Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / kernel / bpf / verifier.c
bloba5c369e60343d4239285078410cb6d5b470ff48c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
23 #include "disasm.h"
25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26 #define BPF_PROG_TYPE(_id, _name) \
27 [_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
30 #undef BPF_PROG_TYPE
31 #undef BPF_MAP_TYPE
34 /* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
46 * analysis is limited to 64k insn, which may be hit even if total number of
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 * Most of the time the registers have SCALAR_VALUE type, which
75 * means the register has some value, but it's not a valid pointer.
76 * (like pointer plus pointer becomes SCALAR_VALUE type)
78 * When verifier sees load or store instructions the type of base register
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem {
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
165 struct bpf_verifier_state st;
166 int insn_idx;
167 int prev_insn_idx;
168 struct bpf_verifier_stack_elem *next;
171 #define BPF_COMPLEXITY_LIMIT_STACK 1024
172 #define BPF_COMPLEXITY_LIMIT_STATES 64
174 #define BPF_MAP_PTR_UNPRIV 1UL
175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
176 POISON_POINTER_DELTA))
177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
186 return aux->map_state & BPF_MAP_PTR_UNPRIV;
189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 const struct bpf_map *map, bool unpriv)
192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 unpriv |= bpf_map_ptr_unpriv(aux);
194 aux->map_state = (unsigned long)map |
195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
198 struct bpf_call_arg_meta {
199 struct bpf_map *map_ptr;
200 bool raw_mode;
201 bool pkt_access;
202 int regno;
203 int access_size;
204 s64 msize_smax_value;
205 u64 msize_umax_value;
206 int ref_obj_id;
207 int func_id;
210 static DEFINE_MUTEX(bpf_verifier_lock);
212 static const struct bpf_line_info *
213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
215 const struct bpf_line_info *linfo;
216 const struct bpf_prog *prog;
217 u32 i, nr_linfo;
219 prog = env->prog;
220 nr_linfo = prog->aux->nr_linfo;
222 if (!nr_linfo || insn_off >= prog->len)
223 return NULL;
225 linfo = prog->aux->linfo;
226 for (i = 1; i < nr_linfo; i++)
227 if (insn_off < linfo[i].insn_off)
228 break;
230 return &linfo[i - 1];
233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
234 va_list args)
236 unsigned int n;
238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
241 "verifier log line truncated - local buffer too short\n");
243 n = min(log->len_total - log->len_used - 1, n);
244 log->kbuf[n] = '\0';
246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
247 log->len_used += n;
248 else
249 log->ubuf = NULL;
252 /* log_level controls verbosity level of eBPF verifier.
253 * bpf_verifier_log_write() is used to dump the verification trace to the log,
254 * so the user can figure out what's wrong with the program
256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
257 const char *fmt, ...)
259 va_list args;
261 if (!bpf_verifier_log_needed(&env->log))
262 return;
264 va_start(args, fmt);
265 bpf_verifier_vlog(&env->log, fmt, args);
266 va_end(args);
268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
272 struct bpf_verifier_env *env = private_data;
273 va_list args;
275 if (!bpf_verifier_log_needed(&env->log))
276 return;
278 va_start(args, fmt);
279 bpf_verifier_vlog(&env->log, fmt, args);
280 va_end(args);
283 static const char *ltrim(const char *s)
285 while (isspace(*s))
286 s++;
288 return s;
291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
292 u32 insn_off,
293 const char *prefix_fmt, ...)
295 const struct bpf_line_info *linfo;
297 if (!bpf_verifier_log_needed(&env->log))
298 return;
300 linfo = find_linfo(env, insn_off);
301 if (!linfo || linfo == env->prev_linfo)
302 return;
304 if (prefix_fmt) {
305 va_list args;
307 va_start(args, prefix_fmt);
308 bpf_verifier_vlog(&env->log, prefix_fmt, args);
309 va_end(args);
312 verbose(env, "%s\n",
313 ltrim(btf_name_by_offset(env->prog->aux->btf,
314 linfo->line_off)));
316 env->prev_linfo = linfo;
319 static bool type_is_pkt_pointer(enum bpf_reg_type type)
321 return type == PTR_TO_PACKET ||
322 type == PTR_TO_PACKET_META;
325 static bool type_is_sk_pointer(enum bpf_reg_type type)
327 return type == PTR_TO_SOCKET ||
328 type == PTR_TO_SOCK_COMMON ||
329 type == PTR_TO_TCP_SOCK;
332 static bool reg_type_may_be_null(enum bpf_reg_type type)
334 return type == PTR_TO_MAP_VALUE_OR_NULL ||
335 type == PTR_TO_SOCKET_OR_NULL ||
336 type == PTR_TO_SOCK_COMMON_OR_NULL ||
337 type == PTR_TO_TCP_SOCK_OR_NULL;
340 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
342 return reg->type == PTR_TO_MAP_VALUE &&
343 map_value_has_spin_lock(reg->map_ptr);
346 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
348 return type == PTR_TO_SOCKET ||
349 type == PTR_TO_SOCKET_OR_NULL ||
350 type == PTR_TO_TCP_SOCK ||
351 type == PTR_TO_TCP_SOCK_OR_NULL;
354 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
356 return type == ARG_PTR_TO_SOCK_COMMON;
359 /* Determine whether the function releases some resources allocated by another
360 * function call. The first reference type argument will be assumed to be
361 * released by release_reference().
363 static bool is_release_function(enum bpf_func_id func_id)
365 return func_id == BPF_FUNC_sk_release;
368 static bool is_acquire_function(enum bpf_func_id func_id)
370 return func_id == BPF_FUNC_sk_lookup_tcp ||
371 func_id == BPF_FUNC_sk_lookup_udp ||
372 func_id == BPF_FUNC_skc_lookup_tcp;
375 static bool is_ptr_cast_function(enum bpf_func_id func_id)
377 return func_id == BPF_FUNC_tcp_sock ||
378 func_id == BPF_FUNC_sk_fullsock;
381 /* string representation of 'enum bpf_reg_type' */
382 static const char * const reg_type_str[] = {
383 [NOT_INIT] = "?",
384 [SCALAR_VALUE] = "inv",
385 [PTR_TO_CTX] = "ctx",
386 [CONST_PTR_TO_MAP] = "map_ptr",
387 [PTR_TO_MAP_VALUE] = "map_value",
388 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
389 [PTR_TO_STACK] = "fp",
390 [PTR_TO_PACKET] = "pkt",
391 [PTR_TO_PACKET_META] = "pkt_meta",
392 [PTR_TO_PACKET_END] = "pkt_end",
393 [PTR_TO_FLOW_KEYS] = "flow_keys",
394 [PTR_TO_SOCKET] = "sock",
395 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
396 [PTR_TO_SOCK_COMMON] = "sock_common",
397 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
398 [PTR_TO_TCP_SOCK] = "tcp_sock",
399 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
400 [PTR_TO_TP_BUFFER] = "tp_buffer",
403 static char slot_type_char[] = {
404 [STACK_INVALID] = '?',
405 [STACK_SPILL] = 'r',
406 [STACK_MISC] = 'm',
407 [STACK_ZERO] = '0',
410 static void print_liveness(struct bpf_verifier_env *env,
411 enum bpf_reg_liveness live)
413 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
414 verbose(env, "_");
415 if (live & REG_LIVE_READ)
416 verbose(env, "r");
417 if (live & REG_LIVE_WRITTEN)
418 verbose(env, "w");
419 if (live & REG_LIVE_DONE)
420 verbose(env, "D");
423 static struct bpf_func_state *func(struct bpf_verifier_env *env,
424 const struct bpf_reg_state *reg)
426 struct bpf_verifier_state *cur = env->cur_state;
428 return cur->frame[reg->frameno];
431 static void print_verifier_state(struct bpf_verifier_env *env,
432 const struct bpf_func_state *state)
434 const struct bpf_reg_state *reg;
435 enum bpf_reg_type t;
436 int i;
438 if (state->frameno)
439 verbose(env, " frame%d:", state->frameno);
440 for (i = 0; i < MAX_BPF_REG; i++) {
441 reg = &state->regs[i];
442 t = reg->type;
443 if (t == NOT_INIT)
444 continue;
445 verbose(env, " R%d", i);
446 print_liveness(env, reg->live);
447 verbose(env, "=%s", reg_type_str[t]);
448 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
449 tnum_is_const(reg->var_off)) {
450 /* reg->off should be 0 for SCALAR_VALUE */
451 verbose(env, "%lld", reg->var_off.value + reg->off);
452 if (t == PTR_TO_STACK)
453 verbose(env, ",call_%d", func(env, reg)->callsite);
454 } else {
455 verbose(env, "(id=%d", reg->id);
456 if (reg_type_may_be_refcounted_or_null(t))
457 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
458 if (t != SCALAR_VALUE)
459 verbose(env, ",off=%d", reg->off);
460 if (type_is_pkt_pointer(t))
461 verbose(env, ",r=%d", reg->range);
462 else if (t == CONST_PTR_TO_MAP ||
463 t == PTR_TO_MAP_VALUE ||
464 t == PTR_TO_MAP_VALUE_OR_NULL)
465 verbose(env, ",ks=%d,vs=%d",
466 reg->map_ptr->key_size,
467 reg->map_ptr->value_size);
468 if (tnum_is_const(reg->var_off)) {
469 /* Typically an immediate SCALAR_VALUE, but
470 * could be a pointer whose offset is too big
471 * for reg->off
473 verbose(env, ",imm=%llx", reg->var_off.value);
474 } else {
475 if (reg->smin_value != reg->umin_value &&
476 reg->smin_value != S64_MIN)
477 verbose(env, ",smin_value=%lld",
478 (long long)reg->smin_value);
479 if (reg->smax_value != reg->umax_value &&
480 reg->smax_value != S64_MAX)
481 verbose(env, ",smax_value=%lld",
482 (long long)reg->smax_value);
483 if (reg->umin_value != 0)
484 verbose(env, ",umin_value=%llu",
485 (unsigned long long)reg->umin_value);
486 if (reg->umax_value != U64_MAX)
487 verbose(env, ",umax_value=%llu",
488 (unsigned long long)reg->umax_value);
489 if (!tnum_is_unknown(reg->var_off)) {
490 char tn_buf[48];
492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
493 verbose(env, ",var_off=%s", tn_buf);
496 verbose(env, ")");
499 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
500 char types_buf[BPF_REG_SIZE + 1];
501 bool valid = false;
502 int j;
504 for (j = 0; j < BPF_REG_SIZE; j++) {
505 if (state->stack[i].slot_type[j] != STACK_INVALID)
506 valid = true;
507 types_buf[j] = slot_type_char[
508 state->stack[i].slot_type[j]];
510 types_buf[BPF_REG_SIZE] = 0;
511 if (!valid)
512 continue;
513 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
514 print_liveness(env, state->stack[i].spilled_ptr.live);
515 if (state->stack[i].slot_type[0] == STACK_SPILL)
516 verbose(env, "=%s",
517 reg_type_str[state->stack[i].spilled_ptr.type]);
518 else
519 verbose(env, "=%s", types_buf);
521 if (state->acquired_refs && state->refs[0].id) {
522 verbose(env, " refs=%d", state->refs[0].id);
523 for (i = 1; i < state->acquired_refs; i++)
524 if (state->refs[i].id)
525 verbose(env, ",%d", state->refs[i].id);
527 verbose(env, "\n");
530 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
531 static int copy_##NAME##_state(struct bpf_func_state *dst, \
532 const struct bpf_func_state *src) \
534 if (!src->FIELD) \
535 return 0; \
536 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
537 /* internal bug, make state invalid to reject the program */ \
538 memset(dst, 0, sizeof(*dst)); \
539 return -EFAULT; \
541 memcpy(dst->FIELD, src->FIELD, \
542 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
543 return 0; \
545 /* copy_reference_state() */
546 COPY_STATE_FN(reference, acquired_refs, refs, 1)
547 /* copy_stack_state() */
548 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
549 #undef COPY_STATE_FN
551 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
552 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
553 bool copy_old) \
555 u32 old_size = state->COUNT; \
556 struct bpf_##NAME##_state *new_##FIELD; \
557 int slot = size / SIZE; \
559 if (size <= old_size || !size) { \
560 if (copy_old) \
561 return 0; \
562 state->COUNT = slot * SIZE; \
563 if (!size && old_size) { \
564 kfree(state->FIELD); \
565 state->FIELD = NULL; \
567 return 0; \
569 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
570 GFP_KERNEL); \
571 if (!new_##FIELD) \
572 return -ENOMEM; \
573 if (copy_old) { \
574 if (state->FIELD) \
575 memcpy(new_##FIELD, state->FIELD, \
576 sizeof(*new_##FIELD) * (old_size / SIZE)); \
577 memset(new_##FIELD + old_size / SIZE, 0, \
578 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
580 state->COUNT = slot * SIZE; \
581 kfree(state->FIELD); \
582 state->FIELD = new_##FIELD; \
583 return 0; \
585 /* realloc_reference_state() */
586 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
587 /* realloc_stack_state() */
588 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
589 #undef REALLOC_STATE_FN
591 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
592 * make it consume minimal amount of memory. check_stack_write() access from
593 * the program calls into realloc_func_state() to grow the stack size.
594 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
595 * which realloc_stack_state() copies over. It points to previous
596 * bpf_verifier_state which is never reallocated.
598 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
599 int refs_size, bool copy_old)
601 int err = realloc_reference_state(state, refs_size, copy_old);
602 if (err)
603 return err;
604 return realloc_stack_state(state, stack_size, copy_old);
607 /* Acquire a pointer id from the env and update the state->refs to include
608 * this new pointer reference.
609 * On success, returns a valid pointer id to associate with the register
610 * On failure, returns a negative errno.
612 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
614 struct bpf_func_state *state = cur_func(env);
615 int new_ofs = state->acquired_refs;
616 int id, err;
618 err = realloc_reference_state(state, state->acquired_refs + 1, true);
619 if (err)
620 return err;
621 id = ++env->id_gen;
622 state->refs[new_ofs].id = id;
623 state->refs[new_ofs].insn_idx = insn_idx;
625 return id;
628 /* release function corresponding to acquire_reference_state(). Idempotent. */
629 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
631 int i, last_idx;
633 last_idx = state->acquired_refs - 1;
634 for (i = 0; i < state->acquired_refs; i++) {
635 if (state->refs[i].id == ptr_id) {
636 if (last_idx && i != last_idx)
637 memcpy(&state->refs[i], &state->refs[last_idx],
638 sizeof(*state->refs));
639 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
640 state->acquired_refs--;
641 return 0;
644 return -EINVAL;
647 static int transfer_reference_state(struct bpf_func_state *dst,
648 struct bpf_func_state *src)
650 int err = realloc_reference_state(dst, src->acquired_refs, false);
651 if (err)
652 return err;
653 err = copy_reference_state(dst, src);
654 if (err)
655 return err;
656 return 0;
659 static void free_func_state(struct bpf_func_state *state)
661 if (!state)
662 return;
663 kfree(state->refs);
664 kfree(state->stack);
665 kfree(state);
668 static void free_verifier_state(struct bpf_verifier_state *state,
669 bool free_self)
671 int i;
673 for (i = 0; i <= state->curframe; i++) {
674 free_func_state(state->frame[i]);
675 state->frame[i] = NULL;
677 if (free_self)
678 kfree(state);
681 /* copy verifier state from src to dst growing dst stack space
682 * when necessary to accommodate larger src stack
684 static int copy_func_state(struct bpf_func_state *dst,
685 const struct bpf_func_state *src)
687 int err;
689 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
690 false);
691 if (err)
692 return err;
693 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
694 err = copy_reference_state(dst, src);
695 if (err)
696 return err;
697 return copy_stack_state(dst, src);
700 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
701 const struct bpf_verifier_state *src)
703 struct bpf_func_state *dst;
704 int i, err;
706 /* if dst has more stack frames then src frame, free them */
707 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
708 free_func_state(dst_state->frame[i]);
709 dst_state->frame[i] = NULL;
711 dst_state->speculative = src->speculative;
712 dst_state->curframe = src->curframe;
713 dst_state->active_spin_lock = src->active_spin_lock;
714 for (i = 0; i <= src->curframe; i++) {
715 dst = dst_state->frame[i];
716 if (!dst) {
717 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
718 if (!dst)
719 return -ENOMEM;
720 dst_state->frame[i] = dst;
722 err = copy_func_state(dst, src->frame[i]);
723 if (err)
724 return err;
726 return 0;
729 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
730 int *insn_idx)
732 struct bpf_verifier_state *cur = env->cur_state;
733 struct bpf_verifier_stack_elem *elem, *head = env->head;
734 int err;
736 if (env->head == NULL)
737 return -ENOENT;
739 if (cur) {
740 err = copy_verifier_state(cur, &head->st);
741 if (err)
742 return err;
744 if (insn_idx)
745 *insn_idx = head->insn_idx;
746 if (prev_insn_idx)
747 *prev_insn_idx = head->prev_insn_idx;
748 elem = head->next;
749 free_verifier_state(&head->st, false);
750 kfree(head);
751 env->head = elem;
752 env->stack_size--;
753 return 0;
756 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
757 int insn_idx, int prev_insn_idx,
758 bool speculative)
760 struct bpf_verifier_state *cur = env->cur_state;
761 struct bpf_verifier_stack_elem *elem;
762 int err;
764 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
765 if (!elem)
766 goto err;
768 elem->insn_idx = insn_idx;
769 elem->prev_insn_idx = prev_insn_idx;
770 elem->next = env->head;
771 env->head = elem;
772 env->stack_size++;
773 err = copy_verifier_state(&elem->st, cur);
774 if (err)
775 goto err;
776 elem->st.speculative |= speculative;
777 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
778 verbose(env, "BPF program is too complex\n");
779 goto err;
781 return &elem->st;
782 err:
783 free_verifier_state(env->cur_state, true);
784 env->cur_state = NULL;
785 /* pop all elements and return */
786 while (!pop_stack(env, NULL, NULL));
787 return NULL;
790 #define CALLER_SAVED_REGS 6
791 static const int caller_saved[CALLER_SAVED_REGS] = {
792 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
795 static void __mark_reg_not_init(struct bpf_reg_state *reg);
797 /* Mark the unknown part of a register (variable offset or scalar value) as
798 * known to have the value @imm.
800 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
802 /* Clear id, off, and union(map_ptr, range) */
803 memset(((u8 *)reg) + sizeof(reg->type), 0,
804 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
805 reg->var_off = tnum_const(imm);
806 reg->smin_value = (s64)imm;
807 reg->smax_value = (s64)imm;
808 reg->umin_value = imm;
809 reg->umax_value = imm;
812 /* Mark the 'variable offset' part of a register as zero. This should be
813 * used only on registers holding a pointer type.
815 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
817 __mark_reg_known(reg, 0);
820 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
822 __mark_reg_known(reg, 0);
823 reg->type = SCALAR_VALUE;
826 static void mark_reg_known_zero(struct bpf_verifier_env *env,
827 struct bpf_reg_state *regs, u32 regno)
829 if (WARN_ON(regno >= MAX_BPF_REG)) {
830 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
831 /* Something bad happened, let's kill all regs */
832 for (regno = 0; regno < MAX_BPF_REG; regno++)
833 __mark_reg_not_init(regs + regno);
834 return;
836 __mark_reg_known_zero(regs + regno);
839 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
841 return type_is_pkt_pointer(reg->type);
844 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
846 return reg_is_pkt_pointer(reg) ||
847 reg->type == PTR_TO_PACKET_END;
850 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
851 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
852 enum bpf_reg_type which)
854 /* The register can already have a range from prior markings.
855 * This is fine as long as it hasn't been advanced from its
856 * origin.
858 return reg->type == which &&
859 reg->id == 0 &&
860 reg->off == 0 &&
861 tnum_equals_const(reg->var_off, 0);
864 /* Attempts to improve min/max values based on var_off information */
865 static void __update_reg_bounds(struct bpf_reg_state *reg)
867 /* min signed is max(sign bit) | min(other bits) */
868 reg->smin_value = max_t(s64, reg->smin_value,
869 reg->var_off.value | (reg->var_off.mask & S64_MIN));
870 /* max signed is min(sign bit) | max(other bits) */
871 reg->smax_value = min_t(s64, reg->smax_value,
872 reg->var_off.value | (reg->var_off.mask & S64_MAX));
873 reg->umin_value = max(reg->umin_value, reg->var_off.value);
874 reg->umax_value = min(reg->umax_value,
875 reg->var_off.value | reg->var_off.mask);
878 /* Uses signed min/max values to inform unsigned, and vice-versa */
879 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
881 /* Learn sign from signed bounds.
882 * If we cannot cross the sign boundary, then signed and unsigned bounds
883 * are the same, so combine. This works even in the negative case, e.g.
884 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
886 if (reg->smin_value >= 0 || reg->smax_value < 0) {
887 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
888 reg->umin_value);
889 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
890 reg->umax_value);
891 return;
893 /* Learn sign from unsigned bounds. Signed bounds cross the sign
894 * boundary, so we must be careful.
896 if ((s64)reg->umax_value >= 0) {
897 /* Positive. We can't learn anything from the smin, but smax
898 * is positive, hence safe.
900 reg->smin_value = reg->umin_value;
901 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
902 reg->umax_value);
903 } else if ((s64)reg->umin_value < 0) {
904 /* Negative. We can't learn anything from the smax, but smin
905 * is negative, hence safe.
907 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
908 reg->umin_value);
909 reg->smax_value = reg->umax_value;
913 /* Attempts to improve var_off based on unsigned min/max information */
914 static void __reg_bound_offset(struct bpf_reg_state *reg)
916 reg->var_off = tnum_intersect(reg->var_off,
917 tnum_range(reg->umin_value,
918 reg->umax_value));
921 /* Reset the min/max bounds of a register */
922 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
924 reg->smin_value = S64_MIN;
925 reg->smax_value = S64_MAX;
926 reg->umin_value = 0;
927 reg->umax_value = U64_MAX;
930 /* Mark a register as having a completely unknown (scalar) value. */
931 static void __mark_reg_unknown(struct bpf_reg_state *reg)
934 * Clear type, id, off, and union(map_ptr, range) and
935 * padding between 'type' and union
937 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
938 reg->type = SCALAR_VALUE;
939 reg->var_off = tnum_unknown;
940 reg->frameno = 0;
941 __mark_reg_unbounded(reg);
944 static void mark_reg_unknown(struct bpf_verifier_env *env,
945 struct bpf_reg_state *regs, u32 regno)
947 if (WARN_ON(regno >= MAX_BPF_REG)) {
948 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
949 /* Something bad happened, let's kill all regs except FP */
950 for (regno = 0; regno < BPF_REG_FP; regno++)
951 __mark_reg_not_init(regs + regno);
952 return;
954 __mark_reg_unknown(regs + regno);
957 static void __mark_reg_not_init(struct bpf_reg_state *reg)
959 __mark_reg_unknown(reg);
960 reg->type = NOT_INIT;
963 static void mark_reg_not_init(struct bpf_verifier_env *env,
964 struct bpf_reg_state *regs, u32 regno)
966 if (WARN_ON(regno >= MAX_BPF_REG)) {
967 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
968 /* Something bad happened, let's kill all regs except FP */
969 for (regno = 0; regno < BPF_REG_FP; regno++)
970 __mark_reg_not_init(regs + regno);
971 return;
973 __mark_reg_not_init(regs + regno);
976 static void init_reg_state(struct bpf_verifier_env *env,
977 struct bpf_func_state *state)
979 struct bpf_reg_state *regs = state->regs;
980 int i;
982 for (i = 0; i < MAX_BPF_REG; i++) {
983 mark_reg_not_init(env, regs, i);
984 regs[i].live = REG_LIVE_NONE;
985 regs[i].parent = NULL;
988 /* frame pointer */
989 regs[BPF_REG_FP].type = PTR_TO_STACK;
990 mark_reg_known_zero(env, regs, BPF_REG_FP);
991 regs[BPF_REG_FP].frameno = state->frameno;
993 /* 1st arg to a function */
994 regs[BPF_REG_1].type = PTR_TO_CTX;
995 mark_reg_known_zero(env, regs, BPF_REG_1);
998 #define BPF_MAIN_FUNC (-1)
999 static void init_func_state(struct bpf_verifier_env *env,
1000 struct bpf_func_state *state,
1001 int callsite, int frameno, int subprogno)
1003 state->callsite = callsite;
1004 state->frameno = frameno;
1005 state->subprogno = subprogno;
1006 init_reg_state(env, state);
1009 enum reg_arg_type {
1010 SRC_OP, /* register is used as source operand */
1011 DST_OP, /* register is used as destination operand */
1012 DST_OP_NO_MARK /* same as above, check only, don't mark */
1015 static int cmp_subprogs(const void *a, const void *b)
1017 return ((struct bpf_subprog_info *)a)->start -
1018 ((struct bpf_subprog_info *)b)->start;
1021 static int find_subprog(struct bpf_verifier_env *env, int off)
1023 struct bpf_subprog_info *p;
1025 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1026 sizeof(env->subprog_info[0]), cmp_subprogs);
1027 if (!p)
1028 return -ENOENT;
1029 return p - env->subprog_info;
1033 static int add_subprog(struct bpf_verifier_env *env, int off)
1035 int insn_cnt = env->prog->len;
1036 int ret;
1038 if (off >= insn_cnt || off < 0) {
1039 verbose(env, "call to invalid destination\n");
1040 return -EINVAL;
1042 ret = find_subprog(env, off);
1043 if (ret >= 0)
1044 return 0;
1045 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1046 verbose(env, "too many subprograms\n");
1047 return -E2BIG;
1049 env->subprog_info[env->subprog_cnt++].start = off;
1050 sort(env->subprog_info, env->subprog_cnt,
1051 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1052 return 0;
1055 static int check_subprogs(struct bpf_verifier_env *env)
1057 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1058 struct bpf_subprog_info *subprog = env->subprog_info;
1059 struct bpf_insn *insn = env->prog->insnsi;
1060 int insn_cnt = env->prog->len;
1062 /* Add entry function. */
1063 ret = add_subprog(env, 0);
1064 if (ret < 0)
1065 return ret;
1067 /* determine subprog starts. The end is one before the next starts */
1068 for (i = 0; i < insn_cnt; i++) {
1069 if (insn[i].code != (BPF_JMP | BPF_CALL))
1070 continue;
1071 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1072 continue;
1073 if (!env->allow_ptr_leaks) {
1074 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1075 return -EPERM;
1077 ret = add_subprog(env, i + insn[i].imm + 1);
1078 if (ret < 0)
1079 return ret;
1082 /* Add a fake 'exit' subprog which could simplify subprog iteration
1083 * logic. 'subprog_cnt' should not be increased.
1085 subprog[env->subprog_cnt].start = insn_cnt;
1087 if (env->log.level & BPF_LOG_LEVEL2)
1088 for (i = 0; i < env->subprog_cnt; i++)
1089 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1091 /* now check that all jumps are within the same subprog */
1092 subprog_start = subprog[cur_subprog].start;
1093 subprog_end = subprog[cur_subprog + 1].start;
1094 for (i = 0; i < insn_cnt; i++) {
1095 u8 code = insn[i].code;
1097 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1098 goto next;
1099 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1100 goto next;
1101 off = i + insn[i].off + 1;
1102 if (off < subprog_start || off >= subprog_end) {
1103 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1104 return -EINVAL;
1106 next:
1107 if (i == subprog_end - 1) {
1108 /* to avoid fall-through from one subprog into another
1109 * the last insn of the subprog should be either exit
1110 * or unconditional jump back
1112 if (code != (BPF_JMP | BPF_EXIT) &&
1113 code != (BPF_JMP | BPF_JA)) {
1114 verbose(env, "last insn is not an exit or jmp\n");
1115 return -EINVAL;
1117 subprog_start = subprog_end;
1118 cur_subprog++;
1119 if (cur_subprog < env->subprog_cnt)
1120 subprog_end = subprog[cur_subprog + 1].start;
1123 return 0;
1126 /* Parentage chain of this register (or stack slot) should take care of all
1127 * issues like callee-saved registers, stack slot allocation time, etc.
1129 static int mark_reg_read(struct bpf_verifier_env *env,
1130 const struct bpf_reg_state *state,
1131 struct bpf_reg_state *parent)
1133 bool writes = parent == state->parent; /* Observe write marks */
1134 int cnt = 0;
1136 while (parent) {
1137 /* if read wasn't screened by an earlier write ... */
1138 if (writes && state->live & REG_LIVE_WRITTEN)
1139 break;
1140 if (parent->live & REG_LIVE_DONE) {
1141 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1142 reg_type_str[parent->type],
1143 parent->var_off.value, parent->off);
1144 return -EFAULT;
1146 if (parent->live & REG_LIVE_READ)
1147 /* The parentage chain never changes and
1148 * this parent was already marked as LIVE_READ.
1149 * There is no need to keep walking the chain again and
1150 * keep re-marking all parents as LIVE_READ.
1151 * This case happens when the same register is read
1152 * multiple times without writes into it in-between.
