1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
25 static const struct bpf_verifier_ops
* const bpf_verifier_ops
[] = {
26 #define BPF_PROG_TYPE(_id, _name) \
27 [_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
34 /* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
46 * analysis is limited to 64k insn, which may be hit even if total number of
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 * Most of the time the registers have SCALAR_VALUE type, which
75 * means the register has some value, but it's not a valid pointer.
76 * (like pointer plus pointer becomes SCALAR_VALUE type)
78 * When verifier sees load or store instructions the type of base register
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem
{
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
165 struct bpf_verifier_state st
;
168 struct bpf_verifier_stack_elem
*next
;
171 #define BPF_COMPLEXITY_LIMIT_STACK 1024
172 #define BPF_COMPLEXITY_LIMIT_STATES 64
174 #define BPF_MAP_PTR_UNPRIV 1UL
175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
176 POISON_POINTER_DELTA))
177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data
*aux
)
181 return BPF_MAP_PTR(aux
->map_state
) == BPF_MAP_PTR_POISON
;
184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data
*aux
)
186 return aux
->map_state
& BPF_MAP_PTR_UNPRIV
;
189 static void bpf_map_ptr_store(struct bpf_insn_aux_data
*aux
,
190 const struct bpf_map
*map
, bool unpriv
)
192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON
& BPF_MAP_PTR_UNPRIV
);
193 unpriv
|= bpf_map_ptr_unpriv(aux
);
194 aux
->map_state
= (unsigned long)map
|
195 (unpriv
? BPF_MAP_PTR_UNPRIV
: 0UL);
198 struct bpf_call_arg_meta
{
199 struct bpf_map
*map_ptr
;
204 s64 msize_smax_value
;
205 u64 msize_umax_value
;
210 static DEFINE_MUTEX(bpf_verifier_lock
);
212 static const struct bpf_line_info
*
213 find_linfo(const struct bpf_verifier_env
*env
, u32 insn_off
)
215 const struct bpf_line_info
*linfo
;
216 const struct bpf_prog
*prog
;
220 nr_linfo
= prog
->aux
->nr_linfo
;
222 if (!nr_linfo
|| insn_off
>= prog
->len
)
225 linfo
= prog
->aux
->linfo
;
226 for (i
= 1; i
< nr_linfo
; i
++)
227 if (insn_off
< linfo
[i
].insn_off
)
230 return &linfo
[i
- 1];
233 void bpf_verifier_vlog(struct bpf_verifier_log
*log
, const char *fmt
,
238 n
= vscnprintf(log
->kbuf
, BPF_VERIFIER_TMP_LOG_SIZE
, fmt
, args
);
240 WARN_ONCE(n
>= BPF_VERIFIER_TMP_LOG_SIZE
- 1,
241 "verifier log line truncated - local buffer too short\n");
243 n
= min(log
->len_total
- log
->len_used
- 1, n
);
246 if (!copy_to_user(log
->ubuf
+ log
->len_used
, log
->kbuf
, n
+ 1))
252 /* log_level controls verbosity level of eBPF verifier.
253 * bpf_verifier_log_write() is used to dump the verification trace to the log,
254 * so the user can figure out what's wrong with the program
256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env
*env
,
257 const char *fmt
, ...)
261 if (!bpf_verifier_log_needed(&env
->log
))
265 bpf_verifier_vlog(&env
->log
, fmt
, args
);
268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write
);
270 __printf(2, 3) static void verbose(void *private_data
, const char *fmt
, ...)
272 struct bpf_verifier_env
*env
= private_data
;
275 if (!bpf_verifier_log_needed(&env
->log
))
279 bpf_verifier_vlog(&env
->log
, fmt
, args
);
283 static const char *ltrim(const char *s
)
291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env
*env
,
293 const char *prefix_fmt
, ...)
295 const struct bpf_line_info
*linfo
;
297 if (!bpf_verifier_log_needed(&env
->log
))
300 linfo
= find_linfo(env
, insn_off
);
301 if (!linfo
|| linfo
== env
->prev_linfo
)
307 va_start(args
, prefix_fmt
);
308 bpf_verifier_vlog(&env
->log
, prefix_fmt
, args
);
313 ltrim(btf_name_by_offset(env
->prog
->aux
->btf
,
316 env
->prev_linfo
= linfo
;
319 static bool type_is_pkt_pointer(enum bpf_reg_type type
)
321 return type
== PTR_TO_PACKET
||
322 type
== PTR_TO_PACKET_META
;
325 static bool type_is_sk_pointer(enum bpf_reg_type type
)
327 return type
== PTR_TO_SOCKET
||
328 type
== PTR_TO_SOCK_COMMON
||
329 type
== PTR_TO_TCP_SOCK
;
332 static bool reg_type_may_be_null(enum bpf_reg_type type
)
334 return type
== PTR_TO_MAP_VALUE_OR_NULL
||
335 type
== PTR_TO_SOCKET_OR_NULL
||
336 type
== PTR_TO_SOCK_COMMON_OR_NULL
||
337 type
== PTR_TO_TCP_SOCK_OR_NULL
;
340 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state
*reg
)
342 return reg
->type
== PTR_TO_MAP_VALUE
&&
343 map_value_has_spin_lock(reg
->map_ptr
);
346 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type
)
348 return type
== PTR_TO_SOCKET
||
349 type
== PTR_TO_SOCKET_OR_NULL
||
350 type
== PTR_TO_TCP_SOCK
||
351 type
== PTR_TO_TCP_SOCK_OR_NULL
;
354 static bool arg_type_may_be_refcounted(enum bpf_arg_type type
)
356 return type
== ARG_PTR_TO_SOCK_COMMON
;
359 /* Determine whether the function releases some resources allocated by another
360 * function call. The first reference type argument will be assumed to be
361 * released by release_reference().
363 static bool is_release_function(enum bpf_func_id func_id
)
365 return func_id
== BPF_FUNC_sk_release
;
368 static bool is_acquire_function(enum bpf_func_id func_id
)
370 return func_id
== BPF_FUNC_sk_lookup_tcp
||
371 func_id
== BPF_FUNC_sk_lookup_udp
||
372 func_id
== BPF_FUNC_skc_lookup_tcp
;
375 static bool is_ptr_cast_function(enum bpf_func_id func_id
)
377 return func_id
== BPF_FUNC_tcp_sock
||
378 func_id
== BPF_FUNC_sk_fullsock
;
381 /* string representation of 'enum bpf_reg_type' */
382 static const char * const reg_type_str
[] = {
384 [SCALAR_VALUE
] = "inv",
385 [PTR_TO_CTX
] = "ctx",
386 [CONST_PTR_TO_MAP
] = "map_ptr",
387 [PTR_TO_MAP_VALUE
] = "map_value",
388 [PTR_TO_MAP_VALUE_OR_NULL
] = "map_value_or_null",
389 [PTR_TO_STACK
] = "fp",
390 [PTR_TO_PACKET
] = "pkt",
391 [PTR_TO_PACKET_META
] = "pkt_meta",
392 [PTR_TO_PACKET_END
] = "pkt_end",
393 [PTR_TO_FLOW_KEYS
] = "flow_keys",
394 [PTR_TO_SOCKET
] = "sock",
395 [PTR_TO_SOCKET_OR_NULL
] = "sock_or_null",
396 [PTR_TO_SOCK_COMMON
] = "sock_common",
397 [PTR_TO_SOCK_COMMON_OR_NULL
] = "sock_common_or_null",
398 [PTR_TO_TCP_SOCK
] = "tcp_sock",
399 [PTR_TO_TCP_SOCK_OR_NULL
] = "tcp_sock_or_null",
400 [PTR_TO_TP_BUFFER
] = "tp_buffer",
403 static char slot_type_char
[] = {
404 [STACK_INVALID
] = '?',
410 static void print_liveness(struct bpf_verifier_env
*env
,
411 enum bpf_reg_liveness live
)
413 if (live
& (REG_LIVE_READ
| REG_LIVE_WRITTEN
| REG_LIVE_DONE
))
415 if (live
& REG_LIVE_READ
)
417 if (live
& REG_LIVE_WRITTEN
)
419 if (live
& REG_LIVE_DONE
)
423 static struct bpf_func_state
*func(struct bpf_verifier_env
*env
,
424 const struct bpf_reg_state
*reg
)
426 struct bpf_verifier_state
*cur
= env
->cur_state
;
428 return cur
->frame
[reg
->frameno
];
431 static void print_verifier_state(struct bpf_verifier_env
*env
,
432 const struct bpf_func_state
*state
)
434 const struct bpf_reg_state
*reg
;
439 verbose(env
, " frame%d:", state
->frameno
);
440 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
441 reg
= &state
->regs
[i
];
445 verbose(env
, " R%d", i
);
446 print_liveness(env
, reg
->live
);
447 verbose(env
, "=%s", reg_type_str
[t
]);
448 if ((t
== SCALAR_VALUE
|| t
== PTR_TO_STACK
) &&
449 tnum_is_const(reg
->var_off
)) {
450 /* reg->off should be 0 for SCALAR_VALUE */
451 verbose(env
, "%lld", reg
->var_off
.value
+ reg
->off
);
452 if (t
== PTR_TO_STACK
)
453 verbose(env
, ",call_%d", func(env
, reg
)->callsite
);
455 verbose(env
, "(id=%d", reg
->id
);
456 if (reg_type_may_be_refcounted_or_null(t
))
457 verbose(env
, ",ref_obj_id=%d", reg
->ref_obj_id
);
458 if (t
!= SCALAR_VALUE
)
459 verbose(env
, ",off=%d", reg
->off
);
460 if (type_is_pkt_pointer(t
))
461 verbose(env
, ",r=%d", reg
->range
);
462 else if (t
== CONST_PTR_TO_MAP
||
463 t
== PTR_TO_MAP_VALUE
||
464 t
== PTR_TO_MAP_VALUE_OR_NULL
)
465 verbose(env
, ",ks=%d,vs=%d",
466 reg
->map_ptr
->key_size
,
467 reg
->map_ptr
->value_size
);
468 if (tnum_is_const(reg
->var_off
)) {
469 /* Typically an immediate SCALAR_VALUE, but
470 * could be a pointer whose offset is too big
