Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / kernel / bpf / btf.c
blobcad09858a5f25beabb53aaaefeb1b4ad5a7a44f1
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
20 /* BTF (BPF Type Format) is the meta data format which describes
21 * the data types of BPF program/map. Hence, it basically focus
22 * on the C programming language which the modern BPF is primary
23 * using.
25 * ELF Section:
26 * ~~~~~~~~~~~
27 * The BTF data is stored under the ".BTF" ELF section
29 * struct btf_type:
30 * ~~~~~~~~~~~~~~~
31 * Each 'struct btf_type' object describes a C data type.
32 * Depending on the type it is describing, a 'struct btf_type'
33 * object may be followed by more data. F.e.
34 * To describe an array, 'struct btf_type' is followed by
35 * 'struct btf_array'.
37 * 'struct btf_type' and any extra data following it are
38 * 4 bytes aligned.
40 * Type section:
41 * ~~~~~~~~~~~~~
42 * The BTF type section contains a list of 'struct btf_type' objects.
43 * Each one describes a C type. Recall from the above section
44 * that a 'struct btf_type' object could be immediately followed by extra
45 * data in order to desribe some particular C types.
47 * type_id:
48 * ~~~~~~~
49 * Each btf_type object is identified by a type_id. The type_id
50 * is implicitly implied by the location of the btf_type object in
51 * the BTF type section. The first one has type_id 1. The second
52 * one has type_id 2...etc. Hence, an earlier btf_type has
53 * a smaller type_id.
55 * A btf_type object may refer to another btf_type object by using
56 * type_id (i.e. the "type" in the "struct btf_type").
58 * NOTE that we cannot assume any reference-order.
59 * A btf_type object can refer to an earlier btf_type object
60 * but it can also refer to a later btf_type object.
62 * For example, to describe "const void *". A btf_type
63 * object describing "const" may refer to another btf_type
64 * object describing "void *". This type-reference is done
65 * by specifying type_id:
67 * [1] CONST (anon) type_id=2
68 * [2] PTR (anon) type_id=0
70 * The above is the btf_verifier debug log:
71 * - Each line started with "[?]" is a btf_type object
72 * - [?] is the type_id of the btf_type object.
73 * - CONST/PTR is the BTF_KIND_XXX
74 * - "(anon)" is the name of the type. It just
75 * happens that CONST and PTR has no name.
76 * - type_id=XXX is the 'u32 type' in btf_type
78 * NOTE: "void" has type_id 0
80 * String section:
81 * ~~~~~~~~~~~~~~
82 * The BTF string section contains the names used by the type section.
83 * Each string is referred by an "offset" from the beginning of the
84 * string section.
86 * Each string is '\0' terminated.
88 * The first character in the string section must be '\0'
89 * which is used to mean 'anonymous'. Some btf_type may not
90 * have a name.
93 /* BTF verification:
95 * To verify BTF data, two passes are needed.
97 * Pass #1
98 * ~~~~~~~
99 * The first pass is to collect all btf_type objects to
100 * an array: "btf->types".
102 * Depending on the C type that a btf_type is describing,
103 * a btf_type may be followed by extra data. We don't know
104 * how many btf_type is there, and more importantly we don't
105 * know where each btf_type is located in the type section.
107 * Without knowing the location of each type_id, most verifications
108 * cannot be done. e.g. an earlier btf_type may refer to a later
109 * btf_type (recall the "const void *" above), so we cannot
110 * check this type-reference in the first pass.
112 * In the first pass, it still does some verifications (e.g.
113 * checking the name is a valid offset to the string section).
115 * Pass #2
116 * ~~~~~~~
117 * The main focus is to resolve a btf_type that is referring
118 * to another type.
120 * We have to ensure the referring type:
121 * 1) does exist in the BTF (i.e. in btf->types[])
122 * 2) does not cause a loop:
123 * struct A {
124 * struct B b;
125 * };
127 * struct B {
128 * struct A a;
129 * };
131 * btf_type_needs_resolve() decides if a btf_type needs
132 * to be resolved.
134 * The needs_resolve type implements the "resolve()" ops which
135 * essentially does a DFS and detects backedge.
137 * During resolve (or DFS), different C types have different
138 * "RESOLVED" conditions.
140 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141 * members because a member is always referring to another
142 * type. A struct's member can be treated as "RESOLVED" if
143 * it is referring to a BTF_KIND_PTR. Otherwise, the
144 * following valid C struct would be rejected:
146 * struct A {
147 * int m;
148 * struct A *a;
149 * };
151 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
153 * detect a pointer loop, e.g.:
154 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155 * ^ |
156 * +-----------------------------------------+
160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
167 #define BTF_INFO_MASK 0x8f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
172 /* 16MB for 64k structs and each has 16 members and
173 * a few MB spaces for the string section.
174 * The hard limit is S32_MAX.
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
178 #define for_each_member(i, struct_type, member) \
179 for (i = 0, member = btf_type_member(struct_type); \
180 i < btf_type_vlen(struct_type); \
181 i++, member++)
183 #define for_each_member_from(i, from, struct_type, member) \
184 for (i = from, member = btf_type_member(struct_type) + from; \
185 i < btf_type_vlen(struct_type); \
186 i++, member++)
188 #define for_each_vsi(i, struct_type, member) \
189 for (i = 0, member = btf_type_var_secinfo(struct_type); \
190 i < btf_type_vlen(struct_type); \
191 i++, member++)
193 #define for_each_vsi_from(i, from, struct_type, member) \
194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
195 i < btf_type_vlen(struct_type); \
196 i++, member++)
198 static DEFINE_IDR(btf_idr);
199 static DEFINE_SPINLOCK(btf_idr_lock);
201 struct btf {
202 void *data;
203 struct btf_type **types;
204 u32 *resolved_ids;
205 u32 *resolved_sizes;
206 const char *strings;
207 void *nohdr_data;
208 struct btf_header hdr;
209 u32 nr_types;
210 u32 types_size;
211 u32 data_size;
212 refcount_t refcnt;
213 u32 id;
214 struct rcu_head rcu;
217 enum verifier_phase {
218 CHECK_META,
219 CHECK_TYPE,
222 struct resolve_vertex {
223 const struct btf_type *t;
224 u32 type_id;
225 u16 next_member;
228 enum visit_state {
229 NOT_VISITED,
230 VISITED,
231 RESOLVED,
234 enum resolve_mode {
235 RESOLVE_TBD, /* To Be Determined */
236 RESOLVE_PTR, /* Resolving for Pointer */
237 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
238 * or array
242 #define MAX_RESOLVE_DEPTH 32
244 struct btf_sec_info {
245 u32 off;
246 u32 len;
249 struct btf_verifier_env {
250 struct btf *btf;
251 u8 *visit_states;
252 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
253 struct bpf_verifier_log log;
254 u32 log_type_id;
255 u32 top_stack;
256 enum verifier_phase phase;
257 enum resolve_mode resolve_mode;
260 static const char * const btf_kind_str[NR_BTF_KINDS] = {
261 [BTF_KIND_UNKN] = "UNKNOWN",
262 [BTF_KIND_INT] = "INT",
263 [BTF_KIND_PTR] = "PTR",
264 [BTF_KIND_ARRAY] = "ARRAY",
265 [BTF_KIND_STRUCT] = "STRUCT",
266 [BTF_KIND_UNION] = "UNION",
267 [BTF_KIND_ENUM] = "ENUM",
268 [BTF_KIND_FWD] = "FWD",
269 [BTF_KIND_TYPEDEF] = "TYPEDEF",
270 [BTF_KIND_VOLATILE] = "VOLATILE",
271 [BTF_KIND_CONST] = "CONST",
272 [BTF_KIND_RESTRICT] = "RESTRICT",
273 [BTF_KIND_FUNC] = "FUNC",
274 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
275 [BTF_KIND_VAR] = "VAR",
276 [BTF_KIND_DATASEC] = "DATASEC",
279 struct btf_kind_operations {
280 s32 (*check_meta)(struct btf_verifier_env *env,
281 const struct btf_type *t,
282 u32 meta_left);
283 int (*resolve)(struct btf_verifier_env *env,
284 const struct resolve_vertex *v);
285 int (*check_member)(struct btf_verifier_env *env,
286 const struct btf_type *struct_type,
287 const struct btf_member *member,
288 const struct btf_type *member_type);
289 int (*check_kflag_member)(struct btf_verifier_env *env,
290 const struct btf_type *struct_type,
291 const struct btf_member *member,
292 const struct btf_type *member_type);
293 void (*log_details)(struct btf_verifier_env *env,
294 const struct btf_type *t);
295 void (*seq_show)(const struct btf *btf, const struct btf_type *t,
296 u32 type_id, void *data, u8 bits_offsets,
297 struct seq_file *m);
300 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
301 static struct btf_type btf_void;
303 static int btf_resolve(struct btf_verifier_env *env,
304 const struct btf_type *t, u32 type_id);
306 static bool btf_type_is_modifier(const struct btf_type *t)
308 /* Some of them is not strictly a C modifier
309 * but they are grouped into the same bucket
310 * for BTF concern:
311 * A type (t) that refers to another
312 * type through t->type AND its size cannot
313 * be determined without following the t->type.
315 * ptr does not fall into this bucket
316 * because its size is always sizeof(void *).
318 switch (BTF_INFO_KIND(t->info)) {
319 case BTF_KIND_TYPEDEF:
320 case BTF_KIND_VOLATILE:
321 case BTF_KIND_CONST:
322 case BTF_KIND_RESTRICT:
323 return true;
326 return false;
329 bool btf_type_is_void(const struct btf_type *t)
331 return t == &btf_void;
334 static bool btf_type_is_fwd(const struct btf_type *t)
336 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
339 static bool btf_type_is_func(const struct btf_type *t)
341 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
344 static bool btf_type_is_func_proto(const struct btf_type *t)
346 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
349 static bool btf_type_nosize(const struct btf_type *t)
351 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
352 btf_type_is_func(t) || btf_type_is_func_proto(t);
355 static bool btf_type_nosize_or_null(const struct btf_type *t)
357 return !t || btf_type_nosize(t);
360 /* union is only a special case of struct:
361 * all its offsetof(member) == 0
363 static bool btf_type_is_struct(const struct btf_type *t)
365 u8 kind = BTF_INFO_KIND(t->info);
367 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
370 static bool __btf_type_is_struct(const struct btf_type *t)
372 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
375 static bool btf_type_is_array(const struct btf_type *t)
377 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
380 static bool btf_type_is_ptr(const struct btf_type *t)
382 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
385 static bool btf_type_is_int(const struct btf_type *t)
387 return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
390 static bool btf_type_is_var(const struct btf_type *t)
392 return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
395 static bool btf_type_is_datasec(const struct btf_type *t)
397 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
400 /* Types that act only as a source, not sink or intermediate
401 * type when resolving.
403 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
405 return btf_type_is_var(t) ||
406 btf_type_is_datasec(t);
409 /* What types need to be resolved?
411 * btf_type_is_modifier() is an obvious one.
413 * btf_type_is_struct() because its member refers to
414 * another type (through member->type).
416 * btf_type_is_var() because the variable refers to
417 * another type. btf_type_is_datasec() holds multiple
418 * btf_type_is_var() types that need resolving.
420 * btf_type_is_array() because its element (array->type)
421 * refers to another type. Array can be thought of a
422 * special case of struct while array just has the same
423 * member-type repeated by array->nelems of times.