1154 break;
1155 /* ... then we depend on parent's value */
1156 parent->live |= REG_LIVE_READ;
1157 state = parent;
1158 parent = state->parent;
1159 writes = true;
1160 cnt++;
1163 if (env->longest_mark_read_walk < cnt)
1164 env->longest_mark_read_walk = cnt;
1165 return 0;
1168 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1169 enum reg_arg_type t)
1171 struct bpf_verifier_state *vstate = env->cur_state;
1172 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1173 struct bpf_reg_state *reg, *regs = state->regs;
1175 if (regno >= MAX_BPF_REG) {
1176 verbose(env, "R%d is invalid\n", regno);
1177 return -EINVAL;
1180 reg = &regs[regno];
1181 if (t == SRC_OP) {
1182 /* check whether register used as source operand can be read */
1183 if (reg->type == NOT_INIT) {
1184 verbose(env, "R%d !read_ok\n", regno);
1185 return -EACCES;
1187 /* We don't need to worry about FP liveness because it's read-only */
1188 if (regno == BPF_REG_FP)
1189 return 0;
1191 return mark_reg_read(env, reg, reg->parent);
1192 } else {
1193 /* check whether register used as dest operand can be written to */
1194 if (regno == BPF_REG_FP) {
1195 verbose(env, "frame pointer is read only\n");
1196 return -EACCES;
1198 reg->live |= REG_LIVE_WRITTEN;
1199 if (t == DST_OP)
1200 mark_reg_unknown(env, regs, regno);
1202 return 0;
1205 static bool is_spillable_regtype(enum bpf_reg_type type)
1207 switch (type) {
1208 case PTR_TO_MAP_VALUE:
1209 case PTR_TO_MAP_VALUE_OR_NULL:
1210 case PTR_TO_STACK:
1211 case PTR_TO_CTX:
1212 case PTR_TO_PACKET:
1213 case PTR_TO_PACKET_META:
1214 case PTR_TO_PACKET_END:
1215 case PTR_TO_FLOW_KEYS:
1216 case CONST_PTR_TO_MAP:
1217 case PTR_TO_SOCKET:
1218 case PTR_TO_SOCKET_OR_NULL:
1219 case PTR_TO_SOCK_COMMON:
1220 case PTR_TO_SOCK_COMMON_OR_NULL:
1221 case PTR_TO_TCP_SOCK:
1222 case PTR_TO_TCP_SOCK_OR_NULL:
1223 return true;
1224 default:
1225 return false;
1229 /* Does this register contain a constant zero? */
1230 static bool register_is_null(struct bpf_reg_state *reg)
1232 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1235 /* check_stack_read/write functions track spill/fill of registers,
1236 * stack boundary and alignment are checked in check_mem_access()
1238 static int check_stack_write(struct bpf_verifier_env *env,
1239 struct bpf_func_state *state, /* func where register points to */
1240 int off, int size, int value_regno, int insn_idx)
1242 struct bpf_func_state *cur; /* state of the current function */
1243 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1244 enum bpf_reg_type type;
1246 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1247 state->acquired_refs, true);
1248 if (err)
1249 return err;
1250 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1251 * so it's aligned access and [off, off + size) are within stack limits
1253 if (!env->allow_ptr_leaks &&
1254 state->stack[spi].slot_type[0] == STACK_SPILL &&
1255 size != BPF_REG_SIZE) {
1256 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1257 return -EACCES;
1260 cur = env->cur_state->frame[env->cur_state->curframe];
1261 if (value_regno >= 0 &&
1262 is_spillable_regtype((type = cur->regs[value_regno].type))) {
1264 /* register containing pointer is being spilled into stack */
1265 if (size != BPF_REG_SIZE) {
1266 verbose(env, "invalid size of register spill\n");
1267 return -EACCES;
1270 if (state != cur && type == PTR_TO_STACK) {
1271 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1272 return -EINVAL;
1275 /* save register state */
1276 state->stack[spi].spilled_ptr = cur->regs[value_regno];
1277 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1279 for (i = 0; i < BPF_REG_SIZE; i++) {
1280 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1281 !env->allow_ptr_leaks) {
1282 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1283 int soff = (-spi - 1) * BPF_REG_SIZE;
1285 /* detected reuse of integer stack slot with a pointer
1286 * which means either llvm is reusing stack slot or
1287 * an attacker is trying to exploit CVE-2018-3639
1288 * (speculative store bypass)
1289 * Have to sanitize that slot with preemptive
1290 * store of zero.
1292 if (*poff && *poff != soff) {
1293 /* disallow programs where single insn stores
1294 * into two different stack slots, since verifier
1295 * cannot sanitize them
1297 verbose(env,
1298 "insn %d cannot access two stack slots fp%d and fp%d",
1299 insn_idx, *poff, soff);
1300 return -EINVAL;
1302 *poff = soff;
1304 state->stack[spi].slot_type[i] = STACK_SPILL;
1306 } else {
1307 u8 type = STACK_MISC;
1309 /* regular write of data into stack destroys any spilled ptr */
1310 state->stack[spi].spilled_ptr.type = NOT_INIT;
1311 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1312 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1313 for (i = 0; i < BPF_REG_SIZE; i++)
1314 state->stack[spi].slot_type[i] = STACK_MISC;
1316 /* only mark the slot as written if all 8 bytes were written
1317 * otherwise read propagation may incorrectly stop too soon
1318 * when stack slots are partially written.
1319 * This heuristic means that read propagation will be
1320 * conservative, since it will add reg_live_read marks
1321 * to stack slots all the way to first state when programs
1322 * writes+reads less than 8 bytes
1324 if (size == BPF_REG_SIZE)
1325 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1327 /* when we zero initialize stack slots mark them as such */
1328 if (value_regno >= 0 &&
1329 register_is_null(&cur->regs[value_regno]))
1330 type = STACK_ZERO;
1332 /* Mark slots affected by this stack write. */
1333 for (i = 0; i < size; i++)
1334 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1335 type;
1337 return 0;
1340 static int check_stack_read(struct bpf_verifier_env *env,
1341 struct bpf_func_state *reg_state /* func where register points to */,
1342 int off, int size, int value_regno)
1344 struct bpf_verifier_state *vstate = env->cur_state;
1345 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1346 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1347 u8 *stype;
1349 if (reg_state->allocated_stack <= slot) {
1350 verbose(env, "invalid read from stack off %d+0 size %d\n",
1351 off, size);
1352 return -EACCES;
1354 stype = reg_state->stack[spi].slot_type;
1356 if (stype[0] == STACK_SPILL) {
1357 if (size != BPF_REG_SIZE) {
1358 verbose(env, "invalid size of register spill\n");
1359 return -EACCES;
1361 for (i = 1; i < BPF_REG_SIZE; i++) {
1362 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1363 verbose(env, "corrupted spill memory\n");
1364 return -EACCES;
1368 if (value_regno >= 0) {
1369 /* restore register state from stack */
1370 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1371 /* mark reg as written since spilled pointer state likely
1372 * has its liveness marks cleared by is_state_visited()
1373 * which resets stack/reg liveness for state transitions
1375 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1377 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1378 reg_state->stack[spi].spilled_ptr.parent);
1379 return 0;
1380 } else {
1381 int zeros = 0;
1383 for (i = 0; i < size; i++) {
1384 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1385 continue;
1386 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1387 zeros++;
1388 continue;
1390 verbose(env, "invalid read from stack off %d+%d size %d\n",
1391 off, i, size);
1392 return -EACCES;
1394 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1395 reg_state->stack[spi].spilled_ptr.parent);
1396 if (value_regno >= 0) {
1397 if (zeros == size) {
1398 /* any size read into register is zero extended,
1399 * so the whole register == const_zero
1401 __mark_reg_const_zero(&state->regs[value_regno]);
1402 } else {
1403 /* have read misc data from the stack */
1404 mark_reg_unknown(env, state->regs, value_regno);
1406 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1408 return 0;
1412 static int check_stack_access(struct bpf_verifier_env *env,
1413 const struct bpf_reg_state *reg,
1414 int off, int size)
1416 /* Stack accesses must be at a fixed offset, so that we
1417 * can determine what type of data were returned. See
1418 * check_stack_read().
1420 if (!tnum_is_const(reg->var_off)) {
1421 char tn_buf[48];
1423 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1424 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1425 tn_buf, off, size);
1426 return -EACCES;
1429 if (off >= 0 || off < -MAX_BPF_STACK) {
1430 verbose(env, "invalid stack off=%d size=%d\n", off, size);
1431 return -EACCES;
1434 return 0;
1437 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1438 int off, int size, enum bpf_access_type type)
1440 struct bpf_reg_state *regs = cur_regs(env);
1441 struct bpf_map *map = regs[regno].map_ptr;
1442 u32 cap = bpf_map_flags_to_cap(map);
1444 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1445 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1446 map->value_size, off, size);
1447 return -EACCES;
1450 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1451 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1452 map->value_size, off, size);
1453 return -EACCES;
1456 return 0;
1459 /* check read/write into map element returned by bpf_map_lookup_elem() */
1460 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1461 int size, bool zero_size_allowed)
1463 struct bpf_reg_state *regs = cur_regs(env);
1464 struct bpf_map *map = regs[regno].map_ptr;
1466 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1467 off + size > map->value_size) {
1468 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1469 map->value_size, off, size);
1470 return -EACCES;
1472 return 0;
1475 /* check read/write into a map element with possible variable offset */
1476 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1477 int off, int size, bool zero_size_allowed)
1479 struct bpf_verifier_state *vstate = env->cur_state;
1480 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1481 struct bpf_reg_state *reg = &state->regs[regno];
1482 int err;
1484 /* We may have adjusted the register to this map value, so we
1485 * need to try adding each of min_value and max_value to off
1486 * to make sure our theoretical access will be safe.
1488 if (env->log.level & BPF_LOG_LEVEL)
1489 print_verifier_state(env, state);
1491 /* The minimum value is only important with signed
1492 * comparisons where we can't assume the floor of a
1493 * value is 0. If we are using signed variables for our
1494 * index'es we need to make sure that whatever we use
1495 * will have a set floor within our range.
1497 if (reg->smin_value < 0 &&
1498 (reg->smin_value == S64_MIN ||
1499 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1500 reg->smin_value + off < 0)) {
1501 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1502 regno);
1503 return -EACCES;
1505 err = __check_map_access(env, regno, reg->smin_value + off, size,
1506 zero_size_allowed);
1507 if (err) {
1508 verbose(env, "R%d min value is outside of the array range\n",
1509 regno);
1510 return err;
1513 /* If we haven't set a max value then we need to bail since we can't be
1514 * sure we won't do bad things.
1515 * If reg->umax_value + off could overflow, treat that as unbounded too.
1517 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1518 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1519 regno);
1520 return -EACCES;
1522 err = __check_map_access(env, regno, reg->umax_value + off, size,
1523 zero_size_allowed);
1524 if (err)
1525 verbose(env, "R%d max value is outside of the array range\n",
1526 regno);
1528 if (map_value_has_spin_lock(reg->map_ptr)) {
1529 u32 lock = reg->map_ptr->spin_lock_off;
1531 /* if any part of struct bpf_spin_lock can be touched by
1532 * load/store reject this program.
1533 * To check that [x1, x2) overlaps with [y1, y2)
1534 * it is sufficient to check x1 < y2 && y1 < x2.
1536 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1537 lock < reg->umax_value + off + size) {
1538 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1539 return -EACCES;
1542 return err;
1545 #define MAX_PACKET_OFF 0xffff
1547 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1548 const struct bpf_call_arg_meta *meta,
1549 enum bpf_access_type t)
1551 switch (env->prog->type) {
1552 /* Program types only with direct read access go here! */
1553 case BPF_PROG_TYPE_LWT_IN:
1554 case BPF_PROG_TYPE_LWT_OUT:
1555 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1556 case BPF_PROG_TYPE_SK_REUSEPORT:
1557 case BPF_PROG_TYPE_FLOW_DISSECTOR:
1558 case BPF_PROG_TYPE_CGROUP_SKB:
1559 if (t == BPF_WRITE)
1560 return false;
1561 /* fallthrough */
1563 /* Program types with direct read + write access go here! */
1564 case BPF_PROG_TYPE_SCHED_CLS:
1565 case BPF_PROG_TYPE_SCHED_ACT:
1566 case BPF_PROG_TYPE_XDP:
1567 case BPF_PROG_TYPE_LWT_XMIT:
1568 case BPF_PROG_TYPE_SK_SKB:
1569 case BPF_PROG_TYPE_SK_MSG:
1570 if (meta)
1571 return meta->pkt_access;
1573 env->seen_direct_write = true;
1574 return true;
1575 default:
1576 return false;
1580 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1581 int off, int size, bool zero_size_allowed)
1583 struct bpf_reg_state *regs = cur_regs(env);
1584 struct bpf_reg_state *reg = &regs[regno];
1586 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1587 (u64)off + size > reg->range) {
1588 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1589 off, size, regno, reg->id, reg->off, reg->range);
1590 return -EACCES;
1592 return 0;
1595 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1596 int size, bool zero_size_allowed)
1598 struct bpf_reg_state *regs = cur_regs(env);
1599 struct bpf_reg_state *reg = &regs[regno];
1600 int err;
1602 /* We may have added a variable offset to the packet pointer; but any
1603 * reg->range we have comes after that. We are only checking the fixed
1604 * offset.
1607 /* We don't allow negative numbers, because we aren't tracking enough
1608 * detail to prove they're safe.
1610 if (reg->smin_value < 0) {
1611 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1612 regno);
1613 return -EACCES;
1615 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1616 if (err) {
1617 verbose(env, "R%d offset is outside of the packet\n", regno);
1618 return err;
1621 /* __check_packet_access has made sure "off + size - 1" is within u16.
1622 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1623 * otherwise find_good_pkt_pointers would have refused to set range info
1624 * that __check_packet_access would have rejected this pkt access.
1625 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1627 env->prog->aux->max_pkt_offset =
1628 max_t(u32, env->prog->aux->max_pkt_offset,
1629 off + reg->umax_value + size - 1);
1631 return err;
1634 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1635 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1636 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1638 struct bpf_insn_access_aux info = {
1639 .reg_type = *reg_type,
1642 if (env->ops->is_valid_access &&
1643 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1644 /* A non zero info.ctx_field_size indicates that this field is a
1645 * candidate for later verifier transformation to load the whole
1646 * field and then apply a mask when accessed with a narrower
1647 * access than actual ctx access size. A zero info.ctx_field_size
1648 * will only allow for whole field access and rejects any other
1649 * type of narrower access.
1651 *reg_type = info.reg_type;
1653 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1654 /* remember the offset of last byte accessed in ctx */
1655 if (env->prog->aux->max_ctx_offset < off + size)
1656 env->prog->aux->max_ctx_offset = off + size;
1657 return 0;
1660 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1661 return -EACCES;
1664 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1665 int size)
1667 if (size < 0 || off < 0 ||
1668 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1669 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1670 off, size);
1671 return -EACCES;
1673 return 0;
1676 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1677 u32 regno, int off, int size,
1678 enum bpf_access_type t)
1680 struct bpf_reg_state *regs = cur_regs(env);
1681 struct bpf_reg_state *reg = &regs[regno];
1682 struct bpf_insn_access_aux info = {};
1683 bool valid;
1685 if (reg->smin_value < 0) {
1686 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1687 regno);
1688 return -EACCES;
1691 switch (reg->type) {
1692 case PTR_TO_SOCK_COMMON:
1693 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1694 break;
1695 case PTR_TO_SOCKET:
1696 valid = bpf_sock_is_valid_access(off, size, t, &info);
1697 break;
1698 case PTR_TO_TCP_SOCK:
1699 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1700 break;
1701 default:
1702 valid = false;
1706 if (valid) {
1707 env->insn_aux_data[insn_idx].ctx_field_size =
1708 info.ctx_field_size;
1709 return 0;
1712 verbose(env, "R%d invalid %s access off=%d size=%d\n",
1713 regno, reg_type_str[reg->type], off, size);
1715 return -EACCES;
1718 static bool __is_pointer_value(bool allow_ptr_leaks,
1719 const struct bpf_reg_state *reg)
1721 if (allow_ptr_leaks)
1722 return false;
1724 return reg->type != SCALAR_VALUE;
1727 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1729 return cur_regs(env) + regno;
1732 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1734 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1737 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1739 const struct bpf_reg_state *reg = reg_state(env, regno);
1741 return reg->type == PTR_TO_CTX;
1744 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1746 const struct bpf_reg_state *reg = reg_state(env, regno);
1748 return type_is_sk_pointer(reg->type);
1751 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1753 const struct bpf_reg_state *reg = reg_state(env, regno);
1755 return type_is_pkt_pointer(reg->type);
1758 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1760 const struct bpf_reg_state *reg = reg_state(env, regno);
1762 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1763 return reg->type == PTR_TO_FLOW_KEYS;
1766 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1767 const struct bpf_reg_state *reg,
1768 int off, int size, bool strict)
1770 struct tnum reg_off;
1771 int ip_align;
1773 /* Byte size accesses are always allowed. */
1774 if (!strict || size == 1)
1775 return 0;
1777 /* For platforms that do not have a Kconfig enabling
1778 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1779 * NET_IP_ALIGN is universally set to '2'. And on platforms
1780 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1781 * to this code only in strict mode where we want to emulate
1782 * the NET_IP_ALIGN==2 checking. Therefore use an
1783 * unconditional IP align value of '2'.
1785 ip_align = 2;
1787 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1788 if (!tnum_is_aligned(reg_off, size)) {
1789 char tn_buf[48];
1791 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1792 verbose(env,
1793 "misaligned packet access off %d+%s+%d+%d size %d\n",
1794 ip_align, tn_buf, reg->off, off, size);
1795 return -EACCES;
1798 return 0;
1801 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1802 const struct bpf_reg_state *reg,
1803 const char *pointer_desc,
1804 int off, int size, bool strict)
1806 struct tnum reg_off;
1808 /* Byte size accesses are always allowed. */
1809 if (!strict || size == 1)
1810 return 0;
1812 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1813 if (!tnum_is_aligned(reg_off, size)) {
1814 char tn_buf[48];
1816 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1817 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1818 pointer_desc, tn_buf, reg->off, off, size);
1819 return -EACCES;
1822 return 0;
1825 static int check_ptr_alignment(struct bpf_verifier_env *env,
1826 const struct bpf_reg_state *reg, int off,
1827 int size, bool strict_alignment_once)
1829 bool strict = env->strict_alignment || strict_alignment_once;
1830 const char *pointer_desc = "";
1832 switch (reg->type) {
1833 case PTR_TO_PACKET:
1834 case PTR_TO_PACKET_META:
1835 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1836 * right in front, treat it the very same way.
1838 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1839 case PTR_TO_FLOW_KEYS:
1840 pointer_desc = "flow keys ";
1841 break;
1842 case PTR_TO_MAP_VALUE:
1843 pointer_desc = "value ";
1844 break;
1845 case PTR_TO_CTX:
1846 pointer_desc = "context ";
1847 break;
1848 case PTR_TO_STACK:
1849 pointer_desc = "stack ";
1850 /* The stack spill tracking logic in check_stack_write()
1851 * and check_stack_read() relies on stack accesses being
1852 * aligned.
1854 strict = true;
1855 break;
1856 case PTR_TO_SOCKET:
1857 pointer_desc = "sock ";
1858 break;
1859 case PTR_TO_SOCK_COMMON:
1860 pointer_desc = "sock_common ";
1861 break;
1862 case PTR_TO_TCP_SOCK:
1863 pointer_desc = "tcp_sock ";
1864 break;
1865 default:
1866 break;
1868 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1869 strict);
1872 static int update_stack_depth(struct bpf_verifier_env *env,
1873 const struct bpf_func_state *func,
1874 int off)
1876 u16 stack = env->subprog_info[func->subprogno].stack_depth;
1878 if (stack >= -off)
1879 return 0;
1881 /* update known max for given subprogram */
1882 env->subprog_info[func->subprogno].stack_depth = -off;
1883 return 0;
1886 /* starting from main bpf function walk all instructions of the function
1887 * and recursively walk all callees that given function can call.
1888 * Ignore jump and exit insns.
1889 * Since recursion is prevented by check_cfg() this algorithm
1890 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1892 static int check_max_stack_depth(struct bpf_verifier_env *env)
1894 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1895 struct bpf_subprog_info *subprog = env->subprog_info;
1896 struct bpf_insn *insn = env->prog->insnsi;
1897 int ret_insn[MAX_CALL_FRAMES];
1898 int ret_prog[MAX_CALL_FRAMES];
1900 process_func:
1901 /* round up to 32-bytes, since this is granularity
1902 * of interpreter stack size
1904 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1905 if (depth > MAX_BPF_STACK) {
1906 verbose(env, "combined stack size of %d calls is %d. Too large\n",
1907 frame + 1, depth);
1908 return -EACCES;
1910 continue_func:
1911 subprog_end = subprog[idx + 1].start;
1912 for (; i < subprog_end; i++) {
1913 if (insn[i].code != (BPF_JMP | BPF_CALL))
1914 continue;
1915 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1916 continue;
1917 /* remember insn and function to return to */
1918 ret_insn[frame] = i + 1;
1919 ret_prog[frame] = idx;
1921 /* find the callee */
1922 i = i + insn[i].imm + 1;
1923 idx = find_subprog(env, i);
1924 if (idx < 0) {
1925 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1927 return -EFAULT;
1929 frame++;
1930 if (frame >= MAX_CALL_FRAMES) {
1931 verbose(env, "the call stack of %d frames is too deep !\n",
1932 frame);
1933 return -E2BIG;
1935 goto process_func;
1937 /* end of for() loop means the last insn of the 'subprog'
1938 * was reached. Doesn't matter whether it was JA or EXIT
1940 if (frame == 0)
1941 return 0;
1942 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1943 frame--;
1944 i = ret_insn[frame];
1945 idx = ret_prog[frame];
1946 goto continue_func;
1949 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1950 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1951 const struct bpf_insn *insn, int idx)
1953 int start = idx + insn->imm + 1, subprog;
1955 subprog = find_subprog(env, start);
1956 if (subprog < 0) {
1957 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1958 start);
1959 return -EFAULT;
1961 return env->subprog_info[subprog].stack_depth;
1963 #endif
1965 static int check_ctx_reg(struct bpf_verifier_env *env,
1966 const struct bpf_reg_state *reg, int regno)
1968 /* Access to ctx or passing it to a helper is only allowed in
1969 * its original, unmodified form.
1972 if (reg->off) {
1973 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1974 regno, reg->off);
1975 return -EACCES;
1978 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1979 char tn_buf[48];
1981 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1982 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1983 return -EACCES;
1986 return 0;
1989 static int check_tp_buffer_access(struct bpf_verifier_env *env,
1990 const struct bpf_reg_state *reg,
1991 int regno, int off, int size)
1993 if (off < 0) {
1994 verbose(env,
1995 "R%d invalid tracepoint buffer access: off=%d, size=%d",
1996 regno, off, size);
1997 return -EACCES;
1999 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2000 char tn_buf[48];
2002 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2003 verbose(env,
2004 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2005 regno, off, tn_buf);
2006 return -EACCES;
2008 if (off + size > env->prog->aux->max_tp_access)
2009 env->prog->aux->max_tp_access = off + size;
2011 return 0;
2015 /* truncate register to smaller size (in bytes)
2016 * must be called with size < BPF_REG_SIZE
2018 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2020 u64 mask;
2022 /* clear high bits in bit representation */
2023 reg->var_off = tnum_cast(reg->var_off, size);
2025 /* fix arithmetic bounds */
2026 mask = ((u64)1 << (size * 8)) - 1;
2027 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2028 reg->umin_value &= mask;
2029 reg->umax_value &= mask;
2030 } else {
2031 reg->umin_value = 0;
2032 reg->umax_value = mask;
2034 reg->smin_value = reg->umin_value;
2035 reg->smax_value = reg->umax_value;
2038 /* check whether memory at (regno + off) is accessible for t = (read | write)
2039 * if t==write, value_regno is a register which value is stored into memory
2040 * if t==read, value_regno is a register which will receive the value from memory
2041 * if t==write && value_regno==-1, some unknown value is stored into memory
2042 * if t==read && value_regno==-1, don't care what we read from memory
2044 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2045 int off, int bpf_size, enum bpf_access_type t,
2046 int value_regno, bool strict_alignment_once)
2048 struct bpf_reg_state *regs = cur_regs(env);
2049 struct bpf_reg_state *reg = regs + regno;
2050 struct bpf_func_state *state;
2051 int size, err = 0;
2053 size = bpf_size_to_bytes(bpf_size);
2054 if (size < 0)
2055 return size;
2057 /* alignment checks will add in reg->off themselves */
2058 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2059 if (err)
2060 return err;
2062 /* for access checks, reg->off is just part of off */
2063 off += reg->off;
2065 if (reg->type == PTR_TO_MAP_VALUE) {
2066 if (t == BPF_WRITE && value_regno >= 0 &&
2067 is_pointer_value(env, value_regno)) {
2068 verbose(env, "R%d leaks addr into map\n", value_regno);
2069 return -EACCES;
2071 err = check_map_access_type(env, regno, off, size, t);
2072 if (err)
2073 return err;
2074 err = check_map_access(env, regno, off, size, false);
2075 if (!err && t == BPF_READ && value_regno >= 0)
2076 mark_reg_unknown(env, regs, value_regno);
2078 } else if (reg->type == PTR_TO_CTX) {
2079 enum bpf_reg_type reg_type = SCALAR_VALUE;
2081 if (t == BPF_WRITE && value_regno >= 0 &&
2082 is_pointer_value(env, value_regno)) {
2083 verbose(env, "R%d leaks addr into ctx\n", value_regno);
2084 return -EACCES;
2087 err = check_ctx_reg(env, reg, regno);
2088 if (err < 0)
2089 return err;
2091 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2092 if (!err && t == BPF_READ && value_regno >= 0) {
2093 /* ctx access returns either a scalar, or a
2094 * PTR_TO_PACKET[_META,_END]. In the latter
2095 * case, we know the offset is zero.
2097 if (reg_type == SCALAR_VALUE) {
2098 mark_reg_unknown(env, regs, value_regno);
2099 } else {
2100 mark_reg_known_zero(env, regs,
2101 value_regno);
2102 if (reg_type_may_be_null(reg_type))
2103 regs[value_regno].id = ++env->id_gen;
2105 regs[value_regno].type = reg_type;
2108 } else if (reg->type == PTR_TO_STACK) {
2109 off += reg->var_off.value;
2110 err = check_stack_access(env, reg, off, size);
2111 if (err)
2112 return err;
2114 state = func(env, reg);
2115 err = update_stack_depth(env, state, off);
2116 if (err)
2117 return err;
2119 if (t == BPF_WRITE)
2120 err = check_stack_write(env, state, off, size,
2121 value_regno, insn_idx);
2122 else
2123 err = check_stack_read(env, state, off, size,
2124 value_regno);
2125 } else if (reg_is_pkt_pointer(reg)) {
2126 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2127 verbose(env, "cannot write into packet\n");
2128 return -EACCES;
2130 if (t == BPF_WRITE && value_regno >= 0 &&
2131 is_pointer_value(env, value_regno)) {
2132 verbose(env, "R%d leaks addr into packet\n",
2133 value_regno);
2134 return -EACCES;
2136 err = check_packet_access(env, regno, off, size, false);
2137 if (!err && t == BPF_READ && value_regno >= 0)
2138 mark_reg_unknown(env, regs, value_regno);
2139 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2140 if (t == BPF_WRITE && value_regno >= 0 &&
2141 is_pointer_value(env, value_regno)) {
2142 verbose(env, "R%d leaks addr into flow keys\n",
2143 value_regno);
2144 return -EACCES;
2147 err = check_flow_keys_access(env, off, size);
2148 if (!err && t == BPF_READ && value_regno >= 0)
2149 mark_reg_unknown(env, regs, value_regno);
2150 } else if (type_is_sk_pointer(reg->type)) {
2151 if (t == BPF_WRITE) {
2152 verbose(env, "R%d cannot write into %s\n",
2153 regno, reg_type_str[reg->type]);
2154 return -EACCES;
2156 err = check_sock_access(env, insn_idx, regno, off, size, t);
2157 if (!err && value_regno >= 0)
2158 mark_reg_unknown(env, regs, value_regno);
2159 } else if (reg->type == PTR_TO_TP_BUFFER) {
2160 err = check_tp_buffer_access(env, reg, regno, off, size);
2161 if (!err && t == BPF_READ && value_regno >= 0)
2162 mark_reg_unknown(env, regs, value_regno);
2163 } else {
2164 verbose(env, "R%d invalid mem access '%s'\n", regno,
2165 reg_type_str[reg->type]);
2166 return -EACCES;
2169 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2170 regs[value_regno].type == SCALAR_VALUE) {
2171 /* b/h/w load zero-extends, mark upper bits as known 0 */
2172 coerce_reg_to_size(&regs[value_regno], size);
2174 return err;
2177 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2179 int err;
2181 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2182 insn->imm != 0) {
2183 verbose(env, "BPF_XADD uses reserved fields\n");
2184 return -EINVAL;
2187 /* check src1 operand */
2188 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2189 if (err)
2190 return err;
2192 /* check src2 operand */
2193 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2194 if (err)
2195 return err;
2197 if (is_pointer_value(env, insn->src_reg)) {
2198 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2199 return -EACCES;
2202 if (is_ctx_reg(env, insn->dst_reg) ||
2203 is_pkt_reg(env, insn->dst_reg) ||
2204 is_flow_key_reg(env, insn->dst_reg) ||
2205 is_sk_reg(env, insn->dst_reg)) {
2206 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2207 insn->dst_reg,
2208 reg_type_str[reg_state(env, insn->dst_reg)->type]);
2209 return -EACCES;
2212 /* check whether atomic_add can read the memory */
2213 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2214 BPF_SIZE(insn->code), BPF_READ, -1, true);
2215 if (err)
2216 return err;
2218 /* check whether atomic_add can write into the same memory */
2219 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2220 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2223 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2224 int off, int access_size,
2225 bool zero_size_allowed)
2227 struct bpf_reg_state *reg = reg_state(env, regno);
2229 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2230 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2231 if (tnum_is_const(reg->var_off)) {
2232 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2233 regno, off, access_size);
2234 } else {
2235 char tn_buf[48];
2237 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2238 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2239 regno, tn_buf, access_size);
2241 return -EACCES;
2243 return 0;
2246 /* when register 'regno' is passed into function that will read 'access_size'
2247 * bytes from that pointer, make sure that it's within stack boundary
2248 * and all elements of stack are initialized.
2249 * Unlike most pointer bounds-checking functions, this one doesn't take an
2250 * 'off' argument, so it has to add in reg->off itself.
