet into the
1209 * appropriate FIFO. If necessary, additional data packets are loaded in the
1212 * For an IN transfer in Slave mode, a data packet is requested. The data
1213 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1214 * additional data packets are requested in the Host ISR.
1216 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1217 * register along with a packet count of 1 and the channel is enabled. This
1218 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1219 * simply set to 0 since no data transfer occurs in this case.
1221 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1222 * all the information required to perform the subsequent data transfer. In
1223 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1224 * controller performs the entire PING protocol, then starts the data
1227 static void dwc2_hc_start_transfer(struct dwc2_hsotg
*hsotg
,
1228 struct dwc2_host_chan
*chan
)
1230 u32 max_hc_xfer_size
= hsotg
->params
.max_transfer_size
;
1231 u16 max_hc_pkt_count
= hsotg
->params
.max_packet_count
;
1238 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1240 if (chan
->do_ping
) {
1241 if (!hsotg
->params
.host_dma
) {
1243 dev_vdbg(hsotg
->dev
, "ping, no DMA\n");
1244 dwc2_hc_do_ping(hsotg
, chan
);
1245 chan
->xfer_started
= 1;
1250 dev_vdbg(hsotg
->dev
, "ping, DMA\n");
1252 hctsiz
|= TSIZ_DOPNG
;
1255 if (chan
->do_split
) {
1257 dev_vdbg(hsotg
->dev
, "split\n");
1260 if (chan
->complete_split
&& !chan
->ep_is_in
)
1262 * For CSPLIT OUT Transfer, set the size to 0 so the
1263 * core doesn't expect any data written to the FIFO
1266 else if (chan
->ep_is_in
|| chan
->xfer_len
> chan
->max_packet
)
1267 chan
->xfer_len
= chan
->max_packet
;
1268 else if (!chan
->ep_is_in
&& chan
->xfer_len
> 188)
1269 chan
->xfer_len
= 188;
1271 hctsiz
|= chan
->xfer_len
<< TSIZ_XFERSIZE_SHIFT
&
1274 /* For split set ec_mc for immediate retries */
1275 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1276 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1282 dev_vdbg(hsotg
->dev
, "no split\n");
1284 * Ensure that the transfer length and packet count will fit
1285 * in the widths allocated for them in the HCTSIZn register
1287 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1288 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
1290 * Make sure the transfer size is no larger than one
1291 * (micro)frame's worth of data. (A check was done
1292 * when the periodic transfer was accepted to ensure
1293 * that a (micro)frame's worth of data can be
1294 * programmed into a channel.)
1296 u32 max_periodic_len
=
1297 chan
->multi_count
* chan
->max_packet
;
1299 if (chan
->xfer_len
> max_periodic_len
)
1300 chan
->xfer_len
= max_periodic_len
;
1301 } else if (chan
->xfer_len
> max_hc_xfer_size
) {
1303 * Make sure that xfer_len is a multiple of max packet
1307 max_hc_xfer_size
- chan
->max_packet
+ 1;
1310 if (chan
->xfer_len
> 0) {
1311 num_packets
= (chan
->xfer_len
+ chan
->max_packet
- 1) /
1313 if (num_packets
> max_hc_pkt_count
) {
1314 num_packets
= max_hc_pkt_count
;
1315 chan
->xfer_len
= num_packets
* chan
->max_packet
;
1318 /* Need 1 packet for transfer length of 0 */
1324 * Always program an integral # of max packets for IN
1327 chan
->xfer_len
= num_packets
* chan
->max_packet
;
1329 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1330 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1332 * Make sure that the multi_count field matches the
1333 * actual transfer length
1335 chan
->multi_count
= num_packets
;
1337 if (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1338 dwc2_set_pid_isoc(chan
);
1340 hctsiz
|= chan
->xfer_len
<< TSIZ_XFERSIZE_SHIFT
&
1343 /* The ec_mc gets the multi_count for non-split */
1344 ec_mc
= chan
->multi_count
;
1347 chan
->start_pkt_count
= num_packets
;
1348 hctsiz
|= num_packets
<< TSIZ_PKTCNT_SHIFT
& TSIZ_PKTCNT_MASK
;
1349 hctsiz
|= chan
->data_pid_start
<< TSIZ_SC_MC_PID_SHIFT
&
1350 TSIZ_SC_MC_PID_MASK
;
1351 dwc2_writel(hsotg
, hctsiz
, HCTSIZ(chan
->hc_num
));
1353 dev_vdbg(hsotg
->dev
, "Wrote %08x to HCTSIZ(%d)\n",
1354 hctsiz
, chan
->hc_num
);
1356 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1358 dev_vdbg(hsotg
->dev
, " Xfer Size: %d\n",
1359 (hctsiz
& TSIZ_XFERSIZE_MASK
) >>
1360 TSIZ_XFERSIZE_SHIFT
);
1361 dev_vdbg(hsotg
->dev
, " Num Pkts: %d\n",
1362 (hctsiz
& TSIZ_PKTCNT_MASK
) >>
1364 dev_vdbg(hsotg
->dev
, " Start PID: %d\n",
1365 (hctsiz
& TSIZ_SC_MC_PID_MASK
) >>
1366 TSIZ_SC_MC_PID_SHIFT
);
1369 if (hsotg
->params
.host_dma
) {
1370 dma_addr_t dma_addr
;
1372 if (chan
->align_buf
) {
1374 dev_vdbg(hsotg
->dev
, "align_buf\n");
1375 dma_addr
= chan
->align_buf
;
1377 dma_addr
= chan
->xfer_dma
;
1379 dwc2_writel(hsotg
, (u32
)dma_addr
, HCDMA(chan
->hc_num
));
1382 dev_vdbg(hsotg
->dev
, "Wrote %08lx to HCDMA(%d)\n",
1383 (unsigned long)dma_addr
, chan
->hc_num
);
1386 /* Start the split */
1387 if (chan
->do_split
) {
1388 u32 hcsplt
= dwc2_readl(hsotg
, HCSPLT(chan
->hc_num
));
1390 hcsplt
|= HCSPLT_SPLTENA
;
1391 dwc2_writel(hsotg
, hcsplt
, HCSPLT(chan
->hc_num
));
1394 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
1395 hcchar
&= ~HCCHAR_MULTICNT_MASK
;
1396 hcchar
|= (ec_mc
<< HCCHAR_MULTICNT_SHIFT
) & HCCHAR_MULTICNT_MASK
;
1397 dwc2_hc_set_even_odd_frame(hsotg
, chan
, &hcchar
);
1399 if (hcchar
& HCCHAR_CHDIS
)
1400 dev_warn(hsotg
->dev
,
1401 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1402 __func__
, chan
->hc_num
, hcchar
);
1404 /* Set host channel enable after all other setup is complete */
1405 hcchar
|= HCCHAR_CHENA
;
1406 hcchar
&= ~HCCHAR_CHDIS
;
1409 dev_vdbg(hsotg
->dev
, " Multi Cnt: %d\n",
1410 (hcchar
& HCCHAR_MULTICNT_MASK
) >>
1411 HCCHAR_MULTICNT_SHIFT
);
1413 dwc2_writel(hsotg
, hcchar
, HCCHAR(chan
->hc_num
));
1415 dev_vdbg(hsotg
->dev
, "Wrote %08x to HCCHAR(%d)\n", hcchar
,
1418 chan
->xfer_started
= 1;
1421 if (!hsotg
->params
.host_dma
&&
1422 !chan
->ep_is_in
&& chan
->xfer_len
> 0)
1423 /* Load OUT packet into the appropriate Tx FIFO */
1424 dwc2_hc_write_packet(hsotg
, chan
);
1428 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1429 * host channel and starts the transfer in Descriptor DMA mode
1431 * @hsotg: Programming view of DWC_otg controller
1432 * @chan: Information needed to initialize the host channel
1434 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1435 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1436 * with micro-frame bitmap.
1438 * Initializes HCDMA register with descriptor list address and CTD value then
1439 * starts the transfer via enabling the channel.
1441 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg
*hsotg
,
1442 struct dwc2_host_chan
*chan
)
1448 hctsiz
|= TSIZ_DOPNG
;
1450 if (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1451 dwc2_set_pid_isoc(chan
);
1453 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1454 hctsiz
|= chan
->data_pid_start
<< TSIZ_SC_MC_PID_SHIFT
&
1455 TSIZ_SC_MC_PID_MASK
;
1457 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1458 hctsiz
|= (chan
->ntd
- 1) << TSIZ_NTD_SHIFT
& TSIZ_NTD_MASK
;
1460 /* Non-zero only for high-speed interrupt endpoints */
1461 hctsiz
|= chan
->schinfo
<< TSIZ_SCHINFO_SHIFT
& TSIZ_SCHINFO_MASK
;
1464 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1466 dev_vdbg(hsotg
->dev
, " Start PID: %d\n",
1467 chan
->data_pid_start
);
1468 dev_vdbg(hsotg
->dev
, " NTD: %d\n", chan
->ntd
- 1);
1471 dwc2_writel(hsotg
, hctsiz
, HCTSIZ(chan
->hc_num
));
1473 dma_sync_single_for_device(hsotg
->dev
, chan
->desc_list_addr
,
1474 chan
->desc_list_sz
, DMA_TO_DEVICE
);
1476 dwc2_writel(hsotg
, chan
->desc_list_addr
, HCDMA(chan
->hc_num
));
1479 dev_vdbg(hsotg
->dev
, "Wrote %pad to HCDMA(%d)\n",
1480 &chan
->desc_list_addr
, chan
->hc_num
);
1482 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
1483 hcchar
&= ~HCCHAR_MULTICNT_MASK
;
1484 hcchar
|= chan
->multi_count
<< HCCHAR_MULTICNT_SHIFT
&
1485 HCCHAR_MULTICNT_MASK
;
1487 if (hcchar
& HCCHAR_CHDIS
)
1488 dev_warn(hsotg
->dev
,
1489 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1490 __func__
, chan
->hc_num
, hcchar
);
1492 /* Set host channel enable after all other setup is complete */
1493 hcchar
|= HCCHAR_CHENA
;
1494 hcchar
&= ~HCCHAR_CHDIS
;
1497 dev_vdbg(hsotg
->dev
, " Multi Cnt: %d\n",
1498 (hcchar
& HCCHAR_MULTICNT_MASK
) >>
1499 HCCHAR_MULTICNT_SHIFT
);
1501 dwc2_writel(hsotg
, hcchar
, HCCHAR(chan
->hc_num
));
1503 dev_vdbg(hsotg
->dev
, "Wrote %08x to HCCHAR(%d)\n", hcchar
,
1506 chan
->xfer_started
= 1;
1511 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1512 * a previous call to dwc2_hc_start_transfer()
1514 * @hsotg: Programming view of DWC_otg controller
1515 * @chan: Information needed to initialize the host channel
1517 * The caller must ensure there is sufficient space in the request queue and Tx
1518 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1519 * the controller acts autonomously to complete transfers programmed to a host
1522 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1523 * if there is any data remaining to be queued. For an IN transfer, another
1524 * data packet is always requested. For the SETUP phase of a control transfer,
1525 * this function does nothing.
1527 * Return: 1 if a new request is queued, 0 if no more requests are required
1530 static int dwc2_hc_continue_transfer(struct dwc2_hsotg
*hsotg
,
1531 struct dwc2_host_chan
*chan
)
1534 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1538 /* SPLITs always queue just once per channel */
1541 if (chan
->data_pid_start
== DWC2_HC_PID_SETUP
)
1542 /* SETUPs are queued only once since they can't be NAK'd */
1545 if (chan
->ep_is_in
) {
1547 * Always queue another request for other IN transfers. If
1548 * back-to-back INs are issued and NAKs are received for both,
1549 * the driver may still be processing the first NAK when the
1550 * second NAK is received. When the interrupt handler clears
1551 * the NAK interrupt for the first NAK, the second NAK will
1552 * not be seen. So we can't depend on the NAK interrupt
1553 * handler to requeue a NAK'd request. Instead, IN requests
1554 * are issued each time this function is called. When the
1555 * transfer completes, the extra requests for the channel will
1558 u32 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
1560 dwc2_hc_set_even_odd_frame(hsotg
, chan
, &hcchar
);
1561 hcchar
|= HCCHAR_CHENA
;
1562 hcchar
&= ~HCCHAR_CHDIS
;
1564 dev_vdbg(hsotg
->dev
, " IN xfer: hcchar = 0x%08x\n",
1566 dwc2_writel(hsotg
, hcchar
, HCCHAR(chan
->hc_num
));
1573 if (chan
->xfer_count
< chan
->xfer_len
) {
1574 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1575 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
1576 u32 hcchar
= dwc2_readl(hsotg
,
1577 HCCHAR(chan
->hc_num
));
1579 dwc2_hc_set_even_odd_frame(hsotg
, chan
,
1583 /* Load OUT packet into the appropriate Tx FIFO */
1584 dwc2_hc_write_packet(hsotg
, chan
);
1593 * =========================================================================
1595 * =========================================================================
1599 * Processes all the URBs in a single list of QHs. Completes them with
1600 * -ETIMEDOUT and frees the QTD.
1602 * Must be called with interrupt disabled and spinlock held
1604 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg
*hsotg
,
1605 struct list_head
*qh_list
)
1607 struct dwc2_qh
*qh
, *qh_tmp
;
1608 struct dwc2_qtd
*qtd
, *qtd_tmp
;
1610 list_for_each_entry_safe(qh
, qh_tmp
, qh_list
, qh_list_entry
) {
1611 list_for_each_entry_safe(qtd
, qtd_tmp
, &qh
->qtd_list
,
1613 dwc2_host_complete(hsotg
, qtd
, -ECONNRESET
);
1614 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd
, qh
);
1619 static void dwc2_qh_list_free(struct dwc2_hsotg
*hsotg
,
1620 struct list_head
*qh_list
)
1622 struct dwc2_qtd
*qtd
, *qtd_tmp
;
1623 struct dwc2_qh
*qh
, *qh_tmp
;
1624 unsigned long flags
;
1627 /* The list hasn't been initialized yet */
1630 spin_lock_irqsave(&hsotg
->lock
, flags
);
1632 /* Ensure there are no QTDs or URBs left */
1633 dwc2_kill_urbs_in_qh_list(hsotg
, qh_list
);
1635 list_for_each_entry_safe(qh
, qh_tmp
, qh_list
, qh_list_entry
) {
1636 dwc2_hcd_qh_unlink(hsotg
, qh
);
1638 /* Free each QTD in the QH's QTD list */
1639 list_for_each_entry_safe(qtd
, qtd_tmp
, &qh
->qtd_list
,
1641 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd
, qh
);
1643 if (qh
->channel
&& qh
->channel
->qh
== qh
)
1644 qh
->channel
->qh
= NULL
;
1646 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1647 dwc2_hcd_qh_free(hsotg
, qh
);
1648 spin_lock_irqsave(&hsotg
->lock
, flags
);
1651 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1655 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1656 * and periodic schedules. The QTD associated with each URB is removed from
1657 * the schedule and freed. This function may be called when a disconnect is
1658 * detected or when the HCD is being stopped.
1660 * Must be called with interrupt disabled and spinlock held
1662 static void dwc2_kill_all_urbs(struct dwc2_hsotg
*hsotg
)
1664 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->non_periodic_sched_inactive
);
1665 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->non_periodic_sched_waiting
);
1666 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->non_periodic_sched_active
);
1667 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_inactive
);
1668 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_ready
);
1669 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_assigned
);
1670 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_queued
);
1674 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1676 * @hsotg: Pointer to struct dwc2_hsotg
1678 void dwc2_hcd_start(struct dwc2_hsotg
*hsotg
)
1682 if (hsotg
->op_state
== OTG_STATE_B_HOST
) {
1684 * Reset the port. During a HNP mode switch the reset
1685 * needs to occur within 1ms and have a duration of at
1688 hprt0
= dwc2_read_hprt0(hsotg
);
1690 dwc2_writel(hsotg
, hprt0
, HPRT0
);
1693 queue_delayed_work(hsotg
->wq_otg
, &hsotg
->start_work
,
1694 msecs_to_jiffies(50));
1697 /* Must be called with interrupt disabled and spinlock held */
1698 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg
*hsotg
)
1700 int num_channels
= hsotg
->params
.host_channels
;
1701 struct dwc2_host_chan
*channel
;
1705 if (!hsotg
->params
.host_dma
) {
1706 /* Flush out any channel requests in slave mode */
1707 for (i
= 0; i
< num_channels
; i
++) {
1708 channel
= hsotg
->hc_ptr_array
[i
];
1709 if (!list_empty(&channel
->hc_list_entry
))
1711 hcchar
= dwc2_readl(hsotg
, HCCHAR(i
));
1712 if (hcchar
& HCCHAR_CHENA
) {
1713 hcchar
&= ~(HCCHAR_CHENA
| HCCHAR_EPDIR
);
1714 hcchar
|= HCCHAR_CHDIS
;
1715 dwc2_writel(hsotg
, hcchar
, HCCHAR(i
));
1720 for (i
= 0; i
< num_channels
; i
++) {
1721 channel
= hsotg
->hc_ptr_array
[i
];
1722 if (!list_empty(&channel
->hc_list_entry
))
1724 hcchar
= dwc2_readl(hsotg
, HCCHAR(i
));
1725 if (hcchar
& HCCHAR_CHENA
) {
1726 /* Halt the channel */
1727 hcchar
|= HCCHAR_CHDIS
;
1728 dwc2_writel(hsotg
, hcchar
, HCCHAR(i
));
1731 dwc2_hc_cleanup(hsotg
, channel
);
1732 list_add_tail(&channel
->hc_list_entry
, &hsotg
->free_hc_list
);
1734 * Added for Descriptor DMA to prevent channel double cleanup in
1735 * release_channel_ddma(), which is called from ep_disable when
1736 * device disconnects
1740 /* All channels have been freed, mark them available */
1741 if (hsotg
->params
.uframe_sched
) {
1742 hsotg
->available_host_channels
=
1743 hsotg
->params
.host_channels
;
1745 hsotg
->non_periodic_channels
= 0;
1746 hsotg
->periodic_channels
= 0;
1751 * dwc2_hcd_connect() - Handles connect of the HCD
1753 * @hsotg: Pointer to struct dwc2_hsotg
1755 * Must be called with interrupt disabled and spinlock held
1757 void dwc2_hcd_connect(struct dwc2_hsotg
*hsotg
)
1759 if (hsotg
->lx_state
!= DWC2_L0
)
1760 usb_hcd_resume_root_hub(hsotg
->priv
);
1762 hsotg
->flags
.b
.port_connect_status_change
= 1;
1763 hsotg
->flags
.b
.port_connect_status
= 1;
1767 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1769 * @hsotg: Pointer to struct dwc2_hsotg
1770 * @force: If true, we won't try to reconnect even if we see device connected.