425 static bool btf_type_needs_resolve(const struct btf_type *t)
427 return btf_type_is_modifier(t) ||
428 btf_type_is_ptr(t) ||
429 btf_type_is_struct(t) ||
430 btf_type_is_array(t) ||
431 btf_type_is_var(t) ||
432 btf_type_is_datasec(t);
435 /* t->size can be used */
436 static bool btf_type_has_size(const struct btf_type *t)
438 switch (BTF_INFO_KIND(t->info)) {
439 case BTF_KIND_INT:
440 case BTF_KIND_STRUCT:
441 case BTF_KIND_UNION:
442 case BTF_KIND_ENUM:
443 case BTF_KIND_DATASEC:
444 return true;
447 return false;
450 static const char *btf_int_encoding_str(u8 encoding)
452 if (encoding == 0)
453 return "(none)";
454 else if (encoding == BTF_INT_SIGNED)
455 return "SIGNED";
456 else if (encoding == BTF_INT_CHAR)
457 return "CHAR";
458 else if (encoding == BTF_INT_BOOL)
459 return "BOOL";
460 else
461 return "UNKN";
464 static u16 btf_type_vlen(const struct btf_type *t)
466 return BTF_INFO_VLEN(t->info);
469 static bool btf_type_kflag(const struct btf_type *t)
471 return BTF_INFO_KFLAG(t->info);
474 static u32 btf_member_bit_offset(const struct btf_type *struct_type,
475 const struct btf_member *member)
477 return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset)
478 : member->offset;
481 static u32 btf_member_bitfield_size(const struct btf_type *struct_type,
482 const struct btf_member *member)
484 return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset)
485 : 0;
488 static u32 btf_type_int(const struct btf_type *t)
490 return *(u32 *)(t + 1);
493 static const struct btf_array *btf_type_array(const struct btf_type *t)
495 return (const struct btf_array *)(t + 1);
498 static const struct btf_member *btf_type_member(const struct btf_type *t)
500 return (const struct btf_member *)(t + 1);
503 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
505 return (const struct btf_enum *)(t + 1);
508 static const struct btf_var *btf_type_var(const struct btf_type *t)
510 return (const struct btf_var *)(t + 1);
513 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
515 return (const struct btf_var_secinfo *)(t + 1);
518 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
520 return kind_ops[BTF_INFO_KIND(t->info)];
523 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
525 return BTF_STR_OFFSET_VALID(offset) &&
526 offset < btf->hdr.str_len;
529 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
531 if ((first ? !isalpha(c) :
532 !isalnum(c)) &&
533 c != '_' &&
534 ((c == '.' && !dot_ok) ||
535 c != '.'))
536 return false;
537 return true;
540 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
542 /* offset must be valid */
543 const char *src = &btf->strings[offset];
544 const char *src_limit;
546 if (!__btf_name_char_ok(*src, true, dot_ok))
547 return false;
549 /* set a limit on identifier length */
550 src_limit = src + KSYM_NAME_LEN;
551 src++;
552 while (*src && src < src_limit) {
553 if (!__btf_name_char_ok(*src, false, dot_ok))
554 return false;
555 src++;
558 return !*src;
561 /* Only C-style identifier is permitted. This can be relaxed if
562 * necessary.
564 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
566 return __btf_name_valid(btf, offset, false);
569 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
571 return __btf_name_valid(btf, offset, true);
574 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
576 if (!offset)
577 return "(anon)";
578 else if (offset < btf->hdr.str_len)
579 return &btf->strings[offset];
580 else
581 return "(invalid-name-offset)";
584 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
586 if (offset < btf->hdr.str_len)
587 return &btf->strings[offset];
589 return NULL;
592 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
594 if (type_id > btf->nr_types)
595 return NULL;
597 return btf->types[type_id];
601 * Regular int is not a bit field and it must be either
602 * u8/u16/u32/u64 or __int128.
604 static bool btf_type_int_is_regular(const struct btf_type *t)
606 u8 nr_bits, nr_bytes;
607 u32 int_data;
609 int_data = btf_type_int(t);
610 nr_bits = BTF_INT_BITS(int_data);
611 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
612 if (BITS_PER_BYTE_MASKED(nr_bits) ||
613 BTF_INT_OFFSET(int_data) ||
614 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
615 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
616 nr_bytes != (2 * sizeof(u64)))) {
617 return false;
620 return true;
624 * Check that given struct member is a regular int with expected
625 * offset and size.
627 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
628 const struct btf_member *m,
629 u32 expected_offset, u32 expected_size)
631 const struct btf_type *t;
632 u32 id, int_data;
633 u8 nr_bits;
635 id = m->type;
636 t = btf_type_id_size(btf, &id, NULL);
637 if (!t || !btf_type_is_int(t))
638 return false;
640 int_data = btf_type_int(t);
641 nr_bits = BTF_INT_BITS(int_data);
642 if (btf_type_kflag(s)) {
643 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
644 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
646 /* if kflag set, int should be a regular int and
647 * bit offset should be at byte boundary.
649 return !bitfield_size &&
650 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
651 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
654 if (BTF_INT_OFFSET(int_data) ||
655 BITS_PER_BYTE_MASKED(m->offset) ||
656 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
657 BITS_PER_BYTE_MASKED(nr_bits) ||
658 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
659 return false;
661 return true;
664 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
665 const char *fmt, ...)
667 va_list args;
669 va_start(args, fmt);
670 bpf_verifier_vlog(log, fmt, args);
671 va_end(args);
674 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
675 const char *fmt, ...)
677 struct bpf_verifier_log *log = &env->log;
678 va_list args;
680 if (!bpf_verifier_log_needed(log))
681 return;
683 va_start(args, fmt);
684 bpf_verifier_vlog(log, fmt, args);
685 va_end(args);
688 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
689 const struct btf_type *t,
690 bool log_details,
691 const char *fmt, ...)
693 struct bpf_verifier_log *log = &env->log;
694 u8 kind = BTF_INFO_KIND(t->info);
695 struct btf *btf = env->btf;
696 va_list args;
698 if (!bpf_verifier_log_needed(log))
699 return;
701 __btf_verifier_log(log, "[%u] %s %s%s",
702 env->log_type_id,
703 btf_kind_str[kind],
704 __btf_name_by_offset(btf, t->name_off),
705 log_details ? " " : "");
707 if (log_details)
708 btf_type_ops(t)->log_details(env, t);
710 if (fmt && *fmt) {
711 __btf_verifier_log(log, " ");
712 va_start(args, fmt);
713 bpf_verifier_vlog(log, fmt, args);
714 va_end(args);
717 __btf_verifier_log(log, "\n");
720 #define btf_verifier_log_type(env, t, ...) \
721 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
722 #define btf_verifier_log_basic(env, t, ...) \
723 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
725 __printf(4, 5)
726 static void btf_verifier_log_member(struct btf_verifier_env *env,
727 const struct btf_type *struct_type,
728 const struct btf_member *member,
729 const char *fmt, ...)
731 struct bpf_verifier_log *log = &env->log;
732 struct btf *btf = env->btf;
733 va_list args;
735 if (!bpf_verifier_log_needed(log))
736 return;
738 /* The CHECK_META phase already did a btf dump.
740 * If member is logged again, it must hit an error in
741 * parsing this member. It is useful to print out which
742 * struct this member belongs to.
744 if (env->phase != CHECK_META)
745 btf_verifier_log_type(env, struct_type, NULL);
747 if (btf_type_kflag(struct_type))
748 __btf_verifier_log(log,
749 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
750 __btf_name_by_offset(btf, member->name_off),
751 member->type,
752 BTF_MEMBER_BITFIELD_SIZE(member->offset),
753 BTF_MEMBER_BIT_OFFSET(member->offset));
754 else
755 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
756 __btf_name_by_offset(btf, member->name_off),
757 member->type, member->offset);
759 if (fmt && *fmt) {
760 __btf_verifier_log(log, " ");
761 va_start(args, fmt);
762 bpf_verifier_vlog(log, fmt, args);
763 va_end(args);
766 __btf_verifier_log(log, "\n");
769 __printf(4, 5)
770 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
771 const struct btf_type *datasec_type,
772 const struct btf_var_secinfo *vsi,
773 const char *fmt, ...)
775 struct bpf_verifier_log *log = &env->log;
776 va_list args;
778 if (!bpf_verifier_log_needed(log))
779 return;
780 if (env->phase != CHECK_META)
781 btf_verifier_log_type(env, datasec_type, NULL);
783 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
784 vsi->type, vsi->offset, vsi->size);
785 if (fmt && *fmt) {
786 __btf_verifier_log(log, " ");
787 va_start(args, fmt);
788 bpf_verifier_vlog(log, fmt, args);
789 va_end(args);
792 __btf_verifier_log(log, "\n");
795 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
796 u32 btf_data_size)
798 struct bpf_verifier_log *log = &env->log;
799 const struct btf *btf = env->btf;
800 const struct btf_header *hdr;
802 if (!bpf_verifier_log_needed(log))
803 return;
805 hdr = &btf->hdr;
806 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
807 __btf_verifier_log(log, "version: %u\n", hdr->version);
808 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
809 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
810 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
811 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
812 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
813 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
814 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
817 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
819 struct btf *btf = env->btf;
821 /* < 2 because +1 for btf_void which is always in btf->types[0].
822 * btf_void is not accounted in btf->nr_types because btf_void
823 * does not come from the BTF file.
825 if (btf->types_size - btf->nr_types < 2) {
826 /* Expand 'types' array */
828 struct btf_type **new_types;
829 u32 expand_by, new_size;
831 if (btf->types_size == BTF_MAX_TYPE) {
832 btf_verifier_log(env, "Exceeded max num of types");
833 return -E2BIG;
836 expand_by = max_t(u32, btf->types_size >> 2, 16);
837 new_size = min_t(u32, BTF_MAX_TYPE,
838 btf->types_size + expand_by);
840 new_types = kvcalloc(new_size, sizeof(*new_types),
841 GFP_KERNEL | __GFP_NOWARN);
842 if (!new_types)
843 return -ENOMEM;
845 if (btf->nr_types == 0)
846 new_types[0] = &btf_void;
847 else
848 memcpy(new_types, btf->types,
849 sizeof(*btf->types) * (btf->nr_types + 1));
851 kvfree(btf->types);
852 btf->types = new_types;
853 btf->types_size = new_size;
856 btf->types[++(btf->nr_types)] = t;
858 return 0;
861 static int btf_alloc_id(struct btf *btf)
863 int id;
865 idr_preload(GFP_KERNEL);
866 spin_lock_bh(&btf_idr_lock);
867 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
868 if (id > 0)
869 btf->id = id;
870 spin_unlock_bh(&btf_idr_lock);
871 idr_preload_end();
873 if (WARN_ON_ONCE(!id))
874 return -ENOSPC;
876 return id > 0 ? 0 : id;
879 static void btf_free_id(struct btf *btf)
881 unsigned long flags;
884 * In map-in-map, calling map_delete_elem() on outer
885 * map will call bpf_map_put on the inner map.
886 * It will then eventually call btf_free_id()
887 * on the inner map. Some of the map_delete_elem()
888 * implementation may have irq disabled, so
889 * we need to use the _irqsave() version instead
890 * of the _bh() version.