473 verbose(env
, ",imm=%llx", reg
->var_off
.value
);
475 if (reg
->smin_value
!= reg
->umin_value
&&
476 reg
->smin_value
!= S64_MIN
)
477 verbose(env
, ",smin_value=%lld",
478 (long long)reg
->smin_value
);
479 if (reg
->smax_value
!= reg
->umax_value
&&
480 reg
->smax_value
!= S64_MAX
)
481 verbose(env
, ",smax_value=%lld",
482 (long long)reg
->smax_value
);
483 if (reg
->umin_value
!= 0)
484 verbose(env
, ",umin_value=%llu",
485 (unsigned long long)reg
->umin_value
);
486 if (reg
->umax_value
!= U64_MAX
)
487 verbose(env
, ",umax_value=%llu",
488 (unsigned long long)reg
->umax_value
);
489 if (!tnum_is_unknown(reg
->var_off
)) {
492 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
493 verbose(env
, ",var_off=%s", tn_buf
);
499 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
500 char types_buf
[BPF_REG_SIZE
+ 1];
504 for (j
= 0; j
< BPF_REG_SIZE
; j
++) {
505 if (state
->stack
[i
].slot_type
[j
] != STACK_INVALID
)
507 types_buf
[j
] = slot_type_char
[
508 state
->stack
[i
].slot_type
[j
]];
510 types_buf
[BPF_REG_SIZE
] = 0;
513 verbose(env
, " fp%d", (-i
- 1) * BPF_REG_SIZE
);
514 print_liveness(env
, state
->stack
[i
].spilled_ptr
.live
);
515 if (state
->stack
[i
].slot_type
[0] == STACK_SPILL
)
517 reg_type_str
[state
->stack
[i
].spilled_ptr
.type
]);
519 verbose(env
, "=%s", types_buf
);
521 if (state
->acquired_refs
&& state
->refs
[0].id
) {
522 verbose(env
, " refs=%d", state
->refs
[0].id
);
523 for (i
= 1; i
< state
->acquired_refs
; i
++)
524 if (state
->refs
[i
].id
)
525 verbose(env
, ",%d", state
->refs
[i
].id
);
530 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
531 static int copy_##NAME##_state(struct bpf_func_state *dst, \
532 const struct bpf_func_state *src) \
536 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
537 /* internal bug, make state invalid to reject the program */ \
538 memset(dst, 0, sizeof(*dst)); \
541 memcpy(dst->FIELD, src->FIELD, \
542 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
545 /* copy_reference_state() */
546 COPY_STATE_FN(reference
, acquired_refs
, refs
, 1)
547 /* copy_stack_state() */
548 COPY_STATE_FN(stack
, allocated_stack
, stack
, BPF_REG_SIZE
)
551 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
552 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
555 u32 old_size = state->COUNT; \
556 struct bpf_##NAME##_state *new_##FIELD; \
557 int slot = size / SIZE; \
559 if (size <= old_size || !size) { \
562 state->COUNT = slot * SIZE; \
563 if (!size && old_size) { \
564 kfree(state->FIELD); \
565 state->FIELD = NULL; \
569 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
575 memcpy(new_##FIELD, state->FIELD, \
576 sizeof(*new_##FIELD) * (old_size / SIZE)); \
577 memset(new_##FIELD + old_size / SIZE, 0, \
578 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
580 state->COUNT = slot * SIZE; \
581 kfree(state->FIELD); \
582 state->FIELD = new_##FIELD; \
585 /* realloc_reference_state() */
586 REALLOC_STATE_FN(reference
, acquired_refs
, refs
, 1)
587 /* realloc_stack_state() */
588 REALLOC_STATE_FN(stack
, allocated_stack
, stack
, BPF_REG_SIZE
)
589 #undef REALLOC_STATE_FN
591 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
592 * make it consume minimal amount of memory. check_stack_write() access from
593 * the program calls into realloc_func_state() to grow the stack size.
594 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
595 * which realloc_stack_state() copies over. It points to previous
596 * bpf_verifier_state which is never reallocated.
598 static int realloc_func_state(struct bpf_func_state
*state
, int stack_size
,
599 int refs_size
, bool copy_old
)
601 int err
= realloc_reference_state(state
, refs_size
, copy_old
);
604 return realloc_stack_state(state
, stack_size
, copy_old
);
607 /* Acquire a pointer id from the env and update the state->refs to include
608 * this new pointer reference.
609 * On success, returns a valid pointer id to associate with the register
610 * On failure, returns a negative errno.
612 static int acquire_reference_state(struct bpf_verifier_env
*env
, int insn_idx
)
614 struct bpf_func_state
*state
= cur_func(env
);
615 int new_ofs
= state
->acquired_refs
;
618 err
= realloc_reference_state(state
, state
->acquired_refs
+ 1, true);
622 state
->refs
[new_ofs
].id
= id
;
623 state
->refs
[new_ofs
].insn_idx
= insn_idx
;
628 /* release function corresponding to acquire_reference_state(). Idempotent. */
629 static int release_reference_state(struct bpf_func_state
*state
, int ptr_id
)
633 last_idx
= state
->acquired_refs
- 1;
634 for (i
= 0; i
< state
->acquired_refs
; i
++) {
635 if (state
->refs
[i
].id
== ptr_id
) {
636 if (last_idx
&& i
!= last_idx
)
637 memcpy(&state
->refs
[i
], &state
->refs
[last_idx
],
638 sizeof(*state
->refs
));
639 memset(&state
->refs
[last_idx
], 0, sizeof(*state
->refs
));
640 state
->acquired_refs
--;
647 static int transfer_reference_state(struct bpf_func_state
*dst
,
648 struct bpf_func_state
*src
)
650 int err
= realloc_reference_state(dst
, src
->acquired_refs
, false);
653 err
= copy_reference_state(dst
, src
);
659 static void free_func_state(struct bpf_func_state
*state
)
668 static void free_verifier_state(struct bpf_verifier_state
*state
,
673 for (i
= 0; i
<= state
->curframe
; i
++) {
674 free_func_state(state
->frame
[i
]);
675 state
->frame
[i
] = NULL
;
681 /* copy verifier state from src to dst growing dst stack space
682 * when necessary to accommodate larger src stack
684 static int copy_func_state(struct bpf_func_state
*dst
,
685 const struct bpf_func_state
*src
)
689 err
= realloc_func_state(dst
, src
->allocated_stack
, src
->acquired_refs
,
693 memcpy(dst
, src
, offsetof(struct bpf_func_state
, acquired_refs
));
694 err
= copy_reference_state(dst
, src
);
697 return copy_stack_state(dst
, src
);
700 static int copy_verifier_state(struct bpf_verifier_state
*dst_state
,
701 const struct bpf_verifier_state
*src
)
703 struct bpf_func_state
*dst
;
706 /* if dst has more stack frames then src frame, free them */
707 for (i
= src
->curframe
+ 1; i
<= dst_state
->curframe
; i
++) {
708 free_func_state(dst_state
->frame
[i
]);
709 dst_state
->frame
[i
] = NULL
;
711 dst_state
->speculative
= src
->speculative
;
712 dst_state
->curframe
= src
->curframe
;
713 dst_state
->active_spin_lock
= src
->active_spin_lock
;
714 for (i
= 0; i
<= src
->curframe
; i
++) {
715 dst
= dst_state
->frame
[i
];
717 dst
= kzalloc(sizeof(*dst
), GFP_KERNEL
);
720 dst_state
->frame
[i
] = dst
;
722 err
= copy_func_state(dst
, src
->frame
[i
]);
729 static int pop_stack(struct bpf_verifier_env
*env
, int *prev_insn_idx
,
732 struct bpf_verifier_state
*cur
= env
->cur_state
;
733 struct bpf_verifier_stack_elem
*elem
, *head
= env
->head
;
736 if (env
->head
== NULL
)
740 err
= copy_verifier_state(cur
, &head
->st
);
745 *insn_idx
= head
->insn_idx
;
747 *prev_insn_idx
= head
->prev_insn_idx
;
749 free_verifier_state(&head
->st
, false);
756 static struct bpf_verifier_state
*push_stack(struct bpf_verifier_env
*env
,
757 int insn_idx
, int prev_insn_idx
,
760 struct bpf_verifier_state
*cur
= env
->cur_state
;
761 struct bpf_verifier_stack_elem
*elem
;
764 elem
= kzalloc(sizeof(struct bpf_verifier_stack_elem
), GFP_KERNEL
);
768 elem
->insn_idx
= insn_idx
;
769 elem
->prev_insn_idx
= prev_insn_idx
;
770 elem
->next
= env
->head
;
773 err
= copy_verifier_state(&elem
->st
, cur
);
776 elem
->st
.speculative
|= speculative
;
777 if (env
->stack_size
> BPF_COMPLEXITY_LIMIT_STACK
) {
778 verbose(env
, "BPF program is too complex\n");
783 free_verifier_state(env
->cur_state
, true);
784 env
->cur_state
= NULL
;
785 /* pop all elements and return */
786 while (!pop_stack(env
, NULL
, NULL
));
790 #define CALLER_SAVED_REGS 6
791 static const int caller_saved
[CALLER_SAVED_REGS
] = {
792 BPF_REG_0
, BPF_REG_1
, BPF_REG_2
, BPF_REG_3
, BPF_REG_4
, BPF_REG_5
795 static void __mark_reg_not_init(struct bpf_reg_state
*reg
);
797 /* Mark the unknown part of a register (variable offset or scalar value) as
798 * known to have the value @imm.