2252 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2253 int access_size, bool zero_size_allowed,
2254 struct bpf_call_arg_meta *meta)
2256 struct bpf_reg_state *reg = reg_state(env, regno);
2257 struct bpf_func_state *state = func(env, reg);
2258 int err, min_off, max_off, i, slot, spi;
2260 if (reg->type != PTR_TO_STACK) {
2261 /* Allow zero-byte read from NULL, regardless of pointer type */
2262 if (zero_size_allowed && access_size == 0 &&
2263 register_is_null(reg))
2264 return 0;
2266 verbose(env, "R%d type=%s expected=%s\n", regno,
2267 reg_type_str[reg->type],
2268 reg_type_str[PTR_TO_STACK]);
2269 return -EACCES;
2272 if (tnum_is_const(reg->var_off)) {
2273 min_off = max_off = reg->var_off.value + reg->off;
2274 err = __check_stack_boundary(env, regno, min_off, access_size,
2275 zero_size_allowed);
2276 if (err)
2277 return err;
2278 } else {
2279 /* Variable offset is prohibited for unprivileged mode for
2280 * simplicity since it requires corresponding support in
2281 * Spectre masking for stack ALU.
2282 * See also retrieve_ptr_limit().
2284 if (!env->allow_ptr_leaks) {
2285 char tn_buf[48];
2287 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2288 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2289 regno, tn_buf);
2290 return -EACCES;
2292 /* Only initialized buffer on stack is allowed to be accessed
2293 * with variable offset. With uninitialized buffer it's hard to
2294 * guarantee that whole memory is marked as initialized on
2295 * helper return since specific bounds are unknown what may
2296 * cause uninitialized stack leaking.
2298 if (meta && meta->raw_mode)
2299 meta = NULL;
2301 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2302 reg->smax_value <= -BPF_MAX_VAR_OFF) {
2303 verbose(env, "R%d unbounded indirect variable offset stack access\n",
2304 regno);
2305 return -EACCES;
2307 min_off = reg->smin_value + reg->off;
2308 max_off = reg->smax_value + reg->off;
2309 err = __check_stack_boundary(env, regno, min_off, access_size,
2310 zero_size_allowed);
2311 if (err) {
2312 verbose(env, "R%d min value is outside of stack bound\n",
2313 regno);
2314 return err;
2316 err = __check_stack_boundary(env, regno, max_off, access_size,
2317 zero_size_allowed);
2318 if (err) {
2319 verbose(env, "R%d max value is outside of stack bound\n",
2320 regno);
2321 return err;
2325 if (meta && meta->raw_mode) {
2326 meta->access_size = access_size;
2327 meta->regno = regno;
2328 return 0;
2331 for (i = min_off; i < max_off + access_size; i++) {
2332 u8 *stype;
2334 slot = -i - 1;
2335 spi = slot / BPF_REG_SIZE;
2336 if (state->allocated_stack <= slot)
2337 goto err;
2338 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2339 if (*stype == STACK_MISC)
2340 goto mark;
2341 if (*stype == STACK_ZERO) {
2342 /* helper can write anything into the stack */
2343 *stype = STACK_MISC;
2344 goto mark;
2346 err:
2347 if (tnum_is_const(reg->var_off)) {
2348 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2349 min_off, i - min_off, access_size);
2350 } else {
2351 char tn_buf[48];
2353 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2354 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2355 tn_buf, i - min_off, access_size);
2357 return -EACCES;
2358 mark:
2359 /* reading any byte out of 8-byte 'spill_slot' will cause
2360 * the whole slot to be marked as 'read'
2362 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2363 state->stack[spi].spilled_ptr.parent);
2365 return update_stack_depth(env, state, min_off);
2368 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2369 int access_size, bool zero_size_allowed,
2370 struct bpf_call_arg_meta *meta)
2372 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2374 switch (reg->type) {
2375 case PTR_TO_PACKET:
2376 case PTR_TO_PACKET_META:
2377 return check_packet_access(env, regno, reg->off, access_size,
2378 zero_size_allowed);
2379 case PTR_TO_MAP_VALUE:
2380 if (check_map_access_type(env, regno, reg->off, access_size,
2381 meta && meta->raw_mode ? BPF_WRITE :
2382 BPF_READ))
2383 return -EACCES;
2384 return check_map_access(env, regno, reg->off, access_size,
2385 zero_size_allowed);
2386 default: /* scalar_value|ptr_to_stack or invalid ptr */
2387 return check_stack_boundary(env, regno, access_size,
2388 zero_size_allowed, meta);
2392 /* Implementation details:
2393 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2394 * Two bpf_map_lookups (even with the same key) will have different reg->id.
2395 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2396 * value_or_null->value transition, since the verifier only cares about
2397 * the range of access to valid map value pointer and doesn't care about actual
2398 * address of the map element.
2399 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2400 * reg->id > 0 after value_or_null->value transition. By doing so
2401 * two bpf_map_lookups will be considered two different pointers that
2402 * point to different bpf_spin_locks.
2403 * The verifier allows taking only one bpf_spin_lock at a time to avoid
2404 * dead-locks.
2405 * Since only one bpf_spin_lock is allowed the checks are simpler than
2406 * reg_is_refcounted() logic. The verifier needs to remember only
2407 * one spin_lock instead of array of acquired_refs.
2408 * cur_state->active_spin_lock remembers which map value element got locked
2409 * and clears it after bpf_spin_unlock.
2411 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2412 bool is_lock)
2414 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2415 struct bpf_verifier_state *cur = env->cur_state;
2416 bool is_const = tnum_is_const(reg->var_off);
2417 struct bpf_map *map = reg->map_ptr;
2418 u64 val = reg->var_off.value;
2420 if (reg->type != PTR_TO_MAP_VALUE) {
2421 verbose(env, "R%d is not a pointer to map_value\n", regno);
2422 return -EINVAL;
2424 if (!is_const) {
2425 verbose(env,
2426 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2427 regno);
2428 return -EINVAL;
2430 if (!map->btf) {
2431 verbose(env,
2432 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
2433 map->name);
2434 return -EINVAL;
2436 if (!map_value_has_spin_lock(map)) {
2437 if (map->spin_lock_off == -E2BIG)
2438 verbose(env,
2439 "map '%s' has more than one 'struct bpf_spin_lock'\n",
2440 map->name);
2441 else if (map->spin_lock_off == -ENOENT)
2442 verbose(env,
2443 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
2444 map->name);
2445 else
2446 verbose(env,
2447 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2448 map->name);
2449 return -EINVAL;
2451 if (map->spin_lock_off != val + reg->off) {
2452 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2453 val + reg->off);
2454 return -EINVAL;
2456 if (is_lock) {
2457 if (cur->active_spin_lock) {
2458 verbose(env,
2459 "Locking two bpf_spin_locks are not allowed\n");
2460 return -EINVAL;
2462 cur->active_spin_lock = reg->id;
2463 } else {
2464 if (!cur->active_spin_lock) {
2465 verbose(env, "bpf_spin_unlock without taking a lock\n");
2466 return -EINVAL;
2468 if (cur->active_spin_lock != reg->id) {
2469 verbose(env, "bpf_spin_unlock of different lock\n");
2470 return -EINVAL;
2472 cur->active_spin_lock = 0;
2474 return 0;
2477 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2479 return type == ARG_PTR_TO_MEM ||
2480 type == ARG_PTR_TO_MEM_OR_NULL ||
2481 type == ARG_PTR_TO_UNINIT_MEM;
2484 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2486 return type == ARG_CONST_SIZE ||
2487 type == ARG_CONST_SIZE_OR_ZERO;
2490 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
2492 return type == ARG_PTR_TO_INT ||
2493 type == ARG_PTR_TO_LONG;
2496 static int int_ptr_type_to_size(enum bpf_arg_type type)
2498 if (type == ARG_PTR_TO_INT)
2499 return sizeof(u32);
2500 else if (type == ARG_PTR_TO_LONG)
2501 return sizeof(u64);
2503 return -EINVAL;
2506 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2507 enum bpf_arg_type arg_type,
2508 struct bpf_call_arg_meta *meta)
2510 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2511 enum bpf_reg_type expected_type, type = reg->type;
2512 int err = 0;
2514 if (arg_type == ARG_DONTCARE)
2515 return 0;
2517 err = check_reg_arg(env, regno, SRC_OP);
2518 if (err)
2519 return err;
2521 if (arg_type == ARG_ANYTHING) {
2522 if (is_pointer_value(env, regno)) {
2523 verbose(env, "R%d leaks addr into helper function\n",
2524 regno);
2525 return -EACCES;
2527 return 0;
2530 if (type_is_pkt_pointer(type) &&
2531 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2532 verbose(env, "helper access to the packet is not allowed\n");
2533 return -EACCES;
2536 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2537 arg_type == ARG_PTR_TO_MAP_VALUE ||
2538 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
2539 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
2540 expected_type = PTR_TO_STACK;
2541 if (register_is_null(reg) &&
2542 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
2543 /* final test in check_stack_boundary() */;
2544 else if (!type_is_pkt_pointer(type) &&
2545 type != PTR_TO_MAP_VALUE &&
2546 type != expected_type)
2547 goto err_type;
2548 } else if (arg_type == ARG_CONST_SIZE ||
2549 arg_type == ARG_CONST_SIZE_OR_ZERO) {
2550 expected_type = SCALAR_VALUE;
2551 if (type != expected_type)
2552 goto err_type;
2553 } else if (arg_type == ARG_CONST_MAP_PTR) {
2554 expected_type = CONST_PTR_TO_MAP;
2555 if (type != expected_type)
2556 goto err_type;
2557 } else if (arg_type == ARG_PTR_TO_CTX) {
2558 expected_type = PTR_TO_CTX;
2559 if (type != expected_type)
2560 goto err_type;
2561 err = check_ctx_reg(env, reg, regno);
2562 if (err < 0)
2563 return err;
2564 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2565 expected_type = PTR_TO_SOCK_COMMON;
2566 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2567 if (!type_is_sk_pointer(type))
2568 goto err_type;
2569 if (reg->ref_obj_id) {
2570 if (meta->ref_obj_id) {
2571 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2572 regno, reg->ref_obj_id,
2573 meta->ref_obj_id);
2574 return -EFAULT;
2576 meta->ref_obj_id = reg->ref_obj_id;
2578 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2579 expected_type = PTR_TO_SOCKET;
2580 if (type != expected_type)
2581 goto err_type;
2582 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2583 if (meta->func_id == BPF_FUNC_spin_lock) {
2584 if (process_spin_lock(env, regno, true))
2585 return -EACCES;
2586 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
2587 if (process_spin_lock(env, regno, false))
2588 return -EACCES;
2589 } else {
2590 verbose(env, "verifier internal error\n");
2591 return -EFAULT;
2593 } else if (arg_type_is_mem_ptr(arg_type)) {
2594 expected_type = PTR_TO_STACK;
2595 /* One exception here. In case function allows for NULL to be
2596 * passed in as argument, it's a SCALAR_VALUE type. Final test
2597 * happens during stack boundary checking.
2599 if (register_is_null(reg) &&
2600 arg_type == ARG_PTR_TO_MEM_OR_NULL)
2601 /* final test in check_stack_boundary() */;
2602 else if (!type_is_pkt_pointer(type) &&
2603 type != PTR_TO_MAP_VALUE &&
2604 type != expected_type)
2605 goto err_type;
2606 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2607 } else if (arg_type_is_int_ptr(arg_type)) {
2608 expected_type = PTR_TO_STACK;
2609 if (!type_is_pkt_pointer(type) &&
2610 type != PTR_TO_MAP_VALUE &&
2611 type != expected_type)
2612 goto err_type;
2613 } else {
2614 verbose(env, "unsupported arg_type %d\n", arg_type);
2615 return -EFAULT;
2618 if (arg_type == ARG_CONST_MAP_PTR) {
2619 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2620 meta->map_ptr = reg->map_ptr;
2621 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2622 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2623 * check that [key, key + map->key_size) are within
2624 * stack limits and initialized
2626 if (!meta->map_ptr) {
2627 /* in function declaration map_ptr must come before
2628 * map_key, so that it's verified and known before
2629 * we have to check map_key here. Otherwise it means
2630 * that kernel subsystem misconfigured verifier
2632 verbose(env, "invalid map_ptr to access map->key\n");
2633 return -EACCES;
2635 err = check_helper_mem_access(env, regno,
2636 meta->map_ptr->key_size, false,
2637 NULL);
2638 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2639 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
2640 !register_is_null(reg)) ||
2641 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2642 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2643 * check [value, value + map->value_size) validity
2645 if (!meta->map_ptr) {
2646 /* kernel subsystem misconfigured verifier */
2647 verbose(env, "invalid map_ptr to access map->value\n");
2648 return -EACCES;
2650 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2651 err = check_helper_mem_access(env, regno,
2652 meta->map_ptr->value_size, false,
2653 meta);
2654 } else if (arg_type_is_mem_size(arg_type)) {
2655 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2657 /* remember the mem_size which may be used later
2658 * to refine return values.
2660 meta->msize_smax_value = reg->smax_value;
2661 meta->msize_umax_value = reg->umax_value;
2663 /* The register is SCALAR_VALUE; the access check
2664 * happens using its boundaries.
2666 if (!tnum_is_const(reg->var_off))
2667 /* For unprivileged variable accesses, disable raw
2668 * mode so that the program is required to
2669 * initialize all the memory that the helper could
2670 * just partially fill up.
2672 meta = NULL;
2674 if (reg->smin_value < 0) {
2675 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2676 regno);
2677 return -EACCES;
2680 if (reg->umin_value == 0) {
2681 err = check_helper_mem_access(env, regno - 1, 0,
2682 zero_size_allowed,
2683 meta);
2684 if (err)
2685 return err;
2688 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2689 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2690 regno);
2691 return -EACCES;
2693 err = check_helper_mem_access(env, regno - 1,
2694 reg->umax_value,
2695 zero_size_allowed, meta);
2696 } else if (arg_type_is_int_ptr(arg_type)) {
2697 int size = int_ptr_type_to_size(arg_type);
2699 err = check_helper_mem_access(env, regno, size, false, meta);
2700 if (err)
2701 return err;
2702 err = check_ptr_alignment(env, reg, 0, size, true);
2705 return err;
2706 err_type:
2707 verbose(env, "R%d type=%s expected=%s\n", regno,
2708 reg_type_str[type], reg_type_str[expected_type]);
2709 return -EACCES;
2712 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2713 struct bpf_map *map, int func_id)
2715 if (!map)
2716 return 0;
2718 /* We need a two way check, first is from map perspective ... */
2719 switch (map->map_type) {
2720 case BPF_MAP_TYPE_PROG_ARRAY:
2721 if (func_id != BPF_FUNC_tail_call)
2722 goto error;
2723 break;
2724 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2725 if (func_id != BPF_FUNC_perf_event_read &&
2726 func_id != BPF_FUNC_perf_event_output &&
2727 func_id != BPF_FUNC_perf_event_read_value)
2728 goto error;
2729 break;
2730 case BPF_MAP_TYPE_STACK_TRACE:
2731 if (func_id != BPF_FUNC_get_stackid)
2732 goto error;
2733 break;
2734 case BPF_MAP_TYPE_CGROUP_ARRAY:
2735 if (func_id != BPF_FUNC_skb_under_cgroup &&
2736 func_id != BPF_FUNC_current_task_under_cgroup)
2737 goto error;
2738 break;
2739 case BPF_MAP_TYPE_CGROUP_STORAGE:
2740 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2741 if (func_id != BPF_FUNC_get_local_storage)
2742 goto error;
2743 break;
2744 /* devmap returns a pointer to a live net_device ifindex that we cannot
2745 * allow to be modified from bpf side. So do not allow lookup elements
2746 * for now.
2748 case BPF_MAP_TYPE_DEVMAP:
2749 if (func_id != BPF_FUNC_redirect_map)
2750 goto error;
2751 break;
2752 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2753 * appear.
2755 case BPF_MAP_TYPE_CPUMAP:
2756 case BPF_MAP_TYPE_XSKMAP:
2757 if (func_id != BPF_FUNC_redirect_map)
2758 goto error;
2759 break;
2760 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2761 case BPF_MAP_TYPE_HASH_OF_MAPS:
2762 if (func_id != BPF_FUNC_map_lookup_elem)
2763 goto error;
2764 break;
2765 case BPF_MAP_TYPE_SOCKMAP:
2766 if (func_id != BPF_FUNC_sk_redirect_map &&
2767 func_id != BPF_FUNC_sock_map_update &&
2768 func_id != BPF_FUNC_map_delete_elem &&
2769 func_id != BPF_FUNC_msg_redirect_map)
2770 goto error;
2771 break;
2772 case BPF_MAP_TYPE_SOCKHASH:
2773 if (func_id != BPF_FUNC_sk_redirect_hash &&
2774 func_id != BPF_FUNC_sock_hash_update &&
2775 func_id != BPF_FUNC_map_delete_elem &&
2776 func_id != BPF_FUNC_msg_redirect_hash)
2777 goto error;
2778 break;
2779 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2780 if (func_id != BPF_FUNC_sk_select_reuseport)
2781 goto error;
2782 break;
2783 case BPF_MAP_TYPE_QUEUE:
2784 case BPF_MAP_TYPE_STACK:
2785 if (func_id != BPF_FUNC_map_peek_elem &&
2786 func_id != BPF_FUNC_map_pop_elem &&
2787 func_id != BPF_FUNC_map_push_elem)
2788 goto error;
2789 break;
2790 case BPF_MAP_TYPE_SK_STORAGE:
2791 if (func_id != BPF_FUNC_sk_storage_get &&
2792 func_id != BPF_FUNC_sk_storage_delete)
2793 goto error;
2794 break;
2795 default:
2796 break;
2799 /* ... and second from the function itself. */
2800 switch (func_id) {
2801 case BPF_FUNC_tail_call:
2802 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2803 goto error;
2804 if (env->subprog_cnt > 1) {
2805 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2806 return -EINVAL;
2808 break;
2809 case BPF_FUNC_perf_event_read:
2810 case BPF_FUNC_perf_event_output:
2811 case BPF_FUNC_perf_event_read_value:
2812 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2813 goto error;
2814 break;
2815 case BPF_FUNC_get_stackid:
2816 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2817 goto error;
2818 break;
2819 case BPF_FUNC_current_task_under_cgroup:
2820 case BPF_FUNC_skb_under_cgroup:
2821 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2822 goto error;
2823 break;
2824 case BPF_FUNC_redirect_map:
2825 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2826 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2827 map->map_type != BPF_MAP_TYPE_XSKMAP)
2828 goto error;
2829 break;
2830 case BPF_FUNC_sk_redirect_map:
2831 case BPF_FUNC_msg_redirect_map:
2832 case BPF_FUNC_sock_map_update:
2833 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2834 goto error;
2835 break;
2836 case BPF_FUNC_sk_redirect_hash:
2837 case BPF_FUNC_msg_redirect_hash:
2838 case BPF_FUNC_sock_hash_update:
2839 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2840 goto error;
2841 break;
2842 case BPF_FUNC_get_local_storage:
2843 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2844 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2845 goto error;
2846 break;
2847 case BPF_FUNC_sk_select_reuseport:
2848 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2849 goto error;
2850 break;
2851 case BPF_FUNC_map_peek_elem:
2852 case BPF_FUNC_map_pop_elem:
2853 case BPF_FUNC_map_push_elem:
2854 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2855 map->map_type != BPF_MAP_TYPE_STACK)
2856 goto error;
2857 break;
2858 case BPF_FUNC_sk_storage_get:
2859 case BPF_FUNC_sk_storage_delete:
2860 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
2861 goto error;
2862 break;
2863 default:
2864 break;
2867 return 0;
2868 error:
2869 verbose(env, "cannot pass map_type %d into func %s#%d\n",
2870 map->map_type, func_id_name(func_id), func_id);
2871 return -EINVAL;
2874 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2876 int count = 0;
2878 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2879 count++;
2880 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2881 count++;
2882 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2883 count++;
2884 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2885 count++;
2886 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2887 count++;
2889 /* We only support one arg being in raw mode at the moment,
2890 * which is sufficient for the helper functions we have
2891 * right now.
2893 return count <= 1;
2896 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2897 enum bpf_arg_type arg_next)
2899 return (arg_type_is_mem_ptr(arg_curr) &&
2900 !arg_type_is_mem_size(arg_next)) ||
2901 (!arg_type_is_mem_ptr(arg_curr) &&
2902 arg_type_is_mem_size(arg_next));
2905 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2907 /* bpf_xxx(..., buf, len) call will access 'len'
2908 * bytes from memory 'buf'. Both arg types need
2909 * to be paired, so make sure there's no buggy
2910 * helper function specification.
2912 if (arg_type_is_mem_size(fn->arg1_type) ||
2913 arg_type_is_mem_ptr(fn->arg5_type) ||
2914 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2915 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2916 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2917 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2918 return false;
2920 return true;
2923 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
2925 int count = 0;
2927 if (arg_type_may_be_refcounted(fn->arg1_type))
2928 count++;
2929 if (arg_type_may_be_refcounted(fn->arg2_type))
2930 count++;
2931 if (arg_type_may_be_refcounted(fn->arg3_type))
2932 count++;
2933 if (arg_type_may_be_refcounted(fn->arg4_type))
2934 count++;
2935 if (arg_type_may_be_refcounted(fn->arg5_type))
2936 count++;
2938 /* A reference acquiring function cannot acquire
2939 * another refcounted ptr.
2941 if (is_acquire_function(func_id) && count)
2942 return false;
2944 /* We only support one arg being unreferenced at the moment,
2945 * which is sufficient for the helper functions we have right now.
2947 return count <= 1;
2950 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
2952 return check_raw_mode_ok(fn) &&
2953 check_arg_pair_ok(fn) &&
2954 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
2957 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2958 * are now invalid, so turn them into unknown SCALAR_VALUE.
2960 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2961 struct bpf_func_state *state)
2963 struct bpf_reg_state *regs = state->regs, *reg;
2964 int i;
2966 for (i = 0; i < MAX_BPF_REG; i++)
2967 if (reg_is_pkt_pointer_any(&regs[i]))
2968 mark_reg_unknown(env, regs, i);
2970 bpf_for_each_spilled_reg(i, state, reg) {
2971 if (!reg)
2972 continue;
2973 if (reg_is_pkt_pointer_any(reg))
2974 __mark_reg_unknown(reg);
2978 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2980 struct bpf_verifier_state *vstate = env->cur_state;
2981 int i;
2983 for (i = 0; i <= vstate->curframe; i++)
2984 __clear_all_pkt_pointers(env, vstate->frame[i]);
2987 static void release_reg_references(struct bpf_verifier_env *env,
2988 struct bpf_func_state *state,
2989 int ref_obj_id)
2991 struct bpf_reg_state *regs = state->regs, *reg;
2992 int i;
2994 for (i = 0; i < MAX_BPF_REG; i++)
2995 if (regs[i].ref_obj_id == ref_obj_id)
2996 mark_reg_unknown(env, regs, i);
2998 bpf_for_each_spilled_reg(i, state, reg) {
2999 if (!reg)
3000 continue;
3001 if (reg->ref_obj_id == ref_obj_id)
3002 __mark_reg_unknown(reg);
3006 /* The pointer with the specified id has released its reference to kernel
3007 * resources. Identify all copies of the same pointer and clear the reference.
3009 static int release_reference(struct bpf_verifier_env *env,
3010 int ref_obj_id)
3012 struct bpf_verifier_state *vstate = env->cur_state;
3013 int err;
3014 int i;
3016 err = release_reference_state(cur_func(env), ref_obj_id);
3017 if (err)
3018 return err;
3020 for (i = 0; i <= vstate->curframe; i++)
3021 release_reg_references(env, vstate->frame[i], ref_obj_id);
3023 return 0;
3026 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3027 int *insn_idx)
3029 struct bpf_verifier_state *state = env->cur_state;
3030 struct bpf_func_state *caller, *callee;
3031 int i, err, subprog, target_insn;
3033 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3034 verbose(env, "the call stack of %d frames is too deep\n",
3035 state->curframe + 2);
3036 return -E2BIG;
3039 target_insn = *insn_idx + insn->imm;
3040 subprog = find_subprog(env, target_insn + 1);
3041 if (subprog < 0) {
3042 verbose(env, "verifier bug. No program starts at insn %d\n",
3043 target_insn + 1);
3044 return -EFAULT;
3047 caller = state->frame[state->curframe];
3048 if (state->frame[state->curframe + 1]) {
3049 verbose(env, "verifier bug. Frame %d already allocated\n",
3050 state->curframe + 1);
3051 return -EFAULT;
3054 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3055 if (!callee)
3056 return -ENOMEM;
3057 state->frame[state->curframe + 1] = callee;
3059 /* callee cannot access r0, r6 - r9 for reading and has to write
3060 * into its own stack before reading from it.
3061 * callee can read/write into caller's stack
3063 init_func_state(env, callee,
3064 /* remember the callsite, it will be used by bpf_exit */
3065 *insn_idx /* callsite */,
3066 state->curframe + 1 /* frameno within this callchain */,
3067 subprog /* subprog number within this prog */);
3069 /* Transfer references to the callee */
3070 err = transfer_reference_state(callee, caller);
3071 if (err)
3072 return err;
3074 /* copy r1 - r5 args that callee can access. The copy includes parent
3075 * pointers, which connects us up to the liveness chain
3077 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3078 callee->regs[i] = caller->regs[i];
3080 /* after the call registers r0 - r5 were scratched */
3081 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3082 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3083 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3086 /* only increment it after check_reg_arg() finished */
3087 state->curframe++;
3089 /* and go analyze first insn of the callee */
3090 *insn_idx = target_insn;
3092 if (env->log.level & BPF_LOG_LEVEL) {
3093 verbose(env, "caller:\n");
3094 print_verifier_state(env, caller);
3095 verbose(env, "callee:\n");
3096 print_verifier_state(env, callee);
3098 return 0;
3101 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3103 struct bpf_verifier_state *state = env->cur_state;
3104 struct bpf_func_state *caller, *callee;
3105 struct bpf_reg_state *r0;
3106 int err;
3108 callee = state->frame[state->curframe];
3109 r0 = &callee->regs[BPF_REG_0];
3110 if (r0->type == PTR_TO_STACK) {
3111 /* technically it's ok to return caller's stack pointer
3112 * (or caller's caller's pointer) back to the caller,
3113 * since these pointers are valid. Only current stack
3114 * pointer will be invalid as soon as function exits,
3115 * but let's be conservative
3117 verbose(env, "cannot return stack pointer to the caller\n");
3118 return -EINVAL;
3121 state->curframe--;
3122 caller = state->frame[state->curframe];
3123 /* return to the caller whatever r0 had in the callee */
3124 caller->regs[BPF_REG_0] = *r0;
3126 /* Transfer references to the caller */
3127 err = transfer_reference_state(caller, callee);
3128 if (err)
3129 return err;
3131 *insn_idx = callee->callsite + 1;
3132 if (env->log.level & BPF_LOG_LEVEL) {
3133 verbose(env, "returning from callee:\n");
3134 print_verifier_state(env, callee);
3135 verbose(env, "to caller at %d:\n", *insn_idx);
3136 print_verifier_state(env, caller);
3138 /* clear everything in the callee */
3139 free_func_state(callee);
3140 state->frame[state->curframe + 1] = NULL;
3141 return 0;
3144 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3145 int func_id,
3146 struct bpf_call_arg_meta *meta)
3148 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3150 if (ret_type != RET_INTEGER ||
3151 (func_id != BPF_FUNC_get_stack &&
3152 func_id != BPF_FUNC_probe_read_str))
3153 return;
3155 ret_reg->smax_value = meta->msize_smax_value;
3156 ret_reg->umax_value = meta->msize_umax_value;
3157 __reg_deduce_bounds(ret_reg);
3158 __reg_bound_offset(ret_reg);
3161 static int
3162 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3163 int func_id, int insn_idx)
3165 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3166 struct bpf_map *map = meta->map_ptr;
3168 if (func_id != BPF_FUNC_tail_call &&
3169 func_id != BPF_FUNC_map_lookup_elem &&
3170 func_id != BPF_FUNC_map_update_elem &&
3171 func_id != BPF_FUNC_map_delete_elem &&
3172 func_id != BPF_FUNC_map_push_elem &&
3173 func_id != BPF_FUNC_map_pop_elem &&
3174 func_id != BPF_FUNC_map_peek_elem)
3175 return 0;
3177 if (map == NULL) {
3178 verbose(env, "kernel subsystem misconfigured verifier\n");
3179 return -EINVAL;
3182 /* In case of read-only, some additional restrictions
3183 * need to be applied in order to prevent altering the
3184 * state of the map from program side.
3186 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3187 (func_id == BPF_FUNC_map_delete_elem ||
3188 func_id == BPF_FUNC_map_update_elem ||
3189 func_id == BPF_FUNC_map_push_elem ||
3190 func_id == BPF_FUNC_map_pop_elem)) {
3191 verbose(env, "write into map forbidden\n");
3192 return -EACCES;
3195 if (!BPF_MAP_PTR(aux->map_state))
3196 bpf_map_ptr_store(aux, meta->map_ptr,
3197 meta->map_ptr->unpriv_array);
3198 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3199 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3200 meta->map_ptr->unpriv_array);
3201 return 0;
3204 static int check_reference_leak(struct bpf_verifier_env *env)
3206 struct bpf_func_state *state = cur_func(env);
3207 int i;
3209 for (i = 0; i < state->acquired_refs; i++) {
3210 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3211 state->refs[i].id, state->refs[i].insn_idx);
3213 return state->acquired_refs ? -EINVAL : 0;
3216 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3218 const struct bpf_func_proto *fn = NULL;
3219 struct bpf_reg_state *regs;
3220 struct bpf_call_arg_meta meta;
3221 bool changes_data;
3222 int i, err;
3224 /* find function prototype */
3225 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3226 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3227 func_id);
3228 return -EINVAL;
3231 if (env->ops->get_func_proto)
3232 fn = env->ops->get_func_proto(func_id, env->prog);
3233 if (!fn) {
3234 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3235 func_id);
3236 return -EINVAL;
3239 /* eBPF programs must be GPL compatible to use GPL-ed functions */
3240 if (!env->prog->gpl_compatible && fn->gpl_only) {
3241 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3242 return -EINVAL;
3245 /* With LD_ABS/IND some JITs save/restore skb from r1. */
3246 changes_data = bpf_helper_changes_pkt_data(fn->func);
3247 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3248 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3249 func_id_name(func_id), func_id);
3250 return -EINVAL;
3253 memset(&meta, 0, sizeof(meta));
3254 meta.pkt_access = fn->pkt_access;
3256 err = check_func_proto(fn, func_id);
3257 if (err) {
3258 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3259 func_id_name(func_id), func_id);
3260 return err;
3263 meta.func_id = func_id;
3264 /* check args */
3265 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3266 if (err)
3267 return err;
3268 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3269 if (err)
3270 return err;
3271 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3272 if (err)
3273 return err;
3274 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3275 if (err)
3276 return err;
3277 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3278 if (err)
3279 return err;
3281 err = record_func_map(env, &meta, func_id, insn_idx);
3282 if (err)
3283 return err;
3285 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3286 * is inferred from register state.