892 spin_lock_irqsave(&btf_idr_lock, flags);
893 idr_remove(&btf_idr, btf->id);
894 spin_unlock_irqrestore(&btf_idr_lock, flags);
897 static void btf_free(struct btf *btf)
899 kvfree(btf->types);
900 kvfree(btf->resolved_sizes);
901 kvfree(btf->resolved_ids);
902 kvfree(btf->data);
903 kfree(btf);
906 static void btf_free_rcu(struct rcu_head *rcu)
908 struct btf *btf = container_of(rcu, struct btf, rcu);
910 btf_free(btf);
913 void btf_put(struct btf *btf)
915 if (btf && refcount_dec_and_test(&btf->refcnt)) {
916 btf_free_id(btf);
917 call_rcu(&btf->rcu, btf_free_rcu);
921 static int env_resolve_init(struct btf_verifier_env *env)
923 struct btf *btf = env->btf;
924 u32 nr_types = btf->nr_types;
925 u32 *resolved_sizes = NULL;
926 u32 *resolved_ids = NULL;
927 u8 *visit_states = NULL;
929 /* +1 for btf_void */
930 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
931 GFP_KERNEL | __GFP_NOWARN);
932 if (!resolved_sizes)
933 goto nomem;
935 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
936 GFP_KERNEL | __GFP_NOWARN);
937 if (!resolved_ids)
938 goto nomem;
940 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
941 GFP_KERNEL | __GFP_NOWARN);
942 if (!visit_states)
943 goto nomem;
945 btf->resolved_sizes = resolved_sizes;
946 btf->resolved_ids = resolved_ids;
947 env->visit_states = visit_states;
949 return 0;
951 nomem:
952 kvfree(resolved_sizes);
953 kvfree(resolved_ids);
954 kvfree(visit_states);
955 return -ENOMEM;
958 static void btf_verifier_env_free(struct btf_verifier_env *env)
960 kvfree(env->visit_states);
961 kfree(env);
964 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
965 const struct btf_type *next_type)
967 switch (env->resolve_mode) {
968 case RESOLVE_TBD:
969 /* int, enum or void is a sink */
970 return !btf_type_needs_resolve(next_type);
971 case RESOLVE_PTR:
972 /* int, enum, void, struct, array, func or func_proto is a sink
973 * for ptr
975 return !btf_type_is_modifier(next_type) &&
976 !btf_type_is_ptr(next_type);
977 case RESOLVE_STRUCT_OR_ARRAY:
978 /* int, enum, void, ptr, func or func_proto is a sink
979 * for struct and array
981 return !btf_type_is_modifier(next_type) &&
982 !btf_type_is_array(next_type) &&
983 !btf_type_is_struct(next_type);
984 default:
985 BUG();
989 static bool env_type_is_resolved(const struct btf_verifier_env *env,
990 u32 type_id)
992 return env->visit_states[type_id] == RESOLVED;
995 static int env_stack_push(struct btf_verifier_env *env,
996 const struct btf_type *t, u32 type_id)
998 struct resolve_vertex *v;
1000 if (env->top_stack == MAX_RESOLVE_DEPTH)
1001 return -E2BIG;
1003 if (env->visit_states[type_id] != NOT_VISITED)
1004 return -EEXIST;
1006 env->visit_states[type_id] = VISITED;
1008 v = &env->stack[env->top_stack++];
1009 v->t = t;
1010 v->type_id = type_id;
1011 v->next_member = 0;
1013 if (env->resolve_mode == RESOLVE_TBD) {
1014 if (btf_type_is_ptr(t))
1015 env->resolve_mode = RESOLVE_PTR;
1016 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1017 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1020 return 0;
1023 static void env_stack_set_next_member(struct btf_verifier_env *env,
1024 u16 next_member)
1026 env->stack[env->top_stack - 1].next_member = next_member;
1029 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1030 u32 resolved_type_id,
1031 u32 resolved_size)
1033 u32 type_id = env->stack[--(env->top_stack)].type_id;
1034 struct btf *btf = env->btf;
1036 btf->resolved_sizes[type_id] = resolved_size;
1037 btf->resolved_ids[type_id] = resolved_type_id;
1038 env->visit_states[type_id] = RESOLVED;
1041 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1043 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1046 /* The input param "type_id" must point to a needs_resolve type */
1047 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1048 u32 *type_id)
1050 *type_id = btf->resolved_ids[*type_id];
1051 return btf_type_by_id(btf, *type_id);
1054 const struct btf_type *btf_type_id_size(const struct btf *btf,
1055 u32 *type_id, u32 *ret_size)
1057 const struct btf_type *size_type;
1058 u32 size_type_id = *type_id;
1059 u32 size = 0;
1061 size_type = btf_type_by_id(btf, size_type_id);
1062 if (btf_type_nosize_or_null(size_type))
1063 return NULL;
1065 if (btf_type_has_size(size_type)) {
1066 size = size_type->size;
1067 } else if (btf_type_is_array(size_type)) {
1068 size = btf->resolved_sizes[size_type_id];
1069 } else if (btf_type_is_ptr(size_type)) {
1070 size = sizeof(void *);
1071 } else {
1072 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1073 !btf_type_is_var(size_type)))
1074 return NULL;
1076 size = btf->resolved_sizes[size_type_id];
1077 size_type_id = btf->resolved_ids[size_type_id];
1078 size_type = btf_type_by_id(btf, size_type_id);
1079 if (btf_type_nosize_or_null(size_type))
1080 return NULL;
1083 *type_id = size_type_id;
1084 if (ret_size)
1085 *ret_size = size;
1087 return size_type;
1090 static int btf_df_check_member(struct btf_verifier_env *env,
1091 const struct btf_type *struct_type,
1092 const struct btf_member *member,
1093 const struct btf_type *member_type)
1095 btf_verifier_log_basic(env, struct_type,
1096 "Unsupported check_member");
1097 return -EINVAL;
1100 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1101 const struct btf_type *struct_type,
1102 const struct btf_member *member,
1103 const struct btf_type *member_type)
1105 btf_verifier_log_basic(env, struct_type,
1106 "Unsupported check_kflag_member");
1107 return -EINVAL;
1110 /* Used for ptr, array and struct/union type members.
1111 * int, enum and modifier types have their specific callback functions.
1113 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1114 const struct btf_type *struct_type,
1115 const struct btf_member *member,
1116 const struct btf_type *member_type)
1118 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1119 btf_verifier_log_member(env, struct_type, member,
1120 "Invalid member bitfield_size");
1121 return -EINVAL;
1124 /* bitfield size is 0, so member->offset represents bit offset only.
1125 * It is safe to call non kflag check_member variants.
1127 return btf_type_ops(member_type)->check_member(env, struct_type,
1128 member,
1129 member_type);
1132 static int btf_df_resolve(struct btf_verifier_env *env,
1133 const struct resolve_vertex *v)
1135 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1136 return -EINVAL;
1139 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1140 u32 type_id, void *data, u8 bits_offsets,
1141 struct seq_file *m)
1143 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1146 static int btf_int_check_member(struct btf_verifier_env *env,
1147 const struct btf_type *struct_type,
1148 const struct btf_member *member,
1149 const struct btf_type *member_type)
1151 u32 int_data = btf_type_int(member_type);
1152 u32 struct_bits_off = member->offset;
1153 u32 struct_size = struct_type->size;
1154 u32 nr_copy_bits;
1155 u32 bytes_offset;
1157 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1158 btf_verifier_log_member(env, struct_type, member,
1159 "bits_offset exceeds U32_MAX");
1160 return -EINVAL;
1163 struct_bits_off += BTF_INT_OFFSET(int_data);
1164 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1165 nr_copy_bits = BTF_INT_BITS(int_data) +
1166 BITS_PER_BYTE_MASKED(struct_bits_off);
1168 if (nr_copy_bits > BITS_PER_U128) {
1169 btf_verifier_log_member(env, struct_type, member,
1170 "nr_copy_bits exceeds 128");
1171 return -EINVAL;
1174 if (struct_size < bytes_offset ||
1175 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1176 btf_verifier_log_member(env, struct_type, member,
1177 "Member exceeds struct_size");
1178 return -EINVAL;
1181 return 0;
1184 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1185 const struct btf_type *struct_type,
1186 const struct btf_member *member,
1187 const struct btf_type *member_type)
1189 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1190 u32 int_data = btf_type_int(member_type);
1191 u32 struct_size = struct_type->size;
1192 u32 nr_copy_bits;
1194 /* a regular int type is required for the kflag int member */
1195 if (!btf_type_int_is_regular(member_type)) {
1196 btf_verifier_log_member(env, struct_type, member,
1197 "Invalid member base type");
1198 return -EINVAL;
1201 /* check sanity of bitfield size */
1202 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1203 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1204 nr_int_data_bits = BTF_INT_BITS(int_data);
1205 if (!nr_bits) {
1206 /* Not a bitfield member, member offset must be at byte
1207 * boundary.
1209 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1210 btf_verifier_log_member(env, struct_type, member,
1211 "Invalid member offset");
1212 return -EINVAL;
1215 nr_bits = nr_int_data_bits;
1216 } else if (nr_bits > nr_int_data_bits) {
1217 btf_verifier_log_member(env, struct_type, member,
1218 "Invalid member bitfield_size");
1219 return -EINVAL;
1222 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1223 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1224 if (nr_copy_bits > BITS_PER_U128) {
1225 btf_verifier_log_member(env, struct_type, member,
1226 "nr_copy_bits exceeds 128");
1227 return -EINVAL;
1230 if (struct_size < bytes_offset ||
1231 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1232 btf_verifier_log_member(env, struct_type, member,
1233 "Member exceeds struct_size");
1234 return -EINVAL;
1237 return 0;
1240 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1241 const struct btf_type *t,
1242 u32 meta_left)
1244 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1245 u16 encoding;
1247 if (meta_left < meta_needed) {
1248 btf_verifier_log_basic(env, t,
1249 "meta_left:%u meta_needed:%u",
1250 meta_left, meta_needed);
1251 return -EINVAL;
1254 if (btf_type_vlen(t)) {
1255 btf_verifier_log_type(env, t, "vlen != 0");
1256 return -EINVAL;
1259 if (btf_type_kflag(t)) {
1260 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1261 return -EINVAL;
1264 int_data = btf_type_int(t);
1265 if (int_data & ~BTF_INT_MASK) {
1266 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1267 int_data);
1268 return -EINVAL;
1271 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1273 if (nr_bits > BITS_PER_U128) {
1274 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1275 BITS_PER_U128);
1276 return -EINVAL;
1279 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1280 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1281 return -EINVAL;
1285 * Only one of the encoding bits is allowed and it
1286 * should be sufficient for the pretty print purpose (i.e. decoding).
1287 * Multiple bits can be allowed later if it is found
1288 * to be insufficient.
1290 encoding = BTF_INT_ENCODING(int_data);
1291 if (encoding &&
1292 encoding != BTF_INT_SIGNED &&
1293 encoding != BTF_INT_CHAR &&
1294 encoding != BTF_INT_BOOL) {
1295 btf_verifier_log_type(env, t, "Unsupported encoding");
1296 return -ENOTSUPP;
1299 btf_verifier_log_type(env, t, NULL);
1301 return meta_needed;
1304 static void btf_int_log(struct btf_verifier_env *env,
1305 const struct btf_type *t)
1307 int int_data = btf_type_int(t);
1309 btf_verifier_log(env,
1310 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1311 t->size, BTF_INT_OFFSET(int_data),
1312 BTF_INT_BITS(int_data),
1313 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1316 static void btf_int128_print(struct seq_file *m, void *data)
1318 /* data points to a __int128 number.
1319 * Suppose
1320 * int128_num = *(__int128 *)data;
1321 * The below formulas shows what upper_num and lower_num represents:
1322 * upper_num = int128_num >> 64;
1323 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1325 u64 upper_num, lower_num;
1327 #ifdef __BIG_ENDIAN_BITFIELD
1328 upper_num = *(u64 *)data;
1329 lower_num = *(u64 *)(data + 8);
1330 #else
1331 upper_num = *(u64 *)(data + 8);
1332 lower_num = *(u64 *)data;
1333 #endif
1334 if (upper_num == 0)
1335 seq_printf(m, "0x%llx", lower_num);
1336 else
1337 seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1340 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1341 u16 right_shift_bits)
1343 u64 upper_num, lower_num;
1345 #ifdef __BIG_ENDIAN_BITFIELD
1346 upper_num = print_num[0];
1347 lower_num = print_num[1];
1348 #else
1349 upper_num = print_num[1];
1350 lower_num = print_num[0];
1351 #endif
1353 /* shake out un-needed bits by shift/or operations */
1354 if (left_shift_bits >= 64) {
1355 upper_num = lower_num << (left_shift_bits - 64);
1356 lower_num = 0;
1357 } else {
1358 upper_num = (upper_num << left_shift_bits) |
1359 (lower_num >> (64 - left_shift_bits));
1360 lower_num = lower_num << left_shift_bits;
1363 if (right_shift_bits >= 64) {
1364 lower_num = upper_num >> (right_shift_bits - 64);
1365 upper_num = 0;
1366 } else {
1367 lower_num = (lower_num >> right_shift_bits) |
1368 (upper_num << (64 - right_shift_bits));
1369 upper_num = upper_num >> right_shift_bits;
1372 #ifdef __BIG_ENDIAN_BITFIELD
1373 print_num[0] = upper_num;
1374 print_num[1] = lower_num;
1375 #else
1376 print_num[0] = lower_num;
1377 print_num[1] = upper_num;
1378 #endif
1381 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1382 u8 nr_bits, struct seq_file *m)
1384 u16 left_shift_bits, right_shift_bits;
1385 u8 nr_copy_bytes;
1386 u8 nr_copy_bits;
1387 u64 print_num[2] = {};
1389 nr_copy_bits = nr_bits + bits_offset;
1390 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1392 memcpy(print_num, data, nr_copy_bytes);
1394 #ifdef __BIG_ENDIAN_BITFIELD
1395 left_shift_bits = bits_offset;
1396 #else
1397 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1398 #endif
1399 right_shift_bits = BITS_PER_U128 - nr_bits;
1401 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1402 btf_int128_print(m, print_num);
1406 static void btf_int_bits_seq_show(const struct btf *btf,
1407 const struct btf_type *t,
1408 void *data, u8 bits_offset,
1409 struct seq_file *m)
1411 u32 int_data = btf_type_int(t);
1412 u8 nr_bits = BTF_INT_BITS(int_data);
1413 u8 total_bits_offset;
1416 * bits_offset is at most 7.