800 static void __mark_reg_known(struct bpf_reg_state
*reg
, u64 imm
)
802 /* Clear id, off, and union(map_ptr, range) */
803 memset(((u8
*)reg
) + sizeof(reg
->type
), 0,
804 offsetof(struct bpf_reg_state
, var_off
) - sizeof(reg
->type
));
805 reg
->var_off
= tnum_const(imm
);
806 reg
->smin_value
= (s64
)imm
;
807 reg
->smax_value
= (s64
)imm
;
808 reg
->umin_value
= imm
;
809 reg
->umax_value
= imm
;
812 /* Mark the 'variable offset' part of a register as zero. This should be
813 * used only on registers holding a pointer type.
815 static void __mark_reg_known_zero(struct bpf_reg_state
*reg
)
817 __mark_reg_known(reg
, 0);
820 static void __mark_reg_const_zero(struct bpf_reg_state
*reg
)
822 __mark_reg_known(reg
, 0);
823 reg
->type
= SCALAR_VALUE
;
826 static void mark_reg_known_zero(struct bpf_verifier_env
*env
,
827 struct bpf_reg_state
*regs
, u32 regno
)
829 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
830 verbose(env
, "mark_reg_known_zero(regs, %u)\n", regno
);
831 /* Something bad happened, let's kill all regs */
832 for (regno
= 0; regno
< MAX_BPF_REG
; regno
++)
833 __mark_reg_not_init(regs
+ regno
);
836 __mark_reg_known_zero(regs
+ regno
);
839 static bool reg_is_pkt_pointer(const struct bpf_reg_state
*reg
)
841 return type_is_pkt_pointer(reg
->type
);
844 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state
*reg
)
846 return reg_is_pkt_pointer(reg
) ||
847 reg
->type
== PTR_TO_PACKET_END
;
850 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
851 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state
*reg
,
852 enum bpf_reg_type which
)
854 /* The register can already have a range from prior markings.
855 * This is fine as long as it hasn't been advanced from its
858 return reg
->type
== which
&&
861 tnum_equals_const(reg
->var_off
, 0);
864 /* Attempts to improve min/max values based on var_off information */
865 static void __update_reg_bounds(struct bpf_reg_state
*reg
)
867 /* min signed is max(sign bit) | min(other bits) */
868 reg
->smin_value
= max_t(s64
, reg
->smin_value
,
869 reg
->var_off
.value
| (reg
->var_off
.mask
& S64_MIN
));
870 /* max signed is min(sign bit) | max(other bits) */
871 reg
->smax_value
= min_t(s64
, reg
->smax_value
,
872 reg
->var_off
.value
| (reg
->var_off
.mask
& S64_MAX
));
873 reg
->umin_value
= max(reg
->umin_value
, reg
->var_off
.value
);
874 reg
->umax_value
= min(reg
->umax_value
,
875 reg
->var_off
.value
| reg
->var_off
.mask
);
878 /* Uses signed min/max values to inform unsigned, and vice-versa */
879 static void __reg_deduce_bounds(struct bpf_reg_state
*reg
)
881 /* Learn sign from signed bounds.
882 * If we cannot cross the sign boundary, then signed and unsigned bounds
883 * are the same, so combine. This works even in the negative case, e.g.
884 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
886 if (reg
->smin_value
>= 0 || reg
->smax_value
< 0) {
887 reg
->smin_value
= reg
->umin_value
= max_t(u64
, reg
->smin_value
,
889 reg
->smax_value
= reg
->umax_value
= min_t(u64
, reg
->smax_value
,
893 /* Learn sign from unsigned bounds. Signed bounds cross the sign
894 * boundary, so we must be careful.
896 if ((s64
)reg
->umax_value
>= 0) {
897 /* Positive. We can't learn anything from the smin, but smax
898 * is positive, hence safe.
900 reg
->smin_value
= reg
->umin_value
;
901 reg
->smax_value
= reg
->umax_value
= min_t(u64
, reg
->smax_value
,
903 } else if ((s64
)reg
->umin_value
< 0) {
904 /* Negative. We can't learn anything from the smax, but smin
905 * is negative, hence safe.