3288 for (i = 0; i < meta.access_size; i++) {
3289 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3290 BPF_WRITE, -1, false);
3291 if (err)
3292 return err;
3295 if (func_id == BPF_FUNC_tail_call) {
3296 err = check_reference_leak(env);
3297 if (err) {
3298 verbose(env, "tail_call would lead to reference leak\n");
3299 return err;
3301 } else if (is_release_function(func_id)) {
3302 err = release_reference(env, meta.ref_obj_id);
3303 if (err) {
3304 verbose(env, "func %s#%d reference has not been acquired before\n",
3305 func_id_name(func_id), func_id);
3306 return err;
3310 regs = cur_regs(env);
3312 /* check that flags argument in get_local_storage(map, flags) is 0,
3313 * this is required because get_local_storage() can't return an error.
3315 if (func_id == BPF_FUNC_get_local_storage &&
3316 !register_is_null(&regs[BPF_REG_2])) {
3317 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3318 return -EINVAL;
3321 /* reset caller saved regs */
3322 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3323 mark_reg_not_init(env, regs, caller_saved[i]);
3324 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3327 /* update return register (already marked as written above) */
3328 if (fn->ret_type == RET_INTEGER) {
3329 /* sets type to SCALAR_VALUE */
3330 mark_reg_unknown(env, regs, BPF_REG_0);
3331 } else if (fn->ret_type == RET_VOID) {
3332 regs[BPF_REG_0].type = NOT_INIT;
3333 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3334 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3335 /* There is no offset yet applied, variable or fixed */
3336 mark_reg_known_zero(env, regs, BPF_REG_0);
3337 /* remember map_ptr, so that check_map_access()
3338 * can check 'value_size' boundary of memory access
3339 * to map element returned from bpf_map_lookup_elem()
3341 if (meta.map_ptr == NULL) {
3342 verbose(env,
3343 "kernel subsystem misconfigured verifier\n");
3344 return -EINVAL;
3346 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3347 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3348 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3349 if (map_value_has_spin_lock(meta.map_ptr))
3350 regs[BPF_REG_0].id = ++env->id_gen;
3351 } else {
3352 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3353 regs[BPF_REG_0].id = ++env->id_gen;
3355 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3356 mark_reg_known_zero(env, regs, BPF_REG_0);
3357 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3358 regs[BPF_REG_0].id = ++env->id_gen;
3359 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3360 mark_reg_known_zero(env, regs, BPF_REG_0);
3361 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3362 regs[BPF_REG_0].id = ++env->id_gen;
3363 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3364 mark_reg_known_zero(env, regs, BPF_REG_0);
3365 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3366 regs[BPF_REG_0].id = ++env->id_gen;
3367 } else {
3368 verbose(env, "unknown return type %d of func %s#%d\n",
3369 fn->ret_type, func_id_name(func_id), func_id);
3370 return -EINVAL;
3373 if (is_ptr_cast_function(func_id)) {
3374 /* For release_reference() */
3375 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3376 } else if (is_acquire_function(func_id)) {
3377 int id = acquire_reference_state(env, insn_idx);
3379 if (id < 0)
3380 return id;
3381 /* For mark_ptr_or_null_reg() */
3382 regs[BPF_REG_0].id = id;
3383 /* For release_reference() */
3384 regs[BPF_REG_0].ref_obj_id = id;
3387 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3389 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3390 if (err)
3391 return err;
3393 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3394 const char *err_str;
3396 #ifdef CONFIG_PERF_EVENTS
3397 err = get_callchain_buffers(sysctl_perf_event_max_stack);
3398 err_str = "cannot get callchain buffer for func %s#%d\n";
3399 #else
3400 err = -ENOTSUPP;
3401 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3402 #endif
3403 if (err) {
3404 verbose(env, err_str, func_id_name(func_id), func_id);
3405 return err;
3408 env->prog->has_callchain_buf = true;
3411 if (changes_data)
3412 clear_all_pkt_pointers(env);
3413 return 0;
3416 static bool signed_add_overflows(s64 a, s64 b)
3418 /* Do the add in u64, where overflow is well-defined */
3419 s64 res = (s64)((u64)a + (u64)b);
3421 if (b < 0)
3422 return res > a;
3423 return res < a;
3426 static bool signed_sub_overflows(s64 a, s64 b)
3428 /* Do the sub in u64, where overflow is well-defined */
3429 s64 res = (s64)((u64)a - (u64)b);
3431 if (b < 0)
3432 return res < a;
3433 return res > a;
3436 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3437 const struct bpf_reg_state *reg,
3438 enum bpf_reg_type type)
3440 bool known = tnum_is_const(reg->var_off);
3441 s64 val = reg->var_off.value;
3442 s64 smin = reg->smin_value;
3444 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3445 verbose(env, "math between %s pointer and %lld is not allowed\n",
3446 reg_type_str[type], val);
3447 return false;
3450 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3451 verbose(env, "%s pointer offset %d is not allowed\n",
3452 reg_type_str[type], reg->off);
3453 return false;
3456 if (smin == S64_MIN) {
3457 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3458 reg_type_str[type]);
3459 return false;
3462 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3463 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3464 smin, reg_type_str[type]);
3465 return false;
3468 return true;
3471 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3473 return &env->insn_aux_data[env->insn_idx];
3476 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3477 u32 *ptr_limit, u8 opcode, bool off_is_neg)
3479 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
3480 (opcode == BPF_SUB && !off_is_neg);
3481 u32 off;
3483 switch (ptr_reg->type) {
3484 case PTR_TO_STACK:
3485 /* Indirect variable offset stack access is prohibited in
3486 * unprivileged mode so it's not handled here.
3488 off = ptr_reg->off + ptr_reg->var_off.value;
3489 if (mask_to_left)
3490 *ptr_limit = MAX_BPF_STACK + off;
3491 else
3492 *ptr_limit = -off;
3493 return 0;
3494 case PTR_TO_MAP_VALUE:
3495 if (mask_to_left) {
3496 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3497 } else {
3498 off = ptr_reg->smin_value + ptr_reg->off;
3499 *ptr_limit = ptr_reg->map_ptr->value_size - off;
3501 return 0;
3502 default:
3503 return -EINVAL;
3507 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3508 const struct bpf_insn *insn)
3510 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3513 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3514 u32 alu_state, u32 alu_limit)
3516 /* If we arrived here from different branches with different
3517 * state or limits to sanitize, then this won't work.
3519 if (aux->alu_state &&
3520 (aux->alu_state != alu_state ||
3521 aux->alu_limit != alu_limit))
3522 return -EACCES;
3524 /* Corresponding fixup done in fixup_bpf_calls(). */
3525 aux->alu_state = alu_state;
3526 aux->alu_limit = alu_limit;
3527 return 0;
3530 static int sanitize_val_alu(struct bpf_verifier_env *env,
3531 struct bpf_insn *insn)
3533 struct bpf_insn_aux_data *aux = cur_aux(env);
3535 if (can_skip_alu_sanitation(env, insn))
3536 return 0;
3538 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3541 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3542 struct bpf_insn *insn,
3543 const struct bpf_reg_state *ptr_reg,
3544 struct bpf_reg_state *dst_reg,
3545 bool off_is_neg)
3547 struct bpf_verifier_state *vstate = env->cur_state;
3548 struct bpf_insn_aux_data *aux = cur_aux(env);
3549 bool ptr_is_dst_reg = ptr_reg == dst_reg;
3550 u8 opcode = BPF_OP(insn->code);
3551 u32 alu_state, alu_limit;
3552 struct bpf_reg_state tmp;
3553 bool ret;
3555 if (can_skip_alu_sanitation(env, insn))
3556 return 0;
3558 /* We already marked aux for masking from non-speculative
3559 * paths, thus we got here in the first place. We only care
3560 * to explore bad access from here.
3562 if (vstate->speculative)
3563 goto do_sim;
3565 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3566 alu_state |= ptr_is_dst_reg ?
3567 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3569 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3570 return 0;
3571 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3572 return -EACCES;
3573 do_sim:
3574 /* Simulate and find potential out-of-bounds access under
3575 * speculative execution from truncation as a result of
3576 * masking when off was not within expected range. If off
3577 * sits in dst, then we temporarily need to move ptr there
3578 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3579 * for cases where we use K-based arithmetic in one direction
3580 * and truncated reg-based in the other in order to explore
3581 * bad access.
3583 if (!ptr_is_dst_reg) {
3584 tmp = *dst_reg;
3585 *dst_reg = *ptr_reg;
3587 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3588 if (!ptr_is_dst_reg && ret)
3589 *dst_reg = tmp;
3590 return !ret ? -EFAULT : 0;
3593 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3594 * Caller should also handle BPF_MOV case separately.
3595 * If we return -EACCES, caller may want to try again treating pointer as a
3596 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3598 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3599 struct bpf_insn *insn,
3600 const struct bpf_reg_state *ptr_reg,
3601 const struct bpf_reg_state *off_reg)
3603 struct bpf_verifier_state *vstate = env->cur_state;
3604 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3605 struct bpf_reg_state *regs = state->regs, *dst_reg;
3606 bool known = tnum_is_const(off_reg->var_off);
3607 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3608 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3609 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3610 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3611 u32 dst = insn->dst_reg, src = insn->src_reg;
3612 u8 opcode = BPF_OP(insn->code);
3613 int ret;
3615 dst_reg = &regs[dst];
3617 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3618 smin_val > smax_val || umin_val > umax_val) {
3619 /* Taint dst register if offset had invalid bounds derived from
3620 * e.g. dead branches.
3622 __mark_reg_unknown(dst_reg);
3623 return 0;
3626 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3627 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
3628 verbose(env,
3629 "R%d 32-bit pointer arithmetic prohibited\n",
3630 dst);
3631 return -EACCES;
3634 switch (ptr_reg->type) {
3635 case PTR_TO_MAP_VALUE_OR_NULL:
3636 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3637 dst, reg_type_str[ptr_reg->type]);
3638 return -EACCES;
3639 case CONST_PTR_TO_MAP:
3640 case PTR_TO_PACKET_END:
3641 case PTR_TO_SOCKET:
3642 case PTR_TO_SOCKET_OR_NULL:
3643 case PTR_TO_SOCK_COMMON:
3644 case PTR_TO_SOCK_COMMON_OR_NULL:
3645 case PTR_TO_TCP_SOCK:
3646 case PTR_TO_TCP_SOCK_OR_NULL:
3647 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3648 dst, reg_type_str[ptr_reg->type]);
3649 return -EACCES;
3650 case PTR_TO_MAP_VALUE:
3651 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3652 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3653 off_reg == dst_reg ? dst : src);
3654 return -EACCES;
3656 /* fall-through */
3657 default:
3658 break;
3661 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3662 * The id may be overwritten later if we create a new variable offset.
3664 dst_reg->type = ptr_reg->type;
3665 dst_reg->id = ptr_reg->id;
3667 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3668 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3669 return -EINVAL;
3671 switch (opcode) {
3672 case BPF_ADD:
3673 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3674 if (ret < 0) {
3675 verbose(env, "R%d tried to add from different maps or paths\n", dst);
3676 return ret;
3678 /* We can take a fixed offset as long as it doesn't overflow
3679 * the s32 'off' field
3681 if (known && (ptr_reg->off + smin_val ==
3682 (s64)(s32)(ptr_reg->off + smin_val))) {
3683 /* pointer += K. Accumulate it into fixed offset */
3684 dst_reg->smin_value = smin_ptr;
3685 dst_reg->smax_value = smax_ptr;
3686 dst_reg->umin_value = umin_ptr;
3687 dst_reg->umax_value = umax_ptr;
3688 dst_reg->var_off = ptr_reg->var_off;
3689 dst_reg->off = ptr_reg->off + smin_val;
3690 dst_reg->raw = ptr_reg->raw;
3691 break;
3693 /* A new variable offset is created. Note that off_reg->off
3694 * == 0, since it's a scalar.
3695 * dst_reg gets the pointer type and since some positive
3696 * integer value was added to the pointer, give it a new 'id'
3697 * if it's a PTR_TO_PACKET.
3698 * this creates a new 'base' pointer, off_reg (variable) gets
3699 * added into the variable offset, and we copy the fixed offset
3700 * from ptr_reg.
3702 if (signed_add_overflows(smin_ptr, smin_val) ||
3703 signed_add_overflows(smax_ptr, smax_val)) {
3704 dst_reg->smin_value = S64_MIN;
3705 dst_reg->smax_value = S64_MAX;
3706 } else {
3707 dst_reg->smin_value = smin_ptr + smin_val;
3708 dst_reg->smax_value = smax_ptr + smax_val;
3710 if (umin_ptr + umin_val < umin_ptr ||
3711 umax_ptr + umax_val < umax_ptr) {
3712 dst_reg->umin_value = 0;
3713 dst_reg->umax_value = U64_MAX;
3714 } else {
3715 dst_reg->umin_value = umin_ptr + umin_val;
3716 dst_reg->umax_value = umax_ptr + umax_val;
3718 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3719 dst_reg->off = ptr_reg->off;
3720 dst_reg->raw = ptr_reg->raw;
3721 if (reg_is_pkt_pointer(ptr_reg)) {
3722 dst_reg->id = ++env->id_gen;
3723 /* something was added to pkt_ptr, set range to zero */
3724 dst_reg->raw = 0;
3726 break;
3727 case BPF_SUB:
3728 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3729 if (ret < 0) {
3730 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3731 return ret;
3733 if (dst_reg == off_reg) {
3734 /* scalar -= pointer. Creates an unknown scalar */
3735 verbose(env, "R%d tried to subtract pointer from scalar\n",
3736 dst);
3737 return -EACCES;
3739 /* We don't allow subtraction from FP, because (according to
3740 * test_verifier.c test "invalid fp arithmetic", JITs might not
3741 * be able to deal with it.
3743 if (ptr_reg->type == PTR_TO_STACK) {
3744 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3745 dst);
3746 return -EACCES;
3748 if (known && (ptr_reg->off - smin_val ==
3749 (s64)(s32)(ptr_reg->off - smin_val))) {
3750 /* pointer -= K. Subtract it from fixed offset */
3751 dst_reg->smin_value = smin_ptr;
3752 dst_reg->smax_value = smax_ptr;
3753 dst_reg->umin_value = umin_ptr;
3754 dst_reg->umax_value = umax_ptr;
3755 dst_reg->var_off = ptr_reg->var_off;
3756 dst_reg->id = ptr_reg->id;
3757 dst_reg->off = ptr_reg->off - smin_val;
3758 dst_reg->raw = ptr_reg->raw;
3759 break;
3761 /* A new variable offset is created. If the subtrahend is known
3762 * nonnegative, then any reg->range we had before is still good.
3764 if (signed_sub_overflows(smin_ptr, smax_val) ||
3765 signed_sub_overflows(smax_ptr, smin_val)) {
3766 /* Overflow possible, we know nothing */
3767 dst_reg->smin_value = S64_MIN;
3768 dst_reg->smax_value = S64_MAX;
3769 } else {
3770 dst_reg->smin_value = smin_ptr - smax_val;
3771 dst_reg->smax_value = smax_ptr - smin_val;
3773 if (umin_ptr < umax_val) {
3774 /* Overflow possible, we know nothing */
3775 dst_reg->umin_value = 0;
3776 dst_reg->umax_value = U64_MAX;
3777 } else {
3778 /* Cannot overflow (as long as bounds are consistent) */
3779 dst_reg->umin_value = umin_ptr - umax_val;
3780 dst_reg->umax_value = umax_ptr - umin_val;
3782 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3783 dst_reg->off = ptr_reg->off;
3784 dst_reg->raw = ptr_reg->raw;
3785 if (reg_is_pkt_pointer(ptr_reg)) {
3786 dst_reg->id = ++env->id_gen;
3787 /* something was added to pkt_ptr, set range to zero */
3788 if (smin_val < 0)
3789 dst_reg->raw = 0;
3791 break;
3792 case BPF_AND:
3793 case BPF_OR:
3794 case BPF_XOR:
3795 /* bitwise ops on pointers are troublesome, prohibit. */
3796 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3797 dst, bpf_alu_string[opcode >> 4]);
3798 return -EACCES;
3799 default:
3800 /* other operators (e.g. MUL,LSH) produce non-pointer results */
3801 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3802 dst, bpf_alu_string[opcode >> 4]);
3803 return -EACCES;
3806 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3807 return -EINVAL;
3809 __update_reg_bounds(dst_reg);
3810 __reg_deduce_bounds(dst_reg);
3811 __reg_bound_offset(dst_reg);
3813 /* For unprivileged we require that resulting offset must be in bounds
3814 * in order to be able to sanitize access later on.
3816 if (!env->allow_ptr_leaks) {
3817 if (dst_reg->type == PTR_TO_MAP_VALUE &&
3818 check_map_access(env, dst, dst_reg->off, 1, false)) {
3819 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3820 "prohibited for !root\n", dst);
3821 return -EACCES;
3822 } else if (dst_reg->type == PTR_TO_STACK &&
3823 check_stack_access(env, dst_reg, dst_reg->off +
3824 dst_reg->var_off.value, 1)) {
3825 verbose(env, "R%d stack pointer arithmetic goes out of range, "
3826 "prohibited for !root\n", dst);
3827 return -EACCES;
3831 return 0;
3834 /* WARNING: This function does calculations on 64-bit values, but the actual
3835 * execution may occur on 32-bit values. Therefore, things like bitshifts
3836 * need extra checks in the 32-bit case.
3838 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3839 struct bpf_insn *insn,
3840 struct bpf_reg_state *dst_reg,
3841 struct bpf_reg_state src_reg)
3843 struct bpf_reg_state *regs = cur_regs(env);
3844 u8 opcode = BPF_OP(insn->code);
3845 bool src_known, dst_known;
3846 s64 smin_val, smax_val;
3847 u64 umin_val, umax_val;
3848 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3849 u32 dst = insn->dst_reg;
3850 int ret;
3852 if (insn_bitness == 32) {
3853 /* Relevant for 32-bit RSH: Information can propagate towards
3854 * LSB, so it isn't sufficient to only truncate the output to
3855 * 32 bits.
3857 coerce_reg_to_size(dst_reg, 4);
3858 coerce_reg_to_size(&src_reg, 4);
3861 smin_val = src_reg.smin_value;
3862 smax_val = src_reg.smax_value;
3863 umin_val = src_reg.umin_value;
3864 umax_val = src_reg.umax_value;
3865 src_known = tnum_is_const(src_reg.var_off);
3866 dst_known = tnum_is_const(dst_reg->var_off);
3868 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3869 smin_val > smax_val || umin_val > umax_val) {
3870 /* Taint dst register if offset had invalid bounds derived from
3871 * e.g. dead branches.
3873 __mark_reg_unknown(dst_reg);
3874 return 0;
3877 if (!src_known &&
3878 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3879 __mark_reg_unknown(dst_reg);
3880 return 0;
3883 switch (opcode) {
3884 case BPF_ADD:
3885 ret = sanitize_val_alu(env, insn);
3886 if (ret < 0) {
3887 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3888 return ret;
3890 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3891 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3892 dst_reg->smin_value = S64_MIN;
3893 dst_reg->smax_value = S64_MAX;
3894 } else {
3895 dst_reg->smin_value += smin_val;
3896 dst_reg->smax_value += smax_val;
3898 if (dst_reg->umin_value + umin_val < umin_val ||
3899 dst_reg->umax_value + umax_val < umax_val) {
3900 dst_reg->umin_value = 0;
3901 dst_reg->umax_value = U64_MAX;
3902 } else {
3903 dst_reg->umin_value += umin_val;
3904 dst_reg->umax_value += umax_val;
3906 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3907 break;
3908 case BPF_SUB:
3909 ret = sanitize_val_alu(env, insn);
3910 if (ret < 0) {
3911 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3912 return ret;
3914 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3915 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3916 /* Overflow possible, we know nothing */
3917 dst_reg->smin_value = S64_MIN;
3918 dst_reg->smax_value = S64_MAX;
3919 } else {
3920 dst_reg->smin_value -= smax_val;
3921 dst_reg->smax_value -= smin_val;
3923 if (dst_reg->umin_value < umax_val) {
3924 /* Overflow possible, we know nothing */
3925 dst_reg->umin_value = 0;
3926 dst_reg->umax_value = U64_MAX;
3927 } else {
3928 /* Cannot overflow (as long as bounds are consistent) */
3929 dst_reg->umin_value -= umax_val;
3930 dst_reg->umax_value -= umin_val;
3932 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3933 break;
3934 case BPF_MUL:
3935 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3936 if (smin_val < 0 || dst_reg->smin_value < 0) {
3937 /* Ain't nobody got time to multiply that sign */
3938 __mark_reg_unbounded(dst_reg);
3939 __update_reg_bounds(dst_reg);
3940 break;
3942 /* Both values are positive, so we can work with unsigned and
3943 * copy the result to signed (unless it exceeds S64_MAX).
3945 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3946 /* Potential overflow, we know nothing */
3947 __mark_reg_unbounded(dst_reg);
3948 /* (except what we can learn from the var_off) */
3949 __update_reg_bounds(dst_reg);
3950 break;
3952 dst_reg->umin_value *= umin_val;
3953 dst_reg->umax_value *= umax_val;
3954 if (dst_reg->umax_value > S64_MAX) {
3955 /* Overflow possible, we know nothing */
3956 dst_reg->smin_value = S64_MIN;
3957 dst_reg->smax_value = S64_MAX;
3958 } else {
3959 dst_reg->smin_value = dst_reg->umin_value;
3960 dst_reg->smax_value = dst_reg->umax_value;
3962 break;
3963 case BPF_AND:
3964 if (src_known && dst_known) {
3965 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3966 src_reg.var_off.value);
3967 break;
3969 /* We get our minimum from the var_off, since that's inherently
3970 * bitwise. Our maximum is the minimum of the operands' maxima.
3972 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3973 dst_reg->umin_value = dst_reg->var_off.value;
3974 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3975 if (dst_reg->smin_value < 0 || smin_val < 0) {
3976 /* Lose signed bounds when ANDing negative numbers,
3977 * ain't nobody got time for that.
3979 dst_reg->smin_value = S64_MIN;
3980 dst_reg->smax_value = S64_MAX;
3981 } else {
3982 /* ANDing two positives gives a positive, so safe to
3983 * cast result into s64.
3985 dst_reg->smin_value = dst_reg->umin_value;
3986 dst_reg->smax_value = dst_reg->umax_value;
3988 /* We may learn something more from the var_off */
3989 __update_reg_bounds(dst_reg);
3990 break;
3991 case BPF_OR:
3992 if (src_known && dst_known) {
3993 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3994 src_reg.var_off.value);
3995 break;
3997 /* We get our maximum from the var_off, and our minimum is the
3998 * maximum of the operands' minima
4000 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4001 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4002 dst_reg->umax_value = dst_reg->var_off.value |
4003 dst_reg->var_off.mask;
4004 if (dst_reg->smin_value < 0 || smin_val < 0) {
4005 /* Lose signed bounds when ORing negative numbers,
4006 * ain't nobody got time for that.
4008 dst_reg->smin_value = S64_MIN;
4009 dst_reg->smax_value = S64_MAX;
4010 } else {
4011 /* ORing two positives gives a positive, so safe to
4012 * cast result into s64.
4014 dst_reg->smin_value = dst_reg->umin_value;
4015 dst_reg->smax_value = dst_reg->umax_value;
4017 /* We may learn something more from the var_off */
4018 __update_reg_bounds(dst_reg);
4019 break;
4020 case BPF_LSH:
4021 if (umax_val >= insn_bitness) {
4022 /* Shifts greater than 31 or 63 are undefined.
4023 * This includes shifts by a negative number.
4025 mark_reg_unknown(env, regs, insn->dst_reg);
4026 break;
4028 /* We lose all sign bit information (except what we can pick
4029 * up from var_off)
4031 dst_reg->smin_value = S64_MIN;
4032 dst_reg->smax_value = S64_MAX;
4033 /* If we might shift our top bit out, then we know nothing */
4034 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4035 dst_reg->umin_value = 0;
4036 dst_reg->umax_value = U64_MAX;
4037 } else {
4038 dst_reg->umin_value <<= umin_val;
4039 dst_reg->umax_value <<= umax_val;
4041 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4042 /* We may learn something more from the var_off */
4043 __update_reg_bounds(dst_reg);
4044 break;
4045 case BPF_RSH:
4046 if (umax_val >= insn_bitness) {
4047 /* Shifts greater than 31 or 63 are undefined.
4048 * This includes shifts by a negative number.
4050 mark_reg_unknown(env, regs, insn->dst_reg);
4051 break;
4053 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4054 * be negative, then either:
4055 * 1) src_reg might be zero, so the sign bit of the result is
4056 * unknown, so we lose our signed bounds
4057 * 2) it's known negative, thus the unsigned bounds capture the
4058 * signed bounds
4059 * 3) the signed bounds cross zero, so they tell us nothing
4060 * about the result
4061 * If the value in dst_reg is known nonnegative, then again the
4062 * unsigned bounts capture the signed bounds.
4063 * Thus, in all cases it suffices to blow away our signed bounds
4064 * and rely on inferring new ones from the unsigned bounds and
4065 * var_off of the result.
4067 dst_reg->smin_value = S64_MIN;
4068 dst_reg->smax_value = S64_MAX;
4069 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4070 dst_reg->umin_value >>= umax_val;
4071 dst_reg->umax_value >>= umin_val;
4072 /* We may learn something more from the var_off */
4073 __update_reg_bounds(dst_reg);
4074 break;
4075 case BPF_ARSH:
4076 if (umax_val >= insn_bitness) {
4077 /* Shifts greater than 31 or 63 are undefined.
4078 * This includes shifts by a negative number.
4080 mark_reg_unknown(env, regs, insn->dst_reg);
4081 break;
4084 /* Upon reaching here, src_known is true and
4085 * umax_val is equal to umin_val.
4087 dst_reg->smin_value >>= umin_val;
4088 dst_reg->smax_value >>= umin_val;
4089 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4091 /* blow away the dst_reg umin_value/umax_value and rely on
4092 * dst_reg var_off to refine the result.
4094 dst_reg->umin_value = 0;
4095 dst_reg->umax_value = U64_MAX;
4096 __update_reg_bounds(dst_reg);
4097 break;
4098 default:
4099 mark_reg_unknown(env, regs, insn->dst_reg);
4100 break;
4103 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4104 /* 32-bit ALU ops are (32,32)->32 */
4105 coerce_reg_to_size(dst_reg, 4);
4108 __reg_deduce_bounds(dst_reg);
4109 __reg_bound_offset(dst_reg);
4110 return 0;
4113 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4114 * and var_off.
4116 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4117 struct bpf_insn *insn)
4119 struct bpf_verifier_state *vstate = env->cur_state;
4120 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4121 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4122 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4123 u8 opcode = BPF_OP(insn->code);
4125 dst_reg = &regs[insn->dst_reg];
4126 src_reg = NULL;
4127 if (dst_reg->type != SCALAR_VALUE)
4128 ptr_reg = dst_reg;
4129 if (BPF_SRC(insn->code) == BPF_X) {
4130 src_reg = &regs[insn->src_reg];
4131 if (src_reg->type != SCALAR_VALUE) {
4132 if (dst_reg->type != SCALAR_VALUE) {
4133 /* Combining two pointers by any ALU op yields
4134 * an arbitrary scalar. Disallow all math except
4135 * pointer subtraction
4137 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4138 mark_reg_unknown(env, regs, insn->dst_reg);
4139 return 0;
4141 verbose(env, "R%d pointer %s pointer prohibited\n",
4142 insn->dst_reg,
4143 bpf_alu_string[opcode >> 4]);
4144 return -EACCES;
4145 } else {
4146 /* scalar += pointer
4147 * This is legal, but we have to reverse our
4148 * src/dest handling in computing the range
4150 return adjust_ptr_min_max_vals(env, insn,
4151 src_reg, dst_reg);
4153 } else if (ptr_reg) {
4154 /* pointer += scalar */
4155 return adjust_ptr_min_max_vals(env, insn,
4156 dst_reg, src_reg);
4158 } else {
4159 /* Pretend the src is a reg with a known value, since we only
4160 * need to be able to read from this state.
