Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / kernel / bpf / devmap.c
blobcd8297b3bdb9518a6c3498f81a88f792ebad7f60
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3 */
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7 * spent some effort to ensure the datapath with redirect maps does not use
8 * any locking. This is a quick note on the details.
10 * We have three possible paths to get into the devmap control plane bpf
11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12 * will invoke an update, delete, or lookup operation. To ensure updates and
13 * deletes appear atomic from the datapath side xchg() is used to modify the
14 * netdev_map array. Then because the datapath does a lookup into the netdev_map
15 * array (read-only) from an RCU critical section we use call_rcu() to wait for
16 * an rcu grace period before free'ing the old data structures. This ensures the
17 * datapath always has a valid copy. However, the datapath does a "flush"
18 * operation that pushes any pending packets in the driver outside the RCU
19 * critical section. Each bpf_dtab_netdev tracks these pending operations using
20 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
21 * until all bits are cleared indicating outstanding flush operations have
22 * completed.
24 * BPF syscalls may race with BPF program calls on any of the update, delete
25 * or lookup operations. As noted above the xchg() operation also keep the
26 * netdev_map consistent in this case. From the devmap side BPF programs
27 * calling into these operations are the same as multiple user space threads
28 * making system calls.
30 * Finally, any of the above may race with a netdev_unregister notifier. The
31 * unregister notifier must search for net devices in the map structure that
32 * contain a reference to the net device and remove them. This is a two step
33 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
34 * check to see if the ifindex is the same as the net_device being removed.
35 * When removing the dev a cmpxchg() is used to ensure the correct dev is
36 * removed, in the case of a concurrent update or delete operation it is
37 * possible that the initially referenced dev is no longer in the map. As the
38 * notifier hook walks the map we know that new dev references can not be
39 * added by the user because core infrastructure ensures dev_get_by_index()
40 * calls will fail at this point.
42 #include <linux/bpf.h>
43 #include <net/xdp.h>
44 #include <linux/filter.h>
45 #include <trace/events/xdp.h>
47 #define DEV_CREATE_FLAG_MASK \
48 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
50 #define DEV_MAP_BULK_SIZE 16
51 struct xdp_bulk_queue {
52 struct xdp_frame *q[DEV_MAP_BULK_SIZE];
53 struct net_device *dev_rx;
54 unsigned int count;
57 struct bpf_dtab_netdev {
58 struct net_device *dev; /* must be first member, due to tracepoint */
59 struct bpf_dtab *dtab;
60 unsigned int bit;
61 struct xdp_bulk_queue __percpu *bulkq;
62 struct rcu_head rcu;
65 struct bpf_dtab {
66 struct bpf_map map;
67 struct bpf_dtab_netdev **netdev_map;
68 unsigned long __percpu *flush_needed;
69 struct list_head list;
72 static DEFINE_SPINLOCK(dev_map_lock);
73 static LIST_HEAD(dev_map_list);
75 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
77 return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
80 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
82 struct bpf_dtab *dtab;
83 int err = -EINVAL;
84 u64 cost;
86 if (!capable(CAP_NET_ADMIN))
87 return ERR_PTR(-EPERM);
89 /* check sanity of attributes */
90 if (attr->max_entries == 0 || attr->key_size != 4 ||
91 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
92 return ERR_PTR(-EINVAL);
94 dtab = kzalloc(sizeof(*dtab), GFP_USER);
95 if (!dtab)
96 return ERR_PTR(-ENOMEM);
98 bpf_map_init_from_attr(&dtab->map, attr);
100 /* make sure page count doesn't overflow */
101 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
102 cost += dev_map_bitmap_size(attr) * num_possible_cpus();
103 if (cost >= U32_MAX - PAGE_SIZE)
104 goto free_dtab;
106 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
108 /* if map size is larger than memlock limit, reject it early */
109 err = bpf_map_precharge_memlock(dtab->map.pages);
110 if (err)
111 goto free_dtab;
113 err = -ENOMEM;
115 /* A per cpu bitfield with a bit per possible net device */
116 dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
117 __alignof__(unsigned long),
118 GFP_KERNEL | __GFP_NOWARN);
119 if (!dtab->flush_needed)
120 goto free_dtab;
122 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
123 sizeof(struct bpf_dtab_netdev *),
124 dtab->map.numa_node);
125 if (!dtab->netdev_map)
126 goto free_dtab;
128 spin_lock(&dev_map_lock);
129 list_add_tail_rcu(&dtab->list, &dev_map_list);
130 spin_unlock(&dev_map_lock);
132 return &dtab->map;
133 free_dtab:
134 free_percpu(dtab->flush_needed);
135 kfree(dtab);
136 return ERR_PTR(err);
139 static void dev_map_free(struct bpf_map *map)
141 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
142 int i, cpu;
144 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
145 * so the programs (can be more than one that used this map) were
146 * disconnected from events. Wait for outstanding critical sections in
147 * these programs to complete. The rcu critical section only guarantees
148 * no further reads against netdev_map. It does __not__ ensure pending
149 * flush operations (if any) are complete.