907 reg
->smin_value
= reg
->umin_value
= max_t(u64
, reg
->smin_value
,
909 reg
->smax_value
= reg
->umax_value
;
913 /* Attempts to improve var_off based on unsigned min/max information */
914 static void __reg_bound_offset(struct bpf_reg_state
*reg
)
916 reg
->var_off
= tnum_intersect(reg
->var_off
,
917 tnum_range(reg
->umin_value
,
921 /* Reset the min/max bounds of a register */
922 static void __mark_reg_unbounded(struct bpf_reg_state
*reg
)
924 reg
->smin_value
= S64_MIN
;
925 reg
->smax_value
= S64_MAX
;
927 reg
->umax_value
= U64_MAX
;
930 /* Mark a register as having a completely unknown (scalar) value. */
931 static void __mark_reg_unknown(struct bpf_reg_state
*reg
)
934 * Clear type, id, off, and union(map_ptr, range) and
935 * padding between 'type' and union
937 memset(reg
, 0, offsetof(struct bpf_reg_state
, var_off
));
938 reg
->type
= SCALAR_VALUE
;
939 reg
->var_off
= tnum_unknown
;
941 __mark_reg_unbounded(reg
);
944 static void mark_reg_unknown(struct bpf_verifier_env
*env
,
945 struct bpf_reg_state
*regs
, u32 regno
)
947 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
948 verbose(env
, "mark_reg_unknown(regs, %u)\n", regno
);
949 /* Something bad happened, let's kill all regs except FP */
950 for (regno
= 0; regno
< BPF_REG_FP
; regno
++)
951 __mark_reg_not_init(regs
+ regno
);
954 __mark_reg_unknown(regs
+ regno
);
957 static void __mark_reg_not_init(struct bpf_reg_state
*reg
)
959 __mark_reg_unknown(reg
);
960 reg
->type
= NOT_INIT
;
963 static void mark_reg_not_init(struct bpf_verifier_env
*env
,
964 struct bpf_reg_state
*regs
, u32 regno
)
966 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
967 verbose(env
, "mark_reg_not_init(regs, %u)\n", regno
);
968 /* Something bad happened, let's kill all regs except FP */
969 for (regno
= 0; regno
< BPF_REG_FP
; regno
++)
970 __mark_reg_not_init(regs
+ regno
);
973 __mark_reg_not_init(regs
+ regno
);
976 static void init_reg_state(struct bpf_verifier_env
*env
,
977 struct bpf_func_state
*state
)
979 struct bpf_reg_state
*regs
= state
->regs
;
982 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
983 mark_reg_not_init(env
, regs
, i
);
984 regs
[i
].live
= REG_LIVE_NONE
;
985 regs
[i
].parent
= NULL
;
989 regs
[BPF_REG_FP
].type
= PTR_TO_STACK
;
990 mark_reg_known_zero(env
, regs
, BPF_REG_FP
);
991 regs
[BPF_REG_FP
].frameno
= state
->frameno
;
993 /* 1st arg to a function */
994 regs
[BPF_REG_1
].type
= PTR_TO_CTX
;
995 mark_reg_known_zero(env
, regs
, BPF_REG_1
);
998 #define BPF_MAIN_FUNC (-1)
999 static void init_func_state(struct bpf_verifier_env
*env
,
1000 struct bpf_func_state
*state
,
1001 int callsite
, int frameno
, int subprogno
)
1003 state
->callsite
= callsite
;
1004 state
->frameno
= frameno
;
1005 state
->subprogno
= subprogno
;
1006 init_reg_state(env
, state
);
1010 SRC_OP
, /* register is used as source operand */
1011 DST_OP
, /* register is used as destination operand */
1012 DST_OP_NO_MARK
/* same as above, check only, don't mark */
1015 static int cmp_subprogs(const void *a
, const void *b
)
1017 return ((struct bpf_subprog_info
*)a
)->start
-
1018 ((struct bpf_subprog_info
*)b
)->start
;
1021 static int find_subprog(struct bpf_verifier_env
*env
, int off
)
1023 struct bpf_subprog_info
*p
;
1025 p
= bsearch(&off
, env
->subprog_info
, env
->subprog_cnt
,
1026 sizeof(env
->subprog_info
[0]), cmp_subprogs
);
1029 return p
- env
->subprog_info
;
1033 static int add_subprog(struct bpf_verifier_env
*env
, int off
)
1035 int insn_cnt
= env
->prog
->len
;
1038 if (off
>= insn_cnt
|| off
< 0) {
1039 verbose(env
, "call to invalid destination\n");
1042 ret
= find_subprog(env
, off
);
1045 if (env
->subprog_cnt
>= BPF_MAX_SUBPROGS
) {
1046 verbose(env
, "too many subprograms\n");
1049 env
->subprog_info
[env
->subprog_cnt
++].start
= off
;
1050 sort(env
->subprog_info
, env
->subprog_cnt
,
1051 sizeof(env
->subprog_info
[0]), cmp_subprogs
, NULL
);
1055 static int check_subprogs(struct bpf_verifier_env
*env
)
1057 int i
, ret
, subprog_start
, subprog_end
, off
, cur_subprog
= 0;
1058 struct bpf_subprog_info
*subprog
= env
->subprog_info
;
1059 struct bpf_insn
*insn
= env
->prog
->insnsi
;
1060 int insn_cnt
= env
->prog
->len
;
1062 /* Add entry function. */
1063 ret
= add_subprog(env
, 0);
1067 /* determine subprog starts. The end is one before the next starts */
1068 for (i
= 0; i
< insn_cnt
; i
++) {
1069 if (insn
[i
].code
!= (BPF_JMP
| BPF_CALL
))
1071 if (insn
[i
].src_reg
!= BPF_PSEUDO_CALL
)
1073 if (!env
->allow_ptr_leaks
) {
1074 verbose(env
, "function calls to other bpf functions are allowed for root only\n");
1077 ret
= add_subprog(env
, i
+ insn
[i
].imm
+ 1);
1082 /* Add a fake 'exit' subprog which could simplify subprog iteration
1083 * logic. 'subprog_cnt' should not be increased.
1085 subprog
[env
->subprog_cnt
].start
= insn_cnt
;
1087 if (env
->log
.level
& BPF_LOG_LEVEL2
)
1088 for (i
= 0; i
< env
->subprog_cnt
; i
++)
1089 verbose(env
, "func#%d @%d\n", i
, subprog
[i
].start
);
1091 /* now check that all jumps are within the same subprog */
1092 subprog_start
= subprog
[cur_subprog
].start
;
1093 subprog_end
= subprog
[cur_subprog
+ 1].start
;
1094 for (i
= 0; i
< insn_cnt
; i
++) {
1095 u8 code
= insn
[i
].code
;
1097 if (BPF_CLASS(code
) != BPF_JMP
&& BPF_CLASS(code
) != BPF_JMP32
)
1099 if (BPF_OP(code
) == BPF_EXIT
|| BPF_OP(code
) == BPF_CALL
)
1101 off
= i
+ insn
[i
].off
+ 1;
1102 if (off
< subprog_start
|| off
>= subprog_end
) {
1103 verbose(env
, "jump out of range from insn %d to %d\n", i
, off
);
1107 if (i
== subprog_end
- 1) {
1108 /* to avoid fall-through from one subprog into another
1109 * the last insn of the subprog should be either exit
1110 * or unconditional jump back
1112 if (code
!= (BPF_JMP
| BPF_EXIT
) &&
1113 code
!= (BPF_JMP
| BPF_JA
)) {
1114 verbose(env
, "last insn is not an exit or jmp\n");
1117 subprog_start
= subprog_end
;
1119 if (cur_subprog
< env
->subprog_cnt
)
1120 subprog_end
= subprog
[cur_subprog
+ 1].start
;
1126 /* Parentage chain of this register (or stack slot) should take care of all
1127 * issues like callee-saved registers, stack slot allocation time, etc.
1129 static int mark_reg_read(struct bpf_verifier_env
*env
,
1130 const struct bpf_reg_state
*state
,
1131 struct bpf_reg_state
*parent
)
1133 bool writes
= parent
== state
->parent
; /* Observe write marks */
1137 /* if read wasn't screened by an earlier write ... */
1138 if (writes
&& state
->live
& REG_LIVE_WRITTEN
)
1140 if (parent
->live
& REG_LIVE_DONE
) {
1141 verbose(env
, "verifier BUG type %s var_off %lld off %d\n",
1142 reg_type_str
[parent
->type
],
1143 parent
->var_off
.value
, parent
->off
);
1146 if (parent
->live
& REG_LIVE_READ
)
1147 /* The parentage chain never changes and
1148 * this parent was already marked as LIVE_READ.
1149 * There is no need to keep walking the chain again and
1150 * keep re-marking all parents as LIVE_READ.
1151 * This case happens when the same register is read
1152 * multiple times without writes into it in-between.