1772 * Must be called with interrupt disabled and spinlock held
1774 void dwc2_hcd_disconnect(struct dwc2_hsotg
*hsotg
, bool force
)
1779 /* Set status flags for the hub driver */
1780 hsotg
->flags
.b
.port_connect_status_change
= 1;
1781 hsotg
->flags
.b
.port_connect_status
= 0;
1784 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1785 * interrupt mask and status bits and disabling subsequent host
1786 * channel interrupts.
1788 intr
= dwc2_readl(hsotg
, GINTMSK
);
1789 intr
&= ~(GINTSTS_NPTXFEMP
| GINTSTS_PTXFEMP
| GINTSTS_HCHINT
);
1790 dwc2_writel(hsotg
, intr
, GINTMSK
);
1791 intr
= GINTSTS_NPTXFEMP
| GINTSTS_PTXFEMP
| GINTSTS_HCHINT
;
1792 dwc2_writel(hsotg
, intr
, GINTSTS
);
1795 * Turn off the vbus power only if the core has transitioned to device
1796 * mode. If still in host mode, need to keep power on to detect a
1799 if (dwc2_is_device_mode(hsotg
)) {
1800 if (hsotg
->op_state
!= OTG_STATE_A_SUSPEND
) {
1801 dev_dbg(hsotg
->dev
, "Disconnect: PortPower off\n");
1802 dwc2_writel(hsotg
, 0, HPRT0
);
1805 dwc2_disable_host_interrupts(hsotg
);
1808 /* Respond with an error status to all URBs in the schedule */
1809 dwc2_kill_all_urbs(hsotg
);
1811 if (dwc2_is_host_mode(hsotg
))
1812 /* Clean up any host channels that were in use */
1813 dwc2_hcd_cleanup_channels(hsotg
);
1815 dwc2_host_disconnect(hsotg
);
1818 * Add an extra check here to see if we're actually connected but
1819 * we don't have a detection interrupt pending. This can happen if:
1820 * 1. hardware sees connect
1821 * 2. hardware sees disconnect
1822 * 3. hardware sees connect
1823 * 4. dwc2_port_intr() - clears connect interrupt
1824 * 5. dwc2_handle_common_intr() - calls here
1826 * Without the extra check here we will end calling disconnect
1827 * and won't get any future interrupts to handle the connect.
1830 hprt0
= dwc2_readl(hsotg
, HPRT0
);
1831 if (!(hprt0
& HPRT0_CONNDET
) && (hprt0
& HPRT0_CONNSTS
))
1832 dwc2_hcd_connect(hsotg
);
1837 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1839 * @hsotg: Pointer to struct dwc2_hsotg
1841 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg
*hsotg
)
1843 if (hsotg
->bus_suspended
) {
1844 hsotg
->flags
.b
.port_suspend_change
= 1;
1845 usb_hcd_resume_root_hub(hsotg
->priv
);
1848 if (hsotg
->lx_state
== DWC2_L1
)
1849 hsotg
->flags
.b
.port_l1_change
= 1;
1853 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1855 * @hsotg: Pointer to struct dwc2_hsotg
1857 * Must be called with interrupt disabled and spinlock held
1859 void dwc2_hcd_stop(struct dwc2_hsotg
*hsotg
)
1861 dev_dbg(hsotg
->dev
, "DWC OTG HCD STOP\n");
1864 * The root hub should be disconnected before this function is called.
1865 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1866 * and the QH lists (via ..._hcd_endpoint_disable).
1869 /* Turn off all host-specific interrupts */
1870 dwc2_disable_host_interrupts(hsotg
);
1872 /* Turn off the vbus power */
1873 dev_dbg(hsotg
->dev
, "PortPower off\n");
1874 dwc2_writel(hsotg
, 0, HPRT0
);
1877 /* Caller must hold driver lock */
1878 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg
*hsotg
,
1879 struct dwc2_hcd_urb
*urb
, struct dwc2_qh
*qh
,
1880 struct dwc2_qtd
*qtd
)
1886 if (!hsotg
->flags
.b
.port_connect_status
) {
1887 /* No longer connected */
1888 dev_err(hsotg
->dev
, "Not connected\n");
1892 dev_speed
= dwc2_host_get_speed(hsotg
, urb
->priv
);
1894 /* Some configurations cannot support LS traffic on a FS root port */
1895 if ((dev_speed
== USB_SPEED_LOW
) &&
1896 (hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_DEDICATED
) &&
1897 (hsotg
->hw_params
.hs_phy_type
== GHWCFG2_HS_PHY_TYPE_UTMI
)) {
1898 u32 hprt0
= dwc2_readl(hsotg
, HPRT0
);
1899 u32 prtspd
= (hprt0
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
;
1901 if (prtspd
== HPRT0_SPD_FULL_SPEED
)
1908 dwc2_hcd_qtd_init(qtd
, urb
);
1909 retval
= dwc2_hcd_qtd_add(hsotg
, qtd
, qh
);
1912 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1917 intr_mask
= dwc2_readl(hsotg
, GINTMSK
);
1918 if (!(intr_mask
& GINTSTS_SOF
)) {
1919 enum dwc2_transaction_type tr_type
;
1921 if (qtd
->qh
->ep_type
== USB_ENDPOINT_XFER_BULK
&&
1922 !(qtd
->urb
->flags
& URB_GIVEBACK_ASAP
))
1924 * Do not schedule SG transactions until qtd has
1925 * URB_GIVEBACK_ASAP set
1929 tr_type
= dwc2_hcd_select_transactions(hsotg
);
1930 if (tr_type
!= DWC2_TRANSACTION_NONE
)
1931 dwc2_hcd_queue_transactions(hsotg
, tr_type
);
1937 /* Must be called with interrupt disabled and spinlock held */
1938 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg
*hsotg
,
1939 struct dwc2_hcd_urb
*urb
)
1942 struct dwc2_qtd
*urb_qtd
;
1946 dev_dbg(hsotg
->dev
, "## Urb QTD is NULL ##\n");
1952 dev_dbg(hsotg
->dev
, "## Urb QTD QH is NULL ##\n");
1958 if (urb_qtd
->in_process
&& qh
->channel
) {
1959 dwc2_dump_channel_info(hsotg
, qh
->channel
);
1961 /* The QTD is in process (it has been assigned to a channel) */
1962 if (hsotg
->flags
.b
.port_connect_status
)
1964 * If still connected (i.e. in host mode), halt the
1965 * channel so it can be used for other transfers. If
1966 * no longer connected, the host registers can't be
1967 * written to halt the channel since the core is in
1970 dwc2_hc_halt(hsotg
, qh
->channel
,
1971 DWC2_HC_XFER_URB_DEQUEUE
);
1975 * Free the QTD and clean up the associated QH. Leave the QH in the
1976 * schedule if it has any remaining QTDs.
1978 if (!hsotg
->params
.dma_desc_enable
) {
1979 u8 in_process
= urb_qtd
->in_process
;
1981 dwc2_hcd_qtd_unlink_and_free(hsotg
, urb_qtd
, qh
);
1983 dwc2_hcd_qh_deactivate(hsotg
, qh
, 0);
1985 } else if (list_empty(&qh
->qtd_list
)) {
1986 dwc2_hcd_qh_unlink(hsotg
, qh
);
1989 dwc2_hcd_qtd_unlink_and_free(hsotg
, urb_qtd
, qh
);
1995 /* Must NOT be called with interrupt disabled or spinlock held */
1996 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg
*hsotg
,
1997 struct usb_host_endpoint
*ep
, int retry
)
1999 struct dwc2_qtd
*qtd
, *qtd_tmp
;
2001 unsigned long flags
;
2004 spin_lock_irqsave(&hsotg
->lock
, flags
);
2012 while (!list_empty(&qh
->qtd_list
) && retry
--) {
2015 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2020 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2022 spin_lock_irqsave(&hsotg
->lock
, flags
);
2030 dwc2_hcd_qh_unlink(hsotg
, qh
);
2032 /* Free each QTD in the QH's QTD list */
2033 list_for_each_entry_safe(qtd
, qtd_tmp
, &qh
->qtd_list
, qtd_list_entry
)
2034 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd
, qh
);
2038 if (qh
->channel
&& qh
->channel
->qh
== qh
)
2039 qh
->channel
->qh
= NULL
;
2041 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2043 dwc2_hcd_qh_free(hsotg
, qh
);
2049 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2054 /* Must be called with interrupt disabled and spinlock held */
2055 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg
*hsotg
,
2056 struct usb_host_endpoint
*ep
)
2058 struct dwc2_qh
*qh
= ep
->hcpriv
;
2063 qh
->data_toggle
= DWC2_HC_PID_DATA0
;
2069 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2070 * prepares the core for device mode or host mode operation
2072 * @hsotg: Programming view of the DWC_otg controller
2073 * @initial_setup: If true then this is the first init for this instance.
2075 int dwc2_core_init(struct dwc2_hsotg
*hsotg
, bool initial_setup
)
2080 dev_dbg(hsotg
->dev
, "%s(%p)\n", __func__
, hsotg
);
2082 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
2084 /* Set ULPI External VBUS bit if needed */
2085 usbcfg
&= ~GUSBCFG_ULPI_EXT_VBUS_DRV
;
2086 if (hsotg
->params
.phy_ulpi_ext_vbus
)
2087 usbcfg
|= GUSBCFG_ULPI_EXT_VBUS_DRV
;
2089 /* Set external TS Dline pulsing bit if needed */
2090 usbcfg
&= ~GUSBCFG_TERMSELDLPULSE
;
2091 if (hsotg
->params
.ts_dline
)
2092 usbcfg
|= GUSBCFG_TERMSELDLPULSE
;
2094 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
2097 * Reset the Controller
2099 * We only need to reset the controller if this is a re-init.
2100 * For the first init we know for sure that earlier code reset us (it
2101 * needed to in order to properly detect various parameters).
2103 if (!initial_setup
) {
2104 retval
= dwc2_core_reset(hsotg
, false);
2106 dev_err(hsotg
->dev
, "%s(): Reset failed, aborting\n",
2113 * This needs to happen in FS mode before any other programming occurs
2115 retval
= dwc2_phy_init(hsotg
, initial_setup
);
2119 /* Program the GAHBCFG Register */
2120 retval
= dwc2_gahbcfg_init(hsotg
);
2124 /* Program the GUSBCFG register */
2125 dwc2_gusbcfg_init(hsotg
);
2127 /* Program the GOTGCTL register */
2128 otgctl
= dwc2_readl(hsotg
, GOTGCTL
);
2129 otgctl
&= ~GOTGCTL_OTGVER
;
2130 dwc2_writel(hsotg
, otgctl
, GOTGCTL
);
2132 /* Clear the SRP success bit for FS-I2c */
2133 hsotg
->srp_success
= 0;
2135 /* Enable common interrupts */
2136 dwc2_enable_common_interrupts(hsotg
);
2139 * Do device or host initialization based on mode during PCD and
2140 * HCD initialization
2142 if (dwc2_is_host_mode(hsotg
)) {
2143 dev_dbg(hsotg
->dev
, "Host Mode\n");
2144 hsotg
->op_state
= OTG_STATE_A_HOST
;
2146 dev_dbg(hsotg
->dev
, "Device Mode\n");
2147 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
2154 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2157 * @hsotg: Programming view of DWC_otg controller
2159 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2160 * request queues. Host channels are reset to ensure that they are ready for
2161 * performing transfers.
2163 static void dwc2_core_host_init(struct dwc2_hsotg
*hsotg
)
2165 u32 hcfg
, hfir
, otgctl
, usbcfg
;
2167 dev_dbg(hsotg
->dev
, "%s(%p)\n", __func__
, hsotg
);
2169 /* Set HS/FS Timeout Calibration to 7 (max available value).
2170 * The number of PHY clocks that the application programs in
2171 * this field is added to the high/full speed interpacket timeout
2172 * duration in the core to account for any additional delays
2173 * introduced by the PHY. This can be required, because the delay
2174 * introduced by the PHY in generating the linestate condition
2175 * can vary from one PHY to another.
2177 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
2178 usbcfg
|= GUSBCFG_TOUTCAL(7);
2179 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
2181 /* Restart the Phy Clock */
2182 dwc2_writel(hsotg
, 0, PCGCTL
);
2184 /* Initialize Host Configuration Register */
2185 dwc2_init_fs_ls_pclk_sel(hsotg
);
2186 if (hsotg
->params
.speed
== DWC2_SPEED_PARAM_FULL
||
2187 hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
) {
2188 hcfg
= dwc2_readl(hsotg
, HCFG
);
2189 hcfg
|= HCFG_FSLSSUPP
;
2190 dwc2_writel(hsotg
, hcfg
, HCFG
);
2194 * This bit allows dynamic reloading of the HFIR register during
2195 * runtime. This bit needs to be programmed during initial configuration
2196 * and its value must not be changed during runtime.