4162 off_reg.type = SCALAR_VALUE;
4163 __mark_reg_known(&off_reg, insn->imm);
4164 src_reg = &off_reg;
4165 if (ptr_reg) /* pointer += K */
4166 return adjust_ptr_min_max_vals(env, insn,
4167 ptr_reg, src_reg);
4170 /* Got here implies adding two SCALAR_VALUEs */
4171 if (WARN_ON_ONCE(ptr_reg)) {
4172 print_verifier_state(env, state);
4173 verbose(env, "verifier internal error: unexpected ptr_reg\n");
4174 return -EINVAL;
4176 if (WARN_ON(!src_reg)) {
4177 print_verifier_state(env, state);
4178 verbose(env, "verifier internal error: no src_reg\n");
4179 return -EINVAL;
4181 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4184 /* check validity of 32-bit and 64-bit arithmetic operations */
4185 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4187 struct bpf_reg_state *regs = cur_regs(env);
4188 u8 opcode = BPF_OP(insn->code);
4189 int err;
4191 if (opcode == BPF_END || opcode == BPF_NEG) {
4192 if (opcode == BPF_NEG) {
4193 if (BPF_SRC(insn->code) != 0 ||
4194 insn->src_reg != BPF_REG_0 ||
4195 insn->off != 0 || insn->imm != 0) {
4196 verbose(env, "BPF_NEG uses reserved fields\n");
4197 return -EINVAL;
4199 } else {
4200 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4201 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4202 BPF_CLASS(insn->code) == BPF_ALU64) {
4203 verbose(env, "BPF_END uses reserved fields\n");
4204 return -EINVAL;
4208 /* check src operand */
4209 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4210 if (err)
4211 return err;
4213 if (is_pointer_value(env, insn->dst_reg)) {
4214 verbose(env, "R%d pointer arithmetic prohibited\n",
4215 insn->dst_reg);
4216 return -EACCES;
4219 /* check dest operand */
4220 err = check_reg_arg(env, insn->dst_reg, DST_OP);
4221 if (err)
4222 return err;
4224 } else if (opcode == BPF_MOV) {
4226 if (BPF_SRC(insn->code) == BPF_X) {
4227 if (insn->imm != 0 || insn->off != 0) {
4228 verbose(env, "BPF_MOV uses reserved fields\n");
4229 return -EINVAL;
4232 /* check src operand */
4233 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4234 if (err)
4235 return err;
4236 } else {
4237 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4238 verbose(env, "BPF_MOV uses reserved fields\n");
4239 return -EINVAL;
4243 /* check dest operand, mark as required later */
4244 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4245 if (err)
4246 return err;
4248 if (BPF_SRC(insn->code) == BPF_X) {
4249 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4250 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4252 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4253 /* case: R1 = R2
4254 * copy register state to dest reg
4256 *dst_reg = *src_reg;
4257 dst_reg->live |= REG_LIVE_WRITTEN;
4258 } else {
4259 /* R1 = (u32) R2 */
4260 if (is_pointer_value(env, insn->src_reg)) {
4261 verbose(env,
4262 "R%d partial copy of pointer\n",
4263 insn->src_reg);
4264 return -EACCES;
4265 } else if (src_reg->type == SCALAR_VALUE) {
4266 *dst_reg = *src_reg;
4267 dst_reg->live |= REG_LIVE_WRITTEN;
4268 } else {
4269 mark_reg_unknown(env, regs,
4270 insn->dst_reg);
4272 coerce_reg_to_size(dst_reg, 4);
4274 } else {
4275 /* case: R = imm
4276 * remember the value we stored into this reg
4278 /* clear any state __mark_reg_known doesn't set */
4279 mark_reg_unknown(env, regs, insn->dst_reg);
4280 regs[insn->dst_reg].type = SCALAR_VALUE;
4281 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4282 __mark_reg_known(regs + insn->dst_reg,
4283 insn->imm);
4284 } else {
4285 __mark_reg_known(regs + insn->dst_reg,
4286 (u32)insn->imm);
4290 } else if (opcode > BPF_END) {
4291 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4292 return -EINVAL;
4294 } else { /* all other ALU ops: and, sub, xor, add, ... */
4296 if (BPF_SRC(insn->code) == BPF_X) {
4297 if (insn->imm != 0 || insn->off != 0) {
4298 verbose(env, "BPF_ALU uses reserved fields\n");
4299 return -EINVAL;
4301 /* check src1 operand */
4302 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4303 if (err)
4304 return err;
4305 } else {
4306 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4307 verbose(env, "BPF_ALU uses reserved fields\n");
4308 return -EINVAL;
4312 /* check src2 operand */
4313 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4314 if (err)
4315 return err;
4317 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4318 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4319 verbose(env, "div by zero\n");
4320 return -EINVAL;
4323 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4324 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4325 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4327 if (insn->imm < 0 || insn->imm >= size) {
4328 verbose(env, "invalid shift %d\n", insn->imm);
4329 return -EINVAL;
4333 /* check dest operand */
4334 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4335 if (err)
4336 return err;
4338 return adjust_reg_min_max_vals(env, insn);
4341 return 0;
4344 static void __find_good_pkt_pointers(struct bpf_func_state *state,
4345 struct bpf_reg_state *dst_reg,
4346 enum bpf_reg_type type, u16 new_range)
4348 struct bpf_reg_state *reg;
4349 int i;
4351 for (i = 0; i < MAX_BPF_REG; i++) {
4352 reg = &state->regs[i];
4353 if (reg->type == type && reg->id == dst_reg->id)
4354 /* keep the maximum range already checked */
4355 reg->range = max(reg->range, new_range);
4358 bpf_for_each_spilled_reg(i, state, reg) {
4359 if (!reg)
4360 continue;
4361 if (reg->type == type && reg->id == dst_reg->id)
4362 reg->range = max(reg->range, new_range);
4366 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4367 struct bpf_reg_state *dst_reg,
4368 enum bpf_reg_type type,
4369 bool range_right_open)
4371 u16 new_range;
4372 int i;
4374 if (dst_reg->off < 0 ||
4375 (dst_reg->off == 0 && range_right_open))
4376 /* This doesn't give us any range */
4377 return;
4379 if (dst_reg->umax_value > MAX_PACKET_OFF ||
4380 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4381 /* Risk of overflow. For instance, ptr + (1<<63) may be less
4382 * than pkt_end, but that's because it's also less than pkt.
4384 return;
4386 new_range = dst_reg->off;
4387 if (range_right_open)
4388 new_range--;
4390 /* Examples for register markings:
4392 * pkt_data in dst register:
4394 * r2 = r3;
4395 * r2 += 8;
4396 * if (r2 > pkt_end) goto <handle exception>
4397 * <access okay>
4399 * r2 = r3;
4400 * r2 += 8;
4401 * if (r2 < pkt_end) goto <access okay>
4402 * <handle exception>
4404 * Where:
4405 * r2 == dst_reg, pkt_end == src_reg
4406 * r2=pkt(id=n,off=8,r=0)
4407 * r3=pkt(id=n,off=0,r=0)
4409 * pkt_data in src register:
4411 * r2 = r3;
4412 * r2 += 8;
4413 * if (pkt_end >= r2) goto <access okay>
4414 * <handle exception>
4416 * r2 = r3;
4417 * r2 += 8;
4418 * if (pkt_end <= r2) goto <handle exception>
4419 * <access okay>
4421 * Where:
4422 * pkt_end == dst_reg, r2 == src_reg
4423 * r2=pkt(id=n,off=8,r=0)
4424 * r3=pkt(id=n,off=0,r=0)
4426 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4427 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4428 * and [r3, r3 + 8-1) respectively is safe to access depending on
4429 * the check.
4432 /* If our ids match, then we must have the same max_value. And we
4433 * don't care about the other reg's fixed offset, since if it's too big
4434 * the range won't allow anything.
4435 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4437 for (i = 0; i <= vstate->curframe; i++)
4438 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
4439 new_range);
4442 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4443 * and return:
4444 * 1 - branch will be taken and "goto target" will be executed
4445 * 0 - branch will not be taken and fall-through to next insn
4446 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4448 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4449 bool is_jmp32)
4451 struct bpf_reg_state reg_lo;
4452 s64 sval;
4454 if (__is_pointer_value(false, reg))
4455 return -1;
4457 if (is_jmp32) {
4458 reg_lo = *reg;
4459 reg = &reg_lo;
4460 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4461 * could truncate high bits and update umin/umax according to
4462 * information of low bits.
4464 coerce_reg_to_size(reg, 4);
4465 /* smin/smax need special handling. For example, after coerce,
4466 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4467 * used as operand to JMP32. It is a negative number from s32's
4468 * point of view, while it is a positive number when seen as
4469 * s64. The smin/smax are kept as s64, therefore, when used with
4470 * JMP32, they need to be transformed into s32, then sign
4471 * extended back to s64.
4473 * Also, smin/smax were copied from umin/umax. If umin/umax has
4474 * different sign bit, then min/max relationship doesn't
4475 * maintain after casting into s32, for this case, set smin/smax
4476 * to safest range.
4478 if ((reg->umax_value ^ reg->umin_value) &
4479 (1ULL << 31)) {
4480 reg->smin_value = S32_MIN;
4481 reg->smax_value = S32_MAX;
4483 reg->smin_value = (s64)(s32)reg->smin_value;
4484 reg->smax_value = (s64)(s32)reg->smax_value;
4486 val = (u32)val;
4487 sval = (s64)(s32)val;
4488 } else {
4489 sval = (s64)val;
4492 switch (opcode) {
4493 case BPF_JEQ:
4494 if (tnum_is_const(reg->var_off))
4495 return !!tnum_equals_const(reg->var_off, val);
4496 break;
4497 case BPF_JNE:
4498 if (tnum_is_const(reg->var_off))
4499 return !tnum_equals_const(reg->var_off, val);
4500 break;
4501 case BPF_JSET:
4502 if ((~reg->var_off.mask & reg->var_off.value) & val)
4503 return 1;
4504 if (!((reg->var_off.mask | reg->var_off.value) & val))
4505 return 0;
4506 break;
4507 case BPF_JGT:
4508 if (reg->umin_value > val)
4509 return 1;
4510 else if (reg->umax_value <= val)
4511 return 0;
4512 break;
4513 case BPF_JSGT:
4514 if (reg->smin_value > sval)
4515 return 1;
4516 else if (reg->smax_value < sval)
4517 return 0;
4518 break;
4519 case BPF_JLT:
4520 if (reg->umax_value < val)
4521 return 1;
4522 else if (reg->umin_value >= val)
4523 return 0;
4524 break;
4525 case BPF_JSLT:
4526 if (reg->smax_value < sval)
4527 return 1;
4528 else if (reg->smin_value >= sval)
4529 return 0;
4530 break;
4531 case BPF_JGE:
4532 if (reg->umin_value >= val)
4533 return 1;
4534 else if (reg->umax_value < val)
4535 return 0;
4536 break;
4537 case BPF_JSGE:
4538 if (reg->smin_value >= sval)
4539 return 1;
4540 else if (reg->smax_value < sval)
4541 return 0;
4542 break;
4543 case BPF_JLE:
4544 if (reg->umax_value <= val)
4545 return 1;
4546 else if (reg->umin_value > val)
4547 return 0;
4548 break;
4549 case BPF_JSLE:
4550 if (reg->smax_value <= sval)
4551 return 1;
4552 else if (reg->smin_value > sval)
4553 return 0;
4554 break;
4557 return -1;
4560 /* Generate min value of the high 32-bit from TNUM info. */
4561 static u64 gen_hi_min(struct tnum var)
4563 return var.value & ~0xffffffffULL;
4566 /* Generate max value of the high 32-bit from TNUM info. */
4567 static u64 gen_hi_max(struct tnum var)
4569 return (var.value | var.mask) & ~0xffffffffULL;
4572 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4573 * are with the same signedness.
4575 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4577 return ((s32)sval >= 0 &&
4578 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4579 ((s32)sval < 0 &&
4580 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4583 /* Adjusts the register min/max values in the case that the dst_reg is the
4584 * variable register that we are working on, and src_reg is a constant or we're
4585 * simply doing a BPF_K check.
4586 * In JEQ/JNE cases we also adjust the var_off values.
4588 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4589 struct bpf_reg_state *false_reg, u64 val,
4590 u8 opcode, bool is_jmp32)
4592 s64 sval;
4594 /* If the dst_reg is a pointer, we can't learn anything about its
4595 * variable offset from the compare (unless src_reg were a pointer into
4596 * the same object, but we don't bother with that.
4597 * Since false_reg and true_reg have the same type by construction, we
4598 * only need to check one of them for pointerness.
4600 if (__is_pointer_value(false, false_reg))
4601 return;
4603 val = is_jmp32 ? (u32)val : val;
4604 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4606 switch (opcode) {
4607 case BPF_JEQ:
4608 case BPF_JNE:
4610 struct bpf_reg_state *reg =
4611 opcode == BPF_JEQ ? true_reg : false_reg;
4613 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4614 * if it is true we know the value for sure. Likewise for
4615 * BPF_JNE.
4617 if (is_jmp32) {
4618 u64 old_v = reg->var_off.value;
4619 u64 hi_mask = ~0xffffffffULL;
4621 reg->var_off.value = (old_v & hi_mask) | val;
4622 reg->var_off.mask &= hi_mask;
4623 } else {
4624 __mark_reg_known(reg, val);
4626 break;
4628 case BPF_JSET:
4629 false_reg->var_off = tnum_and(false_reg->var_off,
4630 tnum_const(~val));
4631 if (is_power_of_2(val))
4632 true_reg->var_off = tnum_or(true_reg->var_off,
4633 tnum_const(val));
4634 break;
4635 case BPF_JGE:
4636 case BPF_JGT:
4638 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
4639 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4641 if (is_jmp32) {
4642 false_umax += gen_hi_max(false_reg->var_off);
4643 true_umin += gen_hi_min(true_reg->var_off);
4645 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4646 true_reg->umin_value = max(true_reg->umin_value, true_umin);
4647 break;
4649 case BPF_JSGE:
4650 case BPF_JSGT:
4652 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
4653 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4655 /* If the full s64 was not sign-extended from s32 then don't
4656 * deduct further info.
4658 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4659 break;
4660 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4661 true_reg->smin_value = max(true_reg->smin_value, true_smin);
4662 break;
4664 case BPF_JLE:
4665 case BPF_JLT:
4667 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
4668 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4670 if (is_jmp32) {
4671 false_umin += gen_hi_min(false_reg->var_off);
4672 true_umax += gen_hi_max(true_reg->var_off);
4674 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4675 true_reg->umax_value = min(true_reg->umax_value, true_umax);
4676 break;
4678 case BPF_JSLE:
4679 case BPF_JSLT:
4681 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
4682 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4684 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4685 break;
4686 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4687 true_reg->smax_value = min(true_reg->smax_value, true_smax);
4688 break;
4690 default:
4691 break;
4694 __reg_deduce_bounds(false_reg);
4695 __reg_deduce_bounds(true_reg);
4696 /* We might have learned some bits from the bounds. */
4697 __reg_bound_offset(false_reg);
4698 __reg_bound_offset(true_reg);
4699 /* Intersecting with the old var_off might have improved our bounds
4700 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4701 * then new var_off is (0; 0x7f...fc) which improves our umax.
4703 __update_reg_bounds(false_reg);
4704 __update_reg_bounds(true_reg);
4707 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4708 * the variable reg.
4710 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4711 struct bpf_reg_state *false_reg, u64 val,
4712 u8 opcode, bool is_jmp32)
4714 s64 sval;
4716 if (__is_pointer_value(false, false_reg))
4717 return;
4719 val = is_jmp32 ? (u32)val : val;
4720 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4722 switch (opcode) {
4723 case BPF_JEQ:
4724 case BPF_JNE:
4726 struct bpf_reg_state *reg =
4727 opcode == BPF_JEQ ? true_reg : false_reg;
4729 if (is_jmp32) {
4730 u64 old_v = reg->var_off.value;
4731 u64 hi_mask = ~0xffffffffULL;
4733 reg->var_off.value = (old_v & hi_mask) | val;
4734 reg->var_off.mask &= hi_mask;
4735 } else {
4736 __mark_reg_known(reg, val);
4738 break;
4740 case BPF_JSET:
4741 false_reg->var_off = tnum_and(false_reg->var_off,
4742 tnum_const(~val));
4743 if (is_power_of_2(val))
4744 true_reg->var_off = tnum_or(true_reg->var_off,
4745 tnum_const(val));
4746 break;
4747 case BPF_JGE:
4748 case BPF_JGT:
4750 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
4751 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4753 if (is_jmp32) {
4754 false_umin += gen_hi_min(false_reg->var_off);
4755 true_umax += gen_hi_max(true_reg->var_off);
4757 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4758 true_reg->umax_value = min(true_reg->umax_value, true_umax);
4759 break;
4761 case BPF_JSGE:
4762 case BPF_JSGT:
4764 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
4765 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4767 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4768 break;
4769 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4770 true_reg->smax_value = min(true_reg->smax_value, true_smax);
4771 break;
4773 case BPF_JLE:
4774 case BPF_JLT:
4776 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
4777 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4779 if (is_jmp32) {
4780 false_umax += gen_hi_max(false_reg->var_off);
4781 true_umin += gen_hi_min(true_reg->var_off);
4783 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4784 true_reg->umin_value = max(true_reg->umin_value, true_umin);
4785 break;
4787 case BPF_JSLE:
4788 case BPF_JSLT:
4790 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
4791 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4793 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4794 break;
4795 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4796 true_reg->smin_value = max(true_reg->smin_value, true_smin);
4797 break;
4799 default:
4800 break;
4803 __reg_deduce_bounds(false_reg);
4804 __reg_deduce_bounds(true_reg);
4805 /* We might have learned some bits from the bounds. */
4806 __reg_bound_offset(false_reg);
4807 __reg_bound_offset(true_reg);
4808 /* Intersecting with the old var_off might have improved our bounds
4809 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4810 * then new var_off is (0; 0x7f...fc) which improves our umax.
4812 __update_reg_bounds(false_reg);
4813 __update_reg_bounds(true_reg);
4816 /* Regs are known to be equal, so intersect their min/max/var_off */
4817 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4818 struct bpf_reg_state *dst_reg)
4820 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4821 dst_reg->umin_value);
4822 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4823 dst_reg->umax_value);
4824 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4825 dst_reg->smin_value);
4826 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4827 dst_reg->smax_value);
4828 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4829 dst_reg->var_off);
4830 /* We might have learned new bounds from the var_off. */
4831 __update_reg_bounds(src_reg);
4832 __update_reg_bounds(dst_reg);
4833 /* We might have learned something about the sign bit. */
4834 __reg_deduce_bounds(src_reg);
4835 __reg_deduce_bounds(dst_reg);
4836 /* We might have learned some bits from the bounds. */
4837 __reg_bound_offset(src_reg);
4838 __reg_bound_offset(dst_reg);
4839 /* Intersecting with the old var_off might have improved our bounds
4840 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4841 * then new var_off is (0; 0x7f...fc) which improves our umax.
4843 __update_reg_bounds(src_reg);
4844 __update_reg_bounds(dst_reg);
4847 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4848 struct bpf_reg_state *true_dst,
4849 struct bpf_reg_state *false_src,
4850 struct bpf_reg_state *false_dst,
4851 u8 opcode)
4853 switch (opcode) {
4854 case BPF_JEQ:
4855 __reg_combine_min_max(true_src, true_dst);
4856 break;
4857 case BPF_JNE:
4858 __reg_combine_min_max(false_src, false_dst);
4859 break;
4863 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4864 struct bpf_reg_state *reg, u32 id,
4865 bool is_null)
4867 if (reg_type_may_be_null(reg->type) && reg->id == id) {
4868 /* Old offset (both fixed and variable parts) should
4869 * have been known-zero, because we don't allow pointer
4870 * arithmetic on pointers that might be NULL.
4872 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4873 !tnum_equals_const(reg->var_off, 0) ||
4874 reg->off)) {
4875 __mark_reg_known_zero(reg);
4876 reg->off = 0;
4878 if (is_null) {
4879 reg->type = SCALAR_VALUE;
4880 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4881 if (reg->map_ptr->inner_map_meta) {
4882 reg->type = CONST_PTR_TO_MAP;
4883 reg->map_ptr = reg->map_ptr->inner_map_meta;
4884 } else {
4885 reg->type = PTR_TO_MAP_VALUE;
4887 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4888 reg->type = PTR_TO_SOCKET;
4889 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4890 reg->type = PTR_TO_SOCK_COMMON;
4891 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4892 reg->type = PTR_TO_TCP_SOCK;
4894 if (is_null) {
4895 /* We don't need id and ref_obj_id from this point
4896 * onwards anymore, thus we should better reset it,
4897 * so that state pruning has chances to take effect.
4899 reg->id = 0;
4900 reg->ref_obj_id = 0;
4901 } else if (!reg_may_point_to_spin_lock(reg)) {
4902 /* For not-NULL ptr, reg->ref_obj_id will be reset
4903 * in release_reg_references().
4905 * reg->id is still used by spin_lock ptr. Other
4906 * than spin_lock ptr type, reg->id can be reset.
4908 reg->id = 0;
4913 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
4914 bool is_null)
4916 struct bpf_reg_state *reg;
4917 int i;
4919 for (i = 0; i < MAX_BPF_REG; i++)
4920 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
4922 bpf_for_each_spilled_reg(i, state, reg) {
4923 if (!reg)
4924 continue;
4925 mark_ptr_or_null_reg(state, reg, id, is_null);
4929 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4930 * be folded together at some point.
4932 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4933 bool is_null)
4935 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4936 struct bpf_reg_state *regs = state->regs;
4937 u32 ref_obj_id = regs[regno].ref_obj_id;
4938 u32 id = regs[regno].id;
4939 int i;
4941 if (ref_obj_id && ref_obj_id == id && is_null)
4942 /* regs[regno] is in the " == NULL" branch.
4943 * No one could have freed the reference state before
4944 * doing the NULL check.
4946 WARN_ON_ONCE(release_reference_state(state, id));
4948 for (i = 0; i <= vstate->curframe; i++)
4949 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
4952 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4953 struct bpf_reg_state *dst_reg,
4954 struct bpf_reg_state *src_reg,
4955 struct bpf_verifier_state *this_branch,
4956 struct bpf_verifier_state *other_branch)
4958 if (BPF_SRC(insn->code) != BPF_X)
4959 return false;
4961 /* Pointers are always 64-bit. */
4962 if (BPF_CLASS(insn->code) == BPF_JMP32)
4963 return false;
4965 switch (BPF_OP(insn->code)) {
4966 case BPF_JGT:
4967 if ((dst_reg->type == PTR_TO_PACKET &&
4968 src_reg->type == PTR_TO_PACKET_END) ||
4969 (dst_reg->type == PTR_TO_PACKET_META &&
4970 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4971 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4972 find_good_pkt_pointers(this_branch, dst_reg,
4973 dst_reg->type, false);
4974 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4975 src_reg->type == PTR_TO_PACKET) ||
4976 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4977 src_reg->type == PTR_TO_PACKET_META)) {
4978 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4979 find_good_pkt_pointers(other_branch, src_reg,
4980 src_reg->type, true);
4981 } else {
4982 return false;
4984 break;
4985 case BPF_JLT:
4986 if ((dst_reg->type == PTR_TO_PACKET &&
4987 src_reg->type == PTR_TO_PACKET_END) ||
4988 (dst_reg->type == PTR_TO_PACKET_META &&
4989 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4990 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4991 find_good_pkt_pointers(other_branch, dst_reg,
4992 dst_reg->type, true);
4993 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4994 src_reg->type == PTR_TO_PACKET) ||
4995 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4996 src_reg->type == PTR_TO_PACKET_META)) {
4997 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4998 find_good_pkt_pointers(this_branch, src_reg,
4999 src_reg->type, false);
5000 } else {
5001 return false;
5003 break;
5004 case BPF_JGE:
5005 if ((dst_reg->type == PTR_TO_PACKET &&
5006 src_reg->type == PTR_TO_PACKET_END) ||
5007 (dst_reg->type == PTR_TO_PACKET_META &&
5008 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5009 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5010 find_good_pkt_pointers(this_branch, dst_reg,
5011 dst_reg->type, true);
5012 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5013 src_reg->type == PTR_TO_PACKET) ||
5014 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5015 src_reg->type == PTR_TO_PACKET_META)) {
5016 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5017 find_good_pkt_pointers(other_branch, src_reg,
5018 src_reg->type, false);
5019 } else {
5020 return false;
5022 break;
5023 case BPF_JLE:
5024 if ((dst_reg->type == PTR_TO_PACKET &&
5025 src_reg->type == PTR_TO_PACKET_END) ||
5026 (dst_reg->type == PTR_TO_PACKET_META &&
5027 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5028 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5029 find_good_pkt_pointers(other_branch, dst_reg,
5030 dst_reg->type, false);
5031 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5032 src_reg->type == PTR_TO_PACKET) ||
5033 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5034 src_reg->type == PTR_TO_PACKET_META)) {
5035 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5036 find_good_pkt_pointers(this_branch, src_reg,
5037 src_reg->type, true);
5038 } else {
5039 return false;
5041 break;
5042 default:
5043 return false;
5046 return true;
5049 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5050 struct bpf_insn *insn, int *insn_idx)
5052 struct bpf_verifier_state *this_branch = env->cur_state;
5053 struct bpf_verifier_state *other_branch;
5054 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5055 struct bpf_reg_state *dst_reg, *other_branch_regs;
5056 u8 opcode = BPF_OP(insn->code);
5057 bool is_jmp32;
5058 int err;
5060 /* Only conditional jumps are expected to reach here. */
5061 if (opcode == BPF_JA || opcode > BPF_JSLE) {
5062 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5063 return -EINVAL;
5066 if (BPF_SRC(insn->code) == BPF_X) {
5067 if (insn->imm != 0) {
5068 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5069 return -EINVAL;
5072 /* check src1 operand */
5073 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5074 if (err)
5075 return err;
5077 if (is_pointer_value(env, insn->src_reg)) {
5078 verbose(env, "R%d pointer comparison prohibited\n",
5079 insn->src_reg);
5080 return -EACCES;
5082 } else {
5083 if (insn->src_reg != BPF_REG_0) {
5084 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5085 return -EINVAL;
5089 /* check src2 operand */
5090 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5091 if (err)
5092 return err;
5094 dst_reg = &regs[insn->dst_reg];
5095 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5097 if (BPF_SRC(insn->code) == BPF_K) {
5098 int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5099 is_jmp32);
5101 if (pred == 1) {
5102 /* only follow the goto, ignore fall-through */
5103 *insn_idx += insn->off;
5104 return 0;
5105 } else if (pred == 0) {
5106 /* only follow fall-through branch, since
5107 * that's where the program will go
5109 return 0;
5113 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5114 false);
5115 if (!other_branch)
5116 return -EFAULT;
5117 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5119 /* detect if we are comparing against a constant value so we can adjust
5120 * our min/max values for our dst register.
5121 * this is only legit if both are scalars (or pointers to the same
5122 * object, I suppose, but we don't support that right now), because
5123 * otherwise the different base pointers mean the offsets aren't
5124 * comparable.
5126 if (BPF_SRC(insn->code) == BPF_X) {
5127 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5128 struct bpf_reg_state lo_reg0 = *dst_reg;
5129 struct bpf_reg_state lo_reg1 = *src_reg;
5130 struct bpf_reg_state *src_lo, *dst_lo;
5132 dst_lo = &lo_reg0;
5133 src_lo = &lo_reg1;
5134 coerce_reg_to_size(dst_lo, 4);
5135 coerce_reg_to_size(src_lo, 4);
5137 if (dst_reg->type == SCALAR_VALUE &&
5138 src_reg->type == SCALAR_VALUE) {
5139 if (tnum_is_const(src_reg->var_off) ||
5140 (is_jmp32 && tnum_is_const(src_lo->var_off)))
5141 reg_set_min_max(&other_branch_regs[insn->dst_reg],
5142 dst_reg,
5143 is_jmp32
5144 ? src_lo->var_off.value
5145 : src_reg->var_off.value,
5146 opcode, is_jmp32);
5147 else if (tnum_is_const(dst_reg->var_off) ||
5148 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5149 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5150 src_reg,
5151 is_jmp32
5152 ? dst_lo->var_off.value
5153 : dst_reg->var_off.value,
5154 opcode, is_jmp32);
5155 else if (!is_jmp32 &&
5156 (opcode == BPF_JEQ || opcode == BPF_JNE))
5157 /* Comparing for equality, we can combine knowledge */
5158 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5159 &other_branch_regs[insn->dst_reg],
5160 src_reg, dst_reg, opcode);
5162 } else if (dst_reg->type == SCALAR_VALUE) {
5163 reg_set_min_max(&other_branch_regs[insn->dst_reg],
5164 dst_reg, insn->imm, opcode, is_jmp32);
5167 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5168 * NOTE: these optimizations below are related with pointer comparison
5169 * which will never be JMP32.
5171 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5172 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5173 reg_type_may_be_null(dst_reg->type)) {
5174 /* Mark all identical registers in each branch as either
5175 * safe or unknown depending R == 0 or R != 0 conditional.
5177 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5178 opcode == BPF_JNE);
5179 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5180 opcode == BPF_JEQ);
5181 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5182 this_branch, other_branch) &&
5183 is_pointer_value(env, insn->dst_reg)) {
5184 verbose(env, "R%d pointer comparison prohibited\n",
5185 insn->dst_reg);
5186 return -EACCES;
5188 if (env->log.level & BPF_LOG_LEVEL)
5189 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5190 return 0;
5193 /* verify BPF_LD_IMM64 instruction */
5194 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5196 struct bpf_insn_aux_data *aux = cur_aux(env);
5197 struct bpf_reg_state *regs = cur_regs(env);
5198 struct bpf_map *map;
5199 int err;
5201 if (BPF_SIZE(insn->code) != BPF_DW) {
5202 verbose(env, "invalid BPF_LD_IMM insn\n");
5203 return -EINVAL;
5205 if (insn->off != 0) {
5206 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5207 return -EINVAL;
5210 err = check_reg_arg(env, insn->dst_reg, DST_OP);
5211 if (err)
5212 return err;
5214 if (insn->src_reg == 0) {
5215 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5217 regs[insn->dst_reg].type = SCALAR_VALUE;
5218 __mark_reg_known(&regs[insn->dst_reg], imm);
5219 return 0;
5222 map = env->used_maps[aux->map_index];
5223 mark_reg_known_zero(env, regs, insn->dst_reg);
5224 regs[insn->dst_reg].map_ptr = map;
5226 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5227 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5228 regs[insn->dst_reg].off = aux->map_off;
5229 if (map_value_has_spin_lock(map))
5230 regs[insn->dst_reg].id = ++env->id_gen;
5231 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5232 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5233 } else {
5234 verbose(env, "bpf verifier is misconfigured\n");
5235 return -EINVAL;
5238 return 0;
5241 static bool may_access_skb(enum bpf_prog_type type)
5243 switch (type) {
5244 case BPF_PROG_TYPE_SOCKET_FILTER:
5245 case BPF_PROG_TYPE_SCHED_CLS:
5246 case BPF_PROG_TYPE_SCHED_ACT:
5247 return true;
5248 default:
5249 return false;
5253 /* verify safety of LD_ABS|LD_IND instructions:
5254 * - they can only appear in the programs where ctx == skb
5255 * - since they are wrappers of function calls, they scratch R1-R5 registers,
5256 * preserve R6-R9, and store return value into R0
5258 * Implicit input:
5259 * ctx == skb == R6 == CTX
5261 * Explicit input:
5262 * SRC == any register
5263 * IMM == 32-bit immediate
5265 * Output:
5266 * R0 - 8/16/32-bit skb data converted to cpu endianness
5268 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5270 struct bpf_reg_state *regs = cur_regs(env);
5271 u8 mode = BPF_MODE(insn->code);
5272 int i, err;
5274 if (!may_access_skb(env->prog->type)) {
5275 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5276 return -EINVAL;
5279 if (!env->ops->gen_ld_abs) {
5280 verbose(env, "bpf verifier is misconfigured\n");
5281 return -EINVAL;
5284 if (env->subprog_cnt > 1) {
5285 /* when program has LD_ABS insn JITs and interpreter assume
5286 * that r1 == ctx == skb which is not the case for callees
5287 * that can have arbitrary arguments. It's problematic
5288 * for main prog as well since JITs would need to analyze
5289 * all functions in order to make proper register save/restore
5290 * decisions in the main prog. Hence disallow LD_ABS with calls
5292 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5293 return -EINVAL;
5296 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5297 BPF_SIZE(insn->code) == BPF_DW ||
5298 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5299 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5300 return -EINVAL;
5303 /* check whether implicit source operand (register R6) is readable */
5304 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5305 if (err)
5306 return err;
5308 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5309 * gen_ld_abs() may terminate the program at runtime, leading to
5310 * reference leak.