1155 /* ... then we depend on parent's value */
1156 parent
->live
|= REG_LIVE_READ
;
1158 parent
= state
->parent
;
1163 if (env
->longest_mark_read_walk
< cnt
)
1164 env
->longest_mark_read_walk
= cnt
;
1168 static int check_reg_arg(struct bpf_verifier_env
*env
, u32 regno
,
1169 enum reg_arg_type t
)
1171 struct bpf_verifier_state
*vstate
= env
->cur_state
;
1172 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
1173 struct bpf_reg_state
*reg
, *regs
= state
->regs
;
1175 if (regno
>= MAX_BPF_REG
) {
1176 verbose(env
, "R%d is invalid\n", regno
);
1182 /* check whether register used as source operand can be read */
1183 if (reg
->type
== NOT_INIT
) {
1184 verbose(env
, "R%d !read_ok\n", regno
);
1187 /* We don't need to worry about FP liveness because it's read-only */
1188 if (regno
== BPF_REG_FP
)
1191 return mark_reg_read(env
, reg
, reg
->parent
);
1193 /* check whether register used as dest operand can be written to */
1194 if (regno
== BPF_REG_FP
) {
1195 verbose(env
, "frame pointer is read only\n");
1198 reg
->live
|= REG_LIVE_WRITTEN
;
1200 mark_reg_unknown(env
, regs
, regno
);
1205 static bool is_spillable_regtype(enum bpf_reg_type type
)
1208 case PTR_TO_MAP_VALUE
:
1209 case PTR_TO_MAP_VALUE_OR_NULL
:
1213 case PTR_TO_PACKET_META
:
1214 case PTR_TO_PACKET_END
:
1215 case PTR_TO_FLOW_KEYS
:
1216 case CONST_PTR_TO_MAP
:
1218 case PTR_TO_SOCKET_OR_NULL
:
1219 case PTR_TO_SOCK_COMMON
:
1220 case PTR_TO_SOCK_COMMON_OR_NULL
:
1221 case PTR_TO_TCP_SOCK
:
1222 case PTR_TO_TCP_SOCK_OR_NULL
:
1229 /* Does this register contain a constant zero? */
1230 static bool register_is_null(struct bpf_reg_state
*reg
)
1232 return reg
->type
== SCALAR_VALUE
&& tnum_equals_const(reg
->var_off
, 0);
1235 /* check_stack_read/write functions track spill/fill of registers,
1236 * stack boundary and alignment are checked in check_mem_access()
1238 static int check_stack_write(struct bpf_verifier_env
*env
,
1239 struct bpf_func_state
*state
, /* func where register points to */
1240 int off
, int size
, int value_regno
, int insn_idx
)
1242 struct bpf_func_state
*cur
; /* state of the current function */
1243 int i
, slot
= -off
- 1, spi
= slot
/ BPF_REG_SIZE
, err
;
1244 enum bpf_reg_type type
;
1246 err
= realloc_func_state(state
, round_up(slot
+ 1, BPF_REG_SIZE
),
1247 state
->acquired_refs
, true);
1250 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1251 * so it's aligned access and [off, off + size) are within stack limits
1253 if (!env
->allow_ptr_leaks
&&
1254 state
->stack
[spi
].slot_type
[0] == STACK_SPILL
&&
1255 size
!= BPF_REG_SIZE
) {
1256 verbose(env
, "attempt to corrupt spilled pointer on stack\n");
1260 cur
= env
->cur_state
->frame
[env
->cur_state
->curframe
];
1261 if (value_regno
>= 0 &&
1262 is_spillable_regtype((type
= cur
->regs
[value_regno
].type
))) {
1264 /* register containing pointer is being spilled into stack */
1265 if (size
!= BPF_REG_SIZE
) {
1266 verbose(env
, "invalid size of register spill\n");
1270 if (state
!= cur
&& type
== PTR_TO_STACK
) {
1271 verbose(env
, "cannot spill pointers to stack into stack frame of the caller\n");
1275 /* save register state */
1276 state
->stack
[spi
].spilled_ptr
= cur
->regs
[value_regno
];
1277 state
->stack
[spi
].spilled_ptr
.live
|= REG_LIVE_WRITTEN
;
1279 for (i
= 0; i
< BPF_REG_SIZE
; i
++) {
1280 if (state
->stack
[spi
].slot_type
[i
] == STACK_MISC
&&
1281 !env
->allow_ptr_leaks
) {
1282 int *poff
= &env
->insn_aux_data
[insn_idx
].sanitize_stack_off
;
1283 int soff
= (-spi
- 1) * BPF_REG_SIZE
;
1285 /* detected reuse of integer stack slot with a pointer
1286 * which means either llvm is reusing stack slot or
1287 * an attacker is trying to exploit CVE-2018-3639
1288 * (speculative store bypass)
1289 * Have to sanitize that slot with preemptive
1292 if (*poff
&& *poff
!= soff
) {
1293 /* disallow programs where single insn stores
1294 * into two different stack slots, since verifier
1295 * cannot sanitize them
1298 "insn %d cannot access two stack slots fp%d and fp%d",
1299 insn_idx
, *poff
, soff
);
1304 state
->stack
[spi
].slot_type
[i
] = STACK_SPILL
;
1307 u8 type
= STACK_MISC
;
1309 /* regular write of data into stack destroys any spilled ptr */
1310 state
->stack
[spi
].spilled_ptr
.type
= NOT_INIT
;
1311 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1312 if (state
->stack
[spi
].slot_type
[0] == STACK_SPILL
)
1313 for (i
= 0; i
< BPF_REG_SIZE
; i
++)
1314 state
->stack
[spi
].slot_type
[i
] = STACK_MISC
;
1316 /* only mark the slot as written if all 8 bytes were written
1317 * otherwise read propagation may incorrectly stop too soon
1318 * when stack slots are partially written.
1319 * This heuristic means that read propagation will be
1320 * conservative, since it will add reg_live_read marks
1321 * to stack slots all the way to first state when programs
1322 * writes+reads less than 8 bytes
1324 if (size
== BPF_REG_SIZE
)
1325 state
->stack
[spi
].spilled_ptr
.live
|= REG_LIVE_WRITTEN
;
1327 /* when we zero initialize stack slots mark them as such */
1328 if (value_regno
>= 0 &&
1329 register_is_null(&cur
->regs
[value_regno
]))
1332 /* Mark slots affected by this stack write. */
1333 for (i
= 0; i
< size
; i
++)
1334 state
->stack
[spi
].slot_type
[(slot
- i
) % BPF_REG_SIZE
] =
1340 static int check_stack_read(struct bpf_verifier_env
*env
,
1341 struct bpf_func_state
*reg_state
/* func where register points to */,
1342 int off
, int size
, int value_regno
)
1344 struct bpf_verifier_state
*vstate
= env
->cur_state
;
1345 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
1346 int i
, slot
= -off
- 1, spi
= slot
/ BPF_REG_SIZE
;
1349 if (reg_state
->allocated_stack
<= slot
) {
1350 verbose(env
, "invalid read from stack off %d+0 size %d\n",
1354 stype
= reg_state
->stack
[spi
].slot_type
;
1356 if (stype
[0] == STACK_SPILL
) {
1357 if (size
!= BPF_REG_SIZE
) {
1358 verbose(env
, "invalid size of register spill\n");
1361 for (i
= 1; i
< BPF_REG_SIZE
; i
++) {
1362 if (stype
[(slot
- i
) % BPF_REG_SIZE
] != STACK_SPILL
) {
1363 verbose(env
, "corrupted spill memory\n");
1368 if (value_regno
>= 0) {
1369 /* restore register state from stack */
1370 state
->regs
[value_regno
] = reg_state
->stack
[spi
].spilled_ptr
;
1371 /* mark reg as written since spilled pointer state likely
1372 * has its liveness marks cleared by is_state_visited()
1373 * which resets stack/reg liveness for state transitions
1375 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
1377 mark_reg_read(env
, ®_state
->stack
[spi
].spilled_ptr
,
1378 reg_state
->stack
[spi
].spilled_ptr
.parent
);
1383 for (i
= 0; i
< size
; i
++) {
1384 if (stype
[(slot
- i
) % BPF_REG_SIZE
] == STACK_MISC
)
1386 if (stype
[(slot
- i
) % BPF_REG_SIZE
] == STACK_ZERO
) {
1390 verbose(env
, "invalid read from stack off %d+%d size %d\n",
1394 mark_reg_read(env
, ®_state
->stack
[spi
].spilled_ptr
,
1395 reg_state
->stack
[spi
].spilled_ptr
.parent
);
1396 if (value_regno
>= 0) {
1397 if (zeros
== size
) {
1398 /* any size read into register is zero extended,
1399 * so the whole register == const_zero
1401 __mark_reg_const_zero(&state
->regs
[value_regno
]);
1403 /* have read misc data from the stack */
1404 mark_reg_unknown(env
, state
->regs
, value_regno
);
1406 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
1412 static int check_stack_access(struct bpf_verifier_env
*env
,
1413 const struct bpf_reg_state
*reg
,
1416 /* Stack accesses must be at a fixed offset, so that we
1417 * can determine what type of data were returned. See
1418 * check_stack_read().
1420 if (!tnum_is_const(reg
->var_off
)) {
1423 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1424 verbose(env
, "variable stack access var_off=%s off=%d size=%d\n",
1429 if (off
>= 0 || off
< -MAX_BPF_STACK
) {
1430 verbose(env
, "invalid stack off=%d size=%d\n", off
, size
);
1437 static int check_map_access_type(struct bpf_verifier_env
*env
, u32 regno
,
1438 int off
, int size
, enum bpf_access_type type
)
1440 struct bpf_reg_state
*regs
= cur_regs(env
);
1441 struct bpf_map
*map
= regs
[regno
].map_ptr
;
1442 u32 cap
= bpf_map_flags_to_cap(map
);
1444 if (type
== BPF_WRITE
&& !(cap
& BPF_MAP_CAN_WRITE
)) {
1445 verbose(env
, "write into map forbidden, value_size=%d off=%d size=%d\n",
1446 map
->value_size
, off
, size
);
1450 if (type
== BPF_READ
&& !(cap
& BPF_MAP_CAN_READ
)) {
1451 verbose(env
, "read from map forbidden, value_size=%d off=%d size=%d\n",
1452 map
->value_size
, off
, size
);
1459 /* check read/write into map element returned by bpf_map_lookup_elem() */
1460 static int __check_map_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
1461 int size
, bool zero_size_allowed
)
1463 struct bpf_reg_state
*regs
= cur_regs(env
);
1464 struct bpf_map
*map
= regs
[regno
].map_ptr
;
1466 if (off
< 0 || size
< 0 || (size
== 0 && !zero_size_allowed
) ||
1467 off
+ size
> map
->value_size
) {
1468 verbose(env
, "invalid access to map value, value_size=%d off=%d size=%d\n",
1469 map
->value_size
, off
, size
);
1475 /* check read/write into a map element with possible variable offset */
1476 static int check_map_access(struct bpf_verifier_env
*env
, u32 regno
,
1477 int off
, int size
, bool zero_size_allowed
)
1479 struct bpf_verifier_state
*vstate
= env
->cur_state
;
1480 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
1481 struct bpf_reg_state
*reg
= &state
->regs
[regno
];
1484 /* We may have adjusted the register to this map value, so we
1485 * need to try adding each of min_value and max_value to off
1486 * to make sure our theoretical access will be safe.