2198 if (hsotg
->params
.reload_ctl
) {
2199 hfir
= dwc2_readl(hsotg
, HFIR
);
2200 hfir
|= HFIR_RLDCTRL
;
2201 dwc2_writel(hsotg
, hfir
, HFIR
);
2204 if (hsotg
->params
.dma_desc_enable
) {
2205 u32 op_mode
= hsotg
->hw_params
.op_mode
;
2207 if (hsotg
->hw_params
.snpsid
< DWC2_CORE_REV_2_90a
||
2208 !hsotg
->hw_params
.dma_desc_enable
||
2209 op_mode
== GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE
||
2210 op_mode
== GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE
||
2211 op_mode
== GHWCFG2_OP_MODE_UNDEFINED
) {
2213 "Hardware does not support descriptor DMA mode -\n");
2215 "falling back to buffer DMA mode.\n");
2216 hsotg
->params
.dma_desc_enable
= false;
2218 hcfg
= dwc2_readl(hsotg
, HCFG
);
2219 hcfg
|= HCFG_DESCDMA
;
2220 dwc2_writel(hsotg
, hcfg
, HCFG
);
2224 /* Configure data FIFO sizes */
2225 dwc2_config_fifos(hsotg
);
2227 /* TODO - check this */
2228 /* Clear Host Set HNP Enable in the OTG Control Register */
2229 otgctl
= dwc2_readl(hsotg
, GOTGCTL
);
2230 otgctl
&= ~GOTGCTL_HSTSETHNPEN
;
2231 dwc2_writel(hsotg
, otgctl
, GOTGCTL
);
2233 /* Make sure the FIFOs are flushed */
2234 dwc2_flush_tx_fifo(hsotg
, 0x10 /* all TX FIFOs */);
2235 dwc2_flush_rx_fifo(hsotg
);
2237 /* Clear Host Set HNP Enable in the OTG Control Register */
2238 otgctl
= dwc2_readl(hsotg
, GOTGCTL
);
2239 otgctl
&= ~GOTGCTL_HSTSETHNPEN
;
2240 dwc2_writel(hsotg
, otgctl
, GOTGCTL
);
2242 if (!hsotg
->params
.dma_desc_enable
) {
2243 int num_channels
, i
;
2246 /* Flush out any leftover queued requests */
2247 num_channels
= hsotg
->params
.host_channels
;
2248 for (i
= 0; i
< num_channels
; i
++) {
2249 hcchar
= dwc2_readl(hsotg
, HCCHAR(i
));
2250 if (hcchar
& HCCHAR_CHENA
) {
2251 hcchar
&= ~HCCHAR_CHENA
;
2252 hcchar
|= HCCHAR_CHDIS
;
2253 hcchar
&= ~HCCHAR_EPDIR
;
2254 dwc2_writel(hsotg
, hcchar
, HCCHAR(i
));
2258 /* Halt all channels to put them into a known state */
2259 for (i
= 0; i
< num_channels
; i
++) {
2260 hcchar
= dwc2_readl(hsotg
, HCCHAR(i
));
2261 if (hcchar
& HCCHAR_CHENA
) {
2262 hcchar
|= HCCHAR_CHENA
| HCCHAR_CHDIS
;
2263 hcchar
&= ~HCCHAR_EPDIR
;
2264 dwc2_writel(hsotg
, hcchar
, HCCHAR(i
));
2265 dev_dbg(hsotg
->dev
, "%s: Halt channel %d\n",
2268 if (dwc2_hsotg_wait_bit_clear(hsotg
, HCCHAR(i
),
2271 dev_warn(hsotg
->dev
,
2272 "Unable to clear enable on channel %d\n",
2279 /* Enable ACG feature in host mode, if supported */
2280 dwc2_enable_acg(hsotg
);
2282 /* Turn on the vbus power */
2283 dev_dbg(hsotg
->dev
, "Init: Port Power? op_state=%d\n", hsotg
->op_state
);
2284 if (hsotg
->op_state
== OTG_STATE_A_HOST
) {
2285 u32 hprt0
= dwc2_read_hprt0(hsotg
);
2287 dev_dbg(hsotg
->dev
, "Init: Power Port (%d)\n",
2288 !!(hprt0
& HPRT0_PWR
));
2289 if (!(hprt0
& HPRT0_PWR
)) {
2291 dwc2_writel(hsotg
, hprt0
, HPRT0
);
2295 dwc2_enable_host_interrupts(hsotg
);
2299 * Initializes dynamic portions of the DWC_otg HCD state
2301 * Must be called with interrupt disabled and spinlock held
2303 static void dwc2_hcd_reinit(struct dwc2_hsotg
*hsotg
)
2305 struct dwc2_host_chan
*chan
, *chan_tmp
;
2309 hsotg
->flags
.d32
= 0;
2310 hsotg
->non_periodic_qh_ptr
= &hsotg
->non_periodic_sched_active
;
2312 if (hsotg
->params
.uframe_sched
) {
2313 hsotg
->available_host_channels
=
2314 hsotg
->params
.host_channels
;
2316 hsotg
->non_periodic_channels
= 0;
2317 hsotg
->periodic_channels
= 0;
2321 * Put all channels in the free channel list and clean up channel
2324 list_for_each_entry_safe(chan
, chan_tmp
, &hsotg
->free_hc_list
,
2326 list_del_init(&chan
->hc_list_entry
);
2328 num_channels
= hsotg
->params
.host_channels
;
2329 for (i
= 0; i
< num_channels
; i
++) {
2330 chan
= hsotg
->hc_ptr_array
[i
];
2331 list_add_tail(&chan
->hc_list_entry
, &hsotg
->free_hc_list
);
2332 dwc2_hc_cleanup(hsotg
, chan
);
2335 /* Initialize the DWC core for host mode operation */
2336 dwc2_core_host_init(hsotg
);
2339 static void dwc2_hc_init_split(struct dwc2_hsotg
*hsotg
,
2340 struct dwc2_host_chan
*chan
,
2341 struct dwc2_qtd
*qtd
, struct dwc2_hcd_urb
*urb
)
2343 int hub_addr
, hub_port
;
2346 chan
->xact_pos
= qtd
->isoc_split_pos
;
2347 chan
->complete_split
= qtd
->complete_split
;
2348 dwc2_host_hub_info(hsotg
, urb
->priv
, &hub_addr
, &hub_port
);
2349 chan
->hub_addr
= (u8
)hub_addr
;
2350 chan
->hub_port
= (u8
)hub_port
;
2353 static void dwc2_hc_init_xfer(struct dwc2_hsotg
*hsotg
,
2354 struct dwc2_host_chan
*chan
,
2355 struct dwc2_qtd
*qtd
)
2357 struct dwc2_hcd_urb
*urb
= qtd
->urb
;
2358 struct dwc2_hcd_iso_packet_desc
*frame_desc
;
2360 switch (dwc2_hcd_get_pipe_type(&urb
->pipe_info
)) {
2361 case USB_ENDPOINT_XFER_CONTROL
:
2362 chan
->ep_type
= USB_ENDPOINT_XFER_CONTROL
;
2364 switch (qtd
->control_phase
) {
2365 case DWC2_CONTROL_SETUP
:
2366 dev_vdbg(hsotg
->dev
, " Control setup transaction\n");
2369 chan
->data_pid_start
= DWC2_HC_PID_SETUP
;
2370 if (hsotg
->params
.host_dma
)
2371 chan
->xfer_dma
= urb
->setup_dma
;
2373 chan
->xfer_buf
= urb
->setup_packet
;
2377 case DWC2_CONTROL_DATA
:
2378 dev_vdbg(hsotg
->dev
, " Control data transaction\n");
2379 chan
->data_pid_start
= qtd
->data_toggle
;
2382 case DWC2_CONTROL_STATUS
:
2384 * Direction is opposite of data direction or IN if no
2387 dev_vdbg(hsotg
->dev
, " Control status transaction\n");
2388 if (urb
->length
== 0)
2392 dwc2_hcd_is_pipe_out(&urb
->pipe_info
);
2395 chan
->data_pid_start
= DWC2_HC_PID_DATA1
;
2397 if (hsotg
->params
.host_dma
)
2398 chan
->xfer_dma
= hsotg
->status_buf_dma
;
2400 chan
->xfer_buf
= hsotg
->status_buf
;
2405 case USB_ENDPOINT_XFER_BULK
:
2406 chan
->ep_type
= USB_ENDPOINT_XFER_BULK
;
2409 case USB_ENDPOINT_XFER_INT
:
2410 chan
->ep_type
= USB_ENDPOINT_XFER_INT
;
2413 case USB_ENDPOINT_XFER_ISOC
:
2414 chan
->ep_type
= USB_ENDPOINT_XFER_ISOC
;
2415 if (hsotg
->params
.dma_desc_enable
)
2418 frame_desc
= &urb
->iso_descs
[qtd
->isoc_frame_index
];
2419 frame_desc
->status
= 0;
2421 if (hsotg
->params
.host_dma
) {
2422 chan
->xfer_dma
= urb
->dma
;
2423 chan
->xfer_dma
+= frame_desc
->offset
+
2424 qtd
->isoc_split_offset
;
2426 chan
->xfer_buf
= urb
->buf
;
2427 chan
->xfer_buf
+= frame_desc
->offset
+
2428 qtd
->isoc_split_offset
;
2431 chan
->xfer_len
= frame_desc
->length
- qtd
->isoc_split_offset
;
2433 if (chan
->xact_pos
== DWC2_HCSPLT_XACTPOS_ALL
) {
2434 if (chan
->xfer_len
<= 188)
2435 chan
->xact_pos
= DWC2_HCSPLT_XACTPOS_ALL
;
2437 chan
->xact_pos
= DWC2_HCSPLT_XACTPOS_BEGIN
;
2443 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg
*hsotg
,
2445 struct dwc2_host_chan
*chan
)
2447 if (!hsotg
->unaligned_cache
||
2448 chan
->max_packet
> DWC2_KMEM_UNALIGNED_BUF_SIZE
)
2451 if (!qh
->dw_align_buf
) {
2452 qh
->dw_align_buf
= kmem_cache_alloc(hsotg
->unaligned_cache
,
2453 GFP_ATOMIC
| GFP_DMA
);
2454 if (!qh
->dw_align_buf
)
2458 qh
->dw_align_buf_dma
= dma_map_single(hsotg
->dev
, qh
->dw_align_buf
,
2459 DWC2_KMEM_UNALIGNED_BUF_SIZE
,
2462 if (dma_mapping_error(hsotg
->dev
, qh
->dw_align_buf_dma
)) {
2463 dev_err(hsotg
->dev
, "can't map align_buf\n");
2464 chan
->align_buf
= 0;
2468 chan
->align_buf
= qh
->dw_align_buf_dma
;
2472 #define DWC2_USB_DMA_ALIGN 4
2474 static void dwc2_free_dma_aligned_buffer(struct urb
*urb
)
2476 void *stored_xfer_buffer
;
2479 if (!(urb
->transfer_flags
& URB_ALIGNED_TEMP_BUFFER
))
2482 /* Restore urb->transfer_buffer from the end of the allocated area */
2483 memcpy(&stored_xfer_buffer
,
2484 PTR_ALIGN(urb
->transfer_buffer
+ urb
->transfer_buffer_length
,
2485 dma_get_cache_alignment()),
2486 sizeof(urb
->transfer_buffer
));
2488 if (usb_urb_dir_in(urb
)) {
2489 if (usb_pipeisoc(urb
->pipe
))
2490 length
= urb
->transfer_buffer_length
;
2492 length
= urb
->actual_length
;
2494 memcpy(stored_xfer_buffer
, urb
->transfer_buffer
, length
);
2496 kfree(urb
->transfer_buffer
);
2497 urb
->transfer_buffer
= stored_xfer_buffer
;
2499 urb
->transfer_flags
&= ~URB_ALIGNED_TEMP_BUFFER
;
2502 static int dwc2_alloc_dma_aligned_buffer(struct urb
*urb
, gfp_t mem_flags
)
2505 size_t kmalloc_size
;
2507 if (urb
->num_sgs
|| urb
->sg
||
2508 urb
->transfer_buffer_length
== 0 ||
2509 !((uintptr_t)urb
->transfer_buffer
& (DWC2_USB_DMA_ALIGN
- 1)))
2513 * Allocate a buffer with enough padding for original transfer_buffer
2514 * pointer. This allocation is guaranteed to be aligned properly for
2517 kmalloc_size
= urb
->transfer_buffer_length
+
2518 (dma_get_cache_alignment() - 1) +
2519 sizeof(urb
->transfer_buffer
);
2521 kmalloc_ptr
= kmalloc(kmalloc_size
, mem_flags
);
2526 * Position value of original urb->transfer_buffer pointer to the end
2527 * of allocation for later referencing
2529 memcpy(PTR_ALIGN(kmalloc_ptr
+ urb
->transfer_buffer_length
,
2530 dma_get_cache_alignment()),
2531 &urb
->transfer_buffer
, sizeof(urb
->transfer_buffer
));
2533 if (usb_urb_dir_out(urb
))
2534 memcpy(kmalloc_ptr
, urb
->transfer_buffer
,
2535 urb
->transfer_buffer_length
);
2536 urb
->transfer_buffer
= kmalloc_ptr
;
2538 urb
->transfer_flags
|= URB_ALIGNED_TEMP_BUFFER
;
2543 static int dwc2_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
2548 /* We assume setup_dma is always aligned; warn if not */
2549 WARN_ON_ONCE(urb
->setup_dma
&&
2550 (urb
->setup_dma
& (DWC2_USB_DMA_ALIGN
- 1)));
2552 ret
= dwc2_alloc_dma_aligned_buffer(urb
, mem_flags
);
2556 ret
= usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
2558 dwc2_free_dma_aligned_buffer(urb
);
2563 static void dwc2_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
2565 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
2566 dwc2_free_dma_aligned_buffer(urb
);
2570 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2571 * channel and initializes the host channel to perform the transactions. The
2572 * host channel is removed from the free list.
2574 * @hsotg: The HCD state structure
2575 * @qh: Transactions from the first QTD for this QH are selected and assigned
2576 * to a free host channel
2578 static int dwc2_assign_and_init_hc(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
2580 struct dwc2_host_chan
*chan
;
2581 struct dwc2_hcd_urb
*urb
;
2582 struct dwc2_qtd
*qtd
;
2585 dev_vdbg(hsotg
->dev
, "%s(%p,%p)\n", __func__
, hsotg
, qh
);
2587 if (list_empty(&qh
->qtd_list
)) {
2588 dev_dbg(hsotg
->dev
, "No QTDs in QH list\n");
2592 if (list_empty(&hsotg
->free_hc_list
)) {
2593 dev_dbg(hsotg
->dev
, "No free channel to assign\n");
2597 chan
= list_first_entry(&hsotg
->free_hc_list
, struct dwc2_host_chan
,
2600 /* Remove host channel from free list */
2601 list_del_init(&chan
->hc_list_entry
);
2603 qtd
= list_first_entry(&qh
->qtd_list
, struct dwc2_qtd
, qtd_list_entry
);
2606 qtd
->in_process
= 1;
2609 * Use usb_pipedevice to determine device address. This address is
2610 * 0 before the SET_ADDRESS command and the correct address afterward.
2612 chan
->dev_addr
= dwc2_hcd_get_dev_addr(&urb
->pipe_info
);
2613 chan
->ep_num
= dwc2_hcd_get_ep_num(&urb
->pipe_info
);
2614 chan
->speed
= qh
->dev_speed
;
2615 chan
->max_packet
= qh
->maxp
;
2617 chan
->xfer_started
= 0;
2618 chan
->halt_status
= DWC2_HC_XFER_NO_HALT_STATUS
;
2619 chan
->error_state
= (qtd
->error_count
> 0);
2620 chan
->halt_on_queue
= 0;
2621 chan
->halt_pending
= 0;
2625 * The following values may be modified in the transfer type section
2626 * below. The xfer_len value may be reduced when the transfer is
2627 * started to accommodate the max widths of the XferSize and PktCnt
2628 * fields in the HCTSIZn register.
2631 chan
->ep_is_in
= (dwc2_hcd_is_pipe_in(&urb
->pipe_info
) != 0);
2635 chan
->do_ping
= qh
->ping_state
;
2637 chan
->data_pid_start
= qh
->data_toggle
;
2638 chan
->multi_count
= 1;
2640 if (urb
->actual_length
> urb
->length
&&
2641 !dwc2_hcd_is_pipe_in(&urb
->pipe_info
))
2642 urb
->actual_length
= urb
->length
;
2644 if (hsotg
->params
.host_dma
)
2645 chan
->xfer_dma
= urb
->dma
+ urb
->actual_length
;
2647 chan
->xfer_buf
= (u8
*)urb
->buf
+ urb
->actual_length
;
2649 chan
->xfer_len
= urb
->length
- urb
->actual_length
;
2650 chan
->xfer_count
= 0;
2652 /* Set the split attributes if required */
2654 dwc2_hc_init_split(hsotg
, chan
, qtd
, urb
);
2658 /* Set the transfer attributes */
2659 dwc2_hc_init_xfer(hsotg
, chan
, qtd
);
2661 /* For non-dword aligned buffers */
2662 if (hsotg
->params
.host_dma
&& qh
->do_split
&&
2663 chan
->ep_is_in
&& (chan
->xfer_dma
& 0x3)) {
2664 dev_vdbg(hsotg
->dev
, "Non-aligned buffer\n");
2665 if (dwc2_alloc_split_dma_aligned_buf(hsotg
, qh
, chan
)) {
2667 "Failed to allocate memory to handle non-aligned buffer\n");
2668 /* Add channel back to free list */
2669 chan
->align_buf
= 0;
2670 chan
->multi_count
= 0;
2671 list_add_tail(&chan
->hc_list_entry
,
2672 &hsotg
->free_hc_list
);
2673 qtd
->in_process
= 0;
2679 * We assume that DMA is always aligned in non-split
2680 * case or split out case. Warn if not.
2682 WARN_ON_ONCE(hsotg
->params
.host_dma
&&
2683 (chan
->xfer_dma
& 0x3));
2684 chan
->align_buf
= 0;
2687 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
2688 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
2690 * This value may be modified when the transfer is started
2691 * to reflect the actual transfer length
2693 chan
->multi_count
= qh
->maxp_mult
;
2695 if (hsotg
->params
.dma_desc_enable
) {
2696 chan
->desc_list_addr
= qh
->desc_list_dma
;
2697 chan
->desc_list_sz
= qh
->desc_list_sz
;
2700 dwc2_hc_init(hsotg
, chan
);
2707 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2708 * schedule and assigns them to available host channels. Called from the HCD
2709 * interrupt handler functions.
2711 * @hsotg: The HCD state structure
2713 * Return: The types of new transactions that were assigned to host channels
2715 enum dwc2_transaction_type
dwc2_hcd_select_transactions(
2716 struct dwc2_hsotg
*hsotg
)
2718 enum dwc2_transaction_type ret_val
= DWC2_TRANSACTION_NONE
;
2719 struct list_head
*qh_ptr
;
2723 #ifdef DWC2_DEBUG_SOF
2724 dev_vdbg(hsotg
->dev
, " Select Transactions\n");
2727 /* Process entries in the periodic ready list */
2728 qh_ptr
= hsotg
->periodic_sched_ready
.next
;
2729 while (qh_ptr
!= &hsotg
->periodic_sched_ready
) {
2730 if (list_empty(&hsotg
->free_hc_list
))
2732 if (hsotg
->params
.uframe_sched
) {
2733 if (hsotg
->available_host_channels
<= 1)
2735 hsotg
->available_host_channels
--;
2737 qh
= list_entry(qh_ptr
, struct dwc2_qh
, qh_list_entry
);
2738 if (dwc2_assign_and_init_hc(hsotg
, qh
))
2742 * Move the QH from the periodic ready schedule to the
2743 * periodic assigned schedule
2745 qh_ptr
= qh_ptr
->next
;
2746 list_move_tail(&qh
->qh_list_entry
,
2747 &hsotg
->periodic_sched_assigned
);
2748 ret_val
= DWC2_TRANSACTION_PERIODIC
;
2752 * Process entries in the inactive portion of the non-periodic
2753 * schedule. Some free host channels may not be used if they are
2754 * reserved for periodic transfers.
2756 num_channels
= hsotg
->params
.host_channels
;
2757 qh_ptr
= hsotg
->non_periodic_sched_inactive
.next
;
2758 while (qh_ptr
!= &hsotg
->non_periodic_sched_inactive
) {
2759 if (!hsotg
->params
.uframe_sched
&&
2760 hsotg
->non_periodic_channels
>= num_channels
-
2761 hsotg
->periodic_channels
)
2763 if (list_empty(&hsotg
->free_hc_list
))
2765 qh
= list_entry(qh_ptr
, struct dwc2_qh
, qh_list_entry
);
2766 if (hsotg
->params
.uframe_sched
) {
2767 if (hsotg
->available_host_channels
< 1)
2769 hsotg
->available_host_channels
--;
2772 if (dwc2_assign_and_init_hc(hsotg
, qh
))
2776 * Move the QH from the non-periodic inactive schedule to the
2777 * non-periodic active schedule
2779 qh_ptr
= qh_ptr
->next
;
2780 list_move_tail(&qh
->qh_list_entry
,
2781 &hsotg
->non_periodic_sched_active
);
2783 if (ret_val
== DWC2_TRANSACTION_NONE
)
2784 ret_val
= DWC2_TRANSACTION_NON_PERIODIC
;
2786 ret_val
= DWC2_TRANSACTION_ALL
;
2788 if (!hsotg
->params
.uframe_sched
)
2789 hsotg
->non_periodic_channels
++;
2796 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2797 * a host channel associated with either a periodic or non-periodic transfer
2799 * @hsotg: The HCD state structure
2800 * @chan: Host channel descriptor associated with either a periodic or
2801 * non-periodic transfer
2802 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2803 * for periodic transfers or the non-periodic Tx FIFO
2804 * for non-periodic transfers
2806 * Return: 1 if a request is queued and more requests may be needed to
2807 * complete the transfer, 0 if no more requests are required for this
2808 * transfer, -1 if there is insufficient space in the Tx FIFO
2810 * This function assumes that there is space available in the appropriate
2811 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2812 * it checks whether space is available in the appropriate Tx FIFO.