5312 err = check_reference_leak(env);
5313 if (err) {
5314 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5315 return err;
5318 if (env->cur_state->active_spin_lock) {
5319 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5320 return -EINVAL;
5323 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5324 verbose(env,
5325 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5326 return -EINVAL;
5329 if (mode == BPF_IND) {
5330 /* check explicit source operand */
5331 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5332 if (err)
5333 return err;
5336 /* reset caller saved regs to unreadable */
5337 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5338 mark_reg_not_init(env, regs, caller_saved[i]);
5339 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5342 /* mark destination R0 register as readable, since it contains
5343 * the value fetched from the packet.
5344 * Already marked as written above.
5346 mark_reg_unknown(env, regs, BPF_REG_0);
5347 return 0;
5350 static int check_return_code(struct bpf_verifier_env *env)
5352 struct bpf_reg_state *reg;
5353 struct tnum range = tnum_range(0, 1);
5355 switch (env->prog->type) {
5356 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5357 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
5358 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
5359 range = tnum_range(1, 1);
5360 case BPF_PROG_TYPE_CGROUP_SKB:
5361 case BPF_PROG_TYPE_CGROUP_SOCK:
5362 case BPF_PROG_TYPE_SOCK_OPS:
5363 case BPF_PROG_TYPE_CGROUP_DEVICE:
5364 case BPF_PROG_TYPE_CGROUP_SYSCTL:
5365 break;
5366 default:
5367 return 0;
5370 reg = cur_regs(env) + BPF_REG_0;
5371 if (reg->type != SCALAR_VALUE) {
5372 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5373 reg_type_str[reg->type]);
5374 return -EINVAL;
5377 if (!tnum_in(range, reg->var_off)) {
5378 char tn_buf[48];
5380 verbose(env, "At program exit the register R0 ");
5381 if (!tnum_is_unknown(reg->var_off)) {
5382 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5383 verbose(env, "has value %s", tn_buf);
5384 } else {
5385 verbose(env, "has unknown scalar value");
5387 tnum_strn(tn_buf, sizeof(tn_buf), range);
5388 verbose(env, " should have been in %s\n", tn_buf);
5389 return -EINVAL;
5391 return 0;
5394 /* non-recursive DFS pseudo code
5395 * 1 procedure DFS-iterative(G,v):
5396 * 2 label v as discovered
5397 * 3 let S be a stack
5398 * 4 S.push(v)
5399 * 5 while S is not empty
5400 * 6 t <- S.pop()
5401 * 7 if t is what we're looking for:
5402 * 8 return t
5403 * 9 for all edges e in G.adjacentEdges(t) do
5404 * 10 if edge e is already labelled
5405 * 11 continue with the next edge
5406 * 12 w <- G.adjacentVertex(t,e)
5407 * 13 if vertex w is not discovered and not explored
5408 * 14 label e as tree-edge
5409 * 15 label w as discovered
5410 * 16 S.push(w)
5411 * 17 continue at 5
5412 * 18 else if vertex w is discovered
5413 * 19 label e as back-edge
5414 * 20 else
5415 * 21 // vertex w is explored
5416 * 22 label e as forward- or cross-edge
5417 * 23 label t as explored
5418 * 24 S.pop()
5420 * convention:
5421 * 0x10 - discovered
5422 * 0x11 - discovered and fall-through edge labelled
5423 * 0x12 - discovered and fall-through and branch edges labelled
5424 * 0x20 - explored
5427 enum {
5428 DISCOVERED = 0x10,
5429 EXPLORED = 0x20,
5430 FALLTHROUGH = 1,
5431 BRANCH = 2,
5434 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5436 /* t, w, e - match pseudo-code above:
5437 * t - index of current instruction
5438 * w - next instruction
5439 * e - edge
5441 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5443 int *insn_stack = env->cfg.insn_stack;
5444 int *insn_state = env->cfg.insn_state;
5446 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5447 return 0;
5449 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5450 return 0;
5452 if (w < 0 || w >= env->prog->len) {
5453 verbose_linfo(env, t, "%d: ", t);
5454 verbose(env, "jump out of range from insn %d to %d\n", t, w);
5455 return -EINVAL;
5458 if (e == BRANCH)
5459 /* mark branch target for state pruning */
5460 env->explored_states[w] = STATE_LIST_MARK;
5462 if (insn_state[w] == 0) {
5463 /* tree-edge */
5464 insn_state[t] = DISCOVERED | e;
5465 insn_state[w] = DISCOVERED;
5466 if (env->cfg.cur_stack >= env->prog->len)
5467 return -E2BIG;
5468 insn_stack[env->cfg.cur_stack++] = w;
5469 return 1;
5470 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5471 verbose_linfo(env, t, "%d: ", t);
5472 verbose_linfo(env, w, "%d: ", w);
5473 verbose(env, "back-edge from insn %d to %d\n", t, w);
5474 return -EINVAL;
5475 } else if (insn_state[w] == EXPLORED) {
5476 /* forward- or cross-edge */
5477 insn_state[t] = DISCOVERED | e;
5478 } else {
5479 verbose(env, "insn state internal bug\n");
5480 return -EFAULT;
5482 return 0;
5485 /* non-recursive depth-first-search to detect loops in BPF program
5486 * loop == back-edge in directed graph
5488 static int check_cfg(struct bpf_verifier_env *env)
5490 struct bpf_insn *insns = env->prog->insnsi;
5491 int insn_cnt = env->prog->len;
5492 int *insn_stack, *insn_state;
5493 int ret = 0;
5494 int i, t;
5496 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5497 if (!insn_state)
5498 return -ENOMEM;
5500 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5501 if (!insn_stack) {
5502 kvfree(insn_state);
5503 return -ENOMEM;
5506 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5507 insn_stack[0] = 0; /* 0 is the first instruction */
5508 env->cfg.cur_stack = 1;
5510 peek_stack:
5511 if (env->cfg.cur_stack == 0)
5512 goto check_state;
5513 t = insn_stack[env->cfg.cur_stack - 1];
5515 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5516 BPF_CLASS(insns[t].code) == BPF_JMP32) {
5517 u8 opcode = BPF_OP(insns[t].code);
5519 if (opcode == BPF_EXIT) {
5520 goto mark_explored;
5521 } else if (opcode == BPF_CALL) {
5522 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5523 if (ret == 1)
5524 goto peek_stack;
5525 else if (ret < 0)
5526 goto err_free;
5527 if (t + 1 < insn_cnt)
5528 env->explored_states[t + 1] = STATE_LIST_MARK;
5529 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5530 env->explored_states[t] = STATE_LIST_MARK;
5531 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5532 if (ret == 1)
5533 goto peek_stack;
5534 else if (ret < 0)
5535 goto err_free;
5537 } else if (opcode == BPF_JA) {
5538 if (BPF_SRC(insns[t].code) != BPF_K) {
5539 ret = -EINVAL;
5540 goto err_free;
5542 /* unconditional jump with single edge */
5543 ret = push_insn(t, t + insns[t].off + 1,
5544 FALLTHROUGH, env);
5545 if (ret == 1)
5546 goto peek_stack;
5547 else if (ret < 0)
5548 goto err_free;
5549 /* tell verifier to check for equivalent states
5550 * after every call and jump
5552 if (t + 1 < insn_cnt)
5553 env->explored_states[t + 1] = STATE_LIST_MARK;
5554 } else {
5555 /* conditional jump with two edges */
5556 env->explored_states[t] = STATE_LIST_MARK;
5557 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5558 if (ret == 1)
5559 goto peek_stack;
5560 else if (ret < 0)
5561 goto err_free;
5563 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5564 if (ret == 1)
5565 goto peek_stack;
5566 else if (ret < 0)
5567 goto err_free;
5569 } else {
5570 /* all other non-branch instructions with single
5571 * fall-through edge
5573 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5574 if (ret == 1)
5575 goto peek_stack;
5576 else if (ret < 0)
5577 goto err_free;
5580 mark_explored:
5581 insn_state[t] = EXPLORED;
5582 if (env->cfg.cur_stack-- <= 0) {
5583 verbose(env, "pop stack internal bug\n");
5584 ret = -EFAULT;
5585 goto err_free;
5587 goto peek_stack;
5589 check_state:
5590 for (i = 0; i < insn_cnt; i++) {
5591 if (insn_state[i] != EXPLORED) {
5592 verbose(env, "unreachable insn %d\n", i);
5593 ret = -EINVAL;
5594 goto err_free;
5597 ret = 0; /* cfg looks good */
5599 err_free:
5600 kvfree(insn_state);
5601 kvfree(insn_stack);
5602 env->cfg.insn_state = env->cfg.insn_stack = NULL;
5603 return ret;
5606 /* The minimum supported BTF func info size */
5607 #define MIN_BPF_FUNCINFO_SIZE 8
5608 #define MAX_FUNCINFO_REC_SIZE 252
5610 static int check_btf_func(struct bpf_verifier_env *env,
5611 const union bpf_attr *attr,
5612 union bpf_attr __user *uattr)
5614 u32 i, nfuncs, urec_size, min_size;
5615 u32 krec_size = sizeof(struct bpf_func_info);
5616 struct bpf_func_info *krecord;
5617 const struct btf_type *type;
5618 struct bpf_prog *prog;
5619 const struct btf *btf;
5620 void __user *urecord;
5621 u32 prev_offset = 0;
5622 int ret = 0;
5624 nfuncs = attr->func_info_cnt;
5625 if (!nfuncs)
5626 return 0;
5628 if (nfuncs != env->subprog_cnt) {
5629 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5630 return -EINVAL;
5633 urec_size = attr->func_info_rec_size;
5634 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5635 urec_size > MAX_FUNCINFO_REC_SIZE ||
5636 urec_size % sizeof(u32)) {
5637 verbose(env, "invalid func info rec size %u\n", urec_size);
5638 return -EINVAL;
5641 prog = env->prog;
5642 btf = prog->aux->btf;
5644 urecord = u64_to_user_ptr(attr->func_info);
5645 min_size = min_t(u32, krec_size, urec_size);
5647 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5648 if (!krecord)
5649 return -ENOMEM;
5651 for (i = 0; i < nfuncs; i++) {
5652 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5653 if (ret) {
5654 if (ret == -E2BIG) {
5655 verbose(env, "nonzero tailing record in func info");
5656 /* set the size kernel expects so loader can zero
5657 * out the rest of the record.
5659 if (put_user(min_size, &uattr->func_info_rec_size))
5660 ret = -EFAULT;
5662 goto err_free;
5665 if (copy_from_user(&krecord[i], urecord, min_size)) {
5666 ret = -EFAULT;
5667 goto err_free;
5670 /* check insn_off */
5671 if (i == 0) {
5672 if (krecord[i].insn_off) {
5673 verbose(env,
5674 "nonzero insn_off %u for the first func info record",
5675 krecord[i].insn_off);
5676 ret = -EINVAL;
5677 goto err_free;
5679 } else if (krecord[i].insn_off <= prev_offset) {
5680 verbose(env,
5681 "same or smaller insn offset (%u) than previous func info record (%u)",
5682 krecord[i].insn_off, prev_offset);
5683 ret = -EINVAL;
5684 goto err_free;
5687 if (env->subprog_info[i].start != krecord[i].insn_off) {
5688 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5689 ret = -EINVAL;
5690 goto err_free;
5693 /* check type_id */
5694 type = btf_type_by_id(btf, krecord[i].type_id);
5695 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5696 verbose(env, "invalid type id %d in func info",
5697 krecord[i].type_id);
5698 ret = -EINVAL;
5699 goto err_free;
5702 prev_offset = krecord[i].insn_off;
5703 urecord += urec_size;
5706 prog->aux->func_info = krecord;
5707 prog->aux->func_info_cnt = nfuncs;
5708 return 0;
5710 err_free:
5711 kvfree(krecord);
5712 return ret;
5715 static void adjust_btf_func(struct bpf_verifier_env *env)
5717 int i;
5719 if (!env->prog->aux->func_info)
5720 return;
5722 for (i = 0; i < env->subprog_cnt; i++)
5723 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5726 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
5727 sizeof(((struct bpf_line_info *)(0))->line_col))
5728 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
5730 static int check_btf_line(struct bpf_verifier_env *env,
5731 const union bpf_attr *attr,
5732 union bpf_attr __user *uattr)
5734 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5735 struct bpf_subprog_info *sub;
5736 struct bpf_line_info *linfo;
5737 struct bpf_prog *prog;
5738 const struct btf *btf;
5739 void __user *ulinfo;
5740 int err;
5742 nr_linfo = attr->line_info_cnt;
5743 if (!nr_linfo)
5744 return 0;
5746 rec_size = attr->line_info_rec_size;
5747 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5748 rec_size > MAX_LINEINFO_REC_SIZE ||
5749 rec_size & (sizeof(u32) - 1))
5750 return -EINVAL;
5752 /* Need to zero it in case the userspace may
5753 * pass in a smaller bpf_line_info object.
5755 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5756 GFP_KERNEL | __GFP_NOWARN);
5757 if (!linfo)
5758 return -ENOMEM;
5760 prog = env->prog;
5761 btf = prog->aux->btf;
5763 s = 0;
5764 sub = env->subprog_info;
5765 ulinfo = u64_to_user_ptr(attr->line_info);
5766 expected_size = sizeof(struct bpf_line_info);
5767 ncopy = min_t(u32, expected_size, rec_size);
5768 for (i = 0; i < nr_linfo; i++) {
5769 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5770 if (err) {
5771 if (err == -E2BIG) {
5772 verbose(env, "nonzero tailing record in line_info");
5773 if (put_user(expected_size,
5774 &uattr->line_info_rec_size))
5775 err = -EFAULT;
5777 goto err_free;
5780 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5781 err = -EFAULT;
5782 goto err_free;
5786 * Check insn_off to ensure
5787 * 1) strictly increasing AND
5788 * 2) bounded by prog->len
5790 * The linfo[0].insn_off == 0 check logically falls into
5791 * the later "missing bpf_line_info for func..." case
5792 * because the first linfo[0].insn_off must be the
5793 * first sub also and the first sub must have
5794 * subprog_info[0].start == 0.
5796 if ((i && linfo[i].insn_off <= prev_offset) ||
5797 linfo[i].insn_off >= prog->len) {
5798 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5799 i, linfo[i].insn_off, prev_offset,
5800 prog->len);
5801 err = -EINVAL;
5802 goto err_free;
5805 if (!prog->insnsi[linfo[i].insn_off].code) {
5806 verbose(env,
5807 "Invalid insn code at line_info[%u].insn_off\n",
5809 err = -EINVAL;
5810 goto err_free;
5813 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5814 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5815 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5816 err = -EINVAL;
5817 goto err_free;
5820 if (s != env->subprog_cnt) {
5821 if (linfo[i].insn_off == sub[s].start) {
5822 sub[s].linfo_idx = i;
5823 s++;
5824 } else if (sub[s].start < linfo[i].insn_off) {
5825 verbose(env, "missing bpf_line_info for func#%u\n", s);
5826 err = -EINVAL;
5827 goto err_free;
5831 prev_offset = linfo[i].insn_off;
5832 ulinfo += rec_size;
5835 if (s != env->subprog_cnt) {
5836 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5837 env->subprog_cnt - s, s);
5838 err = -EINVAL;
5839 goto err_free;
5842 prog->aux->linfo = linfo;
5843 prog->aux->nr_linfo = nr_linfo;
5845 return 0;
5847 err_free:
5848 kvfree(linfo);
5849 return err;
5852 static int check_btf_info(struct bpf_verifier_env *env,
5853 const union bpf_attr *attr,
5854 union bpf_attr __user *uattr)
5856 struct btf *btf;
5857 int err;
5859 if (!attr->func_info_cnt && !attr->line_info_cnt)
5860 return 0;
5862 btf = btf_get_by_fd(attr->prog_btf_fd);
5863 if (IS_ERR(btf))
5864 return PTR_ERR(btf);
5865 env->prog->aux->btf = btf;
5867 err = check_btf_func(env, attr, uattr);
5868 if (err)
5869 return err;
5871 err = check_btf_line(env, attr, uattr);
5872 if (err)
5873 return err;
5875 return 0;
5878 /* check %cur's range satisfies %old's */
5879 static bool range_within(struct bpf_reg_state *old,
5880 struct bpf_reg_state *cur)
5882 return old->umin_value <= cur->umin_value &&
5883 old->umax_value >= cur->umax_value &&
5884 old->smin_value <= cur->smin_value &&
5885 old->smax_value >= cur->smax_value;
5888 /* Maximum number of register states that can exist at once */
5889 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5890 struct idpair {
5891 u32 old;
5892 u32 cur;
5895 /* If in the old state two registers had the same id, then they need to have
5896 * the same id in the new state as well. But that id could be different from
5897 * the old state, so we need to track the mapping from old to new ids.
5898 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5899 * regs with old id 5 must also have new id 9 for the new state to be safe. But
5900 * regs with a different old id could still have new id 9, we don't care about
5901 * that.
5902 * So we look through our idmap to see if this old id has been seen before. If
5903 * so, we require the new id to match; otherwise, we add the id pair to the map.
5905 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5907 unsigned int i;
5909 for (i = 0; i < ID_MAP_SIZE; i++) {
5910 if (!idmap[i].old) {
5911 /* Reached an empty slot; haven't seen this id before */
5912 idmap[i].old = old_id;
5913 idmap[i].cur = cur_id;
5914 return true;
5916 if (idmap[i].old == old_id)
5917 return idmap[i].cur == cur_id;
5919 /* We ran out of idmap slots, which should be impossible */
5920 WARN_ON_ONCE(1);
5921 return false;
5924 static void clean_func_state(struct bpf_verifier_env *env,
5925 struct bpf_func_state *st)
5927 enum bpf_reg_liveness live;
5928 int i, j;
5930 for (i = 0; i < BPF_REG_FP; i++) {
5931 live = st->regs[i].live;
5932 /* liveness must not touch this register anymore */
5933 st->regs[i].live |= REG_LIVE_DONE;
5934 if (!(live & REG_LIVE_READ))
5935 /* since the register is unused, clear its state
5936 * to make further comparison simpler
5938 __mark_reg_not_init(&st->regs[i]);
5941 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5942 live = st->stack[i].spilled_ptr.live;
5943 /* liveness must not touch this stack slot anymore */
5944 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5945 if (!(live & REG_LIVE_READ)) {
5946 __mark_reg_not_init(&st->stack[i].spilled_ptr);
5947 for (j = 0; j < BPF_REG_SIZE; j++)
5948 st->stack[i].slot_type[j] = STACK_INVALID;
5953 static void clean_verifier_state(struct bpf_verifier_env *env,
5954 struct bpf_verifier_state *st)
5956 int i;
5958 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5959 /* all regs in this state in all frames were already marked */
5960 return;
5962 for (i = 0; i <= st->curframe; i++)
5963 clean_func_state(env, st->frame[i]);
5966 /* the parentage chains form a tree.
5967 * the verifier states are added to state lists at given insn and
5968 * pushed into state stack for future exploration.
5969 * when the verifier reaches bpf_exit insn some of the verifer states
5970 * stored in the state lists have their final liveness state already,
5971 * but a lot of states will get revised from liveness point of view when
5972 * the verifier explores other branches.
5973 * Example:
5974 * 1: r0 = 1
5975 * 2: if r1 == 100 goto pc+1
5976 * 3: r0 = 2
5977 * 4: exit
5978 * when the verifier reaches exit insn the register r0 in the state list of
5979 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5980 * of insn 2 and goes exploring further. At the insn 4 it will walk the
5981 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5983 * Since the verifier pushes the branch states as it sees them while exploring
5984 * the program the condition of walking the branch instruction for the second
5985 * time means that all states below this branch were already explored and
5986 * their final liveness markes are already propagated.
5987 * Hence when the verifier completes the search of state list in is_state_visited()
5988 * we can call this clean_live_states() function to mark all liveness states
5989 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5990 * will not be used.
5991 * This function also clears the registers and stack for states that !READ
5992 * to simplify state merging.
5994 * Important note here that walking the same branch instruction in the callee
5995 * doesn't meant that the states are DONE. The verifier has to compare
5996 * the callsites
5998 static void clean_live_states(struct bpf_verifier_env *env, int insn,
5999 struct bpf_verifier_state *cur)
6001 struct bpf_verifier_state_list *sl;
6002 int i;
6004 sl = env->explored_states[insn];
6005 if (!sl)
6006 return;
6008 while (sl != STATE_LIST_MARK) {
6009 if (sl->state.curframe != cur->curframe)
6010 goto next;
6011 for (i = 0; i <= cur->curframe; i++)
6012 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6013 goto next;
6014 clean_verifier_state(env, &sl->state);
6015 next:
6016 sl = sl->next;
6020 /* Returns true if (rold safe implies rcur safe) */
6021 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6022 struct idpair *idmap)
6024 bool equal;
6026 if (!(rold->live & REG_LIVE_READ))
6027 /* explored state didn't use this */
6028 return true;
6030 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6032 if (rold->type == PTR_TO_STACK)
6033 /* two stack pointers are equal only if they're pointing to
6034 * the same stack frame, since fp-8 in foo != fp-8 in bar
6036 return equal && rold->frameno == rcur->frameno;
6038 if (equal)
6039 return true;
6041 if (rold->type == NOT_INIT)
6042 /* explored state can't have used this */
6043 return true;
6044 if (rcur->type == NOT_INIT)
6045 return false;
6046 switch (rold->type) {
6047 case SCALAR_VALUE:
6048 if (rcur->type == SCALAR_VALUE) {
6049 /* new val must satisfy old val knowledge */
6050 return range_within(rold, rcur) &&
6051 tnum_in(rold->var_off, rcur->var_off);
6052 } else {
6053 /* We're trying to use a pointer in place of a scalar.
6054 * Even if the scalar was unbounded, this could lead to
6055 * pointer leaks because scalars are allowed to leak
6056 * while pointers are not. We could make this safe in
6057 * special cases if root is calling us, but it's
6058 * probably not worth the hassle.
6060 return false;
6062 case PTR_TO_MAP_VALUE:
6063 /* If the new min/max/var_off satisfy the old ones and
6064 * everything else matches, we are OK.
6065 * 'id' is not compared, since it's only used for maps with
6066 * bpf_spin_lock inside map element and in such cases if
6067 * the rest of the prog is valid for one map element then
6068 * it's valid for all map elements regardless of the key
6069 * used in bpf_map_lookup()
6071 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6072 range_within(rold, rcur) &&
6073 tnum_in(rold->var_off, rcur->var_off);
6074 case PTR_TO_MAP_VALUE_OR_NULL:
6075 /* a PTR_TO_MAP_VALUE could be safe to use as a
6076 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6077 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6078 * checked, doing so could have affected others with the same
6079 * id, and we can't check for that because we lost the id when
6080 * we converted to a PTR_TO_MAP_VALUE.
6082 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6083 return false;
6084 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6085 return false;
6086 /* Check our ids match any regs they're supposed to */
6087 return check_ids(rold->id, rcur->id, idmap);
6088 case PTR_TO_PACKET_META:
6089 case PTR_TO_PACKET:
6090 if (rcur->type != rold->type)
6091 return false;
6092 /* We must have at least as much range as the old ptr
6093 * did, so that any accesses which were safe before are
6094 * still safe. This is true even if old range < old off,
6095 * since someone could have accessed through (ptr - k), or
6096 * even done ptr -= k in a register, to get a safe access.
6098 if (rold->range > rcur->range)
6099 return false;
6100 /* If the offsets don't match, we can't trust our alignment;
6101 * nor can we be sure that we won't fall out of range.
6103 if (rold->off != rcur->off)
6104 return false;
6105 /* id relations must be preserved */
6106 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6107 return false;
6108 /* new val must satisfy old val knowledge */
6109 return range_within(rold, rcur) &&
6110 tnum_in(rold->var_off, rcur->var_off);
6111 case PTR_TO_CTX:
6112 case CONST_PTR_TO_MAP:
6113 case PTR_TO_PACKET_END:
6114 case PTR_TO_FLOW_KEYS:
6115 case PTR_TO_SOCKET:
6116 case PTR_TO_SOCKET_OR_NULL:
6117 case PTR_TO_SOCK_COMMON:
6118 case PTR_TO_SOCK_COMMON_OR_NULL:
6119 case PTR_TO_TCP_SOCK:
6120 case PTR_TO_TCP_SOCK_OR_NULL:
6121 /* Only valid matches are exact, which memcmp() above
6122 * would have accepted
6124 default:
6125 /* Don't know what's going on, just say it's not safe */
6126 return false;
6129 /* Shouldn't get here; if we do, say it's not safe */
6130 WARN_ON_ONCE(1);
6131 return false;
6134 static bool stacksafe(struct bpf_func_state *old,
6135 struct bpf_func_state *cur,
6136 struct idpair *idmap)
6138 int i, spi;
6140 /* walk slots of the explored stack and ignore any additional
6141 * slots in the current stack, since explored(safe) state
6142 * didn't use them
6144 for (i = 0; i < old->allocated_stack; i++) {
6145 spi = i / BPF_REG_SIZE;
6147 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6148 i += BPF_REG_SIZE - 1;
6149 /* explored state didn't use this */
6150 continue;
6153 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6154 continue;
6156 /* explored stack has more populated slots than current stack
6157 * and these slots were used
6159 if (i >= cur->allocated_stack)
6160 return false;
6162 /* if old state was safe with misc data in the stack
6163 * it will be safe with zero-initialized stack.
6164 * The opposite is not true
6166 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6167 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6168 continue;
6169 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6170 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6171 /* Ex: old explored (safe) state has STACK_SPILL in
6172 * this stack slot, but current has has STACK_MISC ->
6173 * this verifier states are not equivalent,
6174 * return false to continue verification of this path
6176 return false;
6177 if (i % BPF_REG_SIZE)
6178 continue;
6179 if (old->stack[spi].slot_type[0] != STACK_SPILL)
6180 continue;
6181 if (!regsafe(&old->stack[spi].spilled_ptr,
6182 &cur->stack[spi].spilled_ptr,
6183 idmap))
6184 /* when explored and current stack slot are both storing
6185 * spilled registers, check that stored pointers types
6186 * are the same as well.
6187 * Ex: explored safe path could have stored
6188 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6189 * but current path has stored:
6190 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6191 * such verifier states are not equivalent.
6192 * return false to continue verification of this path
6194 return false;
6196 return true;
6199 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6201 if (old->acquired_refs != cur->acquired_refs)
6202 return false;
6203 return !memcmp(old->refs, cur->refs,
6204 sizeof(*old->refs) * old->acquired_refs);
6207 /* compare two verifier states
6209 * all states stored in state_list are known to be valid, since
6210 * verifier reached 'bpf_exit' instruction through them
6212 * this function is called when verifier exploring different branches of
6213 * execution popped from the state stack. If it sees an old state that has
6214 * more strict register state and more strict stack state then this execution
6215 * branch doesn't need to be explored further, since verifier already
6216 * concluded that more strict state leads to valid finish.
6218 * Therefore two states are equivalent if register state is more conservative
6219 * and explored stack state is more conservative than the current one.
6220 * Example:
6221 * explored current
6222 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6223 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6225 * In other words if current stack state (one being explored) has more
6226 * valid slots than old one that already passed validation, it means
6227 * the verifier can stop exploring and conclude that current state is valid too
6229 * Similarly with registers. If explored state has register type as invalid
6230 * whereas register type in current state is meaningful, it means that
6231 * the current state will reach 'bpf_exit' instruction safely
6233 static bool func_states_equal(struct bpf_func_state *old,
6234 struct bpf_func_state *cur)
6236 struct idpair *idmap;
6237 bool ret = false;
6238 int i;
6240 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6241 /* If we failed to allocate the idmap, just say it's not safe */
6242 if (!idmap)
6243 return false;
6245 for (i = 0; i < MAX_BPF_REG; i++) {
6246 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6247 goto out_free;
6250 if (!stacksafe(old, cur, idmap))
6251 goto out_free;
6253 if (!refsafe(old, cur))
6254 goto out_free;
6255 ret = true;
6256 out_free:
6257 kfree(idmap);
6258 return ret;
6261 static bool states_equal(struct bpf_verifier_env *env,
6262 struct bpf_verifier_state *old,
6263 struct bpf_verifier_state *cur)
6265 int i;
6267 if (old->curframe != cur->curframe)
6268 return false;
6270 /* Verification state from speculative execution simulation
6271 * must never prune a non-speculative execution one.