1488 if (env
->log
.level
& BPF_LOG_LEVEL
)
1489 print_verifier_state(env
, state
);
1491 /* The minimum value is only important with signed
1492 * comparisons where we can't assume the floor of a
1493 * value is 0. If we are using signed variables for our
1494 * index'es we need to make sure that whatever we use
1495 * will have a set floor within our range.
1497 if (reg
->smin_value
< 0 &&
1498 (reg
->smin_value
== S64_MIN
||
1499 (off
+ reg
->smin_value
!= (s64
)(s32
)(off
+ reg
->smin_value
)) ||
1500 reg
->smin_value
+ off
< 0)) {
1501 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1505 err
= __check_map_access(env
, regno
, reg
->smin_value
+ off
, size
,
1508 verbose(env
, "R%d min value is outside of the array range\n",
1513 /* If we haven't set a max value then we need to bail since we can't be
1514 * sure we won't do bad things.
1515 * If reg->umax_value + off could overflow, treat that as unbounded too.
1517 if (reg
->umax_value
>= BPF_MAX_VAR_OFF
) {
1518 verbose(env
, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1522 err
= __check_map_access(env
, regno
, reg
->umax_value
+ off
, size
,
1525 verbose(env
, "R%d max value is outside of the array range\n",
1528 if (map_value_has_spin_lock(reg
->map_ptr
)) {
1529 u32 lock
= reg
->map_ptr
->spin_lock_off
;
1531 /* if any part of struct bpf_spin_lock can be touched by
1532 * load/store reject this program.
1533 * To check that [x1, x2) overlaps with [y1, y2)
1534 * it is sufficient to check x1 < y2 && y1 < x2.
1536 if (reg
->smin_value
+ off
< lock
+ sizeof(struct bpf_spin_lock
) &&
1537 lock
< reg
->umax_value
+ off
+ size
) {
1538 verbose(env
, "bpf_spin_lock cannot be accessed directly by load/store\n");
1545 #define MAX_PACKET_OFF 0xffff
1547 static bool may_access_direct_pkt_data(struct bpf_verifier_env
*env
,
1548 const struct bpf_call_arg_meta
*meta
,
1549 enum bpf_access_type t
)
1551 switch (env
->prog
->type
) {
1552 /* Program types only with direct read access go here! */
1553 case BPF_PROG_TYPE_LWT_IN
:
1554 case BPF_PROG_TYPE_LWT_OUT
:
1555 case BPF_PROG_TYPE_LWT_SEG6LOCAL
:
1556 case BPF_PROG_TYPE_SK_REUSEPORT
:
1557 case BPF_PROG_TYPE_FLOW_DISSECTOR
:
1558 case BPF_PROG_TYPE_CGROUP_SKB
:
1563 /* Program types with direct read + write access go here! */
1564 case BPF_PROG_TYPE_SCHED_CLS
:
1565 case BPF_PROG_TYPE_SCHED_ACT
:
1566 case BPF_PROG_TYPE_XDP
:
1567 case BPF_PROG_TYPE_LWT_XMIT
:
1568 case BPF_PROG_TYPE_SK_SKB
:
1569 case BPF_PROG_TYPE_SK_MSG
:
1571 return meta
->pkt_access
;
1573 env
->seen_direct_write
= true;
1580 static int __check_packet_access(struct bpf_verifier_env
*env
, u32 regno
,
1581 int off
, int size
, bool zero_size_allowed
)
1583 struct bpf_reg_state
*regs
= cur_regs(env
);
1584 struct bpf_reg_state
*reg
= ®s
[regno
];
1586 if (off
< 0 || size
< 0 || (size
== 0 && !zero_size_allowed
) ||
1587 (u64
)off
+ size
> reg
->range
) {
1588 verbose(env
, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1589 off
, size
, regno
, reg
->id
, reg
->off
, reg
->range
);
1595 static int check_packet_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
1596 int size
, bool zero_size_allowed
)
1598 struct bpf_reg_state
*regs
= cur_regs(env
);
1599 struct bpf_reg_state
*reg
= ®s
[regno
];
1602 /* We may have added a variable offset to the packet pointer; but any
1603 * reg->range we have comes after that. We are only checking the fixed
1607 /* We don't allow negative numbers, because we aren't tracking enough
1608 * detail to prove they're safe.
1610 if (reg
->smin_value
< 0) {
1611 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1615 err
= __check_packet_access(env
, regno
, off
, size
, zero_size_allowed
);
1617 verbose(env
, "R%d offset is outside of the packet\n", regno
);
1621 /* __check_packet_access has made sure "off + size - 1" is within u16.
1622 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1623 * otherwise find_good_pkt_pointers would have refused to set range info
1624 * that __check_packet_access would have rejected this pkt access.
1625 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1627 env
->prog
->aux
->max_pkt_offset
=
1628 max_t(u32
, env
->prog
->aux
->max_pkt_offset
,
1629 off
+ reg
->umax_value
+ size
- 1);
1634 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1635 static int check_ctx_access(struct bpf_verifier_env
*env
, int insn_idx
, int off
, int size
,
1636 enum bpf_access_type t
, enum bpf_reg_type
*reg_type
)
1638 struct bpf_insn_access_aux info
= {
1639 .reg_type
= *reg_type
,
1642 if (env
->ops
->is_valid_access
&&
1643 env
->ops
->is_valid_access(off
, size
, t
, env
->prog
, &info
)) {
1644 /* A non zero info.ctx_field_size indicates that this field is a
1645 * candidate for later verifier transformation to load the whole
1646 * field and then apply a mask when accessed with a narrower
1647 * access than actual ctx access size. A zero info.ctx_field_size
1648 * will only allow for whole field access and rejects any other
1649 * type of narrower access.
1651 *reg_type
= info
.reg_type
;
1653 env
->insn_aux_data
[insn_idx
].ctx_field_size
= info
.ctx_field_size
;
1654 /* remember the offset of last byte accessed in ctx */
1655 if (env
->prog
->aux
->max_ctx_offset
< off
+ size
)
1656 env
->prog
->aux
->max_ctx_offset
= off
+ size
;
1660 verbose(env
, "invalid bpf_context access off=%d size=%d\n", off
, size
);
1664 static int check_flow_keys_access(struct bpf_verifier_env
*env
, int off
,
1667 if (size
< 0 || off
< 0 ||
1668 (u64
)off
+ size
> sizeof(struct bpf_flow_keys
)) {
1669 verbose(env
, "invalid access to flow keys off=%d size=%d\n",
1676 static int check_sock_access(struct bpf_verifier_env
*env
, int insn_idx
,
1677 u32 regno
, int off
, int size
,
1678 enum bpf_access_type t
)
1680 struct bpf_reg_state
*regs
= cur_regs(env
);
1681 struct bpf_reg_state
*reg
= ®s
[regno
];
1682 struct bpf_insn_access_aux info
= {};
1685 if (reg
->smin_value
< 0) {
1686 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1691 switch (reg
->type
) {
1692 case PTR_TO_SOCK_COMMON
:
1693 valid
= bpf_sock_common_is_valid_access(off
, size
, t
, &info
);
1696 valid
= bpf_sock_is_valid_access(off
, size
, t
, &info
);
1698 case PTR_TO_TCP_SOCK
:
1699 valid
= bpf_tcp_sock_is_valid_access(off
, size
, t
, &info
);
1707 env
->insn_aux_data
[insn_idx
].ctx_field_size
=
1708 info
.ctx_field_size
;
1712 verbose(env
, "R%d invalid %s access off=%d size=%d\n",
1713 regno
, reg_type_str
[reg
->type
], off
, size
);
1718 static bool __is_pointer_value(bool allow_ptr_leaks
,
1719 const struct bpf_reg_state
*reg
)
1721 if (allow_ptr_leaks
)
1724 return reg
->type
!= SCALAR_VALUE
;
1727 static struct bpf_reg_state
*reg_state(struct bpf_verifier_env
*env
, int regno
)
1729 return cur_regs(env
) + regno
;
1732 static bool is_pointer_value(struct bpf_verifier_env
*env
, int regno
)
1734 return __is_pointer_value(env
->allow_ptr_leaks
, reg_state(env
, regno
));
1737 static bool is_ctx_reg(struct bpf_verifier_env
*env
, int regno
)
1739 const struct bpf_reg_state
*reg
= reg_state(env
, regno
);
1741 return reg
->type
== PTR_TO_CTX
;
1744 static bool is_sk_reg(struct bpf_verifier_env
*env
, int regno
)
1746 const struct bpf_reg_state
*reg
= reg_state(env
, regno
);
1748 return type_is_sk_pointer(reg
->type
);
1751 static bool is_pkt_reg(struct bpf_verifier_env
*env
, int regno
)
1753 const struct bpf_reg_state
*reg
= reg_state(env
, regno
);
1755 return type_is_pkt_pointer(reg
->type
);
1758 static bool is_flow_key_reg(struct bpf_verifier_env
*env
, int regno
)
1760 const struct bpf_reg_state
*reg
= reg_state(env
, regno
);
1762 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1763 return reg
->type
== PTR_TO_FLOW_KEYS
;
1766 static int check_pkt_ptr_alignment(struct bpf_verifier_env
*env
,
1767 const struct bpf_reg_state
*reg
,
1768 int off
, int size
, bool strict
)
1770 struct tnum reg_off
;
1773 /* Byte size accesses are always allowed. */
1774 if (!strict
|| size
== 1)
1777 /* For platforms that do not have a Kconfig enabling
1778 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1779 * NET_IP_ALIGN is universally set to '2'. And on platforms
1780 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1781 * to this code only in strict mode where we want to emulate
1782 * the NET_IP_ALIGN==2 checking. Therefore use an
1783 * unconditional IP align value of '2'.