2814 * Must be called with interrupt disabled and spinlock held
2816 static int dwc2_queue_transaction(struct dwc2_hsotg
*hsotg
,
2817 struct dwc2_host_chan
*chan
,
2818 u16 fifo_dwords_avail
)
2823 /* Put ourselves on the list to keep order straight */
2824 list_move_tail(&chan
->split_order_list_entry
,
2825 &hsotg
->split_order
);
2827 if (hsotg
->params
.host_dma
) {
2828 if (hsotg
->params
.dma_desc_enable
) {
2829 if (!chan
->xfer_started
||
2830 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
2831 dwc2_hcd_start_xfer_ddma(hsotg
, chan
->qh
);
2832 chan
->qh
->ping_state
= 0;
2834 } else if (!chan
->xfer_started
) {
2835 dwc2_hc_start_transfer(hsotg
, chan
);
2836 chan
->qh
->ping_state
= 0;
2838 } else if (chan
->halt_pending
) {
2839 /* Don't queue a request if the channel has been halted */
2840 } else if (chan
->halt_on_queue
) {
2841 dwc2_hc_halt(hsotg
, chan
, chan
->halt_status
);
2842 } else if (chan
->do_ping
) {
2843 if (!chan
->xfer_started
)
2844 dwc2_hc_start_transfer(hsotg
, chan
);
2845 } else if (!chan
->ep_is_in
||
2846 chan
->data_pid_start
== DWC2_HC_PID_SETUP
) {
2847 if ((fifo_dwords_avail
* 4) >= chan
->max_packet
) {
2848 if (!chan
->xfer_started
) {
2849 dwc2_hc_start_transfer(hsotg
, chan
);
2852 retval
= dwc2_hc_continue_transfer(hsotg
, chan
);
2858 if (!chan
->xfer_started
) {
2859 dwc2_hc_start_transfer(hsotg
, chan
);
2862 retval
= dwc2_hc_continue_transfer(hsotg
, chan
);
2870 * Processes periodic channels for the next frame and queues transactions for
2871 * these channels to the DWC_otg controller. After queueing transactions, the
2872 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2873 * to queue as Periodic Tx FIFO or request queue space becomes available.
2874 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2876 * Must be called with interrupt disabled and spinlock held
2878 static void dwc2_process_periodic_channels(struct dwc2_hsotg
*hsotg
)
2880 struct list_head
*qh_ptr
;
2886 bool no_queue_space
= false;
2887 bool no_fifo_space
= false;
2890 /* If empty list then just adjust interrupt enables */
2891 if (list_empty(&hsotg
->periodic_sched_assigned
))
2895 dev_vdbg(hsotg
->dev
, "Queue periodic transactions\n");
2897 tx_status
= dwc2_readl(hsotg
, HPTXSTS
);
2898 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
2899 TXSTS_QSPCAVAIL_SHIFT
;
2900 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
2901 TXSTS_FSPCAVAIL_SHIFT
;
2904 dev_vdbg(hsotg
->dev
, " P Tx Req Queue Space Avail (before queue): %d\n",
2906 dev_vdbg(hsotg
->dev
, " P Tx FIFO Space Avail (before queue): %d\n",
2910 qh_ptr
= hsotg
->periodic_sched_assigned
.next
;
2911 while (qh_ptr
!= &hsotg
->periodic_sched_assigned
) {
2912 tx_status
= dwc2_readl(hsotg
, HPTXSTS
);
2913 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
2914 TXSTS_QSPCAVAIL_SHIFT
;
2915 if (qspcavail
== 0) {
2916 no_queue_space
= true;
2920 qh
= list_entry(qh_ptr
, struct dwc2_qh
, qh_list_entry
);
2922 qh_ptr
= qh_ptr
->next
;
2926 /* Make sure EP's TT buffer is clean before queueing qtds */
2927 if (qh
->tt_buffer_dirty
) {
2928 qh_ptr
= qh_ptr
->next
;
2933 * Set a flag if we're queuing high-bandwidth in slave mode.
2934 * The flag prevents any halts to get into the request queue in
2935 * the middle of multiple high-bandwidth packets getting queued.
2937 if (!hsotg
->params
.host_dma
&&
2938 qh
->channel
->multi_count
> 1)
2939 hsotg
->queuing_high_bandwidth
= 1;
2941 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
2942 TXSTS_FSPCAVAIL_SHIFT
;
2943 status
= dwc2_queue_transaction(hsotg
, qh
->channel
, fspcavail
);
2945 no_fifo_space
= true;
2950 * In Slave mode, stay on the current transfer until there is
2951 * nothing more to do or the high-bandwidth request count is
2952 * reached. In DMA mode, only need to queue one request. The
2953 * controller automatically handles multiple packets for
2954 * high-bandwidth transfers.
2956 if (hsotg
->params
.host_dma
|| status
== 0 ||
2957 qh
->channel
->requests
== qh
->channel
->multi_count
) {
2958 qh_ptr
= qh_ptr
->next
;
2960 * Move the QH from the periodic assigned schedule to
2961 * the periodic queued schedule
2963 list_move_tail(&qh
->qh_list_entry
,
2964 &hsotg
->periodic_sched_queued
);
2966 /* done queuing high bandwidth */
2967 hsotg
->queuing_high_bandwidth
= 0;
2972 if (no_queue_space
|| no_fifo_space
||
2973 (!hsotg
->params
.host_dma
&&
2974 !list_empty(&hsotg
->periodic_sched_assigned
))) {
2976 * May need to queue more transactions as the request
2977 * queue or Tx FIFO empties. Enable the periodic Tx
2978 * FIFO empty interrupt. (Always use the half-empty
2979 * level to ensure that new requests are loaded as
2980 * soon as possible.)
2982 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
2983 if (!(gintmsk
& GINTSTS_PTXFEMP
)) {
2984 gintmsk
|= GINTSTS_PTXFEMP
;
2985 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
2989 * Disable the Tx FIFO empty interrupt since there are
2990 * no more transactions that need to be queued right
2991 * now. This function is called from interrupt
2992 * handlers to queue more transactions as transfer
2995 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
2996 if (gintmsk
& GINTSTS_PTXFEMP
) {
2997 gintmsk
&= ~GINTSTS_PTXFEMP
;
2998 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3004 * Processes active non-periodic channels and queues transactions for these
3005 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3006 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3007 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3008 * FIFO Empty interrupt is disabled.
3010 * Must be called with interrupt disabled and spinlock held
3012 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg
*hsotg
)
3014 struct list_head
*orig_qh_ptr
;
3021 int no_queue_space
= 0;
3022 int no_fifo_space
= 0;
3025 dev_vdbg(hsotg
->dev
, "Queue non-periodic transactions\n");
3027 tx_status
= dwc2_readl(hsotg
, GNPTXSTS
);
3028 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3029 TXSTS_QSPCAVAIL_SHIFT
;
3030 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3031 TXSTS_FSPCAVAIL_SHIFT
;
3032 dev_vdbg(hsotg
->dev
, " NP Tx Req Queue Space Avail (before queue): %d\n",
3034 dev_vdbg(hsotg
->dev
, " NP Tx FIFO Space Avail (before queue): %d\n",
3038 * Keep track of the starting point. Skip over the start-of-list
3041 if (hsotg
->non_periodic_qh_ptr
== &hsotg
->non_periodic_sched_active
)
3042 hsotg
->non_periodic_qh_ptr
= hsotg
->non_periodic_qh_ptr
->next
;
3043 orig_qh_ptr
= hsotg
->non_periodic_qh_ptr
;
3046 * Process once through the active list or until no more space is
3047 * available in the request queue or the Tx FIFO
3050 tx_status
= dwc2_readl(hsotg
, GNPTXSTS
);
3051 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3052 TXSTS_QSPCAVAIL_SHIFT
;
3053 if (!hsotg
->params
.host_dma
&& qspcavail
== 0) {
3058 qh
= list_entry(hsotg
->non_periodic_qh_ptr
, struct dwc2_qh
,
3063 /* Make sure EP's TT buffer is clean before queueing qtds */
3064 if (qh
->tt_buffer_dirty
)
3067 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3068 TXSTS_FSPCAVAIL_SHIFT
;
3069 status
= dwc2_queue_transaction(hsotg
, qh
->channel
, fspcavail
);
3073 } else if (status
< 0) {
3078 /* Advance to next QH, skipping start-of-list entry */
3079 hsotg
->non_periodic_qh_ptr
= hsotg
->non_periodic_qh_ptr
->next
;
3080 if (hsotg
->non_periodic_qh_ptr
==
3081 &hsotg
->non_periodic_sched_active
)
3082 hsotg
->non_periodic_qh_ptr
=
3083 hsotg
->non_periodic_qh_ptr
->next
;
3084 } while (hsotg
->non_periodic_qh_ptr
!= orig_qh_ptr
);
3086 if (!hsotg
->params
.host_dma
) {
3087 tx_status
= dwc2_readl(hsotg
, GNPTXSTS
);
3088 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3089 TXSTS_QSPCAVAIL_SHIFT
;
3090 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3091 TXSTS_FSPCAVAIL_SHIFT
;
3092 dev_vdbg(hsotg
->dev
,
3093 " NP Tx Req Queue Space Avail (after queue): %d\n",
3095 dev_vdbg(hsotg
->dev
,
3096 " NP Tx FIFO Space Avail (after queue): %d\n",
3099 if (more_to_do
|| no_queue_space
|| no_fifo_space
) {
3101 * May need to queue more transactions as the request
3102 * queue or Tx FIFO empties. Enable the non-periodic
3103 * Tx FIFO empty interrupt. (Always use the half-empty
3104 * level to ensure that new requests are loaded as
3105 * soon as possible.)
3107 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3108 gintmsk
|= GINTSTS_NPTXFEMP
;
3109 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3112 * Disable the Tx FIFO empty interrupt since there are
3113 * no more transactions that need to be queued right
3114 * now. This function is called from interrupt
3115 * handlers to queue more transactions as transfer
3118 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3119 gintmsk
&= ~GINTSTS_NPTXFEMP
;
3120 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3126 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3127 * and queues transactions for these channels to the DWC_otg controller. Called
3128 * from the HCD interrupt handler functions.
3130 * @hsotg: The HCD state structure
3131 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3134 * Must be called with interrupt disabled and spinlock held
3136 void dwc2_hcd_queue_transactions(struct dwc2_hsotg
*hsotg
,
3137 enum dwc2_transaction_type tr_type
)
3139 #ifdef DWC2_DEBUG_SOF
3140 dev_vdbg(hsotg
->dev
, "Queue Transactions\n");
3142 /* Process host channels associated with periodic transfers */
3143 if (tr_type
== DWC2_TRANSACTION_PERIODIC
||
3144 tr_type
== DWC2_TRANSACTION_ALL
)
3145 dwc2_process_periodic_channels(hsotg
);
3147 /* Process host channels associated with non-periodic transfers */
3148 if (tr_type
== DWC2_TRANSACTION_NON_PERIODIC
||
3149 tr_type
== DWC2_TRANSACTION_ALL
) {
3150 if (!list_empty(&hsotg
->non_periodic_sched_active
)) {
3151 dwc2_process_non_periodic_channels(hsotg
);
3154 * Ensure NP Tx FIFO empty interrupt is disabled when
3155 * there are no non-periodic transfers to process
3157 u32 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3159 gintmsk
&= ~GINTSTS_NPTXFEMP
;
3160 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3165 static void dwc2_conn_id_status_change(struct work_struct
*work
)
3167 struct dwc2_hsotg
*hsotg
= container_of(work
, struct dwc2_hsotg
,
3171 unsigned long flags
;
3173 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
3175 gotgctl
= dwc2_readl(hsotg
, GOTGCTL
);
3176 dev_dbg(hsotg
->dev
, "gotgctl=%0x\n", gotgctl
);
3177 dev_dbg(hsotg
->dev
, "gotgctl.b.conidsts=%d\n",
3178 !!(gotgctl
& GOTGCTL_CONID_B
));
3180 /* B-Device connector (Device Mode) */
3181 if (gotgctl
& GOTGCTL_CONID_B
) {
3182 dwc2_vbus_supply_exit(hsotg
);
3183 /* Wait for switch to device mode */
3184 dev_dbg(hsotg
->dev
, "connId B\n");
3185 if (hsotg
->bus_suspended
) {
3186 dev_info(hsotg
->dev
,
3187 "Do port resume before switching to device mode\n");
3188 dwc2_port_resume(hsotg
);
3190 while (!dwc2_is_device_mode(hsotg
)) {
3191 dev_info(hsotg
->dev
,
3192 "Waiting for Peripheral Mode, Mode=%s\n",
3193 dwc2_is_host_mode(hsotg
) ? "Host" :
3197 * Sometimes the initial GOTGCTRL read is wrong, so
3198 * check it again and jump to host mode if that was
3201 gotgctl
= dwc2_readl(hsotg
, GOTGCTL
);
3202 if (!(gotgctl
& GOTGCTL_CONID_B
))
3209 "Connection id status change timed out\n");
3210 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
3211 dwc2_core_init(hsotg
, false);
3212 dwc2_enable_global_interrupts(hsotg
);
3213 spin_lock_irqsave(&hsotg
->lock
, flags
);
3214 dwc2_hsotg_core_init_disconnected(hsotg
, false);
3215 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3216 /* Enable ACG feature in device mode,if supported */
3217 dwc2_enable_acg(hsotg
);
3218 dwc2_hsotg_core_connect(hsotg
);
3221 /* A-Device connector (Host Mode) */
3222 dev_dbg(hsotg
->dev
, "connId A\n");
3223 while (!dwc2_is_host_mode(hsotg
)) {
3224 dev_info(hsotg
->dev
, "Waiting for Host Mode, Mode=%s\n",
3225 dwc2_is_host_mode(hsotg
) ?
3226 "Host" : "Peripheral");
3233 "Connection id status change timed out\n");
3235 spin_lock_irqsave(&hsotg
->lock
, flags
);
3236 dwc2_hsotg_disconnect(hsotg
);
3237 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3239 hsotg
->op_state
= OTG_STATE_A_HOST
;
3240 /* Initialize the Core for Host mode */
3241 dwc2_core_init(hsotg
, false);
3242 dwc2_enable_global_interrupts(hsotg
);
3243 dwc2_hcd_start(hsotg
);
3247 static void dwc2_wakeup_detected(struct timer_list
*t
)
3249 struct dwc2_hsotg
*hsotg
= from_timer(hsotg
, t
, wkp_timer
);
3252 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
3255 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3256 * so that OPT tests pass with all PHYs.)
3258 hprt0
= dwc2_read_hprt0(hsotg
);
3259 dev_dbg(hsotg
->dev
, "Resume: HPRT0=%0x\n", hprt0
);
3260 hprt0
&= ~HPRT0_RES
;
3261 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3262 dev_dbg(hsotg
->dev
, "Clear Resume: HPRT0=%0x\n",
3263 dwc2_readl(hsotg
, HPRT0
));
3265 dwc2_hcd_rem_wakeup(hsotg
);
3266 hsotg
->bus_suspended
= false;
3268 /* Change to L0 state */
3269 hsotg
->lx_state
= DWC2_L0
;
3272 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg
*hsotg
)
3274 struct usb_hcd
*hcd
= dwc2_hsotg_to_hcd(hsotg
);
3276 return hcd
->self
.b_hnp_enable
;
3279 /* Must NOT be called with interrupt disabled or spinlock held */
3280 static void dwc2_port_suspend(struct dwc2_hsotg
*hsotg
, u16 windex
)
3282 unsigned long flags
;
3287 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
3289 spin_lock_irqsave(&hsotg
->lock
, flags
);
3291 if (windex
== hsotg
->otg_port
&& dwc2_host_is_b_hnp_enabled(hsotg
)) {
3292 gotgctl
= dwc2_readl(hsotg
, GOTGCTL
);
3293 gotgctl
|= GOTGCTL_HSTSETHNPEN
;
3294 dwc2_writel(hsotg
, gotgctl
, GOTGCTL
);
3295 hsotg
->op_state
= OTG_STATE_A_SUSPEND
;
3298 hprt0
= dwc2_read_hprt0(hsotg
);
3299 hprt0
|= HPRT0_SUSP
;
3300 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3302 hsotg
->bus_suspended
= true;
3305 * If power_down is supported, Phy clock will be suspended
3306 * after registers are backuped.
3308 if (!hsotg
->params
.power_down
) {
3309 /* Suspend the Phy Clock */
3310 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
3311 pcgctl
|= PCGCTL_STOPPCLK
;
3312 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
3316 /* For HNP the bus must be suspended for at least 200ms */
3317 if (dwc2_host_is_b_hnp_enabled(hsotg
)) {
3318 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
3319 pcgctl
&= ~PCGCTL_STOPPCLK
;
3320 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
3322 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3326 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3330 /* Must NOT be called with interrupt disabled or spinlock held */
3331 static void dwc2_port_resume(struct dwc2_hsotg
*hsotg
)
3333 unsigned long flags
;
3337 spin_lock_irqsave(&hsotg
->lock
, flags
);
3340 * If power_down is supported, Phy clock is already resumed
3341 * after registers restore.