1417 * BTF_INT_OFFSET() cannot exceed 128 bits.
1419 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1420 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1421 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1422 btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1425 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1426 u32 type_id, void *data, u8 bits_offset,
1427 struct seq_file *m)
1429 u32 int_data = btf_type_int(t);
1430 u8 encoding = BTF_INT_ENCODING(int_data);
1431 bool sign = encoding & BTF_INT_SIGNED;
1432 u8 nr_bits = BTF_INT_BITS(int_data);
1434 if (bits_offset || BTF_INT_OFFSET(int_data) ||
1435 BITS_PER_BYTE_MASKED(nr_bits)) {
1436 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1437 return;
1440 switch (nr_bits) {
1441 case 128:
1442 btf_int128_print(m, data);
1443 break;
1444 case 64:
1445 if (sign)
1446 seq_printf(m, "%lld", *(s64 *)data);
1447 else
1448 seq_printf(m, "%llu", *(u64 *)data);
1449 break;
1450 case 32:
1451 if (sign)
1452 seq_printf(m, "%d", *(s32 *)data);
1453 else
1454 seq_printf(m, "%u", *(u32 *)data);
1455 break;
1456 case 16:
1457 if (sign)
1458 seq_printf(m, "%d", *(s16 *)data);
1459 else
1460 seq_printf(m, "%u", *(u16 *)data);
1461 break;
1462 case 8:
1463 if (sign)
1464 seq_printf(m, "%d", *(s8 *)data);
1465 else
1466 seq_printf(m, "%u", *(u8 *)data);
1467 break;
1468 default:
1469 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1473 static const struct btf_kind_operations int_ops = {
1474 .check_meta = btf_int_check_meta,
1475 .resolve = btf_df_resolve,
1476 .check_member = btf_int_check_member,
1477 .check_kflag_member = btf_int_check_kflag_member,
1478 .log_details = btf_int_log,
1479 .seq_show = btf_int_seq_show,
1482 static int btf_modifier_check_member(struct btf_verifier_env *env,
1483 const struct btf_type *struct_type,
1484 const struct btf_member *member,
1485 const struct btf_type *member_type)
1487 const struct btf_type *resolved_type;
1488 u32 resolved_type_id = member->type;
1489 struct btf_member resolved_member;
1490 struct btf *btf = env->btf;
1492 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1493 if (!resolved_type) {
1494 btf_verifier_log_member(env, struct_type, member,
1495 "Invalid member");
1496 return -EINVAL;
1499 resolved_member = *member;
1500 resolved_member.type = resolved_type_id;
1502 return btf_type_ops(resolved_type)->check_member(env, struct_type,
1503 &resolved_member,
1504 resolved_type);
1507 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1508 const struct btf_type *struct_type,
1509 const struct btf_member *member,
1510 const struct btf_type *member_type)
1512 const struct btf_type *resolved_type;
1513 u32 resolved_type_id = member->type;
1514 struct btf_member resolved_member;
1515 struct btf *btf = env->btf;
1517 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1518 if (!resolved_type) {
1519 btf_verifier_log_member(env, struct_type, member,
1520 "Invalid member");
1521 return -EINVAL;
1524 resolved_member = *member;
1525 resolved_member.type = resolved_type_id;
1527 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1528 &resolved_member,
1529 resolved_type);
1532 static int btf_ptr_check_member(struct btf_verifier_env *env,
1533 const struct btf_type *struct_type,
1534 const struct btf_member *member,
1535 const struct btf_type *member_type)
1537 u32 struct_size, struct_bits_off, bytes_offset;
1539 struct_size = struct_type->size;
1540 struct_bits_off = member->offset;
1541 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1543 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1544 btf_verifier_log_member(env, struct_type, member,
1545 "Member is not byte aligned");
1546 return -EINVAL;
1549 if (struct_size - bytes_offset < sizeof(void *)) {
1550 btf_verifier_log_member(env, struct_type, member,
1551 "Member exceeds struct_size");
1552 return -EINVAL;
1555 return 0;
1558 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1559 const struct btf_type *t,
1560 u32 meta_left)
1562 if (btf_type_vlen(t)) {
1563 btf_verifier_log_type(env, t, "vlen != 0");
1564 return -EINVAL;
1567 if (btf_type_kflag(t)) {
1568 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1569 return -EINVAL;
1572 if (!BTF_TYPE_ID_VALID(t->type)) {
1573 btf_verifier_log_type(env, t, "Invalid type_id");
1574 return -EINVAL;
1577 /* typedef type must have a valid name, and other ref types,
1578 * volatile, const, restrict, should have a null name.
1580 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1581 if (!t->name_off ||
1582 !btf_name_valid_identifier(env->btf, t->name_off)) {
1583 btf_verifier_log_type(env, t, "Invalid name");
1584 return -EINVAL;
1586 } else {
1587 if (t->name_off) {
1588 btf_verifier_log_type(env, t, "Invalid name");
1589 return -EINVAL;
1593 btf_verifier_log_type(env, t, NULL);
1595 return 0;
1598 static int btf_modifier_resolve(struct btf_verifier_env *env,
1599 const struct resolve_vertex *v)
1601 const struct btf_type *t = v->t;
1602 const struct btf_type *next_type;
1603 u32 next_type_id = t->type;
1604 struct btf *btf = env->btf;
1605 u32 next_type_size = 0;
1607 next_type = btf_type_by_id(btf, next_type_id);
1608 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1609 btf_verifier_log_type(env, v->t, "Invalid type_id");
1610 return -EINVAL;
1613 if (!env_type_is_resolve_sink(env, next_type) &&
1614 !env_type_is_resolved(env, next_type_id))
1615 return env_stack_push(env, next_type, next_type_id);
1617 /* Figure out the resolved next_type_id with size.
1618 * They will be stored in the current modifier's
1619 * resolved_ids and resolved_sizes such that it can
1620 * save us a few type-following when we use it later (e.g. in
1621 * pretty print).
1623 if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1624 if (env_type_is_resolved(env, next_type_id))
1625 next_type = btf_type_id_resolve(btf, &next_type_id);
1627 /* "typedef void new_void", "const void"...etc */
1628 if (!btf_type_is_void(next_type) &&
1629 !btf_type_is_fwd(next_type) &&
1630 !btf_type_is_func_proto(next_type)) {
1631 btf_verifier_log_type(env, v->t, "Invalid type_id");
1632 return -EINVAL;
1636 env_stack_pop_resolved(env, next_type_id, next_type_size);
1638 return 0;
1641 static int btf_var_resolve(struct btf_verifier_env *env,
1642 const struct resolve_vertex *v)
1644 const struct btf_type *next_type;
1645 const struct btf_type *t = v->t;
1646 u32 next_type_id = t->type;
1647 struct btf *btf = env->btf;
1648 u32 next_type_size;
1650 next_type = btf_type_by_id(btf, next_type_id);
1651 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1652 btf_verifier_log_type(env, v->t, "Invalid type_id");
1653 return -EINVAL;
1656 if (!env_type_is_resolve_sink(env, next_type) &&
1657 !env_type_is_resolved(env, next_type_id))
1658 return env_stack_push(env, next_type, next_type_id);
1660 if (btf_type_is_modifier(next_type)) {
1661 const struct btf_type *resolved_type;
1662 u32 resolved_type_id;
1664 resolved_type_id = next_type_id;
1665 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1667 if (btf_type_is_ptr(resolved_type) &&
1668 !env_type_is_resolve_sink(env, resolved_type) &&
1669 !env_type_is_resolved(env, resolved_type_id))
1670 return env_stack_push(env, resolved_type,
1671 resolved_type_id);
1674 /* We must resolve to something concrete at this point, no
1675 * forward types or similar that would resolve to size of
1676 * zero is allowed.
1678 if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1679 btf_verifier_log_type(env, v->t, "Invalid type_id");
1680 return -EINVAL;
1683 env_stack_pop_resolved(env, next_type_id, next_type_size);
1685 return 0;
1688 static int btf_ptr_resolve(struct btf_verifier_env *env,
1689 const struct resolve_vertex *v)
1691 const struct btf_type *next_type;
1692 const struct btf_type *t = v->t;
1693 u32 next_type_id = t->type;
1694 struct btf *btf = env->btf;
1696 next_type = btf_type_by_id(btf, next_type_id);
1697 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1698 btf_verifier_log_type(env, v->t, "Invalid type_id");
1699 return -EINVAL;
1702 if (!env_type_is_resolve_sink(env, next_type) &&
1703 !env_type_is_resolved(env, next_type_id))
1704 return env_stack_push(env, next_type, next_type_id);
1706 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1707 * the modifier may have stopped resolving when it was resolved
1708 * to a ptr (last-resolved-ptr).
1710 * We now need to continue from the last-resolved-ptr to
1711 * ensure the last-resolved-ptr will not referring back to
1712 * the currenct ptr (t).