1787 reg_off
= tnum_add(reg
->var_off
, tnum_const(ip_align
+ reg
->off
+ off
));
1788 if (!tnum_is_aligned(reg_off
, size
)) {
1791 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1793 "misaligned packet access off %d+%s+%d+%d size %d\n",
1794 ip_align
, tn_buf
, reg
->off
, off
, size
);
1801 static int check_generic_ptr_alignment(struct bpf_verifier_env
*env
,
1802 const struct bpf_reg_state
*reg
,
1803 const char *pointer_desc
,
1804 int off
, int size
, bool strict
)
1806 struct tnum reg_off
;
1808 /* Byte size accesses are always allowed. */
1809 if (!strict
|| size
== 1)
1812 reg_off
= tnum_add(reg
->var_off
, tnum_const(reg
->off
+ off
));
1813 if (!tnum_is_aligned(reg_off
, size
)) {
1816 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1817 verbose(env
, "misaligned %saccess off %s+%d+%d size %d\n",
1818 pointer_desc
, tn_buf
, reg
->off
, off
, size
);
1825 static int check_ptr_alignment(struct bpf_verifier_env
*env
,
1826 const struct bpf_reg_state
*reg
, int off
,
1827 int size
, bool strict_alignment_once
)
1829 bool strict
= env
->strict_alignment
|| strict_alignment_once
;
1830 const char *pointer_desc
= "";
1832 switch (reg
->type
) {
1834 case PTR_TO_PACKET_META
:
1835 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1836 * right in front, treat it the very same way.
1838 return check_pkt_ptr_alignment(env
, reg
, off
, size
, strict
);
1839 case PTR_TO_FLOW_KEYS
:
1840 pointer_desc
= "flow keys ";
1842 case PTR_TO_MAP_VALUE
:
1843 pointer_desc
= "value ";
1846 pointer_desc
= "context ";
1849 pointer_desc
= "stack ";
1850 /* The stack spill tracking logic in check_stack_write()
1851 * and check_stack_read() relies on stack accesses being
1857 pointer_desc
= "sock ";
1859 case PTR_TO_SOCK_COMMON
:
1860 pointer_desc
= "sock_common ";
1862 case PTR_TO_TCP_SOCK
:
1863 pointer_desc
= "tcp_sock ";
1868 return check_generic_ptr_alignment(env
, reg
, pointer_desc
, off
, size
,
1872 static int update_stack_depth(struct bpf_verifier_env
*env
,
1873 const struct bpf_func_state
*func
,
1876 u16 stack
= env
->subprog_info
[func
->subprogno
].stack_depth
;
1881 /* update known max for given subprogram */
1882 env
->subprog_info
[func
->subprogno
].stack_depth
= -off
;
1886 /* starting from main bpf function walk all instructions of the function
1887 * and recursively walk all callees that given function can call.
1888 * Ignore jump and exit insns.
1889 * Since recursion is prevented by check_cfg() this algorithm
1890 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1892 static int check_max_stack_depth(struct bpf_verifier_env
*env
)
1894 int depth
= 0, frame
= 0, idx
= 0, i
= 0, subprog_end
;
1895 struct bpf_subprog_info
*subprog
= env
->subprog_info
;
1896 struct bpf_insn
*insn
= env
->prog
->insnsi
;
1897 int ret_insn
[MAX_CALL_FRAMES
];
1898 int ret_prog
[MAX_CALL_FRAMES
];
1901 /* round up to 32-bytes, since this is granularity
1902 * of interpreter stack size
1904 depth
+= round_up(max_t(u32
, subprog
[idx
].stack_depth
, 1), 32);
1905 if (depth
> MAX_BPF_STACK
) {
1906 verbose(env
, "combined stack size of %d calls is %d. Too large\n",
1911 subprog_end
= subprog
[idx
+ 1].start
;
1912 for (; i
< subprog_end
; i
++) {
1913 if (insn
[i
].code
!= (BPF_JMP
| BPF_CALL
))
1915 if (insn
[i
].src_reg
!= BPF_PSEUDO_CALL
)
1917 /* remember insn and function to return to */
1918 ret_insn
[frame
] = i
+ 1;
1919 ret_prog
[frame
] = idx
;
1921 /* find the callee */
1922 i
= i
+ insn
[i
].imm
+ 1;
1923 idx
= find_subprog(env
, i
);
1925 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1930 if (frame
>= MAX_CALL_FRAMES
) {
1931 verbose(env
, "the call stack of %d frames is too deep !\n",
1937 /* end of for() loop means the last insn of the 'subprog'
1938 * was reached. Doesn't matter whether it was JA or EXIT
1942 depth
-= round_up(max_t(u32
, subprog
[idx
].stack_depth
, 1), 32);
1944 i
= ret_insn
[frame
];
1945 idx
= ret_prog
[frame
];
1949 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1950 static int get_callee_stack_depth(struct bpf_verifier_env
*env
,
1951 const struct bpf_insn
*insn
, int idx
)
1953 int start
= idx
+ insn
->imm
+ 1, subprog
;
1955 subprog
= find_subprog(env
, start
);
1957 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1961 return env
->subprog_info
[subprog
].stack_depth
;
1965 static int check_ctx_reg(struct bpf_verifier_env
*env
,
1966 const struct bpf_reg_state
*reg
, int regno
)
1968 /* Access to ctx or passing it to a helper is only allowed in
1969 * its original, unmodified form.