3343 if (!hsotg
->params
.power_down
) {
3344 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
3345 pcgctl
&= ~PCGCTL_STOPPCLK
;
3346 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
3347 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3349 spin_lock_irqsave(&hsotg
->lock
, flags
);
3352 hprt0
= dwc2_read_hprt0(hsotg
);
3354 hprt0
&= ~HPRT0_SUSP
;
3355 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3356 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3358 msleep(USB_RESUME_TIMEOUT
);
3360 spin_lock_irqsave(&hsotg
->lock
, flags
);
3361 hprt0
= dwc2_read_hprt0(hsotg
);
3362 hprt0
&= ~(HPRT0_RES
| HPRT0_SUSP
);
3363 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3364 hsotg
->bus_suspended
= false;
3365 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3368 /* Handles hub class-specific requests */
3369 static int dwc2_hcd_hub_control(struct dwc2_hsotg
*hsotg
, u16 typereq
,
3370 u16 wvalue
, u16 windex
, char *buf
, u16 wlength
)
3372 struct usb_hub_descriptor
*hub_desc
;
3381 case ClearHubFeature
:
3382 dev_dbg(hsotg
->dev
, "ClearHubFeature %1xh\n", wvalue
);
3385 case C_HUB_LOCAL_POWER
:
3386 case C_HUB_OVER_CURRENT
:
3387 /* Nothing required here */
3393 "ClearHubFeature request %1xh unknown\n",
3398 case ClearPortFeature
:
3399 if (wvalue
!= USB_PORT_FEAT_L1
)
3400 if (!windex
|| windex
> 1)
3403 case USB_PORT_FEAT_ENABLE
:
3405 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3406 hprt0
= dwc2_read_hprt0(hsotg
);
3408 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3411 case USB_PORT_FEAT_SUSPEND
:
3413 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3415 if (hsotg
->bus_suspended
) {
3416 if (hsotg
->hibernated
)
3417 dwc2_exit_hibernation(hsotg
, 0, 0, 1);
3419 dwc2_port_resume(hsotg
);
3423 case USB_PORT_FEAT_POWER
:
3425 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3426 hprt0
= dwc2_read_hprt0(hsotg
);
3427 pwr
= hprt0
& HPRT0_PWR
;
3428 hprt0
&= ~HPRT0_PWR
;
3429 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3431 dwc2_vbus_supply_exit(hsotg
);
3434 case USB_PORT_FEAT_INDICATOR
:
3436 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3437 /* Port indicator not supported */
3440 case USB_PORT_FEAT_C_CONNECTION
:
3442 * Clears driver's internal Connect Status Change flag
3445 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3446 hsotg
->flags
.b
.port_connect_status_change
= 0;
3449 case USB_PORT_FEAT_C_RESET
:
3450 /* Clears driver's internal Port Reset Change flag */
3452 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3453 hsotg
->flags
.b
.port_reset_change
= 0;
3456 case USB_PORT_FEAT_C_ENABLE
:
3458 * Clears the driver's internal Port Enable/Disable
3462 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3463 hsotg
->flags
.b
.port_enable_change
= 0;
3466 case USB_PORT_FEAT_C_SUSPEND
:
3468 * Clears the driver's internal Port Suspend Change
3469 * flag, which is set when resume signaling on the host
3473 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3474 hsotg
->flags
.b
.port_suspend_change
= 0;
3477 case USB_PORT_FEAT_C_PORT_L1
:
3479 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3480 hsotg
->flags
.b
.port_l1_change
= 0;
3483 case USB_PORT_FEAT_C_OVER_CURRENT
:
3485 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3486 hsotg
->flags
.b
.port_over_current_change
= 0;
3492 "ClearPortFeature request %1xh unknown or unsupported\n",
3497 case GetHubDescriptor
:
3498 dev_dbg(hsotg
->dev
, "GetHubDescriptor\n");
3499 hub_desc
= (struct usb_hub_descriptor
*)buf
;
3500 hub_desc
->bDescLength
= 9;
3501 hub_desc
->bDescriptorType
= USB_DT_HUB
;
3502 hub_desc
->bNbrPorts
= 1;
3503 hub_desc
->wHubCharacteristics
=
3504 cpu_to_le16(HUB_CHAR_COMMON_LPSM
|
3505 HUB_CHAR_INDV_PORT_OCPM
);
3506 hub_desc
->bPwrOn2PwrGood
= 1;
3507 hub_desc
->bHubContrCurrent
= 0;
3508 hub_desc
->u
.hs
.DeviceRemovable
[0] = 0;
3509 hub_desc
->u
.hs
.DeviceRemovable
[1] = 0xff;
3513 dev_dbg(hsotg
->dev
, "GetHubStatus\n");
3518 dev_vdbg(hsotg
->dev
,
3519 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex
,
3521 if (!windex
|| windex
> 1)
3525 if (hsotg
->flags
.b
.port_connect_status_change
)
3526 port_status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
3527 if (hsotg
->flags
.b
.port_enable_change
)
3528 port_status
|= USB_PORT_STAT_C_ENABLE
<< 16;
3529 if (hsotg
->flags
.b
.port_suspend_change
)
3530 port_status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
3531 if (hsotg
->flags
.b
.port_l1_change
)
3532 port_status
|= USB_PORT_STAT_C_L1
<< 16;
3533 if (hsotg
->flags
.b
.port_reset_change
)
3534 port_status
|= USB_PORT_STAT_C_RESET
<< 16;
3535 if (hsotg
->flags
.b
.port_over_current_change
) {
3536 dev_warn(hsotg
->dev
, "Overcurrent change detected\n");
3537 port_status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
3540 if (!hsotg
->flags
.b
.port_connect_status
) {
3542 * The port is disconnected, which means the core is
3543 * either in device mode or it soon will be. Just
3544 * return 0's for the remainder of the port status
3545 * since the port register can't be read if the core
3546 * is in device mode.
3548 *(__le32
*)buf
= cpu_to_le32(port_status
);
3552 hprt0
= dwc2_readl(hsotg
, HPRT0
);
3553 dev_vdbg(hsotg
->dev
, " HPRT0: 0x%08x\n", hprt0
);
3555 if (hprt0
& HPRT0_CONNSTS
)
3556 port_status
|= USB_PORT_STAT_CONNECTION
;
3557 if (hprt0
& HPRT0_ENA
)
3558 port_status
|= USB_PORT_STAT_ENABLE
;
3559 if (hprt0
& HPRT0_SUSP
)
3560 port_status
|= USB_PORT_STAT_SUSPEND
;
3561 if (hprt0
& HPRT0_OVRCURRACT
)
3562 port_status
|= USB_PORT_STAT_OVERCURRENT
;
3563 if (hprt0
& HPRT0_RST
)
3564 port_status
|= USB_PORT_STAT_RESET
;
3565 if (hprt0
& HPRT0_PWR
)
3566 port_status
|= USB_PORT_STAT_POWER
;
3568 speed
= (hprt0
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
;
3569 if (speed
== HPRT0_SPD_HIGH_SPEED
)
3570 port_status
|= USB_PORT_STAT_HIGH_SPEED
;
3571 else if (speed
== HPRT0_SPD_LOW_SPEED
)
3572 port_status
|= USB_PORT_STAT_LOW_SPEED
;
3574 if (hprt0
& HPRT0_TSTCTL_MASK
)
3575 port_status
|= USB_PORT_STAT_TEST
;
3576 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3578 if (hsotg
->params
.dma_desc_fs_enable
) {
3580 * Enable descriptor DMA only if a full speed
3581 * device is connected.
3583 if (hsotg
->new_connection
&&
3585 (USB_PORT_STAT_CONNECTION
|
3586 USB_PORT_STAT_HIGH_SPEED
|
3587 USB_PORT_STAT_LOW_SPEED
)) ==
3588 USB_PORT_STAT_CONNECTION
)) {
3591 dev_info(hsotg
->dev
, "Enabling descriptor DMA mode\n");
3592 hsotg
->params
.dma_desc_enable
= true;
3593 hcfg
= dwc2_readl(hsotg
, HCFG
);
3594 hcfg
|= HCFG_DESCDMA
;
3595 dwc2_writel(hsotg
, hcfg
, HCFG
);
3596 hsotg
->new_connection
= false;
3600 dev_vdbg(hsotg
->dev
, "port_status=%08x\n", port_status
);
3601 *(__le32
*)buf
= cpu_to_le32(port_status
);
3605 dev_dbg(hsotg
->dev
, "SetHubFeature\n");
3606 /* No HUB features supported */
3609 case SetPortFeature
:
3610 dev_dbg(hsotg
->dev
, "SetPortFeature\n");
3611 if (wvalue
!= USB_PORT_FEAT_TEST
&& (!windex
|| windex
> 1))
3614 if (!hsotg
->flags
.b
.port_connect_status
) {
3616 * The port is disconnected, which means the core is
3617 * either in device mode or it soon will be. Just
3618 * return without doing anything since the port
3619 * register can't be written if the core is in device
3626 case USB_PORT_FEAT_SUSPEND
:
3628 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3629 if (windex
!= hsotg
->otg_port
)
3631 if (hsotg
->params
.power_down
== 2)
3632 dwc2_enter_hibernation(hsotg
, 1);
3634 dwc2_port_suspend(hsotg
, windex
);
3637 case USB_PORT_FEAT_POWER
:
3639 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3640 hprt0
= dwc2_read_hprt0(hsotg
);
3641 pwr
= hprt0
& HPRT0_PWR
;
3643 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3645 dwc2_vbus_supply_init(hsotg
);
3648 case USB_PORT_FEAT_RESET
:
3649 if (hsotg
->params
.power_down
== 2 &&
3651 dwc2_exit_hibernation(hsotg
, 0, 1, 1);
3652 hprt0
= dwc2_read_hprt0(hsotg
);
3654 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3655 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
3656 pcgctl
&= ~(PCGCTL_ENBL_SLEEP_GATING
| PCGCTL_STOPPCLK
);
3657 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
3658 /* ??? Original driver does this */
3659 dwc2_writel(hsotg
, 0, PCGCTL
);
3661 hprt0
= dwc2_read_hprt0(hsotg
);
3662 pwr
= hprt0
& HPRT0_PWR
;
3663 /* Clear suspend bit if resetting from suspend state */
3664 hprt0
&= ~HPRT0_SUSP
;
3667 * When B-Host the Port reset bit is set in the Start
3668 * HCD Callback function, so that the reset is started
3669 * within 1ms of the HNP success interrupt
3671 if (!dwc2_hcd_is_b_host(hsotg
)) {
3672 hprt0
|= HPRT0_PWR
| HPRT0_RST
;
3674 "In host mode, hprt0=%08x\n", hprt0
);
3675 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3677 dwc2_vbus_supply_init(hsotg
);
3680 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3682 hprt0
&= ~HPRT0_RST
;
3683 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3684 hsotg
->lx_state
= DWC2_L0
; /* Now back to On state */
3687 case USB_PORT_FEAT_INDICATOR
:
3689 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3693 case USB_PORT_FEAT_TEST
:
3694 hprt0
= dwc2_read_hprt0(hsotg
);
3696 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3697 hprt0
&= ~HPRT0_TSTCTL_MASK
;
3698 hprt0
|= (windex
>> 8) << HPRT0_TSTCTL_SHIFT
;
3699 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3705 "SetPortFeature %1xh unknown or unsupported\n",
3715 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3716 typereq
, windex
, wvalue
);
3723 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg
*hsotg
, int port
)
3730 retval
= (hsotg
->flags
.b
.port_connect_status_change
||
3731 hsotg
->flags
.b
.port_reset_change
||
3732 hsotg
->flags
.b
.port_enable_change
||
3733 hsotg
->flags
.b
.port_suspend_change
||
3734 hsotg
->flags
.b
.port_over_current_change
);
3738 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3739 dev_dbg(hsotg
->dev
, " port_connect_status_change: %d\n",
3740 hsotg
->flags
.b
.port_connect_status_change
);
3741 dev_dbg(hsotg
->dev
, " port_reset_change: %d\n",
3742 hsotg
->flags
.b
.port_reset_change
);
3743 dev_dbg(hsotg
->dev
, " port_enable_change: %d\n",
3744 hsotg
->flags
.b
.port_enable_change
);
3745 dev_dbg(hsotg
->dev
, " port_suspend_change: %d\n",
3746 hsotg
->flags
.b
.port_suspend_change
);
3747 dev_dbg(hsotg
->dev
, " port_over_current_change: %d\n",
3748 hsotg
->flags
.b
.port_over_current_change
);
3754 int dwc2_hcd_get_frame_number(struct dwc2_hsotg
*hsotg
)
3756 u32 hfnum
= dwc2_readl(hsotg
, HFNUM
);
3758 #ifdef DWC2_DEBUG_SOF
3759 dev_vdbg(hsotg
->dev
, "DWC OTG HCD GET FRAME NUMBER %d\n",
3760 (hfnum
& HFNUM_FRNUM_MASK
) >> HFNUM_FRNUM_SHIFT
);
3762 return (hfnum
& HFNUM_FRNUM_MASK
) >> HFNUM_FRNUM_SHIFT
;
3765 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg
*hsotg
, int us
)
3767 u32 hprt
= dwc2_readl(hsotg
, HPRT0
);
3768 u32 hfir
= dwc2_readl(hsotg
, HFIR
);
3769 u32 hfnum
= dwc2_readl(hsotg
, HFNUM
);
3770 unsigned int us_per_frame
;
3771 unsigned int frame_number
;
3772 unsigned int remaining
;
3773 unsigned int interval
;
3774 unsigned int phy_clks
;
3776 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3777 us_per_frame
= (hprt
& HPRT0_SPD_MASK
) ? 1000 : 125;
3779 /* Extract fields */
3780 frame_number
= (hfnum
& HFNUM_FRNUM_MASK
) >> HFNUM_FRNUM_SHIFT
;
3781 remaining
= (hfnum
& HFNUM_FRREM_MASK
) >> HFNUM_FRREM_SHIFT
;
3782 interval
= (hfir
& HFIR_FRINT_MASK
) >> HFIR_FRINT_SHIFT
;
3785 * Number of phy clocks since the last tick of the frame number after
3788 phy_clks
= (interval
- remaining
) +
3789 DIV_ROUND_UP(interval
* us
, us_per_frame
);
3791 return dwc2_frame_num_inc(frame_number
, phy_clks
/ interval
);
3794 int dwc2_hcd_is_b_host(struct dwc2_hsotg
*hsotg
)
3796 return hsotg
->op_state
== OTG_STATE_B_HOST
;
3799 static struct dwc2_hcd_urb
*dwc2_hcd_urb_alloc(struct dwc2_hsotg
*hsotg
,
3803 struct dwc2_hcd_urb
*urb
;
3805 urb
= kzalloc(struct_size(urb
, iso_descs
, iso_desc_count
), mem_flags
);
3807 urb
->packet_count
= iso_desc_count
;
3811 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg
*hsotg
,
3812 struct dwc2_hcd_urb
*urb
, u8 dev_addr
,
3813 u8 ep_num
, u8 ep_type
, u8 ep_dir
,
3814 u16 maxp
, u16 maxp_mult
)
3817 ep_type
== USB_ENDPOINT_XFER_BULK
||
3818 ep_type
== USB_ENDPOINT_XFER_CONTROL
)
3819 dev_vdbg(hsotg
->dev
,
3820 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3821 dev_addr
, ep_num
, ep_dir
, ep_type
, maxp
, maxp_mult
);
3822 urb
->pipe_info
.dev_addr
= dev_addr
;
3823 urb
->pipe_info
.ep_num
= ep_num
;
3824 urb
->pipe_info
.pipe_type
= ep_type
;
3825 urb
->pipe_info
.pipe_dir
= ep_dir
;
3826 urb
->pipe_info
.maxp
= maxp
;
3827 urb
->pipe_info
.maxp_mult
= maxp_mult
;
3831 * NOTE: This function will be removed once the peripheral controller code
3832 * is integrated and the driver is stable
3834 void dwc2_hcd_dump_state(struct dwc2_hsotg
*hsotg
)
3837 struct dwc2_host_chan
*chan
;
3838 struct dwc2_hcd_urb
*urb
;
3839 struct dwc2_qtd
*qtd
;
3845 num_channels
= hsotg
->params
.host_channels
;
3846 dev_dbg(hsotg
->dev
, "\n");
3848 "************************************************************\n");
3849 dev_dbg(hsotg
->dev
, "HCD State:\n");
3850 dev_dbg(hsotg
->dev
, " Num channels: %d\n", num_channels
);
3852 for (i
= 0; i
< num_channels
; i
++) {
3853 chan
= hsotg
->hc_ptr_array
[i
];
3854 dev_dbg(hsotg
->dev
, " Channel %d:\n", i
);
3856 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3857 chan
->dev_addr
, chan
->ep_num
, chan
->ep_is_in
);
3858 dev_dbg(hsotg
->dev
, " speed: %d\n", chan
->speed
);
3859 dev_dbg(hsotg
->dev
, " ep_type: %d\n", chan
->ep_type
);
3860 dev_dbg(hsotg
->dev
, " max_packet: %d\n", chan
->max_packet
);
3861 dev_dbg(hsotg
->dev
, " data_pid_start: %d\n",
3862 chan
->data_pid_start
);
3863 dev_dbg(hsotg
->dev
, " multi_count: %d\n", chan
->multi_count
);
3864 dev_dbg(hsotg
->dev
, " xfer_started: %d\n",
3865 chan
->xfer_started
);
3866 dev_dbg(hsotg
->dev
, " xfer_buf: %p\n", chan
->xfer_buf
);
3867 dev_dbg(hsotg
->dev
, " xfer_dma: %08lx\n",
3868 (unsigned long)chan
->xfer_dma
);
3869 dev_dbg(hsotg
->dev
, " xfer_len: %d\n", chan
->xfer_len
);
3870 dev_dbg(hsotg
->dev
, " xfer_count: %d\n", chan
->xfer_count
);
3871 dev_dbg(hsotg
->dev
, " halt_on_queue: %d\n",
3872 chan
->halt_on_queue
);
3873 dev_dbg(hsotg
->dev
, " halt_pending: %d\n",
3874 chan
->halt_pending
);
3875 dev_dbg(hsotg
->dev
, " halt_status: %d\n", chan
->halt_status
);
3876 dev_dbg(hsotg
->dev
, " do_split: %d\n", chan
->do_split
);
3877 dev_dbg(hsotg
->dev
, " complete_split: %d\n",
3878 chan
->complete_split
);
3879 dev_dbg(hsotg
->dev
, " hub_addr: %d\n", chan
->hub_addr
);
3880 dev_dbg(hsotg
->dev
, " hub_port: %d\n", chan
->hub_port
);
3881 dev_dbg(hsotg
->dev
, " xact_pos: %d\n", chan
->xact_pos
);
3882 dev_dbg(hsotg
->dev
, " requests: %d\n", chan
->requests
);
3883 dev_dbg(hsotg
->dev
, " qh: %p\n", chan
->qh
);
3885 if (chan
->xfer_started
) {
3886 u32 hfnum
, hcchar
, hctsiz
, hcint
, hcintmsk
;
3888 hfnum
= dwc2_readl(hsotg
, HFNUM
);
3889 hcchar
= dwc2_readl(hsotg
, HCCHAR(i
));
3890 hctsiz
= dwc2_readl(hsotg
, HCTSIZ(i
));
3891 hcint
= dwc2_readl(hsotg
, HCINT(i
));
3892 hcintmsk
= dwc2_readl(hsotg
, HCINTMSK(i
));
3893 dev_dbg(hsotg
->dev
, " hfnum: 0x%08x\n", hfnum
);
3894 dev_dbg(hsotg
->dev
, " hcchar: 0x%08x\n", hcchar
);
3895 dev_dbg(hsotg
->dev
, " hctsiz: 0x%08x\n", hctsiz
);
3896 dev_dbg(hsotg
->dev
, " hcint: 0x%08x\n", hcint
);
3897 dev_dbg(hsotg
->dev
, " hcintmsk: 0x%08x\n", hcintmsk
);
3900 if (!(chan
->xfer_started
&& chan
->qh
))
3903 list_for_each_entry(qtd
, &chan
->qh
->qtd_list
, qtd_list_entry
) {
3904 if (!qtd
->in_process
)
3907 dev_dbg(hsotg
->dev
, " URB Info:\n");
3908 dev_dbg(hsotg
->dev
, " qtd: %p, urb: %p\n",
3912 " Dev: %d, EP: %d %s\n",
3913 dwc2_hcd_get_dev_addr(&urb
->pipe_info
),
3914 dwc2_hcd_get_ep_num(&urb
->pipe_info
),
3915 dwc2_hcd_is_pipe_in(&urb
->pipe_info
) ?