1714 if (btf_type_is_modifier(next_type)) {
1715 const struct btf_type *resolved_type;
1716 u32 resolved_type_id;
1718 resolved_type_id = next_type_id;
1719 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1721 if (btf_type_is_ptr(resolved_type) &&
1722 !env_type_is_resolve_sink(env, resolved_type) &&
1723 !env_type_is_resolved(env, resolved_type_id))
1724 return env_stack_push(env, resolved_type,
1725 resolved_type_id);
1728 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1729 if (env_type_is_resolved(env, next_type_id))
1730 next_type = btf_type_id_resolve(btf, &next_type_id);
1732 if (!btf_type_is_void(next_type) &&
1733 !btf_type_is_fwd(next_type) &&
1734 !btf_type_is_func_proto(next_type)) {
1735 btf_verifier_log_type(env, v->t, "Invalid type_id");
1736 return -EINVAL;
1740 env_stack_pop_resolved(env, next_type_id, 0);
1742 return 0;
1745 static void btf_modifier_seq_show(const struct btf *btf,
1746 const struct btf_type *t,
1747 u32 type_id, void *data,
1748 u8 bits_offset, struct seq_file *m)
1750 t = btf_type_id_resolve(btf, &type_id);
1752 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1755 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1756 u32 type_id, void *data, u8 bits_offset,
1757 struct seq_file *m)
1759 t = btf_type_id_resolve(btf, &type_id);
1761 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1764 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1765 u32 type_id, void *data, u8 bits_offset,
1766 struct seq_file *m)
1768 /* It is a hashed value */
1769 seq_printf(m, "%p", *(void **)data);
1772 static void btf_ref_type_log(struct btf_verifier_env *env,
1773 const struct btf_type *t)
1775 btf_verifier_log(env, "type_id=%u", t->type);
1778 static struct btf_kind_operations modifier_ops = {
1779 .check_meta = btf_ref_type_check_meta,
1780 .resolve = btf_modifier_resolve,
1781 .check_member = btf_modifier_check_member,
1782 .check_kflag_member = btf_modifier_check_kflag_member,
1783 .log_details = btf_ref_type_log,
1784 .seq_show = btf_modifier_seq_show,
1787 static struct btf_kind_operations ptr_ops = {
1788 .check_meta = btf_ref_type_check_meta,
1789 .resolve = btf_ptr_resolve,
1790 .check_member = btf_ptr_check_member,
1791 .check_kflag_member = btf_generic_check_kflag_member,
1792 .log_details = btf_ref_type_log,
1793 .seq_show = btf_ptr_seq_show,
1796 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1797 const struct btf_type *t,
1798 u32 meta_left)
1800 if (btf_type_vlen(t)) {
1801 btf_verifier_log_type(env, t, "vlen != 0");
1802 return -EINVAL;
1805 if (t->type) {
1806 btf_verifier_log_type(env, t, "type != 0");
1807 return -EINVAL;
1810 /* fwd type must have a valid name */
1811 if (!t->name_off ||
1812 !btf_name_valid_identifier(env->btf, t->name_off)) {
1813 btf_verifier_log_type(env, t, "Invalid name");
1814 return -EINVAL;
1817 btf_verifier_log_type(env, t, NULL);
1819 return 0;
1822 static void btf_fwd_type_log(struct btf_verifier_env *env,
1823 const struct btf_type *t)
1825 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1828 static struct btf_kind_operations fwd_ops = {
1829 .check_meta = btf_fwd_check_meta,
1830 .resolve = btf_df_resolve,
1831 .check_member = btf_df_check_member,
1832 .check_kflag_member = btf_df_check_kflag_member,
1833 .log_details = btf_fwd_type_log,
1834 .seq_show = btf_df_seq_show,
1837 static int btf_array_check_member(struct btf_verifier_env *env,
1838 const struct btf_type *struct_type,
1839 const struct btf_member *member,
1840 const struct btf_type *member_type)
1842 u32 struct_bits_off = member->offset;
1843 u32 struct_size, bytes_offset;
1844 u32 array_type_id, array_size;
1845 struct btf *btf = env->btf;
1847 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1848 btf_verifier_log_member(env, struct_type, member,
1849 "Member is not byte aligned");
1850 return -EINVAL;
1853 array_type_id = member->type;
1854 btf_type_id_size(btf, &array_type_id, &array_size);
1855 struct_size = struct_type->size;
1856 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1857 if (struct_size - bytes_offset < array_size) {
1858 btf_verifier_log_member(env, struct_type, member,
1859 "Member exceeds struct_size");
1860 return -EINVAL;
1863 return 0;
1866 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1867 const struct btf_type *t,
1868 u32 meta_left)
1870 const struct btf_array *array = btf_type_array(t);
1871 u32 meta_needed = sizeof(*array);
1873 if (meta_left < meta_needed) {
1874 btf_verifier_log_basic(env, t,
1875 "meta_left:%u meta_needed:%u",
1876 meta_left, meta_needed);
1877 return -EINVAL;
1880 /* array type should not have a name */
1881 if (t->name_off) {
1882 btf_verifier_log_type(env, t, "Invalid name");
1883 return -EINVAL;
1886 if (btf_type_vlen(t)) {
1887 btf_verifier_log_type(env, t, "vlen != 0");
1888 return -EINVAL;
1891 if (btf_type_kflag(t)) {
1892 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1893 return -EINVAL;
1896 if (t->size) {
1897 btf_verifier_log_type(env, t, "size != 0");
1898 return -EINVAL;
1901 /* Array elem type and index type cannot be in type void,
1902 * so !array->type and !array->index_type are not allowed.
1904 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1905 btf_verifier_log_type(env, t, "Invalid elem");
1906 return -EINVAL;
1909 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1910 btf_verifier_log_type(env, t, "Invalid index");
1911 return -EINVAL;
1914 btf_verifier_log_type(env, t, NULL);
1916 return meta_needed;
1919 static int btf_array_resolve(struct btf_verifier_env *env,
1920 const struct resolve_vertex *v)
1922 const struct btf_array *array = btf_type_array(v->t);
1923 const struct btf_type *elem_type, *index_type;
1924 u32 elem_type_id, index_type_id;
1925 struct btf *btf = env->btf;
1926 u32 elem_size;
1928 /* Check array->index_type */
1929 index_type_id = array->index_type;
1930 index_type = btf_type_by_id(btf, index_type_id);
1931 if (btf_type_is_resolve_source_only(index_type) ||
1932 btf_type_nosize_or_null(index_type)) {
1933 btf_verifier_log_type(env, v->t, "Invalid index");
1934 return -EINVAL;
1937 if (!env_type_is_resolve_sink(env, index_type) &&
1938 !env_type_is_resolved(env, index_type_id))
1939 return env_stack_push(env, index_type, index_type_id);
1941 index_type = btf_type_id_size(btf, &index_type_id, NULL);
1942 if (!index_type || !btf_type_is_int(index_type) ||
1943 !btf_type_int_is_regular(index_type)) {
1944 btf_verifier_log_type(env, v->t, "Invalid index");
1945 return -EINVAL;
1948 /* Check array->type */
1949 elem_type_id = array->type;
1950 elem_type = btf_type_by_id(btf, elem_type_id);
1951 if (btf_type_is_resolve_source_only(elem_type) ||
1952 btf_type_nosize_or_null(elem_type)) {
1953 btf_verifier_log_type(env, v->t,
1954 "Invalid elem");
1955 return -EINVAL;
1958 if (!env_type_is_resolve_sink(env, elem_type) &&
1959 !env_type_is_resolved(env, elem_type_id))
1960 return env_stack_push(env, elem_type, elem_type_id);
1962 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1963 if (!elem_type) {
1964 btf_verifier_log_type(env, v->t, "Invalid elem");
1965 return -EINVAL;
1968 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1969 btf_verifier_log_type(env, v->t, "Invalid array of int");
1970 return -EINVAL;
1973 if (array->nelems && elem_size > U32_MAX / array->nelems) {
1974 btf_verifier_log_type(env, v->t,
1975 "Array size overflows U32_MAX");
1976 return -EINVAL;
1979 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1981 return 0;
1984 static void btf_array_log(struct btf_verifier_env *env,
1985 const struct btf_type *t)
1987 const struct btf_array *array = btf_type_array(t);
1989 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1990 array->type, array->index_type, array->nelems);
1993 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1994 u32 type_id, void *data, u8 bits_offset,
1995 struct seq_file *m)
1997 const struct btf_array *array = btf_type_array(t);
1998 const struct btf_kind_operations *elem_ops;
1999 const struct btf_type *elem_type;
2000 u32 i, elem_size, elem_type_id;
2002 elem_type_id = array->type;
2003 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2004 elem_ops = btf_type_ops(elem_type);
2005 seq_puts(m, "[");
2006 for (i = 0; i < array->nelems; i++) {
2007 if (i)
2008 seq_puts(m, ",");
2010 elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2011 bits_offset, m);
2012 data += elem_size;
2014 seq_puts(m, "]");
2017 static struct btf_kind_operations array_ops = {
2018 .check_meta = btf_array_check_meta,
2019 .resolve = btf_array_resolve,
2020 .check_member = btf_array_check_member,
2021 .check_kflag_member = btf_generic_check_kflag_member,
2022 .log_details = btf_array_log,
2023 .seq_show = btf_array_seq_show,
2026 static int btf_struct_check_member(struct btf_verifier_env *env,
2027 const struct btf_type *struct_type,
2028 const struct btf_member *member,
2029 const struct btf_type *member_type)
2031 u32 struct_bits_off = member->offset;
2032 u32 struct_size, bytes_offset;
2034 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2035 btf_verifier_log_member(env, struct_type, member,
2036 "Member is not byte aligned");
2037 return -EINVAL;
2040 struct_size = struct_type->size;
2041 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2042 if (struct_size - bytes_offset < member_type->size) {
2043 btf_verifier_log_member(env, struct_type, member,
2044 "Member exceeds struct_size");
2045 return -EINVAL;
2048 return 0;
2051 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2052 const struct btf_type *t,
2053 u32 meta_left)
2055 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2056 const struct btf_member *member;
2057 u32 meta_needed, last_offset;
2058 struct btf *btf = env->btf;
2059 u32 struct_size = t->size;
2060 u32 offset;
2061 u16 i;
2063 meta_needed = btf_type_vlen(t) * sizeof(*member);
2064 if (meta_left < meta_needed) {
2065 btf_verifier_log_basic(env, t,
2066 "meta_left:%u meta_needed:%u",
2067 meta_left, meta_needed);
2068 return -EINVAL;
2071 /* struct type either no name or a valid one */
2072 if (t->name_off &&
2073 !btf_name_valid_identifier(env->btf, t->name_off)) {
2074 btf_verifier_log_type(env, t, "Invalid name");
2075 return -EINVAL;
2078 btf_verifier_log_type(env, t, NULL);
2080 last_offset = 0;
2081 for_each_member(i, t, member) {
2082 if (!btf_name_offset_valid(btf, member->name_off)) {
2083 btf_verifier_log_member(env, t, member,
2084 "Invalid member name_offset:%u",
2085 member->name_off);
2086 return -EINVAL;
2089 /* struct member either no name or a valid one */
2090 if (member->name_off &&
2091 !btf_name_valid_identifier(btf, member->name_off)) {
2092 btf_verifier_log_member(env, t, member, "Invalid name");
2093 return -EINVAL;
2095 /* A member cannot be in type void */
2096 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2097 btf_verifier_log_member(env, t, member,
2098 "Invalid type_id");
2099 return -EINVAL;
2102 offset = btf_member_bit_offset(t, member);
2103 if (is_union && offset) {
2104 btf_verifier_log_member(env, t, member,
2105 "Invalid member bits_offset");
2106 return -EINVAL;
2110 * ">" instead of ">=" because the last member could be
2111 * "char a[0];"
2113 if (last_offset > offset) {
2114 btf_verifier_log_member(env, t, member,
2115 "Invalid member bits_offset");
2116 return -EINVAL;
2119 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2120 btf_verifier_log_member(env, t, member,
2121 "Member bits_offset exceeds its struct size");
2122 return -EINVAL;
2125 btf_verifier_log_member(env, t, member, NULL);
2126 last_offset = offset;
2129 return meta_needed;
2132 static int btf_struct_resolve(struct btf_verifier_env *env,
2133 const struct resolve_vertex *v)
2135 const struct btf_member *member;
2136 int err;
2137 u16 i;
2139 /* Before continue resolving the next_member,
2140 * ensure the last member is indeed resolved to a
2141 * type with size info.
2143 if (v->next_member) {
2144 const struct btf_type *last_member_type;
2145 const struct btf_member *last_member;
2146 u16 last_member_type_id;
2148 last_member = btf_type_member(v->t) + v->next_member - 1;
2149 last_member_type_id = last_member->type;
2150 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2151 last_member_type_id)))
2152 return -EINVAL;
2154 last_member_type = btf_type_by_id(env->btf,
2155 last_member_type_id);
2156 if (btf_type_kflag(v->t))
2157 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2158 last_member,
2159 last_member_type);
2160 else
2161 err = btf_type_ops(last_member_type)->check_member(env, v->t,
2162 last_member,
2163 last_member_type);
2164 if (err)
2165 return err;
2168 for_each_member_from(i, v->next_member, v->t, member) {
2169 u32 member_type_id = member->type;
2170 const struct btf_type *member_type = btf_type_by_id(env->btf,
2171 member_type_id);
2173 if (btf_type_is_resolve_source_only(member_type) ||
2174 btf_type_nosize_or_null(member_type)) {
2175 btf_verifier_log_member(env, v->t, member,
2176 "Invalid member");
2177 return -EINVAL;
2180 if (!env_type_is_resolve_sink(env, member_type) &&
2181 !env_type_is_resolved(env, member_type_id)) {
2182 env_stack_set_next_member(env, i + 1);
2183 return env_stack_push(env, member_type, member_type_id);
2186 if (btf_type_kflag(v->t))
2187 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2188 member,
2189 member_type);
2190 else
2191 err = btf_type_ops(member_type)->check_member(env, v->t,
2192 member,
2193 member_type);
2194 if (err)
2195 return err;
2198 env_stack_pop_resolved(env, 0, 0);
2200 return 0;
2203 static void btf_struct_log(struct btf_verifier_env *env,
2204 const struct btf_type *t)
2206 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2209 /* find 'struct bpf_spin_lock' in map value.