6273 if (old->speculative && !cur->speculative)
6274 return false;
6276 if (old->active_spin_lock != cur->active_spin_lock)
6277 return false;
6279 /* for states to be equal callsites have to be the same
6280 * and all frame states need to be equivalent
6282 for (i = 0; i <= old->curframe; i++) {
6283 if (old->frame[i]->callsite != cur->frame[i]->callsite)
6284 return false;
6285 if (!func_states_equal(old->frame[i], cur->frame[i]))
6286 return false;
6288 return true;
6291 static int propagate_liveness_reg(struct bpf_verifier_env *env,
6292 struct bpf_reg_state *reg,
6293 struct bpf_reg_state *parent_reg)
6295 int err;
6297 if (parent_reg->live & REG_LIVE_READ || !(reg->live & REG_LIVE_READ))
6298 return 0;
6300 err = mark_reg_read(env, reg, parent_reg);
6301 if (err)
6302 return err;
6304 return 0;
6307 /* A write screens off any subsequent reads; but write marks come from the
6308 * straight-line code between a state and its parent. When we arrive at an
6309 * equivalent state (jump target or such) we didn't arrive by the straight-line
6310 * code, so read marks in the state must propagate to the parent regardless
6311 * of the state's write marks. That's what 'parent == state->parent' comparison
6312 * in mark_reg_read() is for.
6314 static int propagate_liveness(struct bpf_verifier_env *env,
6315 const struct bpf_verifier_state *vstate,
6316 struct bpf_verifier_state *vparent)
6318 struct bpf_reg_state *state_reg, *parent_reg;
6319 struct bpf_func_state *state, *parent;
6320 int i, frame, err = 0;
6322 if (vparent->curframe != vstate->curframe) {
6323 WARN(1, "propagate_live: parent frame %d current frame %d\n",
6324 vparent->curframe, vstate->curframe);
6325 return -EFAULT;
6327 /* Propagate read liveness of registers... */
6328 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6329 for (frame = 0; frame <= vstate->curframe; frame++) {
6330 parent = vparent->frame[frame];
6331 state = vstate->frame[frame];
6332 parent_reg = parent->regs;
6333 state_reg = state->regs;
6334 /* We don't need to worry about FP liveness, it's read-only */
6335 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6336 err = propagate_liveness_reg(env, &state_reg[i],
6337 &parent_reg[i]);
6338 if (err)
6339 return err;
6342 /* Propagate stack slots. */
6343 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6344 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6345 parent_reg = &parent->stack[i].spilled_ptr;
6346 state_reg = &state->stack[i].spilled_ptr;
6347 err = propagate_liveness_reg(env, state_reg,
6348 parent_reg);
6349 if (err)
6350 return err;
6353 return err;
6356 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6358 struct bpf_verifier_state_list *new_sl;
6359 struct bpf_verifier_state_list *sl, **pprev;
6360 struct bpf_verifier_state *cur = env->cur_state, *new;
6361 int i, j, err, states_cnt = 0;
6363 pprev = &env->explored_states[insn_idx];
6364 sl = *pprev;
6366 if (!sl)
6367 /* this 'insn_idx' instruction wasn't marked, so we will not
6368 * be doing state search here
6370 return 0;
6372 clean_live_states(env, insn_idx, cur);
6374 while (sl != STATE_LIST_MARK) {
6375 if (states_equal(env, &sl->state, cur)) {
6376 sl->hit_cnt++;
6377 /* reached equivalent register/stack state,
6378 * prune the search.
6379 * Registers read by the continuation are read by us.
6380 * If we have any write marks in env->cur_state, they
6381 * will prevent corresponding reads in the continuation
6382 * from reaching our parent (an explored_state). Our
6383 * own state will get the read marks recorded, but
6384 * they'll be immediately forgotten as we're pruning
6385 * this state and will pop a new one.
6387 err = propagate_liveness(env, &sl->state, cur);
6388 if (err)
6389 return err;
6390 return 1;
6392 states_cnt++;
6393 sl->miss_cnt++;
6394 /* heuristic to determine whether this state is beneficial
6395 * to keep checking from state equivalence point of view.
6396 * Higher numbers increase max_states_per_insn and verification time,
6397 * but do not meaningfully decrease insn_processed.
6399 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6400 /* the state is unlikely to be useful. Remove it to
6401 * speed up verification
6403 *pprev = sl->next;
6404 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6405 free_verifier_state(&sl->state, false);
6406 kfree(sl);
6407 env->peak_states--;
6408 } else {
6409 /* cannot free this state, since parentage chain may
6410 * walk it later. Add it for free_list instead to
6411 * be freed at the end of verification
6413 sl->next = env->free_list;
6414 env->free_list = sl;
6416 sl = *pprev;
6417 continue;
6419 pprev = &sl->next;
6420 sl = *pprev;
6423 if (env->max_states_per_insn < states_cnt)
6424 env->max_states_per_insn = states_cnt;
6426 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6427 return 0;
6429 /* there were no equivalent states, remember current one.
6430 * technically the current state is not proven to be safe yet,
6431 * but it will either reach outer most bpf_exit (which means it's safe)
6432 * or it will be rejected. Since there are no loops, we won't be
6433 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6434 * again on the way to bpf_exit
6436 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6437 if (!new_sl)
6438 return -ENOMEM;
6439 env->total_states++;
6440 env->peak_states++;
6442 /* add new state to the head of linked list */
6443 new = &new_sl->state;
6444 err = copy_verifier_state(new, cur);
6445 if (err) {
6446 free_verifier_state(new, false);
6447 kfree(new_sl);
6448 return err;
6450 new_sl->next = env->explored_states[insn_idx];
6451 env->explored_states[insn_idx] = new_sl;
6452 /* connect new state to parentage chain. Current frame needs all
6453 * registers connected. Only r6 - r9 of the callers are alive (pushed
6454 * to the stack implicitly by JITs) so in callers' frames connect just
6455 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6456 * the state of the call instruction (with WRITTEN set), and r0 comes
6457 * from callee with its full parentage chain, anyway.
6459 for (j = 0; j <= cur->curframe; j++)
6460 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6461 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6462 /* clear write marks in current state: the writes we did are not writes
6463 * our child did, so they don't screen off its reads from us.
6464 * (There are no read marks in current state, because reads always mark
6465 * their parent and current state never has children yet. Only
6466 * explored_states can get read marks.)
6468 for (i = 0; i < BPF_REG_FP; i++)
6469 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6471 /* all stack frames are accessible from callee, clear them all */
6472 for (j = 0; j <= cur->curframe; j++) {
6473 struct bpf_func_state *frame = cur->frame[j];
6474 struct bpf_func_state *newframe = new->frame[j];
6476 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6477 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6478 frame->stack[i].spilled_ptr.parent =
6479 &newframe->stack[i].spilled_ptr;
6482 return 0;
6485 /* Return true if it's OK to have the same insn return a different type. */
6486 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6488 switch (type) {
6489 case PTR_TO_CTX:
6490 case PTR_TO_SOCKET:
6491 case PTR_TO_SOCKET_OR_NULL:
6492 case PTR_TO_SOCK_COMMON:
6493 case PTR_TO_SOCK_COMMON_OR_NULL:
6494 case PTR_TO_TCP_SOCK:
6495 case PTR_TO_TCP_SOCK_OR_NULL:
6496 return false;
6497 default:
6498 return true;
6502 /* If an instruction was previously used with particular pointer types, then we
6503 * need to be careful to avoid cases such as the below, where it may be ok
6504 * for one branch accessing the pointer, but not ok for the other branch:
6506 * R1 = sock_ptr
6507 * goto X;
6508 * ...
6509 * R1 = some_other_valid_ptr;
6510 * goto X;
6511 * ...
6512 * R2 = *(u32 *)(R1 + 0);
6514 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6516 return src != prev && (!reg_type_mismatch_ok(src) ||
6517 !reg_type_mismatch_ok(prev));
6520 static int do_check(struct bpf_verifier_env *env)
6522 struct bpf_verifier_state *state;
6523 struct bpf_insn *insns = env->prog->insnsi;
6524 struct bpf_reg_state *regs;
6525 int insn_cnt = env->prog->len;
6526 bool do_print_state = false;
6528 env->prev_linfo = NULL;
6530 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6531 if (!state)
6532 return -ENOMEM;
6533 state->curframe = 0;
6534 state->speculative = false;
6535 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6536 if (!state->frame[0]) {
6537 kfree(state);
6538 return -ENOMEM;
6540 env->cur_state = state;
6541 init_func_state(env, state->frame[0],
6542 BPF_MAIN_FUNC /* callsite */,
6543 0 /* frameno */,
6544 0 /* subprogno, zero == main subprog */);
6546 for (;;) {
6547 struct bpf_insn *insn;
6548 u8 class;
6549 int err;
6551 if (env->insn_idx >= insn_cnt) {
6552 verbose(env, "invalid insn idx %d insn_cnt %d\n",
6553 env->insn_idx, insn_cnt);
6554 return -EFAULT;
6557 insn = &insns[env->insn_idx];
6558 class = BPF_CLASS(insn->code);
6560 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6561 verbose(env,
6562 "BPF program is too large. Processed %d insn\n",
6563 env->insn_processed);
6564 return -E2BIG;
6567 err = is_state_visited(env, env->insn_idx);
6568 if (err < 0)
6569 return err;
6570 if (err == 1) {
6571 /* found equivalent state, can prune the search */
6572 if (env->log.level & BPF_LOG_LEVEL) {
6573 if (do_print_state)
6574 verbose(env, "\nfrom %d to %d%s: safe\n",
6575 env->prev_insn_idx, env->insn_idx,
6576 env->cur_state->speculative ?
6577 " (speculative execution)" : "");
6578 else
6579 verbose(env, "%d: safe\n", env->insn_idx);
6581 goto process_bpf_exit;
6584 if (signal_pending(current))
6585 return -EAGAIN;
6587 if (need_resched())
6588 cond_resched();
6590 if (env->log.level & BPF_LOG_LEVEL2 ||
6591 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6592 if (env->log.level & BPF_LOG_LEVEL2)
6593 verbose(env, "%d:", env->insn_idx);
6594 else
6595 verbose(env, "\nfrom %d to %d%s:",
6596 env->prev_insn_idx, env->insn_idx,
6597 env->cur_state->speculative ?
6598 " (speculative execution)" : "");
6599 print_verifier_state(env, state->frame[state->curframe]);
6600 do_print_state = false;
6603 if (env->log.level & BPF_LOG_LEVEL) {
6604 const struct bpf_insn_cbs cbs = {
6605 .cb_print = verbose,
6606 .private_data = env,
6609 verbose_linfo(env, env->insn_idx, "; ");
6610 verbose(env, "%d: ", env->insn_idx);
6611 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6614 if (bpf_prog_is_dev_bound(env->prog->aux)) {
6615 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6616 env->prev_insn_idx);
6617 if (err)
6618 return err;
6621 regs = cur_regs(env);
6622 env->insn_aux_data[env->insn_idx].seen = true;
6624 if (class == BPF_ALU || class == BPF_ALU64) {
6625 err = check_alu_op(env, insn);
6626 if (err)
6627 return err;
6629 } else if (class == BPF_LDX) {
6630 enum bpf_reg_type *prev_src_type, src_reg_type;
6632 /* check for reserved fields is already done */
6634 /* check src operand */
6635 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6636 if (err)
6637 return err;
6639 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6640 if (err)
6641 return err;
6643 src_reg_type = regs[insn->src_reg].type;
6645 /* check that memory (src_reg + off) is readable,
6646 * the state of dst_reg will be updated by this func
6648 err = check_mem_access(env, env->insn_idx, insn->src_reg,
6649 insn->off, BPF_SIZE(insn->code),
6650 BPF_READ, insn->dst_reg, false);
6651 if (err)
6652 return err;
6654 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6656 if (*prev_src_type == NOT_INIT) {
6657 /* saw a valid insn
6658 * dst_reg = *(u32 *)(src_reg + off)
6659 * save type to validate intersecting paths
6661 *prev_src_type = src_reg_type;
6663 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6664 /* ABuser program is trying to use the same insn
6665 * dst_reg = *(u32*) (src_reg + off)
6666 * with different pointer types:
6667 * src_reg == ctx in one branch and
6668 * src_reg == stack|map in some other branch.
6669 * Reject it.
6671 verbose(env, "same insn cannot be used with different pointers\n");
6672 return -EINVAL;
6675 } else if (class == BPF_STX) {
6676 enum bpf_reg_type *prev_dst_type, dst_reg_type;
6678 if (BPF_MODE(insn->code) == BPF_XADD) {
6679 err = check_xadd(env, env->insn_idx, insn);
6680 if (err)
6681 return err;
6682 env->insn_idx++;
6683 continue;
6686 /* check src1 operand */
6687 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6688 if (err)
6689 return err;
6690 /* check src2 operand */
6691 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6692 if (err)
6693 return err;
6695 dst_reg_type = regs[insn->dst_reg].type;
6697 /* check that memory (dst_reg + off) is writeable */
6698 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6699 insn->off, BPF_SIZE(insn->code),
6700 BPF_WRITE, insn->src_reg, false);
6701 if (err)
6702 return err;
6704 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6706 if (*prev_dst_type == NOT_INIT) {
6707 *prev_dst_type = dst_reg_type;
6708 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6709 verbose(env, "same insn cannot be used with different pointers\n");
6710 return -EINVAL;
6713 } else if (class == BPF_ST) {
6714 if (BPF_MODE(insn->code) != BPF_MEM ||
6715 insn->src_reg != BPF_REG_0) {
6716 verbose(env, "BPF_ST uses reserved fields\n");
6717 return -EINVAL;
6719 /* check src operand */
6720 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6721 if (err)
6722 return err;
6724 if (is_ctx_reg(env, insn->dst_reg)) {
6725 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6726 insn->dst_reg,
6727 reg_type_str[reg_state(env, insn->dst_reg)->type]);
6728 return -EACCES;
6731 /* check that memory (dst_reg + off) is writeable */
6732 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6733 insn->off, BPF_SIZE(insn->code),
6734 BPF_WRITE, -1, false);
6735 if (err)
6736 return err;
6738 } else if (class == BPF_JMP || class == BPF_JMP32) {
6739 u8 opcode = BPF_OP(insn->code);
6741 if (opcode == BPF_CALL) {
6742 if (BPF_SRC(insn->code) != BPF_K ||
6743 insn->off != 0 ||
6744 (insn->src_reg != BPF_REG_0 &&
6745 insn->src_reg != BPF_PSEUDO_CALL) ||
6746 insn->dst_reg != BPF_REG_0 ||
6747 class == BPF_JMP32) {
6748 verbose(env, "BPF_CALL uses reserved fields\n");
6749 return -EINVAL;
6752 if (env->cur_state->active_spin_lock &&
6753 (insn->src_reg == BPF_PSEUDO_CALL ||
6754 insn->imm != BPF_FUNC_spin_unlock)) {
6755 verbose(env, "function calls are not allowed while holding a lock\n");
6756 return -EINVAL;
6758 if (insn->src_reg == BPF_PSEUDO_CALL)
6759 err = check_func_call(env, insn, &env->insn_idx);
6760 else
6761 err = check_helper_call(env, insn->imm, env->insn_idx);
6762 if (err)
6763 return err;
6765 } else if (opcode == BPF_JA) {
6766 if (BPF_SRC(insn->code) != BPF_K ||
6767 insn->imm != 0 ||
6768 insn->src_reg != BPF_REG_0 ||
6769 insn->dst_reg != BPF_REG_0 ||
6770 class == BPF_JMP32) {
6771 verbose(env, "BPF_JA uses reserved fields\n");
6772 return -EINVAL;
6775 env->insn_idx += insn->off + 1;
6776 continue;
6778 } else if (opcode == BPF_EXIT) {
6779 if (BPF_SRC(insn->code) != BPF_K ||
6780 insn->imm != 0 ||
6781 insn->src_reg != BPF_REG_0 ||
6782 insn->dst_reg != BPF_REG_0 ||
6783 class == BPF_JMP32) {
6784 verbose(env, "BPF_EXIT uses reserved fields\n");
6785 return -EINVAL;
6788 if (env->cur_state->active_spin_lock) {
6789 verbose(env, "bpf_spin_unlock is missing\n");
6790 return -EINVAL;
6793 if (state->curframe) {
6794 /* exit from nested function */
6795 env->prev_insn_idx = env->insn_idx;
6796 err = prepare_func_exit(env, &env->insn_idx);
6797 if (err)
6798 return err;
6799 do_print_state = true;
6800 continue;
6803 err = check_reference_leak(env);
6804 if (err)
6805 return err;
6807 /* eBPF calling convetion is such that R0 is used
6808 * to return the value from eBPF program.
6809 * Make sure that it's readable at this time
6810 * of bpf_exit, which means that program wrote
6811 * something into it earlier
6813 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6814 if (err)
6815 return err;
6817 if (is_pointer_value(env, BPF_REG_0)) {
6818 verbose(env, "R0 leaks addr as return value\n");
6819 return -EACCES;
6822 err = check_return_code(env);
6823 if (err)
6824 return err;
6825 process_bpf_exit:
6826 err = pop_stack(env, &env->prev_insn_idx,
6827 &env->insn_idx);
6828 if (err < 0) {
6829 if (err != -ENOENT)
6830 return err;
6831 break;
6832 } else {
6833 do_print_state = true;
6834 continue;
6836 } else {
6837 err = check_cond_jmp_op(env, insn, &env->insn_idx);
6838 if (err)
6839 return err;
6841 } else if (class == BPF_LD) {
6842 u8 mode = BPF_MODE(insn->code);
6844 if (mode == BPF_ABS || mode == BPF_IND) {
6845 err = check_ld_abs(env, insn);
6846 if (err)
6847 return err;
6849 } else if (mode == BPF_IMM) {
6850 err = check_ld_imm(env, insn);
6851 if (err)
6852 return err;
6854 env->insn_idx++;
6855 env->insn_aux_data[env->insn_idx].seen = true;
6856 } else {
6857 verbose(env, "invalid BPF_LD mode\n");
6858 return -EINVAL;
6860 } else {
6861 verbose(env, "unknown insn class %d\n", class);
6862 return -EINVAL;
6865 env->insn_idx++;
6868 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6869 return 0;
6872 static int check_map_prealloc(struct bpf_map *map)
6874 return (map->map_type != BPF_MAP_TYPE_HASH &&
6875 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6876 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6877 !(map->map_flags & BPF_F_NO_PREALLOC);
6880 static bool is_tracing_prog_type(enum bpf_prog_type type)
6882 switch (type) {
6883 case BPF_PROG_TYPE_KPROBE:
6884 case BPF_PROG_TYPE_TRACEPOINT:
6885 case BPF_PROG_TYPE_PERF_EVENT:
6886 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6887 return true;
6888 default:
6889 return false;
6893 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6894 struct bpf_map *map,
6895 struct bpf_prog *prog)
6898 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6899 * preallocated hash maps, since doing memory allocation
6900 * in overflow_handler can crash depending on where nmi got
6901 * triggered.
6903 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6904 if (!check_map_prealloc(map)) {
6905 verbose(env, "perf_event programs can only use preallocated hash map\n");
6906 return -EINVAL;
6908 if (map->inner_map_meta &&
6909 !check_map_prealloc(map->inner_map_meta)) {
6910 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6911 return -EINVAL;
6915 if ((is_tracing_prog_type(prog->type) ||
6916 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6917 map_value_has_spin_lock(map)) {
6918 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6919 return -EINVAL;
6922 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6923 !bpf_offload_prog_map_match(prog, map)) {
6924 verbose(env, "offload device mismatch between prog and map\n");
6925 return -EINVAL;
6928 return 0;
6931 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6933 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6934 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6937 /* look for pseudo eBPF instructions that access map FDs and
6938 * replace them with actual map pointers
6940 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6942 struct bpf_insn *insn = env->prog->insnsi;
6943 int insn_cnt = env->prog->len;
6944 int i, j, err;
6946 err = bpf_prog_calc_tag(env->prog);
6947 if (err)
6948 return err;
6950 for (i = 0; i < insn_cnt; i++, insn++) {
6951 if (BPF_CLASS(insn->code) == BPF_LDX &&
6952 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6953 verbose(env, "BPF_LDX uses reserved fields\n");
6954 return -EINVAL;
6957 if (BPF_CLASS(insn->code) == BPF_STX &&
6958 ((BPF_MODE(insn->code) != BPF_MEM &&
6959 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6960 verbose(env, "BPF_STX uses reserved fields\n");
6961 return -EINVAL;
6964 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6965 struct bpf_insn_aux_data *aux;
6966 struct bpf_map *map;
6967 struct fd f;
6968 u64 addr;
6970 if (i == insn_cnt - 1 || insn[1].code != 0 ||
6971 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6972 insn[1].off != 0) {
6973 verbose(env, "invalid bpf_ld_imm64 insn\n");
6974 return -EINVAL;
6977 if (insn[0].src_reg == 0)
6978 /* valid generic load 64-bit imm */
6979 goto next_insn;
6981 /* In final convert_pseudo_ld_imm64() step, this is
6982 * converted into regular 64-bit imm load insn.
6984 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
6985 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
6986 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
6987 insn[1].imm != 0)) {
6988 verbose(env,
6989 "unrecognized bpf_ld_imm64 insn\n");
6990 return -EINVAL;
6993 f = fdget(insn[0].imm);
6994 map = __bpf_map_get(f);
6995 if (IS_ERR(map)) {
6996 verbose(env, "fd %d is not pointing to valid bpf_map\n",
6997 insn[0].imm);
6998 return PTR_ERR(map);
7001 err = check_map_prog_compatibility(env, map, env->prog);
7002 if (err) {
7003 fdput(f);
7004 return err;
7007 aux = &env->insn_aux_data[i];
7008 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7009 addr = (unsigned long)map;
7010 } else {
7011 u32 off = insn[1].imm;
7013 if (off >= BPF_MAX_VAR_OFF) {
7014 verbose(env, "direct value offset of %u is not allowed\n", off);
7015 fdput(f);
7016 return -EINVAL;
7019 if (!map->ops->map_direct_value_addr) {
7020 verbose(env, "no direct value access support for this map type\n");
7021 fdput(f);
7022 return -EINVAL;
7025 err = map->ops->map_direct_value_addr(map, &addr, off);
7026 if (err) {
7027 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7028 map->value_size, off);
7029 fdput(f);
7030 return err;
7033 aux->map_off = off;
7034 addr += off;
7037 insn[0].imm = (u32)addr;
7038 insn[1].imm = addr >> 32;
7040 /* check whether we recorded this map already */
7041 for (j = 0; j < env->used_map_cnt; j++) {
7042 if (env->used_maps[j] == map) {
7043 aux->map_index = j;
7044 fdput(f);
7045 goto next_insn;
7049 if (env->used_map_cnt >= MAX_USED_MAPS) {
7050 fdput(f);
7051 return -E2BIG;
7054 /* hold the map. If the program is rejected by verifier,
7055 * the map will be released by release_maps() or it
7056 * will be used by the valid program until it's unloaded
7057 * and all maps are released in free_used_maps()
7059 map = bpf_map_inc(map, false);
7060 if (IS_ERR(map)) {
7061 fdput(f);
7062 return PTR_ERR(map);
7065 aux->map_index = env->used_map_cnt;
7066 env->used_maps[env->used_map_cnt++] = map;
7068 if (bpf_map_is_cgroup_storage(map) &&
7069 bpf_cgroup_storage_assign(env->prog, map)) {
7070 verbose(env, "only one cgroup storage of each type is allowed\n");
7071 fdput(f);
7072 return -EBUSY;
7075 fdput(f);
7076 next_insn:
7077 insn++;
7078 i++;
7079 continue;
7082 /* Basic sanity check before we invest more work here. */
7083 if (!bpf_opcode_in_insntable(insn->code)) {
7084 verbose(env, "unknown opcode %02x\n", insn->code);
7085 return -EINVAL;
7089 /* now all pseudo BPF_LD_IMM64 instructions load valid
7090 * 'struct bpf_map *' into a register instead of user map_fd.
7091 * These pointers will be used later by verifier to validate map access.
7093 return 0;
7096 /* drop refcnt of maps used by the rejected program */
7097 static void release_maps(struct bpf_verifier_env *env)
7099 enum bpf_cgroup_storage_type stype;
7100 int i;
7102 for_each_cgroup_storage_type(stype) {
7103 if (!env->prog->aux->cgroup_storage[stype])
7104 continue;
7105 bpf_cgroup_storage_release(env->prog,
7106 env->prog->aux->cgroup_storage[stype]);
7109 for (i = 0; i < env->used_map_cnt; i++)
7110 bpf_map_put(env->used_maps[i]);
7113 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7114 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
7116 struct bpf_insn *insn = env->prog->insnsi;
7117 int insn_cnt = env->prog->len;
7118 int i;
7120 for (i = 0; i < insn_cnt; i++, insn++)
7121 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7122 insn->src_reg = 0;
7125 /* single env->prog->insni[off] instruction was replaced with the range
7126 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
7127 * [0, off) and [off, end) to new locations, so the patched range stays zero
7129 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
7130 u32 off, u32 cnt)
7132 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
7133 int i;
7135 if (cnt == 1)
7136 return 0;
7137 new_data = vzalloc(array_size(prog_len,
7138 sizeof(struct bpf_insn_aux_data)));
7139 if (!new_data)
7140 return -ENOMEM;
7141 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7142 memcpy(new_data + off + cnt - 1, old_data + off,
7143 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
7144 for (i = off; i < off + cnt - 1; i++)
7145 new_data[i].seen = true;
7146 env->insn_aux_data = new_data;
7147 vfree(old_data);
7148 return 0;
7151 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7153 int i;
7155 if (len == 1)
7156 return;
7157 /* NOTE: fake 'exit' subprog should be updated as well. */
7158 for (i = 0; i <= env->subprog_cnt; i++) {
7159 if (env->subprog_info[i].start <= off)
7160 continue;
7161 env->subprog_info[i].start += len - 1;
7165 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7166 const struct bpf_insn *patch, u32 len)
7168 struct bpf_prog *new_prog;
7170 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
7171 if (IS_ERR(new_prog)) {
7172 if (PTR_ERR(new_prog) == -ERANGE)
7173 verbose(env,
7174 "insn %d cannot be patched due to 16-bit range\n",
7175 env->insn_aux_data[off].orig_idx);
7176 return NULL;
7178 if (adjust_insn_aux_data(env, new_prog->len, off, len))
7179 return NULL;
7180 adjust_subprog_starts(env, off, len);
7181 return new_prog;
7184 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7185 u32 off, u32 cnt)
7187 int i, j;
7189 /* find first prog starting at or after off (first to remove) */
7190 for (i = 0; i < env->subprog_cnt; i++)
7191 if (env->subprog_info[i].start >= off)
7192 break;
7193 /* find first prog starting at or after off + cnt (first to stay) */
7194 for (j = i; j < env->subprog_cnt; j++)
7195 if (env->subprog_info[j].start >= off + cnt)
7196 break;
7197 /* if j doesn't start exactly at off + cnt, we are just removing
7198 * the front of previous prog
7200 if (env->subprog_info[j].start != off + cnt)
7201 j--;
7203 if (j > i) {
7204 struct bpf_prog_aux *aux = env->prog->aux;
7205 int move;
7207 /* move fake 'exit' subprog as well */
7208 move = env->subprog_cnt + 1 - j;
7210 memmove(env->subprog_info + i,
7211 env->subprog_info + j,
7212 sizeof(*env->subprog_info) * move);
7213 env->subprog_cnt -= j - i;
7215 /* remove func_info */
7216 if (aux->func_info) {
7217 move = aux->func_info_cnt - j;
7219 memmove(aux->func_info + i,
7220 aux->func_info + j,
7221 sizeof(*aux->func_info) * move);
7222 aux->func_info_cnt -= j - i;
7223 /* func_info->insn_off is set after all code rewrites,
7224 * in adjust_btf_func() - no need to adjust
7227 } else {
7228 /* convert i from "first prog to remove" to "first to adjust" */
7229 if (env->subprog_info[i].start == off)
7230 i++;
7233 /* update fake 'exit' subprog as well */
7234 for (; i <= env->subprog_cnt; i++)
7235 env->subprog_info[i].start -= cnt;
7237 return 0;
7240 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7241 u32 cnt)
7243 struct bpf_prog *prog = env->prog;
7244 u32 i, l_off, l_cnt, nr_linfo;
7245 struct bpf_line_info *linfo;
7247 nr_linfo = prog->aux->nr_linfo;
7248 if (!nr_linfo)
7249 return 0;
7251 linfo = prog->aux->linfo;
7253 /* find first line info to remove, count lines to be removed */
7254 for (i = 0; i < nr_linfo; i++)
7255 if (linfo[i].insn_off >= off)
7256 break;
7258 l_off = i;
7259 l_cnt = 0;
7260 for (; i < nr_linfo; i++)
7261 if (linfo[i].insn_off < off + cnt)
7262 l_cnt++;
7263 else
7264 break;
7266 /* First live insn doesn't match first live linfo, it needs to "inherit"
7267 * last removed linfo. prog is already modified, so prog->len == off
7268 * means no live instructions after (tail of the program was removed).
7270 if (prog->len != off && l_cnt &&
7271 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7272 l_cnt--;
7273 linfo[--i].insn_off = off + cnt;
7276 /* remove the line info which refer to the removed instructions */
7277 if (l_cnt) {
7278 memmove(linfo + l_off, linfo + i,
7279 sizeof(*linfo) * (nr_linfo - i));
7281 prog->aux->nr_linfo -= l_cnt;
7282 nr_linfo = prog->aux->nr_linfo;
7285 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
7286 for (i = l_off; i < nr_linfo; i++)
7287 linfo[i].insn_off -= cnt;
7289 /* fix up all subprogs (incl. 'exit') which start >= off */
7290 for (i = 0; i <= env->subprog_cnt; i++)
7291 if (env->subprog_info[i].linfo_idx > l_off) {
7292 /* program may have started in the removed region but
7293 * may not be fully removed
7295 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7296 env->subprog_info[i].linfo_idx -= l_cnt;
7297 else
7298 env->subprog_info[i].linfo_idx = l_off;
7301 return 0;
7304 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7306 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7307 unsigned int orig_prog_len = env->prog->len;
7308 int err;
7310 if (bpf_prog_is_dev_bound(env->prog->aux))
7311 bpf_prog_offload_remove_insns(env, off, cnt);
7313 err = bpf_remove_insns(env->prog, off, cnt);
7314 if (err)
7315 return err;
7317 err = adjust_subprog_starts_after_remove(env, off, cnt);
7318 if (err)
7319 return err;
7321 err = bpf_adj_linfo_after_remove(env, off, cnt);
7322 if (err)
7323 return err;
7325 memmove(aux_data + off, aux_data + off + cnt,
7326 sizeof(*aux_data) * (orig_prog_len - off - cnt));
7328 return 0;
7331 /* The verifier does more data flow analysis than llvm and will not
7332 * explore branches that are dead at run time. Malicious programs can
7333 * have dead code too. Therefore replace all dead at-run-time code
7334 * with 'ja -1'.