3918 " Max packet size: %d (%d mult)\n",
3919 dwc2_hcd_get_maxp(&urb
->pipe_info
),
3920 dwc2_hcd_get_maxp_mult(&urb
->pipe_info
));
3922 " transfer_buffer: %p\n",
3925 " transfer_dma: %08lx\n",
3926 (unsigned long)urb
->dma
);
3928 " transfer_buffer_length: %d\n",
3930 dev_dbg(hsotg
->dev
, " actual_length: %d\n",
3931 urb
->actual_length
);
3936 dev_dbg(hsotg
->dev
, " non_periodic_channels: %d\n",
3937 hsotg
->non_periodic_channels
);
3938 dev_dbg(hsotg
->dev
, " periodic_channels: %d\n",
3939 hsotg
->periodic_channels
);
3940 dev_dbg(hsotg
->dev
, " periodic_usecs: %d\n", hsotg
->periodic_usecs
);
3941 np_tx_status
= dwc2_readl(hsotg
, GNPTXSTS
);
3942 dev_dbg(hsotg
->dev
, " NP Tx Req Queue Space Avail: %d\n",
3943 (np_tx_status
& TXSTS_QSPCAVAIL_MASK
) >> TXSTS_QSPCAVAIL_SHIFT
);
3944 dev_dbg(hsotg
->dev
, " NP Tx FIFO Space Avail: %d\n",
3945 (np_tx_status
& TXSTS_FSPCAVAIL_MASK
) >> TXSTS_FSPCAVAIL_SHIFT
);
3946 p_tx_status
= dwc2_readl(hsotg
, HPTXSTS
);
3947 dev_dbg(hsotg
->dev
, " P Tx Req Queue Space Avail: %d\n",
3948 (p_tx_status
& TXSTS_QSPCAVAIL_MASK
) >> TXSTS_QSPCAVAIL_SHIFT
);
3949 dev_dbg(hsotg
->dev
, " P Tx FIFO Space Avail: %d\n",
3950 (p_tx_status
& TXSTS_FSPCAVAIL_MASK
) >> TXSTS_FSPCAVAIL_SHIFT
);
3951 dwc2_dump_global_registers(hsotg
);
3952 dwc2_dump_host_registers(hsotg
);
3954 "************************************************************\n");
3955 dev_dbg(hsotg
->dev
, "\n");
3959 struct wrapper_priv_data
{
3960 struct dwc2_hsotg
*hsotg
;
3963 /* Gets the dwc2_hsotg from a usb_hcd */
3964 static struct dwc2_hsotg
*dwc2_hcd_to_hsotg(struct usb_hcd
*hcd
)
3966 struct wrapper_priv_data
*p
;
3968 p
= (struct wrapper_priv_data
*)&hcd
->hcd_priv
;
3973 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3975 * This will get the dwc2_tt structure (and ttport) associated with the given
3976 * context (which is really just a struct urb pointer).
3978 * The first time this is called for a given TT we allocate memory for our
3979 * structure. When everyone is done and has called dwc2_host_put_tt_info()
3980 * then the refcount for the structure will go to 0 and we'll free it.
3982 * @hsotg: The HCD state structure for the DWC OTG controller.
3983 * @context: The priv pointer from a struct dwc2_hcd_urb.
3984 * @mem_flags: Flags for allocating memory.
3985 * @ttport: We'll return this device's port number here. That's used to
3986 * reference into the bitmap if we're on a multi_tt hub.
3988 * Return: a pointer to a struct dwc2_tt. Don't forget to call
3989 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
3992 struct dwc2_tt
*dwc2_host_get_tt_info(struct dwc2_hsotg
*hsotg
, void *context
,
3993 gfp_t mem_flags
, int *ttport
)
3995 struct urb
*urb
= context
;
3996 struct dwc2_tt
*dwc_tt
= NULL
;
3999 *ttport
= urb
->dev
->ttport
;
4001 dwc_tt
= urb
->dev
->tt
->hcpriv
;
4006 * For single_tt we need one schedule. For multi_tt
4007 * we need one per port.
4009 bitmap_size
= DWC2_ELEMENTS_PER_LS_BITMAP
*
4010 sizeof(dwc_tt
->periodic_bitmaps
[0]);
4011 if (urb
->dev
->tt
->multi
)
4012 bitmap_size
*= urb
->dev
->tt
->hub
->maxchild
;
4014 dwc_tt
= kzalloc(sizeof(*dwc_tt
) + bitmap_size
,
4019 dwc_tt
->usb_tt
= urb
->dev
->tt
;
4020 dwc_tt
->usb_tt
->hcpriv
= dwc_tt
;
4030 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4032 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4033 * of the structure are done.
4035 * It's OK to call this with NULL.
4037 * @hsotg: The HCD state structure for the DWC OTG controller.
4038 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4040 void dwc2_host_put_tt_info(struct dwc2_hsotg
*hsotg
, struct dwc2_tt
*dwc_tt
)
4042 /* Model kfree and make put of NULL a no-op */
4046 WARN_ON(dwc_tt
->refcount
< 1);
4049 if (!dwc_tt
->refcount
) {
4050 dwc_tt
->usb_tt
->hcpriv
= NULL
;
4055 int dwc2_host_get_speed(struct dwc2_hsotg
*hsotg
, void *context
)
4057 struct urb
*urb
= context
;
4059 return urb
->dev
->speed
;
4062 static void dwc2_allocate_bus_bandwidth(struct usb_hcd
*hcd
, u16 bw
,
4065 struct usb_bus
*bus
= hcd_to_bus(hcd
);
4068 bus
->bandwidth_allocated
+= bw
/ urb
->interval
;
4069 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
)
4070 bus
->bandwidth_isoc_reqs
++;
4072 bus
->bandwidth_int_reqs
++;
4075 static void dwc2_free_bus_bandwidth(struct usb_hcd
*hcd
, u16 bw
,
4078 struct usb_bus
*bus
= hcd_to_bus(hcd
);
4081 bus
->bandwidth_allocated
-= bw
/ urb
->interval
;
4082 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
)
4083 bus
->bandwidth_isoc_reqs
--;
4085 bus
->bandwidth_int_reqs
--;
4089 * Sets the final status of an URB and returns it to the upper layer. Any
4090 * required cleanup of the URB is performed.
4092 * Must be called with interrupt disabled and spinlock held
4094 void dwc2_host_complete(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
4101 dev_dbg(hsotg
->dev
, "## %s: qtd is NULL ##\n", __func__
);
4106 dev_dbg(hsotg
->dev
, "## %s: qtd->urb is NULL ##\n", __func__
);
4110 urb
= qtd
->urb
->priv
;
4112 dev_dbg(hsotg
->dev
, "## %s: urb->priv is NULL ##\n", __func__
);
4116 urb
->actual_length
= dwc2_hcd_urb_get_actual_length(qtd
->urb
);
4119 dev_vdbg(hsotg
->dev
,
4120 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4121 __func__
, urb
, usb_pipedevice(urb
->pipe
),
4122 usb_pipeendpoint(urb
->pipe
),
4123 usb_pipein(urb
->pipe
) ? "IN" : "OUT", status
,
4124 urb
->actual_length
);
4126 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
4127 urb
->error_count
= dwc2_hcd_urb_get_error_count(qtd
->urb
);
4128 for (i
= 0; i
< urb
->number_of_packets
; ++i
) {
4129 urb
->iso_frame_desc
[i
].actual_length
=
4130 dwc2_hcd_urb_get_iso_desc_actual_length(
4132 urb
->iso_frame_desc
[i
].status
=
4133 dwc2_hcd_urb_get_iso_desc_status(qtd
->urb
, i
);
4137 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
&& dbg_perio()) {
4138 for (i
= 0; i
< urb
->number_of_packets
; i
++)
4139 dev_vdbg(hsotg
->dev
, " ISO Desc %d status %d\n",
4140 i
, urb
->iso_frame_desc
[i
].status
);
4143 urb
->status
= status
;
4145 if ((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
4146 urb
->actual_length
< urb
->transfer_buffer_length
)
4147 urb
->status
= -EREMOTEIO
;
4150 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
||
4151 usb_pipetype(urb
->pipe
) == PIPE_INTERRUPT
) {
4152 struct usb_host_endpoint
*ep
= urb
->ep
;
4155 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg
),
4156 dwc2_hcd_get_ep_bandwidth(hsotg
, ep
),
4160 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg
), urb
);
4165 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg
), urb
, status
);
4169 * Work queue function for starting the HCD when A-Cable is connected
4171 static void dwc2_hcd_start_func(struct work_struct
*work
)
4173 struct dwc2_hsotg
*hsotg
= container_of(work
, struct dwc2_hsotg
,
4176 dev_dbg(hsotg
->dev
, "%s() %p\n", __func__
, hsotg
);
4177 dwc2_host_start(hsotg
);
4181 * Reset work queue function
4183 static void dwc2_hcd_reset_func(struct work_struct
*work
)
4185 struct dwc2_hsotg
*hsotg
= container_of(work
, struct dwc2_hsotg
,
4187 unsigned long flags
;
4190 dev_dbg(hsotg
->dev
, "USB RESET function called\n");
4192 spin_lock_irqsave(&hsotg
->lock
, flags
);
4194 hprt0
= dwc2_read_hprt0(hsotg
);
4195 hprt0
&= ~HPRT0_RST
;
4196 dwc2_writel(hsotg
, hprt0
, HPRT0
);
4197 hsotg
->flags
.b
.port_reset_change
= 1;
4199 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4202 static void dwc2_hcd_phy_reset_func(struct work_struct
*work
)
4204 struct dwc2_hsotg
*hsotg
= container_of(work
, struct dwc2_hsotg
,
4208 ret
= phy_reset(hsotg
->phy
);
4210 dev_warn(hsotg
->dev
, "PHY reset failed\n");
4214 * =========================================================================
4215 * Linux HC Driver Functions
4216 * =========================================================================
4220 * Initializes the DWC_otg controller and its root hub and prepares it for host
4221 * mode operation. Activates the root port. Returns 0 on success and a negative
4222 * error code on failure.
4224 static int _dwc2_hcd_start(struct usb_hcd
*hcd
)
4226 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4227 struct usb_bus
*bus
= hcd_to_bus(hcd
);
4228 unsigned long flags
;
4232 dev_dbg(hsotg
->dev
, "DWC OTG HCD START\n");
4234 spin_lock_irqsave(&hsotg
->lock
, flags
);
4235 hsotg
->lx_state
= DWC2_L0
;
4236 hcd
->state
= HC_STATE_RUNNING
;
4237 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4239 if (dwc2_is_device_mode(hsotg
)) {
4240 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4241 return 0; /* why 0 ?? */
4244 dwc2_hcd_reinit(hsotg
);
4246 hprt0
= dwc2_read_hprt0(hsotg
);
4247 /* Has vbus power been turned on in dwc2_core_host_init ? */
4248 if (hprt0
& HPRT0_PWR
) {
4249 /* Enable external vbus supply before resuming root hub */
4250 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4251 ret
= dwc2_vbus_supply_init(hsotg
);
4254 spin_lock_irqsave(&hsotg
->lock
, flags
);
4257 /* Initialize and connect root hub if one is not already attached */
4258 if (bus
->root_hub
) {
4259 dev_dbg(hsotg
->dev
, "DWC OTG HCD Has Root Hub\n");
4260 /* Inform the HUB driver to resume */
4261 usb_hcd_resume_root_hub(hcd
);
4264 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4270 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4273 static void _dwc2_hcd_stop(struct usb_hcd
*hcd
)
4275 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4276 unsigned long flags
;
4279 /* Turn off all host-specific interrupts */
4280 dwc2_disable_host_interrupts(hsotg
);
4282 /* Wait for interrupt processing to finish */
4283 synchronize_irq(hcd
->irq
);
4285 spin_lock_irqsave(&hsotg
->lock
, flags
);
4286 hprt0
= dwc2_read_hprt0(hsotg
);
4287 /* Ensure hcd is disconnected */
4288 dwc2_hcd_disconnect(hsotg
, true);
4289 dwc2_hcd_stop(hsotg
);
4290 hsotg
->lx_state
= DWC2_L3
;
4291 hcd
->state
= HC_STATE_HALT
;
4292 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4293 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4295 /* keep balanced supply init/exit by checking HPRT0_PWR */
4296 if (hprt0
& HPRT0_PWR
)
4297 dwc2_vbus_supply_exit(hsotg
);
4299 usleep_range(1000, 3000);
4302 static int _dwc2_hcd_suspend(struct usb_hcd
*hcd
)
4304 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4305 unsigned long flags
;
4310 spin_lock_irqsave(&hsotg
->lock
, flags
);
4312 if (dwc2_is_device_mode(hsotg
))
4315 if (hsotg
->lx_state
!= DWC2_L0
)
4318 if (!HCD_HW_ACCESSIBLE(hcd
))
4321 if (hsotg
->op_state
== OTG_STATE_B_PERIPHERAL
)
4324 if (hsotg
->params
.power_down
> DWC2_POWER_DOWN_PARAM_PARTIAL
)
4325 goto skip_power_saving
;
4328 * Drive USB suspend and disable port Power
4329 * if usb bus is not suspended.
4331 if (!hsotg
->bus_suspended
) {
4332 hprt0
= dwc2_read_hprt0(hsotg
);
4333 if (hprt0
& HPRT0_CONNSTS
) {
4334 hprt0
|= HPRT0_SUSP
;
4335 if (hsotg
->params
.power_down
== DWC2_POWER_DOWN_PARAM_PARTIAL
)
4336 hprt0
&= ~HPRT0_PWR
;
4337 dwc2_writel(hsotg
, hprt0
, HPRT0
);
4339 if (hsotg
->params
.power_down
== DWC2_POWER_DOWN_PARAM_PARTIAL
) {
4340 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4341 dwc2_vbus_supply_exit(hsotg
);
4342 spin_lock_irqsave(&hsotg
->lock
, flags
);
4344 pcgctl
= readl(hsotg
->regs
+ PCGCTL
);
4345 pcgctl
|= PCGCTL_STOPPCLK
;
4346 writel(pcgctl
, hsotg
->regs
+ PCGCTL
);
4350 if (hsotg
->params
.power_down
== DWC2_POWER_DOWN_PARAM_PARTIAL
) {
4351 /* Enter partial_power_down */
4352 ret
= dwc2_enter_partial_power_down(hsotg
);
4354 if (ret
!= -ENOTSUPP
)
4356 "enter partial_power_down failed\n");
4357 goto skip_power_saving
;
4360 /* After entering partial_power_down, hardware is no more accessible */
4361 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4364 /* Ask phy to be suspended */
4365 if (!IS_ERR_OR_NULL(hsotg
->uphy
)) {
4366 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4367 usb_phy_set_suspend(hsotg
->uphy
, true);
4368 spin_lock_irqsave(&hsotg
->lock
, flags
);
4372 hsotg
->lx_state
= DWC2_L2
;
4374 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4379 static int _dwc2_hcd_resume(struct usb_hcd
*hcd
)
4381 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4382 unsigned long flags
;
4386 spin_lock_irqsave(&hsotg
->lock
, flags
);
4388 if (dwc2_is_device_mode(hsotg
))
4391 if (hsotg
->lx_state
!= DWC2_L2
)
4394 if (hsotg
->params
.power_down
> DWC2_POWER_DOWN_PARAM_PARTIAL
) {
4395 hsotg
->lx_state
= DWC2_L0
;
4400 * Enable power if not already done.
4401 * This must not be spinlocked since duration
4402 * of this call is unknown.
4404 if (!IS_ERR_OR_NULL(hsotg
->uphy
)) {
4405 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4406 usb_phy_set_suspend(hsotg
->uphy
, false);
4407 spin_lock_irqsave(&hsotg
->lock
, flags
);
4410 if (hsotg
->params
.power_down
== DWC2_POWER_DOWN_PARAM_PARTIAL
) {
4412 * Set HW accessible bit before powering on the controller
4413 * since an interrupt may rise.
4415 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4418 /* Exit partial_power_down */
4419 ret
= dwc2_exit_partial_power_down(hsotg
, true);
4420 if (ret
&& (ret
!= -ENOTSUPP
))
4421 dev_err(hsotg
->dev
, "exit partial_power_down failed\n");
4423 pcgctl
= readl(hsotg
->regs
+ PCGCTL
);
4424 pcgctl
&= ~PCGCTL_STOPPCLK
;
4425 writel(pcgctl
, hsotg
->regs
+ PCGCTL
);
4428 hsotg
->lx_state
= DWC2_L0
;
4430 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4432 if (hsotg
->bus_suspended
) {
4433 spin_lock_irqsave(&hsotg
->lock
, flags
);
4434 hsotg
->flags
.b
.port_suspend_change
= 1;
4435 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4436 dwc2_port_resume(hsotg
);
4438 if (hsotg
->params
.power_down
== DWC2_POWER_DOWN_PARAM_PARTIAL
) {
4439 dwc2_vbus_supply_init(hsotg
);
4441 /* Wait for controller to correctly update D+/D- level */
4442 usleep_range(3000, 5000);
4446 * Clear Port Enable and Port Status changes.
4447 * Enable Port Power.