2210 * return >= 0 offset if found
2211 * and < 0 in case of error
2213 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2215 const struct btf_member *member;
2216 u32 i, off = -ENOENT;
2218 if (!__btf_type_is_struct(t))
2219 return -EINVAL;
2221 for_each_member(i, t, member) {
2222 const struct btf_type *member_type = btf_type_by_id(btf,
2223 member->type);
2224 if (!__btf_type_is_struct(member_type))
2225 continue;
2226 if (member_type->size != sizeof(struct bpf_spin_lock))
2227 continue;
2228 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2229 "bpf_spin_lock"))
2230 continue;
2231 if (off != -ENOENT)
2232 /* only one 'struct bpf_spin_lock' is allowed */
2233 return -E2BIG;
2234 off = btf_member_bit_offset(t, member);
2235 if (off % 8)
2236 /* valid C code cannot generate such BTF */
2237 return -EINVAL;
2238 off /= 8;
2239 if (off % __alignof__(struct bpf_spin_lock))
2240 /* valid struct bpf_spin_lock will be 4 byte aligned */
2241 return -EINVAL;
2243 return off;
2246 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2247 u32 type_id, void *data, u8 bits_offset,
2248 struct seq_file *m)
2250 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2251 const struct btf_member *member;
2252 u32 i;
2254 seq_puts(m, "{");
2255 for_each_member(i, t, member) {
2256 const struct btf_type *member_type = btf_type_by_id(btf,
2257 member->type);
2258 const struct btf_kind_operations *ops;
2259 u32 member_offset, bitfield_size;
2260 u32 bytes_offset;
2261 u8 bits8_offset;
2263 if (i)
2264 seq_puts(m, seq);
2266 member_offset = btf_member_bit_offset(t, member);
2267 bitfield_size = btf_member_bitfield_size(t, member);
2268 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2269 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2270 if (bitfield_size) {
2271 btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2272 bitfield_size, m);
2273 } else {
2274 ops = btf_type_ops(member_type);
2275 ops->seq_show(btf, member_type, member->type,
2276 data + bytes_offset, bits8_offset, m);
2279 seq_puts(m, "}");
2282 static struct btf_kind_operations struct_ops = {
2283 .check_meta = btf_struct_check_meta,
2284 .resolve = btf_struct_resolve,
2285 .check_member = btf_struct_check_member,
2286 .check_kflag_member = btf_generic_check_kflag_member,
2287 .log_details = btf_struct_log,
2288 .seq_show = btf_struct_seq_show,
2291 static int btf_enum_check_member(struct btf_verifier_env *env,
2292 const struct btf_type *struct_type,
2293 const struct btf_member *member,
2294 const struct btf_type *member_type)
2296 u32 struct_bits_off = member->offset;
2297 u32 struct_size, bytes_offset;
2299 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2300 btf_verifier_log_member(env, struct_type, member,
2301 "Member is not byte aligned");
2302 return -EINVAL;
2305 struct_size = struct_type->size;
2306 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2307 if (struct_size - bytes_offset < sizeof(int)) {
2308 btf_verifier_log_member(env, struct_type, member,
2309 "Member exceeds struct_size");
2310 return -EINVAL;
2313 return 0;
2316 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2317 const struct btf_type *struct_type,
2318 const struct btf_member *member,
2319 const struct btf_type *member_type)
2321 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2322 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2324 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2325 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2326 if (!nr_bits) {
2327 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2328 btf_verifier_log_member(env, struct_type, member,
2329 "Member is not byte aligned");
2330 return -EINVAL;
2333 nr_bits = int_bitsize;
2334 } else if (nr_bits > int_bitsize) {
2335 btf_verifier_log_member(env, struct_type, member,
2336 "Invalid member bitfield_size");
2337 return -EINVAL;
2340 struct_size = struct_type->size;
2341 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2342 if (struct_size < bytes_end) {
2343 btf_verifier_log_member(env, struct_type, member,
2344 "Member exceeds struct_size");
2345 return -EINVAL;
2348 return 0;
2351 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2352 const struct btf_type *t,
2353 u32 meta_left)
2355 const struct btf_enum *enums = btf_type_enum(t);
2356 struct btf *btf = env->btf;
2357 u16 i, nr_enums;
2358 u32 meta_needed;
2360 nr_enums = btf_type_vlen(t);
2361 meta_needed = nr_enums * sizeof(*enums);
2363 if (meta_left < meta_needed) {
2364 btf_verifier_log_basic(env, t,
2365 "meta_left:%u meta_needed:%u",
2366 meta_left, meta_needed);
2367 return -EINVAL;
2370 if (btf_type_kflag(t)) {
2371 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2372 return -EINVAL;
2375 if (t->size != sizeof(int)) {
2376 btf_verifier_log_type(env, t, "Expected size:%zu",
2377 sizeof(int));
2378 return -EINVAL;
2381 /* enum type either no name or a valid one */
2382 if (t->name_off &&
2383 !btf_name_valid_identifier(env->btf, t->name_off)) {
2384 btf_verifier_log_type(env, t, "Invalid name");
2385 return -EINVAL;
2388 btf_verifier_log_type(env, t, NULL);
2390 for (i = 0; i < nr_enums; i++) {
2391 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2392 btf_verifier_log(env, "\tInvalid name_offset:%u",
2393 enums[i].name_off);
2394 return -EINVAL;
2397 /* enum member must have a valid name */
2398 if (!enums[i].name_off ||
2399 !btf_name_valid_identifier(btf, enums[i].name_off)) {
2400 btf_verifier_log_type(env, t, "Invalid name");
2401 return -EINVAL;
2405 btf_verifier_log(env, "\t%s val=%d\n",
2406 __btf_name_by_offset(btf, enums[i].name_off),
2407 enums[i].val);
2410 return meta_needed;
2413 static void btf_enum_log(struct btf_verifier_env *env,
2414 const struct btf_type *t)
2416 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2419 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2420 u32 type_id, void *data, u8 bits_offset,
2421 struct seq_file *m)
2423 const struct btf_enum *enums = btf_type_enum(t);
2424 u32 i, nr_enums = btf_type_vlen(t);
2425 int v = *(int *)data;
2427 for (i = 0; i < nr_enums; i++) {
2428 if (v == enums[i].val) {
2429 seq_printf(m, "%s",
2430 __btf_name_by_offset(btf,
2431 enums[i].name_off));
2432 return;
2436 seq_printf(m, "%d", v);
2439 static struct btf_kind_operations enum_ops = {
2440 .check_meta = btf_enum_check_meta,
2441 .resolve = btf_df_resolve,
2442 .check_member = btf_enum_check_member,
2443 .check_kflag_member = btf_enum_check_kflag_member,
2444 .log_details = btf_enum_log,
2445 .seq_show = btf_enum_seq_show,
2448 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2449 const struct btf_type *t,
2450 u32 meta_left)
2452 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2454 if (meta_left < meta_needed) {
2455 btf_verifier_log_basic(env, t,
2456 "meta_left:%u meta_needed:%u",
2457 meta_left, meta_needed);
2458 return -EINVAL;
2461 if (t->name_off) {
2462 btf_verifier_log_type(env, t, "Invalid name");
2463 return -EINVAL;
2466 if (btf_type_kflag(t)) {
2467 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2468 return -EINVAL;
2471 btf_verifier_log_type(env, t, NULL);
2473 return meta_needed;
2476 static void btf_func_proto_log(struct btf_verifier_env *env,
2477 const struct btf_type *t)
2479 const struct btf_param *args = (const struct btf_param *)(t + 1);
2480 u16 nr_args = btf_type_vlen(t), i;
2482 btf_verifier_log(env, "return=%u args=(", t->type);
2483 if (!nr_args) {
2484 btf_verifier_log(env, "void");
2485 goto done;
2488 if (nr_args == 1 && !args[0].type) {
2489 /* Only one vararg */
2490 btf_verifier_log(env, "vararg");
2491 goto done;
2494 btf_verifier_log(env, "%u %s", args[0].type,
2495 __btf_name_by_offset(env->btf,
2496 args[0].name_off));
2497 for (i = 1; i < nr_args - 1; i++)
2498 btf_verifier_log(env, ", %u %s", args[i].type,
2499 __btf_name_by_offset(env->btf,
2500 args[i].name_off));
2502 if (nr_args > 1) {
2503 const struct btf_param *last_arg = &args[nr_args - 1];
2505 if (last_arg->type)
2506 btf_verifier_log(env, ", %u %s", last_arg->type,
2507 __btf_name_by_offset(env->btf,
2508 last_arg->name_off));
2509 else
2510 btf_verifier_log(env, ", vararg");
2513 done:
2514 btf_verifier_log(env, ")");
2517 static struct btf_kind_operations func_proto_ops = {
2518 .check_meta = btf_func_proto_check_meta,
2519 .resolve = btf_df_resolve,
2521 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2522 * a struct's member.
2524 * It should be a funciton pointer instead.
2525 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2527 * Hence, there is no btf_func_check_member().