152 spin_lock(&dev_map_lock);
153 list_del_rcu(&dtab->list);
154 spin_unlock(&dev_map_lock);
156 bpf_clear_redirect_map(map);
157 synchronize_rcu();
159 /* Make sure prior __dev_map_entry_free() have completed. */
160 rcu_barrier();
162 /* To ensure all pending flush operations have completed wait for flush
163 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
164 * Because the above synchronize_rcu() ensures the map is disconnected
165 * from the program we can assume no new bits will be set.
167 for_each_online_cpu(cpu) {
168 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
170 while (!bitmap_empty(bitmap, dtab->map.max_entries))
171 cond_resched();
174 for (i = 0; i < dtab->map.max_entries; i++) {
175 struct bpf_dtab_netdev *dev;
177 dev = dtab->netdev_map[i];
178 if (!dev)
179 continue;
181 free_percpu(dev->bulkq);
182 dev_put(dev->dev);
183 kfree(dev);
186 free_percpu(dtab->flush_needed);
187 bpf_map_area_free(dtab->netdev_map);
188 kfree(dtab);
191 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
193 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
194 u32 index = key ? *(u32 *)key : U32_MAX;
195 u32 *next = next_key;
197 if (index >= dtab->map.max_entries) {
198 *next = 0;
199 return 0;
202 if (index == dtab->map.max_entries - 1)
203 return -ENOENT;
204 *next = index + 1;
205 return 0;
208 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
210 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
211 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
213 __set_bit(bit, bitmap);
216 static int bq_xmit_all(struct bpf_dtab_netdev *obj,
217 struct xdp_bulk_queue *bq, u32 flags,
218 bool in_napi_ctx)
220 struct net_device *dev = obj->dev;
221 int sent = 0, drops = 0, err = 0;
222 int i;
224 if (unlikely(!bq->count))
225 return 0;
227 for (i = 0; i < bq->count; i++) {
228 struct xdp_frame *xdpf = bq->q[i];
230 prefetch(xdpf);
233 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
234 if (sent < 0) {
235 err = sent;
236 sent = 0;
237 goto error;
239 drops = bq->count - sent;
240 out:
241 bq->count = 0;
243 trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
244 sent, drops, bq->dev_rx, dev, err);
245 bq->dev_rx = NULL;
246 return 0;
247 error:
248 /* If ndo_xdp_xmit fails with an errno, no frames have been
249 * xmit'ed and it's our responsibility to them free all.
251 for (i = 0; i < bq->count; i++) {
252 struct xdp_frame *xdpf = bq->q[i];
254 /* RX path under NAPI protection, can return frames faster */
255 if (likely(in_napi_ctx))
256 xdp_return_frame_rx_napi(xdpf);
257 else
258 xdp_return_frame(xdpf);
259 drops++;
261 goto out;
264 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
265 * from the driver before returning from its napi->poll() routine. The poll()
266 * routine is called either from busy_poll context or net_rx_action signaled
267 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
268 * net device can be torn down. On devmap tear down we ensure the ctx bitmap
269 * is zeroed before completing to ensure all flush operations have completed.
271 void __dev_map_flush(struct bpf_map *map)
273 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
274 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
275 u32 bit;
277 rcu_read_lock();
278 for_each_set_bit(bit, bitmap, map->max_entries) {
279 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
280 struct xdp_bulk_queue *bq;
282 /* This is possible if the dev entry is removed by user space
283 * between xdp redirect and flush op.
285 if (unlikely(!dev))
286 continue;
288 bq = this_cpu_ptr(dev->bulkq);
289 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
291 __clear_bit(bit, bitmap);
293 rcu_read_unlock();
296 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
297 * update happens in parallel here a dev_put wont happen until after reading the
298 * ifindex.
300 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
302 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
303 struct bpf_dtab_netdev *obj;
305 if (key >= map->max_entries)
306 return NULL;
308 obj = READ_ONCE(dtab->netdev_map[key]);
309 return obj;
312 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
313 * Thus, safe percpu variable access.
315 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
316 struct net_device *dev_rx)
319 struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
321 if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
322 bq_xmit_all(obj, bq, 0, true);
324 /* Ingress dev_rx will be the same for all xdp_frame's in
325 * bulk_queue, because bq stored per-CPU and must be flushed
326 * from net_device drivers NAPI func end.