4449 dwc2_writel(hsotg
, HPRT0_PWR
| HPRT0_CONNDET
|
4450 HPRT0_ENACHG
, HPRT0
);
4451 /* Wait for controller to detect Port Connect */
4452 usleep_range(5000, 7000);
4457 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4462 /* Returns the current frame number */
4463 static int _dwc2_hcd_get_frame_number(struct usb_hcd
*hcd
)
4465 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4467 return dwc2_hcd_get_frame_number(hsotg
);
4470 static void dwc2_dump_urb_info(struct usb_hcd
*hcd
, struct urb
*urb
,
4473 #ifdef VERBOSE_DEBUG
4474 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4475 char *pipetype
= NULL
;
4478 dev_vdbg(hsotg
->dev
, "%s, urb %p\n", fn_name
, urb
);
4479 dev_vdbg(hsotg
->dev
, " Device address: %d\n",
4480 usb_pipedevice(urb
->pipe
));
4481 dev_vdbg(hsotg
->dev
, " Endpoint: %d, %s\n",
4482 usb_pipeendpoint(urb
->pipe
),
4483 usb_pipein(urb
->pipe
) ? "IN" : "OUT");
4485 switch (usb_pipetype(urb
->pipe
)) {
4487 pipetype
= "CONTROL";
4492 case PIPE_INTERRUPT
:
4493 pipetype
= "INTERRUPT";
4495 case PIPE_ISOCHRONOUS
:
4496 pipetype
= "ISOCHRONOUS";
4500 dev_vdbg(hsotg
->dev
, " Endpoint type: %s %s (%s)\n", pipetype
,
4501 usb_urb_dir_in(urb
) ? "IN" : "OUT", usb_pipein(urb
->pipe
) ?
4504 switch (urb
->dev
->speed
) {
4505 case USB_SPEED_HIGH
:
4508 case USB_SPEED_FULL
:
4519 dev_vdbg(hsotg
->dev
, " Speed: %s\n", speed
);
4520 dev_vdbg(hsotg
->dev
, " Max packet size: %d (%d mult)\n",
4521 usb_endpoint_maxp(&urb
->ep
->desc
),
4522 usb_endpoint_maxp_mult(&urb
->ep
->desc
));
4524 dev_vdbg(hsotg
->dev
, " Data buffer length: %d\n",
4525 urb
->transfer_buffer_length
);
4526 dev_vdbg(hsotg
->dev
, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4527 urb
->transfer_buffer
, (unsigned long)urb
->transfer_dma
);
4528 dev_vdbg(hsotg
->dev
, " Setup buffer: %p, Setup DMA: %08lx\n",
4529 urb
->setup_packet
, (unsigned long)urb
->setup_dma
);
4530 dev_vdbg(hsotg
->dev
, " Interval: %d\n", urb
->interval
);
4532 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
4535 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
4536 dev_vdbg(hsotg
->dev
, " ISO Desc %d:\n", i
);
4537 dev_vdbg(hsotg
->dev
, " offset: %d, length %d\n",
4538 urb
->iso_frame_desc
[i
].offset
,
4539 urb
->iso_frame_desc
[i
].length
);
4546 * Starts processing a USB transfer request specified by a USB Request Block
4547 * (URB). mem_flags indicates the type of memory allocation to use while
4548 * processing this URB.
4550 static int _dwc2_hcd_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
4553 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4554 struct usb_host_endpoint
*ep
= urb
->ep
;
4555 struct dwc2_hcd_urb
*dwc2_urb
;
4558 int alloc_bandwidth
= 0;
4562 unsigned long flags
;
4564 bool qh_allocated
= false;
4565 struct dwc2_qtd
*qtd
;
4568 dev_vdbg(hsotg
->dev
, "DWC OTG HCD URB Enqueue\n");
4569 dwc2_dump_urb_info(hcd
, urb
, "urb_enqueue");
4575 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
||
4576 usb_pipetype(urb
->pipe
) == PIPE_INTERRUPT
) {
4577 spin_lock_irqsave(&hsotg
->lock
, flags
);
4578 if (!dwc2_hcd_is_bandwidth_allocated(hsotg
, ep
))
4579 alloc_bandwidth
= 1;
4580 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4583 switch (usb_pipetype(urb
->pipe
)) {
4585 ep_type
= USB_ENDPOINT_XFER_CONTROL
;
4587 case PIPE_ISOCHRONOUS
:
4588 ep_type
= USB_ENDPOINT_XFER_ISOC
;
4591 ep_type
= USB_ENDPOINT_XFER_BULK
;
4593 case PIPE_INTERRUPT
:
4594 ep_type
= USB_ENDPOINT_XFER_INT
;
4598 dwc2_urb
= dwc2_hcd_urb_alloc(hsotg
, urb
->number_of_packets
,
4603 dwc2_hcd_urb_set_pipeinfo(hsotg
, dwc2_urb
, usb_pipedevice(urb
->pipe
),
4604 usb_pipeendpoint(urb
->pipe
), ep_type
,
4605 usb_pipein(urb
->pipe
),
4606 usb_endpoint_maxp(&ep
->desc
),
4607 usb_endpoint_maxp_mult(&ep
->desc
));
4609 buf
= urb
->transfer_buffer
;
4611 if (hcd
->self
.uses_dma
) {
4612 if (!buf
&& (urb
->transfer_dma
& 3)) {
4614 "%s: unaligned transfer with no transfer_buffer",
4621 if (!(urb
->transfer_flags
& URB_NO_INTERRUPT
))
4622 tflags
|= URB_GIVEBACK_ASAP
;
4623 if (urb
->transfer_flags
& URB_ZERO_PACKET
)
4624 tflags
|= URB_SEND_ZERO_PACKET
;
4626 dwc2_urb
->priv
= urb
;
4627 dwc2_urb
->buf
= buf
;
4628 dwc2_urb
->dma
= urb
->transfer_dma
;
4629 dwc2_urb
->length
= urb
->transfer_buffer_length
;
4630 dwc2_urb
->setup_packet
= urb
->setup_packet
;
4631 dwc2_urb
->setup_dma
= urb
->setup_dma
;
4632 dwc2_urb
->flags
= tflags
;
4633 dwc2_urb
->interval
= urb
->interval
;
4634 dwc2_urb
->status
= -EINPROGRESS
;
4636 for (i
= 0; i
< urb
->number_of_packets
; ++i
)
4637 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb
, i
,
4638 urb
->iso_frame_desc
[i
].offset
,
4639 urb
->iso_frame_desc
[i
].length
);
4641 urb
->hcpriv
= dwc2_urb
;
4642 qh
= (struct dwc2_qh
*)ep
->hcpriv
;
4643 /* Create QH for the endpoint if it doesn't exist */
4645 qh
= dwc2_hcd_qh_create(hsotg
, dwc2_urb
, mem_flags
);
4651 qh_allocated
= true;
4654 qtd
= kzalloc(sizeof(*qtd
), mem_flags
);
4660 spin_lock_irqsave(&hsotg
->lock
, flags
);
4661 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
4665 retval
= dwc2_hcd_urb_enqueue(hsotg
, dwc2_urb
, qh
, qtd
);
4669 if (alloc_bandwidth
) {
4670 dwc2_allocate_bus_bandwidth(hcd
,
4671 dwc2_hcd_get_ep_bandwidth(hsotg
, ep
),
4675 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4680 dwc2_urb
->priv
= NULL
;
4681 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
4682 if (qh_allocated
&& qh
->channel
&& qh
->channel
->qh
== qh
)
4683 qh
->channel
->qh
= NULL
;
4685 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4691 struct dwc2_qtd
*qtd2
, *qtd2_tmp
;
4694 dwc2_hcd_qh_unlink(hsotg
, qh
);
4695 /* Free each QTD in the QH's QTD list */
4696 list_for_each_entry_safe(qtd2
, qtd2_tmp
, &qh
->qtd_list
,
4698 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd2
, qh
);
4699 dwc2_hcd_qh_free(hsotg
, qh
);
4708 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4710 static int _dwc2_hcd_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
,
4713 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4715 unsigned long flags
;
4717 dev_dbg(hsotg
->dev
, "DWC OTG HCD URB Dequeue\n");
4718 dwc2_dump_urb_info(hcd
, urb
, "urb_dequeue");
4720 spin_lock_irqsave(&hsotg
->lock
, flags
);
4722 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
4727 dev_dbg(hsotg
->dev
, "## urb->hcpriv is NULL ##\n");
4731 rc
= dwc2_hcd_urb_dequeue(hsotg
, urb
->hcpriv
);
4733 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
4738 /* Higher layer software sets URB status */
4739 spin_unlock(&hsotg
->lock
);
4740 usb_hcd_giveback_urb(hcd
, urb
, status
);
4741 spin_lock(&hsotg
->lock
);
4743 dev_dbg(hsotg
->dev
, "Called usb_hcd_giveback_urb()\n");
4744 dev_dbg(hsotg
->dev
, " urb->status = %d\n", urb
->status
);
4746 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4752 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4753 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4754 * must already be dequeued.
4756 static void _dwc2_hcd_endpoint_disable(struct usb_hcd
*hcd
,
4757 struct usb_host_endpoint
*ep
)
4759 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4762 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4763 ep
->desc
.bEndpointAddress
, ep
->hcpriv
);
4764 dwc2_hcd_endpoint_disable(hsotg
, ep
, 250);
4768 * Resets endpoint specific parameter values, in current version used to reset
4769 * the data toggle (as a WA). This function can be called from usb_clear_halt
4772 static void _dwc2_hcd_endpoint_reset(struct usb_hcd
*hcd
,
4773 struct usb_host_endpoint
*ep
)
4775 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4776 unsigned long flags
;
4779 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4780 ep
->desc
.bEndpointAddress
);
4782 spin_lock_irqsave(&hsotg
->lock
, flags
);
4783 dwc2_hcd_endpoint_reset(hsotg
, ep
);
4784 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4788 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4789 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4792 * This function is called by the USB core when an interrupt occurs
4794 static irqreturn_t
_dwc2_hcd_irq(struct usb_hcd
*hcd
)
4796 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4798 return dwc2_handle_hcd_intr(hsotg
);
4802 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4803 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4804 * is the status change indicator for the single root port. Returns 1 if either
4805 * change indicator is 1, otherwise returns 0.
4807 static int _dwc2_hcd_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
4809 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4811 buf
[0] = dwc2_hcd_is_status_changed(hsotg
, 1) << 1;
4815 /* Handles hub class-specific requests */
4816 static int _dwc2_hcd_hub_control(struct usb_hcd
*hcd
, u16 typereq
, u16 wvalue
,
4817 u16 windex
, char *buf
, u16 wlength
)
4819 int retval
= dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd
), typereq
,
4820 wvalue
, windex
, buf
, wlength
);
4824 /* Handles hub TT buffer clear completions */
4825 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
4826 struct usb_host_endpoint
*ep
)
4828 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4830 unsigned long flags
;
4836 spin_lock_irqsave(&hsotg
->lock
, flags
);
4837 qh
->tt_buffer_dirty
= 0;
4839 if (hsotg
->flags
.b
.port_connect_status
)
4840 dwc2_hcd_queue_transactions(hsotg
, DWC2_TRANSACTION_ALL
);
4842 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4846 * HPRT0_SPD_HIGH_SPEED: high speed
4847 * HPRT0_SPD_FULL_SPEED: full speed
4849 static void dwc2_change_bus_speed(struct usb_hcd
*hcd
, int speed
)
4851 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4853 if (hsotg
->params
.speed
== speed
)
4856 hsotg
->params
.speed
= speed
;
4857 queue_work(hsotg
->wq_otg
, &hsotg
->wf_otg
);
4860 static void dwc2_free_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
4862 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4864 if (!hsotg
->params
.change_speed_quirk
)
4868 * On removal, set speed to default high-speed.
4870 if (udev
->parent
&& udev
->parent
->speed
> USB_SPEED_UNKNOWN
&&
4871 udev
->parent
->speed
< USB_SPEED_HIGH
) {
4872 dev_info(hsotg
->dev
, "Set speed to default high-speed\n");
4873 dwc2_change_bus_speed(hcd
, HPRT0_SPD_HIGH_SPEED
);
4877 static int dwc2_reset_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
4879 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4881 if (!hsotg
->params
.change_speed_quirk
)
4884 if (udev
->speed
== USB_SPEED_HIGH
) {
4885 dev_info(hsotg
->dev
, "Set speed to high-speed\n");
4886 dwc2_change_bus_speed(hcd
, HPRT0_SPD_HIGH_SPEED
);
4887 } else if ((udev
->speed
== USB_SPEED_FULL
||
4888 udev
->speed
== USB_SPEED_LOW
)) {
4890 * Change speed setting to full-speed if there's
4891 * a full-speed or low-speed device plugged in.
4893 dev_info(hsotg
->dev
, "Set speed to full-speed\n");
4894 dwc2_change_bus_speed(hcd
, HPRT0_SPD_FULL_SPEED
);
4900 static struct hc_driver dwc2_hc_driver
= {
4901 .description
= "dwc2_hsotg",
4902 .product_desc
= "DWC OTG Controller",
4903 .hcd_priv_size
= sizeof(struct wrapper_priv_data
),
4905 .irq
= _dwc2_hcd_irq
,
4906 .flags
= HCD_MEMORY
| HCD_USB2
| HCD_BH
,
4908 .start
= _dwc2_hcd_start
,
4909 .stop
= _dwc2_hcd_stop
,
4910 .urb_enqueue
= _dwc2_hcd_urb_enqueue
,
4911 .urb_dequeue
= _dwc2_hcd_urb_dequeue
,
4912 .endpoint_disable
= _dwc2_hcd_endpoint_disable
,
4913 .endpoint_reset
= _dwc2_hcd_endpoint_reset
,
4914 .get_frame_number
= _dwc2_hcd_get_frame_number
,
4916 .hub_status_data
= _dwc2_hcd_hub_status_data
,
4917 .hub_control
= _dwc2_hcd_hub_control
,
4918 .clear_tt_buffer_complete
= _dwc2_hcd_clear_tt_buffer_complete
,
4920 .bus_suspend
= _dwc2_hcd_suspend
,
4921 .bus_resume
= _dwc2_hcd_resume
,
4923 .map_urb_for_dma
= dwc2_map_urb_for_dma
,
4924 .unmap_urb_for_dma
= dwc2_unmap_urb_for_dma
,
4928 * Frees secondary storage associated with the dwc2_hsotg structure contained
4929 * in the struct usb_hcd field
4931 static void dwc2_hcd_free(struct dwc2_hsotg
*hsotg
)
4937 dev_dbg(hsotg
->dev
, "DWC OTG HCD FREE\n");
4939 /* Free memory for QH/QTD lists */
4940 dwc2_qh_list_free(hsotg
, &hsotg
->non_periodic_sched_inactive
);
4941 dwc2_qh_list_free(hsotg
, &hsotg
->non_periodic_sched_waiting
);
4942 dwc2_qh_list_free(hsotg
, &hsotg
->non_periodic_sched_active
);
4943 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_inactive
);
4944 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_ready
);
4945 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_assigned
);
4946 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_queued
);
4948 /* Free memory for the host channels */
4949 for (i
= 0; i
< MAX_EPS_CHANNELS
; i
++) {
4950 struct dwc2_host_chan
*chan
= hsotg
->hc_ptr_array
[i
];
4953 dev_dbg(hsotg
->dev
, "HCD Free channel #%i, chan=%p\n",
4955 hsotg
->hc_ptr_array
[i
] = NULL
;
4960 if (hsotg
->params
.host_dma
) {
4961 if (hsotg
->status_buf
) {
4962 dma_free_coherent(hsotg
->dev
, DWC2_HCD_STATUS_BUF_SIZE
,
4964 hsotg
->status_buf_dma
);
4965 hsotg
->status_buf
= NULL
;
4968 kfree(hsotg
->status_buf
);
4969 hsotg
->status_buf
= NULL
;
4972 ahbcfg
= dwc2_readl(hsotg
, GAHBCFG
);
4974 /* Disable all interrupts */
4975 ahbcfg
&= ~GAHBCFG_GLBL_INTR_EN
;
4976 dwc2_writel(hsotg
, ahbcfg
, GAHBCFG
);
4977 dwc2_writel(hsotg
, 0, GINTMSK
);
4979 if (hsotg
->hw_params
.snpsid
>= DWC2_CORE_REV_3_00a
) {
4980 dctl
= dwc2_readl(hsotg
, DCTL
);
4981 dctl
|= DCTL_SFTDISCON
;
4982 dwc2_writel(hsotg
, dctl
, DCTL
);
4985 if (hsotg
->wq_otg
) {
4986 if (!cancel_work_sync(&hsotg
->wf_otg
))
4987 flush_workqueue(hsotg
->wq_otg
);
4988 destroy_workqueue(hsotg
->wq_otg
);
4991 cancel_work_sync(&hsotg
->phy_reset_work
);
4993 del_timer(&hsotg
->wkp_timer
);
4996 static void dwc2_hcd_release(struct dwc2_hsotg
*hsotg
)
4998 /* Turn off all host-specific interrupts */
4999 dwc2_disable_host_interrupts(hsotg
);
5001 dwc2_hcd_free(hsotg
);
5005 * Initializes the HCD. This function allocates memory for and initializes the
5006 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5007 * USB bus with the core and calls the hc_driver->start() function. It returns
5008 * a negative error on failure.