2529 .check_member = btf_df_check_member,
2530 .check_kflag_member = btf_df_check_kflag_member,
2531 .log_details = btf_func_proto_log,
2532 .seq_show = btf_df_seq_show,
2535 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2536 const struct btf_type *t,
2537 u32 meta_left)
2539 if (!t->name_off ||
2540 !btf_name_valid_identifier(env->btf, t->name_off)) {
2541 btf_verifier_log_type(env, t, "Invalid name");
2542 return -EINVAL;
2545 if (btf_type_vlen(t)) {
2546 btf_verifier_log_type(env, t, "vlen != 0");
2547 return -EINVAL;
2550 if (btf_type_kflag(t)) {
2551 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2552 return -EINVAL;
2555 btf_verifier_log_type(env, t, NULL);
2557 return 0;
2560 static struct btf_kind_operations func_ops = {
2561 .check_meta = btf_func_check_meta,
2562 .resolve = btf_df_resolve,
2563 .check_member = btf_df_check_member,
2564 .check_kflag_member = btf_df_check_kflag_member,
2565 .log_details = btf_ref_type_log,
2566 .seq_show = btf_df_seq_show,
2569 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2570 const struct btf_type *t,
2571 u32 meta_left)
2573 const struct btf_var *var;
2574 u32 meta_needed = sizeof(*var);
2576 if (meta_left < meta_needed) {
2577 btf_verifier_log_basic(env, t,
2578 "meta_left:%u meta_needed:%u",
2579 meta_left, meta_needed);
2580 return -EINVAL;
2583 if (btf_type_vlen(t)) {
2584 btf_verifier_log_type(env, t, "vlen != 0");
2585 return -EINVAL;
2588 if (btf_type_kflag(t)) {
2589 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2590 return -EINVAL;
2593 if (!t->name_off ||
2594 !__btf_name_valid(env->btf, t->name_off, true)) {
2595 btf_verifier_log_type(env, t, "Invalid name");
2596 return -EINVAL;
2599 /* A var cannot be in type void */
2600 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2601 btf_verifier_log_type(env, t, "Invalid type_id");
2602 return -EINVAL;
2605 var = btf_type_var(t);
2606 if (var->linkage != BTF_VAR_STATIC &&
2607 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2608 btf_verifier_log_type(env, t, "Linkage not supported");
2609 return -EINVAL;
2612 btf_verifier_log_type(env, t, NULL);
2614 return meta_needed;
2617 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2619 const struct btf_var *var = btf_type_var(t);
2621 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2624 static const struct btf_kind_operations var_ops = {
2625 .check_meta = btf_var_check_meta,
2626 .resolve = btf_var_resolve,
2627 .check_member = btf_df_check_member,
2628 .check_kflag_member = btf_df_check_kflag_member,
2629 .log_details = btf_var_log,
2630 .seq_show = btf_var_seq_show,
2633 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2634 const struct btf_type *t,
2635 u32 meta_left)
2637 const struct btf_var_secinfo *vsi;
2638 u64 last_vsi_end_off = 0, sum = 0;
2639 u32 i, meta_needed;
2641 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2642 if (meta_left < meta_needed) {
2643 btf_verifier_log_basic(env, t,
2644 "meta_left:%u meta_needed:%u",
2645 meta_left, meta_needed);
2646 return -EINVAL;
2649 if (!btf_type_vlen(t)) {
2650 btf_verifier_log_type(env, t, "vlen == 0");
2651 return -EINVAL;
2654 if (!t->size) {
2655 btf_verifier_log_type(env, t, "size == 0");
2656 return -EINVAL;
2659 if (btf_type_kflag(t)) {
2660 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2661 return -EINVAL;
2664 if (!t->name_off ||
2665 !btf_name_valid_section(env->btf, t->name_off)) {
2666 btf_verifier_log_type(env, t, "Invalid name");
2667 return -EINVAL;
2670 btf_verifier_log_type(env, t, NULL);
2672 for_each_vsi(i, t, vsi) {
2673 /* A var cannot be in type void */
2674 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2675 btf_verifier_log_vsi(env, t, vsi,
2676 "Invalid type_id");
2677 return -EINVAL;
2680 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2681 btf_verifier_log_vsi(env, t, vsi,
2682 "Invalid offset");
2683 return -EINVAL;
2686 if (!vsi->size || vsi->size > t->size) {
2687 btf_verifier_log_vsi(env, t, vsi,
2688 "Invalid size");
2689 return -EINVAL;
2692 last_vsi_end_off = vsi->offset + vsi->size;
2693 if (last_vsi_end_off > t->size) {
2694 btf_verifier_log_vsi(env, t, vsi,
2695 "Invalid offset+size");
2696 return -EINVAL;
2699 btf_verifier_log_vsi(env, t, vsi, NULL);
2700 sum += vsi->size;
2703 if (t->size < sum) {
2704 btf_verifier_log_type(env, t, "Invalid btf_info size");
2705 return -EINVAL;
2708 return meta_needed;
2711 static int btf_datasec_resolve(struct btf_verifier_env *env,
2712 const struct resolve_vertex *v)
2714 const struct btf_var_secinfo *vsi;
2715 struct btf *btf = env->btf;
2716 u16 i;
2718 for_each_vsi_from(i, v->next_member, v->t, vsi) {
2719 u32 var_type_id = vsi->type, type_id, type_size = 0;
2720 const struct btf_type *var_type = btf_type_by_id(env->btf,
2721 var_type_id);
2722 if (!var_type || !btf_type_is_var(var_type)) {
2723 btf_verifier_log_vsi(env, v->t, vsi,
2724 "Not a VAR kind member");
2725 return -EINVAL;
2728 if (!env_type_is_resolve_sink(env, var_type) &&
2729 !env_type_is_resolved(env, var_type_id)) {
2730 env_stack_set_next_member(env, i + 1);
2731 return env_stack_push(env, var_type, var_type_id);
2734 type_id = var_type->type;
2735 if (!btf_type_id_size(btf, &type_id, &type_size)) {
2736 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2737 return -EINVAL;
2740 if (vsi->size < type_size) {
2741 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2742 return -EINVAL;
2746 env_stack_pop_resolved(env, 0, 0);
2747 return 0;
2750 static void btf_datasec_log(struct btf_verifier_env *env,
2751 const struct btf_type *t)
2753 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2756 static void btf_datasec_seq_show(const struct btf *btf,
2757 const struct btf_type *t, u32 type_id,
2758 void *data, u8 bits_offset,
2759 struct seq_file *m)
2761 const struct btf_var_secinfo *vsi;
2762 const struct btf_type *var;
2763 u32 i;
2765 seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2766 for_each_vsi(i, t, vsi) {
2767 var = btf_type_by_id(btf, vsi->type);
2768 if (i)
2769 seq_puts(m, ",");
2770 btf_type_ops(var)->seq_show(btf, var, vsi->type,
2771 data + vsi->offset, bits_offset, m);
2773 seq_puts(m, "}");
2776 static const struct btf_kind_operations datasec_ops = {
2777 .check_meta = btf_datasec_check_meta,
2778 .resolve = btf_datasec_resolve,
2779 .check_member = btf_df_check_member,
2780 .check_kflag_member = btf_df_check_kflag_member,
2781 .log_details = btf_datasec_log,
2782 .seq_show = btf_datasec_seq_show,
2785 static int btf_func_proto_check(struct btf_verifier_env *env,
2786 const struct btf_type *t)
2788 const struct btf_type *ret_type;
2789 const struct btf_param *args;
2790 const struct btf *btf;
2791 u16 nr_args, i;
2792 int err;
2794 btf = env->btf;
2795 args = (const struct btf_param *)(t + 1);
2796 nr_args = btf_type_vlen(t);
2798 /* Check func return type which could be "void" (t->type == 0) */
2799 if (t->type) {
2800 u32 ret_type_id = t->type;
2802 ret_type = btf_type_by_id(btf, ret_type_id);
2803 if (!ret_type) {
2804 btf_verifier_log_type(env, t, "Invalid return type");
2805 return -EINVAL;
2808 if (btf_type_needs_resolve(ret_type) &&
2809 !env_type_is_resolved(env, ret_type_id)) {
2810 err = btf_resolve(env, ret_type, ret_type_id);
2811 if (err)
2812 return err;
2815 /* Ensure the return type is a type that has a size */
2816 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2817 btf_verifier_log_type(env, t, "Invalid return type");
2818 return -EINVAL;
2822 if (!nr_args)
2823 return 0;
2825 /* Last func arg type_id could be 0 if it is a vararg */
2826 if (!args[nr_args - 1].type) {
2827 if (args[nr_args - 1].name_off) {
2828 btf_verifier_log_type(env, t, "Invalid arg#%u",
2829 nr_args);
2830 return -EINVAL;
2832 nr_args--;
2835 err = 0;
2836 for (i = 0; i < nr_args; i++) {
2837 const struct btf_type *arg_type;
2838 u32 arg_type_id;
2840 arg_type_id = args[i].type;
2841 arg_type = btf_type_by_id(btf, arg_type_id);
2842 if (!arg_type) {
2843 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2844 err = -EINVAL;
2845 break;
2848 if (args[i].name_off &&
2849 (!btf_name_offset_valid(btf, args[i].name_off) ||
2850 !btf_name_valid_identifier(btf, args[i].name_off))) {
2851 btf_verifier_log_type(env, t,
2852 "Invalid arg#%u", i + 1);
2853 err = -EINVAL;
2854 break;
2857 if (btf_type_needs_resolve(arg_type) &&
2858 !env_type_is_resolved(env, arg_type_id)) {
2859 err = btf_resolve(env, arg_type, arg_type_id);
2860 if (err)
2861 break;
2864 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2865 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2866 err = -EINVAL;
2867 break;
2871 return err;
2874 static int btf_func_check(struct btf_verifier_env *env,
2875 const struct btf_type *t)
2877 const struct btf_type *proto_type;
2878 const struct btf_param *args;
2879 const struct btf *btf;
2880 u16 nr_args, i;
2882 btf = env->btf;
2883 proto_type = btf_type_by_id(btf, t->type);
2885 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2886 btf_verifier_log_type(env, t, "Invalid type_id");
2887 return -EINVAL;
2890 args = (const struct btf_param *)(proto_type + 1);
2891 nr_args = btf_type_vlen(proto_type);
2892 for (i = 0; i < nr_args; i++) {
2893 if (!args[i].name_off && args[i].type) {
2894 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2895 return -EINVAL;
2899 return 0;
2902 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2903 [BTF_KIND_INT] = &int_ops,
2904 [BTF_KIND_PTR] = &ptr_ops,
2905 [BTF_KIND_ARRAY] = &array_ops,
2906 [BTF_KIND_STRUCT] = &struct_ops,
2907 [BTF_KIND_UNION] = &struct_ops,
2908 [BTF_KIND_ENUM] = &enum_ops,
2909 [BTF_KIND_FWD] = &fwd_ops,
2910 [BTF_KIND_TYPEDEF] = &modifier_ops,
2911 [BTF_KIND_VOLATILE] = &modifier_ops,
2912 [BTF_KIND_CONST] = &modifier_ops,
2913 [BTF_KIND_RESTRICT] = &modifier_ops,
2914 [BTF_KIND_FUNC] = &func_ops,
2915 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2916 [BTF_KIND_VAR] = &var_ops,
2917 [BTF_KIND_DATASEC] = &datasec_ops,
2920 static s32 btf_check_meta(struct btf_verifier_env *env,
2921 const struct btf_type *t,
2922 u32 meta_left)
2924 u32 saved_meta_left = meta_left;
2925 s32 var_meta_size;
2927 if (meta_left < sizeof(*t)) {
2928 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2929 env->log_type_id, meta_left, sizeof(*t));
2930 return -EINVAL;
2932 meta_left -= sizeof(*t);
2934 if (t->info & ~BTF_INFO_MASK) {
2935 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2936 env->log_type_id, t->info);
2937 return -EINVAL;
2940 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2941 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2942 btf_verifier_log(env, "[%u] Invalid kind:%u",
2943 env->log_type_id, BTF_INFO_KIND(t->info));
2944 return -EINVAL;
2947 if (!btf_name_offset_valid(env->btf, t->name_off)) {
2948 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2949 env->log_type_id, t->name_off);
2950 return -EINVAL;
2953 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2954 if (var_meta_size < 0)
2955 return var_meta_size;
2957 meta_left -= var_meta_size;
2959 return saved_meta_left - meta_left;
2962 static int btf_check_all_metas(struct btf_verifier_env *env)
2964 struct btf *btf = env->btf;
2965 struct btf_header *hdr;
2966 void *cur, *end;
2968 hdr = &btf->hdr;
2969 cur = btf->nohdr_data + hdr->type_off;
2970 end = cur + hdr->type_len;
2972 env->log_type_id = 1;
2973 while (cur < end) {
2974 struct btf_type *t = cur;
2975 s32 meta_size;
2977 meta_size = btf_check_meta(env, t, end - cur);
2978 if (meta_size < 0)
2979 return meta_size;
2981 btf_add_type(env, t);
2982 cur += meta_size;
2983 env->log_type_id++;
2986 return 0;