328 if (!bq->dev_rx)
329 bq->dev_rx = dev_rx;
331 bq->q[bq->count++] = xdpf;
332 return 0;
335 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
336 struct net_device *dev_rx)
338 struct net_device *dev = dst->dev;
339 struct xdp_frame *xdpf;
340 int err;
342 if (!dev->netdev_ops->ndo_xdp_xmit)
343 return -EOPNOTSUPP;
345 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
346 if (unlikely(err))
347 return err;
349 xdpf = convert_to_xdp_frame(xdp);
350 if (unlikely(!xdpf))
351 return -EOVERFLOW;
353 return bq_enqueue(dst, xdpf, dev_rx);
356 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
357 struct bpf_prog *xdp_prog)
359 int err;
361 err = xdp_ok_fwd_dev(dst->dev, skb->len);
362 if (unlikely(err))
363 return err;
364 skb->dev = dst->dev;
365 generic_xdp_tx(skb, xdp_prog);
367 return 0;
370 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
372 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
373 struct net_device *dev = obj ? obj->dev : NULL;
375 return dev ? &dev->ifindex : NULL;
378 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
380 if (dev->dev->netdev_ops->ndo_xdp_xmit) {
381 struct xdp_bulk_queue *bq;
382 unsigned long *bitmap;
384 int cpu;
386 rcu_read_lock();
387 for_each_online_cpu(cpu) {
388 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
389 __clear_bit(dev->bit, bitmap);
391 bq = per_cpu_ptr(dev->bulkq, cpu);
392 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
394 rcu_read_unlock();
398 static void __dev_map_entry_free(struct rcu_head *rcu)
400 struct bpf_dtab_netdev *dev;
402 dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
403 dev_map_flush_old(dev);
404 free_percpu(dev->bulkq);
405 dev_put(dev->dev);
406 kfree(dev);
409 static int dev_map_delete_elem(struct bpf_map *map, void *key)
411 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
412 struct bpf_dtab_netdev *old_dev;
413 int k = *(u32 *)key;
415 if (k >= map->max_entries)
416 return -EINVAL;
418 /* Use call_rcu() here to ensure any rcu critical sections have
419 * completed, but this does not guarantee a flush has happened
420 * yet. Because driver side rcu_read_lock/unlock only protects the
421 * running XDP program. However, for pending flush operations the
422 * dev and ctx are stored in another per cpu map. And additionally,
423 * the driver tear down ensures all soft irqs are complete before
424 * removing the net device in the case of dev_put equals zero.
426 old_dev = xchg(&dtab->netdev_map[k], NULL);
427 if (old_dev)
428 call_rcu(&old_dev->rcu, __dev_map_entry_free);
429 return 0;
432 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
433 u64 map_flags)
435 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
436 struct net *net = current->nsproxy->net_ns;
437 gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
438 struct bpf_dtab_netdev *dev, *old_dev;
439 u32 i = *(u32 *)key;
440 u32 ifindex = *(u32 *)value;
442 if (unlikely(map_flags > BPF_EXIST))
443 return -EINVAL;
444 if (unlikely(i >= dtab->map.max_entries))
445 return -E2BIG;
446 if (unlikely(map_flags == BPF_NOEXIST))
447 return -EEXIST;
449 if (!ifindex) {
450 dev = NULL;
451 } else {
452 dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
453 if (!dev)
454 return -ENOMEM;
456 dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
457 sizeof(void *), gfp);
458 if (!dev->bulkq) {
459 kfree(dev);
460 return -ENOMEM;
463 dev->dev = dev_get_by_index(net, ifindex);
464 if (!dev->dev) {
465 free_percpu(dev->bulkq);
466 kfree(dev);
467 return -EINVAL;
470 dev->bit = i;
471 dev->dtab = dtab;
474 /* Use call_rcu() here to ensure rcu critical sections have completed
475 * Remembering the driver side flush operation will happen before the
476 * net device is removed.
478 old_dev = xchg(&dtab->netdev_map[i], dev);
479 if (old_dev)
480 call_rcu(&old_dev->rcu, __dev_map_entry_free);
482 return 0;
485 const struct bpf_map_ops dev_map_ops = {
486 .map_alloc = dev_map_alloc,
487 .map_free = dev_map_free,
488 .map_get_next_key = dev_map_get_next_key,
489 .map_lookup_elem = dev_map_lookup_elem,
490 .map_update_elem = dev_map_update_elem,
491 .map_delete_elem = dev_map_delete_elem,
492 .map_check_btf = map_check_no_btf,
495 static int dev_map_notification(struct notifier_block *notifier,
496 ulong event, void *ptr)
498 struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
499 struct bpf_dtab *dtab;
500 int i;
502 switch (event) {
503 case NETDEV_UNREGISTER:
504 /* This rcu_read_lock/unlock pair is needed because
505 * dev_map_list is an RCU list AND to ensure a delete
506 * operation does not free a netdev_map entry while we
507 * are comparing it against the netdev being unregistered.
509 rcu_read_lock();
510 list_for_each_entry_rcu(dtab, &dev_map_list, list) {
511 for (i = 0; i < dtab->map.max_entries; i++) {
512 struct bpf_dtab_netdev *dev, *odev;
514 dev = READ_ONCE(dtab->netdev_map[i]);
515 if (!dev || netdev != dev->dev)
516 continue;
517 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
518 if (dev == odev)
519 call_rcu(&dev->rcu,
520 __dev_map_entry_free);
523 rcu_read_unlock();
524 break;
525 default:
526 break;
528 return NOTIFY_OK;
531 static struct notifier_block dev_map_notifier = {
532 .notifier_call = dev_map_notification,
535 static int __init dev_map_init(void)
537 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
538 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
539 offsetof(struct _bpf_dtab_netdev, dev));
540 register_netdevice_notifier(&dev_map_notifier);
541 return 0;
544 subsys_initcall(dev_map_init);