7336 * Just nops are not optimal, e.g. if they would sit at the end of the
7337 * program and through another bug we would manage to jump there, then
7338 * we'd execute beyond program memory otherwise. Returning exception
7339 * code also wouldn't work since we can have subprogs where the dead
7340 * code could be located.
7342 static void sanitize_dead_code(struct bpf_verifier_env *env)
7344 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7345 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7346 struct bpf_insn *insn = env->prog->insnsi;
7347 const int insn_cnt = env->prog->len;
7348 int i;
7350 for (i = 0; i < insn_cnt; i++) {
7351 if (aux_data[i].seen)
7352 continue;
7353 memcpy(insn + i, &trap, sizeof(trap));
7357 static bool insn_is_cond_jump(u8 code)
7359 u8 op;
7361 if (BPF_CLASS(code) == BPF_JMP32)
7362 return true;
7364 if (BPF_CLASS(code) != BPF_JMP)
7365 return false;
7367 op = BPF_OP(code);
7368 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7371 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7373 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7374 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7375 struct bpf_insn *insn = env->prog->insnsi;
7376 const int insn_cnt = env->prog->len;
7377 int i;
7379 for (i = 0; i < insn_cnt; i++, insn++) {
7380 if (!insn_is_cond_jump(insn->code))
7381 continue;
7383 if (!aux_data[i + 1].seen)
7384 ja.off = insn->off;
7385 else if (!aux_data[i + 1 + insn->off].seen)
7386 ja.off = 0;
7387 else
7388 continue;
7390 if (bpf_prog_is_dev_bound(env->prog->aux))
7391 bpf_prog_offload_replace_insn(env, i, &ja);
7393 memcpy(insn, &ja, sizeof(ja));
7397 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7399 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7400 int insn_cnt = env->prog->len;
7401 int i, err;
7403 for (i = 0; i < insn_cnt; i++) {
7404 int j;
7406 j = 0;
7407 while (i + j < insn_cnt && !aux_data[i + j].seen)
7408 j++;
7409 if (!j)
7410 continue;
7412 err = verifier_remove_insns(env, i, j);
7413 if (err)
7414 return err;
7415 insn_cnt = env->prog->len;
7418 return 0;
7421 static int opt_remove_nops(struct bpf_verifier_env *env)
7423 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7424 struct bpf_insn *insn = env->prog->insnsi;
7425 int insn_cnt = env->prog->len;
7426 int i, err;
7428 for (i = 0; i < insn_cnt; i++) {
7429 if (memcmp(&insn[i], &ja, sizeof(ja)))
7430 continue;
7432 err = verifier_remove_insns(env, i, 1);
7433 if (err)
7434 return err;
7435 insn_cnt--;
7436 i--;
7439 return 0;
7442 /* convert load instructions that access fields of a context type into a
7443 * sequence of instructions that access fields of the underlying structure:
7444 * struct __sk_buff -> struct sk_buff
7445 * struct bpf_sock_ops -> struct sock
7447 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7449 const struct bpf_verifier_ops *ops = env->ops;
7450 int i, cnt, size, ctx_field_size, delta = 0;
7451 const int insn_cnt = env->prog->len;
7452 struct bpf_insn insn_buf[16], *insn;
7453 u32 target_size, size_default, off;
7454 struct bpf_prog *new_prog;
7455 enum bpf_access_type type;
7456 bool is_narrower_load;
7458 if (ops->gen_prologue || env->seen_direct_write) {
7459 if (!ops->gen_prologue) {
7460 verbose(env, "bpf verifier is misconfigured\n");
7461 return -EINVAL;
7463 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7464 env->prog);
7465 if (cnt >= ARRAY_SIZE(insn_buf)) {
7466 verbose(env, "bpf verifier is misconfigured\n");
7467 return -EINVAL;
7468 } else if (cnt) {
7469 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7470 if (!new_prog)
7471 return -ENOMEM;
7473 env->prog = new_prog;
7474 delta += cnt - 1;
7478 if (bpf_prog_is_dev_bound(env->prog->aux))
7479 return 0;
7481 insn = env->prog->insnsi + delta;
7483 for (i = 0; i < insn_cnt; i++, insn++) {
7484 bpf_convert_ctx_access_t convert_ctx_access;
7486 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7487 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7488 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7489 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7490 type = BPF_READ;
7491 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7492 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7493 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7494 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7495 type = BPF_WRITE;
7496 else
7497 continue;
7499 if (type == BPF_WRITE &&
7500 env->insn_aux_data[i + delta].sanitize_stack_off) {
7501 struct bpf_insn patch[] = {
7502 /* Sanitize suspicious stack slot with zero.
7503 * There are no memory dependencies for this store,
7504 * since it's only using frame pointer and immediate
7505 * constant of zero
7507 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7508 env->insn_aux_data[i + delta].sanitize_stack_off,
7510 /* the original STX instruction will immediately
7511 * overwrite the same stack slot with appropriate value
7513 *insn,
7516 cnt = ARRAY_SIZE(patch);
7517 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7518 if (!new_prog)
7519 return -ENOMEM;
7521 delta += cnt - 1;
7522 env->prog = new_prog;
7523 insn = new_prog->insnsi + i + delta;
7524 continue;
7527 switch (env->insn_aux_data[i + delta].ptr_type) {
7528 case PTR_TO_CTX:
7529 if (!ops->convert_ctx_access)
7530 continue;
7531 convert_ctx_access = ops->convert_ctx_access;
7532 break;
7533 case PTR_TO_SOCKET:
7534 case PTR_TO_SOCK_COMMON:
7535 convert_ctx_access = bpf_sock_convert_ctx_access;
7536 break;
7537 case PTR_TO_TCP_SOCK:
7538 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7539 break;
7540 default:
7541 continue;
7544 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7545 size = BPF_LDST_BYTES(insn);
7547 /* If the read access is a narrower load of the field,
7548 * convert to a 4/8-byte load, to minimum program type specific
7549 * convert_ctx_access changes. If conversion is successful,
7550 * we will apply proper mask to the result.
7552 is_narrower_load = size < ctx_field_size;
7553 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7554 off = insn->off;
7555 if (is_narrower_load) {
7556 u8 size_code;
7558 if (type == BPF_WRITE) {
7559 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7560 return -EINVAL;
7563 size_code = BPF_H;
7564 if (ctx_field_size == 4)
7565 size_code = BPF_W;
7566 else if (ctx_field_size == 8)
7567 size_code = BPF_DW;
7569 insn->off = off & ~(size_default - 1);
7570 insn->code = BPF_LDX | BPF_MEM | size_code;
7573 target_size = 0;
7574 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7575 &target_size);
7576 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7577 (ctx_field_size && !target_size)) {
7578 verbose(env, "bpf verifier is misconfigured\n");
7579 return -EINVAL;
7582 if (is_narrower_load && size < target_size) {
7583 u8 shift = (off & (size_default - 1)) * 8;
7585 if (ctx_field_size <= 4) {
7586 if (shift)
7587 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7588 insn->dst_reg,
7589 shift);
7590 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7591 (1 << size * 8) - 1);
7592 } else {
7593 if (shift)
7594 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7595 insn->dst_reg,
7596 shift);
7597 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7598 (1ULL << size * 8) - 1);
7602 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7603 if (!new_prog)
7604 return -ENOMEM;
7606 delta += cnt - 1;
7608 /* keep walking new program and skip insns we just inserted */
7609 env->prog = new_prog;
7610 insn = new_prog->insnsi + i + delta;
7613 return 0;
7616 static int jit_subprogs(struct bpf_verifier_env *env)
7618 struct bpf_prog *prog = env->prog, **func, *tmp;
7619 int i, j, subprog_start, subprog_end = 0, len, subprog;
7620 struct bpf_insn *insn;
7621 void *old_bpf_func;
7622 int err;
7624 if (env->subprog_cnt <= 1)
7625 return 0;
7627 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7628 if (insn->code != (BPF_JMP | BPF_CALL) ||
7629 insn->src_reg != BPF_PSEUDO_CALL)
7630 continue;
7631 /* Upon error here we cannot fall back to interpreter but
7632 * need a hard reject of the program. Thus -EFAULT is
7633 * propagated in any case.
7635 subprog = find_subprog(env, i + insn->imm + 1);
7636 if (subprog < 0) {
7637 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7638 i + insn->imm + 1);
7639 return -EFAULT;
7641 /* temporarily remember subprog id inside insn instead of
7642 * aux_data, since next loop will split up all insns into funcs
7644 insn->off = subprog;
7645 /* remember original imm in case JIT fails and fallback
7646 * to interpreter will be needed
7648 env->insn_aux_data[i].call_imm = insn->imm;
7649 /* point imm to __bpf_call_base+1 from JITs point of view */
7650 insn->imm = 1;
7653 err = bpf_prog_alloc_jited_linfo(prog);
7654 if (err)
7655 goto out_undo_insn;
7657 err = -ENOMEM;
7658 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7659 if (!func)
7660 goto out_undo_insn;
7662 for (i = 0; i < env->subprog_cnt; i++) {
7663 subprog_start = subprog_end;
7664 subprog_end = env->subprog_info[i + 1].start;
7666 len = subprog_end - subprog_start;
7667 /* BPF_PROG_RUN doesn't call subprogs directly,
7668 * hence main prog stats include the runtime of subprogs.
7669 * subprogs don't have IDs and not reachable via prog_get_next_id
7670 * func[i]->aux->stats will never be accessed and stays NULL
7672 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7673 if (!func[i])
7674 goto out_free;
7675 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7676 len * sizeof(struct bpf_insn));
7677 func[i]->type = prog->type;
7678 func[i]->len = len;
7679 if (bpf_prog_calc_tag(func[i]))
7680 goto out_free;
7681 func[i]->is_func = 1;
7682 func[i]->aux->func_idx = i;
7683 /* the btf and func_info will be freed only at prog->aux */
7684 func[i]->aux->btf = prog->aux->btf;
7685 func[i]->aux->func_info = prog->aux->func_info;
7687 /* Use bpf_prog_F_tag to indicate functions in stack traces.
7688 * Long term would need debug info to populate names
7690 func[i]->aux->name[0] = 'F';
7691 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7692 func[i]->jit_requested = 1;
7693 func[i]->aux->linfo = prog->aux->linfo;
7694 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7695 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7696 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7697 func[i] = bpf_int_jit_compile(func[i]);
7698 if (!func[i]->jited) {
7699 err = -ENOTSUPP;
7700 goto out_free;
7702 cond_resched();
7704 /* at this point all bpf functions were successfully JITed
7705 * now populate all bpf_calls with correct addresses and
7706 * run last pass of JIT
7708 for (i = 0; i < env->subprog_cnt; i++) {
7709 insn = func[i]->insnsi;
7710 for (j = 0; j < func[i]->len; j++, insn++) {
7711 if (insn->code != (BPF_JMP | BPF_CALL) ||
7712 insn->src_reg != BPF_PSEUDO_CALL)
7713 continue;
7714 subprog = insn->off;
7715 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
7716 __bpf_call_base;
7719 /* we use the aux data to keep a list of the start addresses
7720 * of the JITed images for each function in the program
7722 * for some architectures, such as powerpc64, the imm field
7723 * might not be large enough to hold the offset of the start
7724 * address of the callee's JITed image from __bpf_call_base
7726 * in such cases, we can lookup the start address of a callee
7727 * by using its subprog id, available from the off field of
7728 * the call instruction, as an index for this list
7730 func[i]->aux->func = func;
7731 func[i]->aux->func_cnt = env->subprog_cnt;
7733 for (i = 0; i < env->subprog_cnt; i++) {
7734 old_bpf_func = func[i]->bpf_func;
7735 tmp = bpf_int_jit_compile(func[i]);
7736 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7737 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7738 err = -ENOTSUPP;
7739 goto out_free;
7741 cond_resched();
7744 /* finally lock prog and jit images for all functions and
7745 * populate kallsysm
7747 for (i = 0; i < env->subprog_cnt; i++) {
7748 bpf_prog_lock_ro(func[i]);
7749 bpf_prog_kallsyms_add(func[i]);
7752 /* Last step: make now unused interpreter insns from main
7753 * prog consistent for later dump requests, so they can
7754 * later look the same as if they were interpreted only.
7756 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7757 if (insn->code != (BPF_JMP | BPF_CALL) ||
7758 insn->src_reg != BPF_PSEUDO_CALL)
7759 continue;
7760 insn->off = env->insn_aux_data[i].call_imm;
7761 subprog = find_subprog(env, i + insn->off + 1);
7762 insn->imm = subprog;
7765 prog->jited = 1;
7766 prog->bpf_func = func[0]->bpf_func;
7767 prog->aux->func = func;
7768 prog->aux->func_cnt = env->subprog_cnt;
7769 bpf_prog_free_unused_jited_linfo(prog);
7770 return 0;
7771 out_free:
7772 for (i = 0; i < env->subprog_cnt; i++)
7773 if (func[i])
7774 bpf_jit_free(func[i]);
7775 kfree(func);
7776 out_undo_insn:
7777 /* cleanup main prog to be interpreted */
7778 prog->jit_requested = 0;
7779 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7780 if (insn->code != (BPF_JMP | BPF_CALL) ||
7781 insn->src_reg != BPF_PSEUDO_CALL)
7782 continue;
7783 insn->off = 0;
7784 insn->imm = env->insn_aux_data[i].call_imm;
7786 bpf_prog_free_jited_linfo(prog);
7787 return err;
7790 static int fixup_call_args(struct bpf_verifier_env *env)
7792 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7793 struct bpf_prog *prog = env->prog;
7794 struct bpf_insn *insn = prog->insnsi;
7795 int i, depth;
7796 #endif
7797 int err = 0;
7799 if (env->prog->jit_requested &&
7800 !bpf_prog_is_dev_bound(env->prog->aux)) {
7801 err = jit_subprogs(env);
7802 if (err == 0)
7803 return 0;
7804 if (err == -EFAULT)
7805 return err;
7807 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7808 for (i = 0; i < prog->len; i++, insn++) {
7809 if (insn->code != (BPF_JMP | BPF_CALL) ||
7810 insn->src_reg != BPF_PSEUDO_CALL)
7811 continue;
7812 depth = get_callee_stack_depth(env, insn, i);
7813 if (depth < 0)
7814 return depth;
7815 bpf_patch_call_args(insn, depth);
7817 err = 0;
7818 #endif
7819 return err;
7822 /* fixup insn->imm field of bpf_call instructions
7823 * and inline eligible helpers as explicit sequence of BPF instructions
7825 * this function is called after eBPF program passed verification
7827 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7829 struct bpf_prog *prog = env->prog;
7830 struct bpf_insn *insn = prog->insnsi;
7831 const struct bpf_func_proto *fn;
7832 const int insn_cnt = prog->len;
7833 const struct bpf_map_ops *ops;
7834 struct bpf_insn_aux_data *aux;
7835 struct bpf_insn insn_buf[16];
7836 struct bpf_prog *new_prog;
7837 struct bpf_map *map_ptr;
7838 int i, cnt, delta = 0;
7840 for (i = 0; i < insn_cnt; i++, insn++) {
7841 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7842 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7843 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7844 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7845 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7846 struct bpf_insn mask_and_div[] = {
7847 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7848 /* Rx div 0 -> 0 */
7849 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7850 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7851 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7852 *insn,
7854 struct bpf_insn mask_and_mod[] = {
7855 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7856 /* Rx mod 0 -> Rx */
7857 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7858 *insn,
7860 struct bpf_insn *patchlet;
7862 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7863 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7864 patchlet = mask_and_div + (is64 ? 1 : 0);
7865 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7866 } else {
7867 patchlet = mask_and_mod + (is64 ? 1 : 0);
7868 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7871 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7872 if (!new_prog)
7873 return -ENOMEM;
7875 delta += cnt - 1;
7876 env->prog = prog = new_prog;
7877 insn = new_prog->insnsi + i + delta;
7878 continue;
7881 if (BPF_CLASS(insn->code) == BPF_LD &&
7882 (BPF_MODE(insn->code) == BPF_ABS ||
7883 BPF_MODE(insn->code) == BPF_IND)) {
7884 cnt = env->ops->gen_ld_abs(insn, insn_buf);
7885 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7886 verbose(env, "bpf verifier is misconfigured\n");
7887 return -EINVAL;
7890 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7891 if (!new_prog)
7892 return -ENOMEM;
7894 delta += cnt - 1;
7895 env->prog = prog = new_prog;
7896 insn = new_prog->insnsi + i + delta;
7897 continue;
7900 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7901 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7902 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7903 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7904 struct bpf_insn insn_buf[16];
7905 struct bpf_insn *patch = &insn_buf[0];
7906 bool issrc, isneg;
7907 u32 off_reg;
7909 aux = &env->insn_aux_data[i + delta];
7910 if (!aux->alu_state ||
7911 aux->alu_state == BPF_ALU_NON_POINTER)
7912 continue;
7914 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7915 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7916 BPF_ALU_SANITIZE_SRC;
7918 off_reg = issrc ? insn->src_reg : insn->dst_reg;
7919 if (isneg)
7920 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7921 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7922 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7923 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7924 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7925 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7926 if (issrc) {
7927 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7928 off_reg);
7929 insn->src_reg = BPF_REG_AX;
7930 } else {
7931 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7932 BPF_REG_AX);
7934 if (isneg)
7935 insn->code = insn->code == code_add ?
7936 code_sub : code_add;
7937 *patch++ = *insn;
7938 if (issrc && isneg)
7939 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7940 cnt = patch - insn_buf;
7942 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7943 if (!new_prog)
7944 return -ENOMEM;
7946 delta += cnt - 1;
7947 env->prog = prog = new_prog;
7948 insn = new_prog->insnsi + i + delta;
7949 continue;
7952 if (insn->code != (BPF_JMP | BPF_CALL))
7953 continue;
7954 if (insn->src_reg == BPF_PSEUDO_CALL)
7955 continue;
7957 if (insn->imm == BPF_FUNC_get_route_realm)
7958 prog->dst_needed = 1;
7959 if (insn->imm == BPF_FUNC_get_prandom_u32)
7960 bpf_user_rnd_init_once();
7961 if (insn->imm == BPF_FUNC_override_return)
7962 prog->kprobe_override = 1;
7963 if (insn->imm == BPF_FUNC_tail_call) {
7964 /* If we tail call into other programs, we
7965 * cannot make any assumptions since they can
7966 * be replaced dynamically during runtime in
7967 * the program array.
7969 prog->cb_access = 1;
7970 env->prog->aux->stack_depth = MAX_BPF_STACK;
7971 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7973 /* mark bpf_tail_call as different opcode to avoid
7974 * conditional branch in the interpeter for every normal
7975 * call and to prevent accidental JITing by JIT compiler
7976 * that doesn't support bpf_tail_call yet
7978 insn->imm = 0;
7979 insn->code = BPF_JMP | BPF_TAIL_CALL;
7981 aux = &env->insn_aux_data[i + delta];
7982 if (!bpf_map_ptr_unpriv(aux))
7983 continue;
7985 /* instead of changing every JIT dealing with tail_call
7986 * emit two extra insns:
7987 * if (index >= max_entries) goto out;
7988 * index &= array->index_mask;
7989 * to avoid out-of-bounds cpu speculation
7991 if (bpf_map_ptr_poisoned(aux)) {
7992 verbose(env, "tail_call abusing map_ptr\n");
7993 return -EINVAL;
7996 map_ptr = BPF_MAP_PTR(aux->map_state);
7997 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7998 map_ptr->max_entries, 2);
7999 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
8000 container_of(map_ptr,
8001 struct bpf_array,
8002 map)->index_mask);
8003 insn_buf[2] = *insn;
8004 cnt = 3;
8005 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8006 if (!new_prog)
8007 return -ENOMEM;
8009 delta += cnt - 1;
8010 env->prog = prog = new_prog;
8011 insn = new_prog->insnsi + i + delta;
8012 continue;
8015 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
8016 * and other inlining handlers are currently limited to 64 bit
8017 * only.
8019 if (prog->jit_requested && BITS_PER_LONG == 64 &&
8020 (insn->imm == BPF_FUNC_map_lookup_elem ||
8021 insn->imm == BPF_FUNC_map_update_elem ||
8022 insn->imm == BPF_FUNC_map_delete_elem ||
8023 insn->imm == BPF_FUNC_map_push_elem ||
8024 insn->imm == BPF_FUNC_map_pop_elem ||
8025 insn->imm == BPF_FUNC_map_peek_elem)) {
8026 aux = &env->insn_aux_data[i + delta];
8027 if (bpf_map_ptr_poisoned(aux))
8028 goto patch_call_imm;
8030 map_ptr = BPF_MAP_PTR(aux->map_state);
8031 ops = map_ptr->ops;
8032 if (insn->imm == BPF_FUNC_map_lookup_elem &&
8033 ops->map_gen_lookup) {
8034 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8035 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8036 verbose(env, "bpf verifier is misconfigured\n");
8037 return -EINVAL;
8040 new_prog = bpf_patch_insn_data(env, i + delta,
8041 insn_buf, cnt);
8042 if (!new_prog)
8043 return -ENOMEM;
8045 delta += cnt - 1;
8046 env->prog = prog = new_prog;
8047 insn = new_prog->insnsi + i + delta;
8048 continue;
8051 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8052 (void *(*)(struct bpf_map *map, void *key))NULL));
8053 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
8054 (int (*)(struct bpf_map *map, void *key))NULL));
8055 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
8056 (int (*)(struct bpf_map *map, void *key, void *value,
8057 u64 flags))NULL));
8058 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
8059 (int (*)(struct bpf_map *map, void *value,
8060 u64 flags))NULL));
8061 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
8062 (int (*)(struct bpf_map *map, void *value))NULL));
8063 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
8064 (int (*)(struct bpf_map *map, void *value))NULL));
8066 switch (insn->imm) {
8067 case BPF_FUNC_map_lookup_elem:
8068 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
8069 __bpf_call_base;
8070 continue;
8071 case BPF_FUNC_map_update_elem:
8072 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
8073 __bpf_call_base;
8074 continue;
8075 case BPF_FUNC_map_delete_elem:
8076 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
8077 __bpf_call_base;
8078 continue;
8079 case BPF_FUNC_map_push_elem:
8080 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
8081 __bpf_call_base;
8082 continue;
8083 case BPF_FUNC_map_pop_elem:
8084 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
8085 __bpf_call_base;
8086 continue;
8087 case BPF_FUNC_map_peek_elem:
8088 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
8089 __bpf_call_base;
8090 continue;
8093 goto patch_call_imm;
8096 patch_call_imm:
8097 fn = env->ops->get_func_proto(insn->imm, env->prog);
8098 /* all functions that have prototype and verifier allowed
8099 * programs to call them, must be real in-kernel functions
8101 if (!fn->func) {
8102 verbose(env,
8103 "kernel subsystem misconfigured func %s#%d\n",
8104 func_id_name(insn->imm), insn->imm);
8105 return -EFAULT;
8107 insn->imm = fn->func - __bpf_call_base;
8110 return 0;
8113 static void free_states(struct bpf_verifier_env *env)
8115 struct bpf_verifier_state_list *sl, *sln;
8116 int i;
8118 sl = env->free_list;
8119 while (sl) {
8120 sln = sl->next;
8121 free_verifier_state(&sl->state, false);
8122 kfree(sl);
8123 sl = sln;
8126 if (!env->explored_states)
8127 return;
8129 for (i = 0; i < env->prog->len; i++) {
8130 sl = env->explored_states[i];
8132 if (sl)
8133 while (sl != STATE_LIST_MARK) {
8134 sln = sl->next;
8135 free_verifier_state(&sl->state, false);
8136 kfree(sl);
8137 sl = sln;
8141 kvfree(env->explored_states);
8144 static void print_verification_stats(struct bpf_verifier_env *env)
8146 int i;
8148 if (env->log.level & BPF_LOG_STATS) {
8149 verbose(env, "verification time %lld usec\n",
8150 div_u64(env->verification_time, 1000));
8151 verbose(env, "stack depth ");
8152 for (i = 0; i < env->subprog_cnt; i++) {
8153 u32 depth = env->subprog_info[i].stack_depth;
8155 verbose(env, "%d", depth);
8156 if (i + 1 < env->subprog_cnt)
8157 verbose(env, "+");
8159 verbose(env, "\n");
8161 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8162 "total_states %d peak_states %d mark_read %d\n",
8163 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8164 env->max_states_per_insn, env->total_states,
8165 env->peak_states, env->longest_mark_read_walk);
8168 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8169 union bpf_attr __user *uattr)
8171 u64 start_time = ktime_get_ns();
8172 struct bpf_verifier_env *env;
8173 struct bpf_verifier_log *log;
8174 int i, len, ret = -EINVAL;
8175 bool is_priv;
8177 /* no program is valid */
8178 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8179 return -EINVAL;
8181 /* 'struct bpf_verifier_env' can be global, but since it's not small,
8182 * allocate/free it every time bpf_check() is called
8184 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
8185 if (!env)
8186 return -ENOMEM;
8187 log = &env->log;
8189 len = (*prog)->len;
8190 env->insn_aux_data =
8191 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
8192 ret = -ENOMEM;
8193 if (!env->insn_aux_data)
8194 goto err_free_env;
8195 for (i = 0; i < len; i++)
8196 env->insn_aux_data[i].orig_idx = i;
8197 env->prog = *prog;
8198 env->ops = bpf_verifier_ops[env->prog->type];
8199 is_priv = capable(CAP_SYS_ADMIN);
8201 /* grab the mutex to protect few globals used by verifier */
8202 if (!is_priv)
8203 mutex_lock(&bpf_verifier_lock);
8205 if (attr->log_level || attr->log_buf || attr->log_size) {
8206 /* user requested verbose verifier output
8207 * and supplied buffer to store the verification trace
8209 log->level = attr->log_level;
8210 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8211 log->len_total = attr->log_size;
8213 ret = -EINVAL;
8214 /* log attributes have to be sane */
8215 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
8216 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
8217 goto err_unlock;
8220 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8221 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
8222 env->strict_alignment = true;
8223 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8224 env->strict_alignment = false;
8226 env->allow_ptr_leaks = is_priv;
8228 ret = replace_map_fd_with_map_ptr(env);
8229 if (ret < 0)
8230 goto skip_full_check;
8232 if (bpf_prog_is_dev_bound(env->prog->aux)) {
8233 ret = bpf_prog_offload_verifier_prep(env->prog);
8234 if (ret)
8235 goto skip_full_check;
8238 env->explored_states = kvcalloc(env->prog->len,
8239 sizeof(struct bpf_verifier_state_list *),
8240 GFP_USER);
8241 ret = -ENOMEM;
8242 if (!env->explored_states)
8243 goto skip_full_check;
8245 ret = check_subprogs(env);
8246 if (ret < 0)
8247 goto skip_full_check;
8249 ret = check_btf_info(env, attr, uattr);
8250 if (ret < 0)
8251 goto skip_full_check;
8253 ret = check_cfg(env);
8254 if (ret < 0)
8255 goto skip_full_check;
8257 ret = do_check(env);
8258 if (env->cur_state) {
8259 free_verifier_state(env->cur_state, true);
8260 env->cur_state = NULL;
8263 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8264 ret = bpf_prog_offload_finalize(env);
8266 skip_full_check:
8267 while (!pop_stack(env, NULL, NULL));
8268 free_states(env);
8270 if (ret == 0)
8271 ret = check_max_stack_depth(env);
8273 /* instruction rewrites happen after this point */
8274 if (is_priv) {
8275 if (ret == 0)
8276 opt_hard_wire_dead_code_branches(env);
8277 if (ret == 0)
8278 ret = opt_remove_dead_code(env);
8279 if (ret == 0)
8280 ret = opt_remove_nops(env);
8281 } else {
8282 if (ret == 0)
8283 sanitize_dead_code(env);
8286 if (ret == 0)
8287 /* program is valid, convert *(u32*)(ctx + off) accesses */
8288 ret = convert_ctx_accesses(env);
8290 if (ret == 0)
8291 ret = fixup_bpf_calls(env);
8293 if (ret == 0)
8294 ret = fixup_call_args(env);
8296 env->verification_time = ktime_get_ns() - start_time;
8297 print_verification_stats(env);
8299 if (log->level && bpf_verifier_log_full(log))
8300 ret = -ENOSPC;
8301 if (log->level && !log->ubuf) {
8302 ret = -EFAULT;
8303 goto err_release_maps;
8306 if (ret == 0 && env->used_map_cnt) {
8307 /* if program passed verifier, update used_maps in bpf_prog_info */
8308 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8309 sizeof(env->used_maps[0]),
8310 GFP_KERNEL);
8312 if (!env->prog->aux->used_maps) {
8313 ret = -ENOMEM;
8314 goto err_release_maps;
8317 memcpy(env->prog->aux->used_maps, env->used_maps,
8318 sizeof(env->used_maps[0]) * env->used_map_cnt);
8319 env->prog->aux->used_map_cnt = env->used_map_cnt;
8321 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
8322 * bpf_ld_imm64 instructions
8324 convert_pseudo_ld_imm64(env);
8327 if (ret == 0)
8328 adjust_btf_func(env);
8330 err_release_maps:
8331 if (!env->prog->aux->used_maps)
8332 /* if we didn't copy map pointers into bpf_prog_info, release
8333 * them now. Otherwise free_used_maps() will release them.
8335 release_maps(env);
8336 *prog = env->prog;
8337 err_unlock:
8338 if (!is_priv)
8339 mutex_unlock(&bpf_verifier_lock);
8340 vfree(env->insn_aux_data);
8341 err_free_env:
8342 kfree(env);
8343 return ret;