2989 static bool btf_resolve_valid(struct btf_verifier_env *env,
2990 const struct btf_type *t,
2991 u32 type_id)
2993 struct btf *btf = env->btf;
2995 if (!env_type_is_resolved(env, type_id))
2996 return false;
2998 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
2999 return !btf->resolved_ids[type_id] &&
3000 !btf->resolved_sizes[type_id];
3002 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3003 btf_type_is_var(t)) {
3004 t = btf_type_id_resolve(btf, &type_id);
3005 return t &&
3006 !btf_type_is_modifier(t) &&
3007 !btf_type_is_var(t) &&
3008 !btf_type_is_datasec(t);
3011 if (btf_type_is_array(t)) {
3012 const struct btf_array *array = btf_type_array(t);
3013 const struct btf_type *elem_type;
3014 u32 elem_type_id = array->type;
3015 u32 elem_size;
3017 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3018 return elem_type && !btf_type_is_modifier(elem_type) &&
3019 (array->nelems * elem_size ==
3020 btf->resolved_sizes[type_id]);
3023 return false;
3026 static int btf_resolve(struct btf_verifier_env *env,
3027 const struct btf_type *t, u32 type_id)
3029 u32 save_log_type_id = env->log_type_id;
3030 const struct resolve_vertex *v;
3031 int err = 0;
3033 env->resolve_mode = RESOLVE_TBD;
3034 env_stack_push(env, t, type_id);
3035 while (!err && (v = env_stack_peak(env))) {
3036 env->log_type_id = v->type_id;
3037 err = btf_type_ops(v->t)->resolve(env, v);
3040 env->log_type_id = type_id;
3041 if (err == -E2BIG) {
3042 btf_verifier_log_type(env, t,
3043 "Exceeded max resolving depth:%u",
3044 MAX_RESOLVE_DEPTH);
3045 } else if (err == -EEXIST) {
3046 btf_verifier_log_type(env, t, "Loop detected");
3049 /* Final sanity check */
3050 if (!err && !btf_resolve_valid(env, t, type_id)) {
3051 btf_verifier_log_type(env, t, "Invalid resolve state");
3052 err = -EINVAL;
3055 env->log_type_id = save_log_type_id;
3056 return err;
3059 static int btf_check_all_types(struct btf_verifier_env *env)
3061 struct btf *btf = env->btf;
3062 u32 type_id;
3063 int err;
3065 err = env_resolve_init(env);
3066 if (err)
3067 return err;
3069 env->phase++;
3070 for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3071 const struct btf_type *t = btf_type_by_id(btf, type_id);
3073 env->log_type_id = type_id;
3074 if (btf_type_needs_resolve(t) &&
3075 !env_type_is_resolved(env, type_id)) {
3076 err = btf_resolve(env, t, type_id);
3077 if (err)
3078 return err;
3081 if (btf_type_is_func_proto(t)) {
3082 err = btf_func_proto_check(env, t);
3083 if (err)
3084 return err;
3087 if (btf_type_is_func(t)) {
3088 err = btf_func_check(env, t);
3089 if (err)
3090 return err;
3094 return 0;
3097 static int btf_parse_type_sec(struct btf_verifier_env *env)
3099 const struct btf_header *hdr = &env->btf->hdr;
3100 int err;
3102 /* Type section must align to 4 bytes */
3103 if (hdr->type_off & (sizeof(u32) - 1)) {
3104 btf_verifier_log(env, "Unaligned type_off");
3105 return -EINVAL;
3108 if (!hdr->type_len) {
3109 btf_verifier_log(env, "No type found");
3110 return -EINVAL;
3113 err = btf_check_all_metas(env);
3114 if (err)
3115 return err;
3117 return btf_check_all_types(env);
3120 static int btf_parse_str_sec(struct btf_verifier_env *env)
3122 const struct btf_header *hdr;
3123 struct btf *btf = env->btf;
3124 const char *start, *end;
3126 hdr = &btf->hdr;
3127 start = btf->nohdr_data + hdr->str_off;
3128 end = start + hdr->str_len;
3130 if (end != btf->data + btf->data_size) {
3131 btf_verifier_log(env, "String section is not at the end");
3132 return -EINVAL;
3135 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3136 start[0] || end[-1]) {
3137 btf_verifier_log(env, "Invalid string section");
3138 return -EINVAL;
3141 btf->strings = start;
3143 return 0;
3146 static const size_t btf_sec_info_offset[] = {
3147 offsetof(struct btf_header, type_off),
3148 offsetof(struct btf_header, str_off),
3151 static int btf_sec_info_cmp(const void *a, const void *b)
3153 const struct btf_sec_info *x = a;
3154 const struct btf_sec_info *y = b;
3156 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3159 static int btf_check_sec_info(struct btf_verifier_env *env,
3160 u32 btf_data_size)
3162 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3163 u32 total, expected_total, i;
3164 const struct btf_header *hdr;
3165 const struct btf *btf;
3167 btf = env->btf;
3168 hdr = &btf->hdr;
3170 /* Populate the secs from hdr */
3171 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3172 secs[i] = *(struct btf_sec_info *)((void *)hdr +
3173 btf_sec_info_offset[i]);
3175 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3176 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3178 /* Check for gaps and overlap among sections */
3179 total = 0;
3180 expected_total = btf_data_size - hdr->hdr_len;
3181 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3182 if (expected_total < secs[i].off) {
3183 btf_verifier_log(env, "Invalid section offset");
3184 return -EINVAL;
3186 if (total < secs[i].off) {
3187 /* gap */
3188 btf_verifier_log(env, "Unsupported section found");
3189 return -EINVAL;
3191 if (total > secs[i].off) {
3192 btf_verifier_log(env, "Section overlap found");
3193 return -EINVAL;
3195 if (expected_total - total < secs[i].len) {
3196 btf_verifier_log(env,
3197 "Total section length too long");
3198 return -EINVAL;
3200 total += secs[i].len;
3203 /* There is data other than hdr and known sections */
3204 if (expected_total != total) {
3205 btf_verifier_log(env, "Unsupported section found");
3206 return -EINVAL;
3209 return 0;
3212 static int btf_parse_hdr(struct btf_verifier_env *env)
3214 u32 hdr_len, hdr_copy, btf_data_size;
3215 const struct btf_header *hdr;
3216 struct btf *btf;
3217 int err;
3219 btf = env->btf;
3220 btf_data_size = btf->data_size;
3222 if (btf_data_size <
3223 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3224 btf_verifier_log(env, "hdr_len not found");
3225 return -EINVAL;
3228 hdr = btf->data;
3229 hdr_len = hdr->hdr_len;
3230 if (btf_data_size < hdr_len) {
3231 btf_verifier_log(env, "btf_header not found");
3232 return -EINVAL;
3235 /* Ensure the unsupported header fields are zero */
3236 if (hdr_len > sizeof(btf->hdr)) {
3237 u8 *expected_zero = btf->data + sizeof(btf->hdr);
3238 u8 *end = btf->data + hdr_len;
3240 for (; expected_zero < end; expected_zero++) {
3241 if (*expected_zero) {
3242 btf_verifier_log(env, "Unsupported btf_header");
3243 return -E2BIG;
3248 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3249 memcpy(&btf->hdr, btf->data, hdr_copy);
3251 hdr = &btf->hdr;
3253 btf_verifier_log_hdr(env, btf_data_size);
3255 if (hdr->magic != BTF_MAGIC) {
3256 btf_verifier_log(env, "Invalid magic");
3257 return -EINVAL;
3260 if (hdr->version != BTF_VERSION) {
3261 btf_verifier_log(env, "Unsupported version");
3262 return -ENOTSUPP;
3265 if (hdr->flags) {
3266 btf_verifier_log(env, "Unsupported flags");
3267 return -ENOTSUPP;
3270 if (btf_data_size == hdr->hdr_len) {
3271 btf_verifier_log(env, "No data");
3272 return -EINVAL;
3275 err = btf_check_sec_info(env, btf_data_size);
3276 if (err)
3277 return err;
3279 return 0;
3282 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3283 u32 log_level, char __user *log_ubuf, u32 log_size)
3285 struct btf_verifier_env *env = NULL;
3286 struct bpf_verifier_log *log;
3287 struct btf *btf = NULL;
3288 u8 *data;
3289 int err;
3291 if (btf_data_size > BTF_MAX_SIZE)
3292 return ERR_PTR(-E2BIG);
3294 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3295 if (!env)
3296 return ERR_PTR(-ENOMEM);
3298 log = &env->log;
3299 if (log_level || log_ubuf || log_size) {
3300 /* user requested verbose verifier output
3301 * and supplied buffer to store the verification trace
3303 log->level = log_level;
3304 log->ubuf = log_ubuf;
3305 log->len_total = log_size;
3307 /* log attributes have to be sane */
3308 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3309 !log->level || !log->ubuf) {
3310 err = -EINVAL;
3311 goto errout;
3315 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3316 if (!btf) {
3317 err = -ENOMEM;
3318 goto errout;
3320 env->btf = btf;
3322 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3323 if (!data) {
3324 err = -ENOMEM;
3325 goto errout;
3328 btf->data = data;
3329 btf->data_size = btf_data_size;
3331 if (copy_from_user(data, btf_data, btf_data_size)) {
3332 err = -EFAULT;
3333 goto errout;
3336 err = btf_parse_hdr(env);
3337 if (err)
3338 goto errout;
3340 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3342 err = btf_parse_str_sec(env);
3343 if (err)
3344 goto errout;
3346 err = btf_parse_type_sec(env);
3347 if (err)
3348 goto errout;
3350 if (log->level && bpf_verifier_log_full(log)) {
3351 err = -ENOSPC;
3352 goto errout;
3355 btf_verifier_env_free(env);
3356 refcount_set(&btf->refcnt, 1);
3357 return btf;
3359 errout:
3360 btf_verifier_env_free(env);
3361 if (btf)
3362 btf_free(btf);
3363 return ERR_PTR(err);
3366 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
3367 struct seq_file *m)
3369 const struct btf_type *t = btf_type_by_id(btf, type_id);
3371 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
3374 static int btf_release(struct inode *inode, struct file *filp)
3376 btf_put(filp->private_data);
3377 return 0;
3380 const struct file_operations btf_fops = {
3381 .release = btf_release,
3384 static int __btf_new_fd(struct btf *btf)
3386 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
3389 int btf_new_fd(const union bpf_attr *attr)
3391 struct btf *btf;
3392 int ret;
3394 btf = btf_parse(u64_to_user_ptr(attr->btf),
3395 attr->btf_size, attr->btf_log_level,
3396 u64_to_user_ptr(attr->btf_log_buf),
3397 attr->btf_log_size);
3398 if (IS_ERR(btf))
3399 return PTR_ERR(btf);
3401 ret = btf_alloc_id(btf);
3402 if (ret) {
3403 btf_free(btf);
3404 return ret;
3408 * The BTF ID is published to the userspace.
3409 * All BTF free must go through call_rcu() from
3410 * now on (i.e. free by calling btf_put()).
3413 ret = __btf_new_fd(btf);
3414 if (ret < 0)
3415 btf_put(btf);
3417 return ret;
3420 struct btf *btf_get_by_fd(int fd)
3422 struct btf *btf;
3423 struct fd f;
3425 f = fdget(fd);
3427 if (!f.file)
3428 return ERR_PTR(-EBADF);
3430 if (f.file->f_op != &btf_fops) {
3431 fdput(f);
3432 return ERR_PTR(-EINVAL);
3435 btf = f.file->private_data;
3436 refcount_inc(&btf->refcnt);
3437 fdput(f);
3439 return btf;
3442 int btf_get_info_by_fd(const struct btf *btf,
3443 const union bpf_attr *attr,
3444 union bpf_attr __user *uattr)
3446 struct bpf_btf_info __user *uinfo;
3447 struct bpf_btf_info info = {};
3448 u32 info_copy, btf_copy;
3449 void __user *ubtf;
3450 u32 uinfo_len;
3452 uinfo = u64_to_user_ptr(attr->info.info);
3453 uinfo_len = attr->info.info_len;
3455 info_copy = min_t(u32, uinfo_len, sizeof(info));
3456 if (copy_from_user(&info, uinfo, info_copy))
3457 return -EFAULT;
3459 info.id = btf->id;
3460 ubtf = u64_to_user_ptr(info.btf);
3461 btf_copy = min_t(u32, btf->data_size, info.btf_size);
3462 if (copy_to_user(ubtf, btf->data, btf_copy))
3463 return -EFAULT;
3464 info.btf_size = btf->data_size;
3466 if (copy_to_user(uinfo, &info, info_copy) ||
3467 put_user(info_copy, &uattr->info.info_len))
3468 return -EFAULT;
3470 return 0;
3473 int btf_get_fd_by_id(u32 id)
3475 struct btf *btf;
3476 int fd;
3478 rcu_read_lock();
3479 btf = idr_find(&btf_idr, id);
3480 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
3481 btf = ERR_PTR(-ENOENT);
3482 rcu_read_unlock();
3484 if (IS_ERR(btf))
3485 return PTR_ERR(btf);
3487 fd = __btf_new_fd(btf);
3488 if (fd < 0)
3489 btf_put(btf);
3491 return fd;
3494 u32 btf_id(const struct btf *btf)
3496 return btf->id;