5010 int dwc2_hcd_init(struct dwc2_hsotg
*hsotg
)
5012 struct platform_device
*pdev
= to_platform_device(hsotg
->dev
);
5013 struct resource
*res
;
5014 struct usb_hcd
*hcd
;
5015 struct dwc2_host_chan
*channel
;
5017 int i
, num_channels
;
5023 dev_dbg(hsotg
->dev
, "DWC OTG HCD INIT\n");
5027 hcfg
= dwc2_readl(hsotg
, HCFG
);
5028 dev_dbg(hsotg
->dev
, "hcfg=%08x\n", hcfg
);
5030 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5031 hsotg
->frame_num_array
= kcalloc(FRAME_NUM_ARRAY_SIZE
,
5032 sizeof(*hsotg
->frame_num_array
),
5034 if (!hsotg
->frame_num_array
)
5036 hsotg
->last_frame_num_array
=
5037 kcalloc(FRAME_NUM_ARRAY_SIZE
,
5038 sizeof(*hsotg
->last_frame_num_array
), GFP_KERNEL
);
5039 if (!hsotg
->last_frame_num_array
)
5042 hsotg
->last_frame_num
= HFNUM_MAX_FRNUM
;
5044 /* Check if the bus driver or platform code has setup a dma_mask */
5045 if (hsotg
->params
.host_dma
&&
5046 !hsotg
->dev
->dma_mask
) {
5047 dev_warn(hsotg
->dev
,
5048 "dma_mask not set, disabling DMA\n");
5049 hsotg
->params
.host_dma
= false;
5050 hsotg
->params
.dma_desc_enable
= false;
5053 /* Set device flags indicating whether the HCD supports DMA */
5054 if (hsotg
->params
.host_dma
) {
5055 if (dma_set_mask(hsotg
->dev
, DMA_BIT_MASK(32)) < 0)
5056 dev_warn(hsotg
->dev
, "can't set DMA mask\n");
5057 if (dma_set_coherent_mask(hsotg
->dev
, DMA_BIT_MASK(32)) < 0)
5058 dev_warn(hsotg
->dev
, "can't set coherent DMA mask\n");
5061 if (hsotg
->params
.change_speed_quirk
) {
5062 dwc2_hc_driver
.free_dev
= dwc2_free_dev
;
5063 dwc2_hc_driver
.reset_device
= dwc2_reset_device
;
5066 hcd
= usb_create_hcd(&dwc2_hc_driver
, hsotg
->dev
, dev_name(hsotg
->dev
));
5070 if (!hsotg
->params
.host_dma
)
5071 hcd
->self
.uses_dma
= 0;
5075 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
5076 hcd
->rsrc_start
= res
->start
;
5077 hcd
->rsrc_len
= resource_size(res
);
5079 ((struct wrapper_priv_data
*)&hcd
->hcd_priv
)->hsotg
= hsotg
;
5083 * Disable the global interrupt until all the interrupt handlers are
5086 dwc2_disable_global_interrupts(hsotg
);
5088 /* Initialize the DWC_otg core, and select the Phy type */
5089 retval
= dwc2_core_init(hsotg
, true);
5093 /* Create new workqueue and init work */
5095 hsotg
->wq_otg
= alloc_ordered_workqueue("dwc2", 0);
5096 if (!hsotg
->wq_otg
) {
5097 dev_err(hsotg
->dev
, "Failed to create workqueue\n");
5100 INIT_WORK(&hsotg
->wf_otg
, dwc2_conn_id_status_change
);
5102 timer_setup(&hsotg
->wkp_timer
, dwc2_wakeup_detected
, 0);
5104 /* Initialize the non-periodic schedule */
5105 INIT_LIST_HEAD(&hsotg
->non_periodic_sched_inactive
);
5106 INIT_LIST_HEAD(&hsotg
->non_periodic_sched_waiting
);
5107 INIT_LIST_HEAD(&hsotg
->non_periodic_sched_active
);
5109 /* Initialize the periodic schedule */
5110 INIT_LIST_HEAD(&hsotg
->periodic_sched_inactive
);
5111 INIT_LIST_HEAD(&hsotg
->periodic_sched_ready
);
5112 INIT_LIST_HEAD(&hsotg
->periodic_sched_assigned
);
5113 INIT_LIST_HEAD(&hsotg
->periodic_sched_queued
);
5115 INIT_LIST_HEAD(&hsotg
->split_order
);
5118 * Create a host channel descriptor for each host channel implemented
5119 * in the controller. Initialize the channel descriptor array.
5121 INIT_LIST_HEAD(&hsotg
->free_hc_list
);
5122 num_channels
= hsotg
->params
.host_channels
;
5123 memset(&hsotg
->hc_ptr_array
[0], 0, sizeof(hsotg
->hc_ptr_array
));
5125 for (i
= 0; i
< num_channels
; i
++) {
5126 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
5129 channel
->hc_num
= i
;
5130 INIT_LIST_HEAD(&channel
->split_order_list_entry
);
5131 hsotg
->hc_ptr_array
[i
] = channel
;
5134 /* Initialize work */
5135 INIT_DELAYED_WORK(&hsotg
->start_work
, dwc2_hcd_start_func
);
5136 INIT_DELAYED_WORK(&hsotg
->reset_work
, dwc2_hcd_reset_func
);
5137 INIT_WORK(&hsotg
->phy_reset_work
, dwc2_hcd_phy_reset_func
);
5140 * Allocate space for storing data on status transactions. Normally no
5141 * data is sent, but this space acts as a bit bucket. This must be
5142 * done after usb_add_hcd since that function allocates the DMA buffer
5145 if (hsotg
->params
.host_dma
)
5146 hsotg
->status_buf
= dma_alloc_coherent(hsotg
->dev
,
5147 DWC2_HCD_STATUS_BUF_SIZE
,
5148 &hsotg
->status_buf_dma
, GFP_KERNEL
);
5150 hsotg
->status_buf
= kzalloc(DWC2_HCD_STATUS_BUF_SIZE
,
5153 if (!hsotg
->status_buf
)
5157 * Create kmem caches to handle descriptor buffers in descriptor
5159 * Alignment must be set to 512 bytes.
5161 if (hsotg
->params
.dma_desc_enable
||
5162 hsotg
->params
.dma_desc_fs_enable
) {
5163 hsotg
->desc_gen_cache
= kmem_cache_create("dwc2-gen-desc",
5164 sizeof(struct dwc2_dma_desc
) *
5165 MAX_DMA_DESC_NUM_GENERIC
, 512, SLAB_CACHE_DMA
,
5167 if (!hsotg
->desc_gen_cache
) {
5169 "unable to create dwc2 generic desc cache\n");
5172 * Disable descriptor dma mode since it will not be
5175 hsotg
->params
.dma_desc_enable
= false;
5176 hsotg
->params
.dma_desc_fs_enable
= false;
5179 hsotg
->desc_hsisoc_cache
= kmem_cache_create("dwc2-hsisoc-desc",
5180 sizeof(struct dwc2_dma_desc
) *
5181 MAX_DMA_DESC_NUM_HS_ISOC
, 512, 0, NULL
);
5182 if (!hsotg
->desc_hsisoc_cache
) {
5184 "unable to create dwc2 hs isoc desc cache\n");
5186 kmem_cache_destroy(hsotg
->desc_gen_cache
);
5189 * Disable descriptor dma mode since it will not be
5192 hsotg
->params
.dma_desc_enable
= false;
5193 hsotg
->params
.dma_desc_fs_enable
= false;
5197 if (hsotg
->params
.host_dma
) {
5199 * Create kmem caches to handle non-aligned buffer
5200 * in Buffer DMA mode.
5202 hsotg
->unaligned_cache
= kmem_cache_create("dwc2-unaligned-dma",
5203 DWC2_KMEM_UNALIGNED_BUF_SIZE
, 4,
5204 SLAB_CACHE_DMA
, NULL
);
5205 if (!hsotg
->unaligned_cache
)
5207 "unable to create dwc2 unaligned cache\n");
5210 hsotg
->otg_port
= 1;
5211 hsotg
->frame_list
= NULL
;
5212 hsotg
->frame_list_dma
= 0;
5213 hsotg
->periodic_qh_count
= 0;
5215 /* Initiate lx_state to L3 disconnected state */
5216 hsotg
->lx_state
= DWC2_L3
;
5218 hcd
->self
.otg_port
= hsotg
->otg_port
;
5220 /* Don't support SG list at this point */
5221 hcd
->self
.sg_tablesize
= 0;
5223 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
5224 otg_set_host(hsotg
->uphy
->otg
, &hcd
->self
);
5227 * Finish generic HCD initialization and start the HCD. This function
5228 * allocates the DMA buffer pool, registers the USB bus, requests the
5229 * IRQ line, and calls hcd_start method.
5231 retval
= usb_add_hcd(hcd
, hsotg
->irq
, IRQF_SHARED
);
5235 device_wakeup_enable(hcd
->self
.controller
);
5237 dwc2_hcd_dump_state(hsotg
);
5239 dwc2_enable_global_interrupts(hsotg
);
5244 kmem_cache_destroy(hsotg
->unaligned_cache
);
5245 kmem_cache_destroy(hsotg
->desc_hsisoc_cache
);
5246 kmem_cache_destroy(hsotg
->desc_gen_cache
);
5248 dwc2_hcd_release(hsotg
);
5253 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5254 kfree(hsotg
->last_frame_num_array
);
5255 kfree(hsotg
->frame_num_array
);
5258 dev_err(hsotg
->dev
, "%s() FAILED, returning %d\n", __func__
, retval
);
5264 * Frees memory and resources associated with the HCD and deregisters the bus.
5266 void dwc2_hcd_remove(struct dwc2_hsotg
*hsotg
)
5268 struct usb_hcd
*hcd
;
5270 dev_dbg(hsotg
->dev
, "DWC OTG HCD REMOVE\n");
5272 hcd
= dwc2_hsotg_to_hcd(hsotg
);
5273 dev_dbg(hsotg
->dev
, "hsotg->hcd = %p\n", hcd
);
5276 dev_dbg(hsotg
->dev
, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5281 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
5282 otg_set_host(hsotg
->uphy
->otg
, NULL
);
5284 usb_remove_hcd(hcd
);
5287 kmem_cache_destroy(hsotg
->unaligned_cache
);
5288 kmem_cache_destroy(hsotg
->desc_hsisoc_cache
);
5289 kmem_cache_destroy(hsotg
->desc_gen_cache
);
5291 dwc2_hcd_release(hsotg
);
5294 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5295 kfree(hsotg
->last_frame_num_array
);
5296 kfree(hsotg
->frame_num_array
);
5301 * dwc2_backup_host_registers() - Backup controller host registers.
5302 * When suspending usb bus, registers needs to be backuped
5303 * if controller power is disabled once suspended.
5305 * @hsotg: Programming view of the DWC_otg controller
5307 int dwc2_backup_host_registers(struct dwc2_hsotg
*hsotg
)
5309 struct dwc2_hregs_backup
*hr
;
5312 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5314 /* Backup Host regs */
5315 hr
= &hsotg
->hr_backup
;
5316 hr
->hcfg
= dwc2_readl(hsotg
, HCFG
);
5317 hr
->haintmsk
= dwc2_readl(hsotg
, HAINTMSK
);
5318 for (i
= 0; i
< hsotg
->params
.host_channels
; ++i
)
5319 hr
->hcintmsk
[i
] = dwc2_readl(hsotg
, HCINTMSK(i
));
5321 hr
->hprt0
= dwc2_read_hprt0(hsotg
);
5322 hr
->hfir
= dwc2_readl(hsotg
, HFIR
);
5323 hr
->hptxfsiz
= dwc2_readl(hsotg
, HPTXFSIZ
);
5330 * dwc2_restore_host_registers() - Restore controller host registers.
5331 * When resuming usb bus, device registers needs to be restored
5332 * if controller power were disabled.
5334 * @hsotg: Programming view of the DWC_otg controller
5336 int dwc2_restore_host_registers(struct dwc2_hsotg
*hsotg
)
5338 struct dwc2_hregs_backup
*hr
;
5341 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5343 /* Restore host regs */
5344 hr
= &hsotg
->hr_backup
;
5346 dev_err(hsotg
->dev
, "%s: no host registers to restore\n",
5352 dwc2_writel(hsotg
, hr
->hcfg
, HCFG
);
5353 dwc2_writel(hsotg
, hr
->haintmsk
, HAINTMSK
);
5355 for (i
= 0; i
< hsotg
->params
.host_channels
; ++i
)
5356 dwc2_writel(hsotg
, hr
->hcintmsk
[i
], HCINTMSK(i
));
5358 dwc2_writel(hsotg
, hr
->hprt0
, HPRT0
);
5359 dwc2_writel(hsotg
, hr
->hfir
, HFIR
);
5360 dwc2_writel(hsotg
, hr
->hptxfsiz
, HPTXFSIZ
);
5361 hsotg
->frame_number
= 0;
5367 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5369 * @hsotg: Programming view of the DWC_otg controller
5371 int dwc2_host_enter_hibernation(struct dwc2_hsotg
*hsotg
)
5373 unsigned long flags
;
5380 dev_dbg(hsotg
->dev
, "Preparing host for hibernation\n");
5381 ret
= dwc2_backup_global_registers(hsotg
);
5383 dev_err(hsotg
->dev
, "%s: failed to backup global registers\n",
5387 ret
= dwc2_backup_host_registers(hsotg
);
5389 dev_err(hsotg
->dev
, "%s: failed to backup host registers\n",
5394 /* Enter USB Suspend Mode */
5395 hprt0
= dwc2_readl(hsotg
, HPRT0
);
5396 hprt0
|= HPRT0_SUSP
;
5397 hprt0
&= ~HPRT0_ENA
;
5398 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5400 /* Wait for the HPRT0.PrtSusp register field to be set */
5401 if (dwc2_hsotg_wait_bit_set(hsotg
, HPRT0
, HPRT0_SUSP
, 3000))
5402 dev_warn(hsotg
->dev
, "Suspend wasn't generated\n");
5405 * We need to disable interrupts to prevent servicing of any IRQ
5406 * during going to hibernation
5408 spin_lock_irqsave(&hsotg
->lock
, flags
);
5409 hsotg
->lx_state
= DWC2_L2
;
5411 gusbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
5412 if (gusbcfg
& GUSBCFG_ULPI_UTMI_SEL
) {
5413 /* ULPI interface */
5414 /* Suspend the Phy Clock */
5415 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5416 pcgcctl
|= PCGCTL_STOPPCLK
;
5417 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5420 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5421 gpwrdn
|= GPWRDN_PMUACTV
;
5422 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5425 /* UTMI+ Interface */
5426 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5427 gpwrdn
|= GPWRDN_PMUACTV
;
5428 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5431 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5432 pcgcctl
|= PCGCTL_STOPPCLK
;
5433 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5437 /* Enable interrupts from wake up logic */
5438 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5439 gpwrdn
|= GPWRDN_PMUINTSEL
;
5440 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5443 /* Unmask host mode interrupts in GPWRDN */
5444 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5445 gpwrdn
|= GPWRDN_DISCONN_DET_MSK
;
5446 gpwrdn
|= GPWRDN_LNSTSCHG_MSK
;
5447 gpwrdn
|= GPWRDN_STS_CHGINT_MSK
;
5448 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5451 /* Enable Power Down Clamp */
5452 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5453 gpwrdn
|= GPWRDN_PWRDNCLMP
;
5454 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5457 /* Switch off VDD */
5458 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5459 gpwrdn
|= GPWRDN_PWRDNSWTCH
;
5460 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5462 hsotg
->hibernated
= 1;
5463 hsotg
->bus_suspended
= 1;
5464 dev_dbg(hsotg
->dev
, "Host hibernation completed\n");
5465 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
5470 * dwc2_host_exit_hibernation()
5472 * @hsotg: Programming view of the DWC_otg controller
5473 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5474 * @param reset: indicates whether resume is initiated by Reset.
5476 * Return: non-zero if failed to enter to hibernation.
5478 * This function is for exiting from Host mode hibernation by
5479 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5481 int dwc2_host_exit_hibernation(struct dwc2_hsotg
*hsotg
, int rem_wakeup
,
5487 struct dwc2_gregs_backup
*gr
;
5488 struct dwc2_hregs_backup
*hr
;
5490 gr
= &hsotg
->gr_backup
;
5491 hr
= &hsotg
->hr_backup
;
5494 "%s: called with rem_wakeup = %d reset = %d\n",
5495 __func__
, rem_wakeup
, reset
);
5497 dwc2_hib_restore_common(hsotg
, rem_wakeup
, 1);
5498 hsotg
->hibernated
= 0;
5501 * This step is not described in functional spec but if not wait for
5502 * this delay, mismatch interrupts occurred because just after restore
5503 * core is in Device mode(gintsts.curmode == 0)
5507 /* Clear all pending interupts */
5508 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5510 /* De-assert Restore */
5511 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5512 gpwrdn
&= ~GPWRDN_RESTORE
;
5513 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5516 /* Restore GUSBCFG, HCFG */
5517 dwc2_writel(hsotg
, gr
->gusbcfg
, GUSBCFG
);
5518 dwc2_writel(hsotg
, hr
->hcfg
, HCFG
);
5520 /* De-assert Wakeup Logic */
5521 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5522 gpwrdn
&= ~GPWRDN_PMUACTV
;
5523 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5528 hprt0
&= ~HPRT0_ENA
;
5529 hprt0
&= ~HPRT0_SUSP
;
5530 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5534 hprt0
&= ~HPRT0_ENA
;
5535 hprt0
&= ~HPRT0_SUSP
;
5539 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5541 /* Wait for Resume time and then program HPRT again */
5543 hprt0
&= ~HPRT0_RST
;
5544 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5547 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5549 /* Wait for Resume time and then program HPRT again */
5551 hprt0
&= ~HPRT0_RES
;
5552 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5554 /* Clear all interrupt status */
5555 hprt0
= dwc2_readl(hsotg
, HPRT0
);
5556 hprt0
|= HPRT0_CONNDET
;
5557 hprt0
|= HPRT0_ENACHG
;
5558 hprt0
&= ~HPRT0_ENA
;
5559 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5561 hprt0
= dwc2_readl(hsotg
, HPRT0
);
5563 /* Clear all pending interupts */
5564 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5566 /* Restore global registers */
5567 ret
= dwc2_restore_global_registers(hsotg
);
5569 dev_err(hsotg
->dev
, "%s: failed to restore registers\n",
5574 /* Restore host registers */
5575 ret
= dwc2_restore_host_registers(hsotg
);
5577 dev_err(hsotg
->dev
, "%s: failed to restore host registers\n",
5582 dwc2_hcd_rem_wakeup(hsotg
);
5584 hsotg
->hibernated
= 0;
5585 hsotg
->bus_suspended
= 0;
5586 hsotg
->lx_state
= DWC2_L0
;
5587 dev_dbg(hsotg
->dev
, "Host hibernation restore complete\n");