1973 verbose(env
, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1978 if (!tnum_is_const(reg
->var_off
) || reg
->var_off
.value
) {
1981 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1982 verbose(env
, "variable ctx access var_off=%s disallowed\n", tn_buf
);
1989 static int check_tp_buffer_access(struct bpf_verifier_env
*env
,
1990 const struct bpf_reg_state
*reg
,
1991 int regno
, int off
, int size
)
1995 "R%d invalid tracepoint buffer access: off=%d, size=%d",
1999 if (!tnum_is_const(reg
->var_off
) || reg
->var_off
.value
) {
2002 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2004 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2005 regno
, off
, tn_buf
);
2008 if (off
+ size
> env
->prog
->aux
->max_tp_access
)
2009 env
->prog
->aux
->max_tp_access
= off
+ size
;
2015 /* truncate register to smaller size (in bytes)
2016 * must be called with size < BPF_REG_SIZE
2018 static void coerce_reg_to_size(struct bpf_reg_state
*reg
, int size
)
2022 /* clear high bits in bit representation */
2023 reg
->var_off
= tnum_cast(reg
->var_off
, size
);
2025 /* fix arithmetic bounds */
2026 mask
= ((u64
)1 << (size
* 8)) - 1;
2027 if ((reg
->umin_value
& ~mask
) == (reg
->umax_value
& ~mask
)) {
2028 reg
->umin_value
&= mask
;
2029 reg
->umax_value
&= mask
;
2031 reg
->umin_value
= 0;
2032 reg
->umax_value
= mask
;
2034 reg
->smin_value
= reg
->umin_value
;
2035 reg
->smax_value
= reg
->umax_value
;
2038 /* check whether memory at (regno + off) is accessible for t = (read | write)
2039 * if t==write, value_regno is a register which value is stored into memory
2040 * if t==read, value_regno is a register which will receive the value from memory
2041 * if t==write && value_regno==-1, some unknown value is stored into memory
2042 * if t==read && value_regno==-1, don't care what we read from memory
2044 static int check_mem_access(struct bpf_verifier_env
*env
, int insn_idx
, u32 regno
,
2045 int off
, int bpf_size
, enum bpf_access_type t
,
2046 int value_regno
, bool strict_alignment_once
)
2048 struct bpf_reg_state
*regs
= cur_regs(env
);
2049 struct bpf_reg_state
*reg
= regs
+ regno
;
2050 struct bpf_func_state
*state
;
2053 size
= bpf_size_to_bytes(bpf_size
);
2057 /* alignment checks will add in reg->off themselves */
2058 err
= check_ptr_alignment(env
, reg
, off
, size
, strict_alignment_once
);
2062 /* for access checks, reg->off is just part of off */
2065 if (reg
->type
== PTR_TO_MAP_VALUE
) {
2066 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
2067 is_pointer_value(env
, value_regno
)) {
2068 verbose(env
, "R%d leaks addr into map\n", value_regno
);
2071 err
= check_map_access_type(env
, regno
, off
, size
, t
);
2074 err
= check_map_access(env
, regno
, off
, size
, false);
2075 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
2076 mark_reg_unknown(env
, regs
, value_regno
);
2078 } else if (reg
->type
== PTR_TO_CTX
) {
2079 enum bpf_reg_type reg_type
= SCALAR_VALUE
;
2081 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
2082 is_pointer_value(env
, value_regno
)) {
2083 verbose(env
, "R%d leaks addr into ctx\n", value_regno
);
2087 err
= check_ctx_reg(env
, reg
, regno
);
2091 err
= check_ctx_access(env
, insn_idx
, off
, size
, t
, ®_type
);
2092 if (!err
&& t
== BPF_READ
&& value_regno
>= 0) {
2093 /* ctx access returns either a scalar, or a
2094 * PTR_TO_PACKET[_META,_END]. In the latter
2095 * case, we know the offset is zero.
2097 if (reg_type
== SCALAR_VALUE
) {
2098 mark_reg_unknown(env
, regs
, value_regno
);
2100 mark_reg_known_zero(env
, regs
,
2102 if (reg_type_may_be_null(reg_type
))
2103 regs
[value_regno
].id
= ++env
->id_gen
;
2105 regs
[value_regno
].type
= reg_type
;
2108 } else if (reg
->type
== PTR_TO_STACK
) {
2109 off
+= reg
->var_off
.value
;
2110 err
= check_stack_access(env
, reg
, off
, size
);
2114 state
= func(env
, reg
);
2115 err
= update_stack_depth(env
, state
, off
);
2120 err
= check_stack_write(env
, state
, off
, size
,
2121 value_regno
, insn_idx
);
2123 err
= check_stack_read(env
, state
, off
, size
,
2125 } else if (reg_is_pkt_pointer(reg
)) {
2126 if (t
== BPF_WRITE
&& !may_access_direct_pkt_data(env
, NULL
, t
)) {
2127 verbose(env
, "cannot write into packet\n");
2130 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
2131 is_pointer_value(env
, value_regno
)) {
2132 verbose(env
, "R%d leaks addr into packet\n",
2136 err
= check_packet_access(env
, regno
, off
, size
, false);
2137 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
2138 mark_reg_unknown(env
, regs
, value_regno
);
2139 } else if (reg
->type
== PTR_TO_FLOW_KEYS
) {
2140 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
2141 is_pointer_value(env
, value_regno
)) {
2142 verbose(env
, "R%d leaks addr into flow keys\n",
2147 err
= check_flow_keys_access(env
, off
, size
);
2148 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
2149 mark_reg_unknown(env
, regs
, value_regno
);
2150 } else if (type_is_sk_pointer(reg
->type
)) {
2151 if (t
== BPF_WRITE
) {
2152 verbose(env
, "R%d cannot write into %s\n",
2153 regno
, reg_type_str
[reg
->type
]);
2156 err
= check_sock_access(env
, insn_idx
, regno
, off
, size
, t
);
2157 if (!err
&& value_regno
>= 0)
2158 mark_reg_unknown(env
, regs
, value_regno
);
2159 } else if (reg
->type
== PTR_TO_TP_BUFFER
) {
2160 err
= check_tp_buffer_access(env
, reg
, regno
, off
, size
);
2161 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
2162 mark_reg_unknown(env
, regs
, value_regno
);
2164 verbose(env
, "R%d invalid mem access '%s'\n", regno
,
2165 reg_type_str
[reg
->type
]);
2169 if (!err
&& size
< BPF_REG_SIZE
&& value_regno
>= 0 && t
== BPF_READ
&&
2170 regs
[value_regno
].type
== SCALAR_VALUE
) {
2171 /* b/h/w load zero-extends, mark upper bits as known 0 */
2172 coerce_reg_to_size(®s
[value_regno
], size
);
2177 static int check_xadd(struct bpf_verifier_env
*env
, int insn_idx
, struct bpf_insn
*insn
)
2181 if ((BPF_SIZE(insn
->code
) != BPF_W
&& BPF_SIZE(insn
->code
) != BPF_DW
) ||
2183 verbose(env
, "BPF_XADD uses reserved fields\n");
2187 /* check src1 operand */
2188 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
2192 /* check src2 operand */
2193 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
2197 if (is_pointer_value(env
, insn
->src_reg
)) {
2198 verbose(env
, "R%d leaks addr into mem\n", insn
->src_reg
);
2202 if (is_ctx_reg(env
, insn
->dst_reg
) ||
2203 is_pkt_reg(env
, insn
->dst_reg
) ||
2204 is_flow_key_reg(env
, insn
->dst_reg
) ||
2205 is_sk_reg(env
, insn
->dst_reg
)) {
2206 verbose(env
, "BPF_XADD stores into R%d %s is not allowed\n",
2208 reg_type_str
[reg_state(env
, insn
->dst_reg
)->type
]);
2212 /* check whether atomic_add can read the memory */
2213 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
2214 BPF_SIZE(insn
->code
), BPF_READ
, -1, true);
2218 /* check whether atomic_add can write into the same memory */
2219 return check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
2220 BPF_SIZE(insn
->code
), BPF_WRITE
, -1, true);
2223 static int __check_stack_boundary(struct bpf_verifier_env
*env
, u32 regno
,
2224 int off
, int access_size
,
2225 bool zero_size_allowed
)
2227 struct bpf_reg_state
*reg
= reg_state(env
, regno
);
2229 if (off
>= 0 || off
< -MAX_BPF_STACK
|| off
+ access_size
> 0 ||
2230 access_size
< 0 || (access_size
== 0 && !zero_size_allowed
)) {
2231 if (tnum_is_const(reg
->var_off
)) {
2232 verbose(env
, "invalid stack type R%d off=%d access_size=%d\n",
2233 regno
, off
, access_size
);
2237 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2238 verbose(env
, "invalid stack type R%d var_off=%s access_size=%d\n",
2239 regno
, tn_buf
, access_size
);
2246 /* when register 'regno' is passed into function that will read 'access_size'
2247 * bytes from that pointer, make sure that it's within stack boundary
2248 * and all elements of stack are initialized.
2249 * Unlike most pointer bounds-checking functions, this one doesn't take an
2250 * 'off' argument, so it has to add in reg->off itself.
2252 static int check_stack_boundary(struct bpf_verifier_env
*env
, int regno
,
2253 int access_size
, bool zero_size_allowed
,
2254 struct bpf_call_arg_meta
*meta
)
2256 struct bpf_reg_state
*reg
= reg_state(env
, regno
);
2257 struct bpf_func_state
*state
= func(env
, reg
);
2258 int err
, min_off
, max_off
, i
, slot
, spi
;
2260 if (reg
->type
!= PTR_TO_STACK
) {
2261 /* Allow zero-byte read from NULL, regardless of pointer type */
2262 if (zero_size_allowed
&& access_size
== 0 &&
2263 register_is_null(reg
))
2266 verbose(env
, "R%d type=%s expected=%s\n", regno
,
2267 reg_type_str
[reg
->type
],
2268 reg_type_str
[PTR_TO_STACK
]);
2272 if (tnum_is_const(reg
->var_off
)) {
2273 min_off
= max_off
= reg
->var_off
.value
+ reg
->off
;
2274 err
= __check_stack_boundary(env
, regno
, min_off
, access_size
,
2279 /* Variable offset is prohibited for unprivileged mode for
2280 * simplicity since it requires corresponding support in
2281 * Spectre masking for stack ALU.
2282 * See also retrieve_ptr_limit().
2284 if (!env
->allow_ptr_leaks
) {
2287 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2288 verbose(env
, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2292 /* Only initialized buffer on stack is allowed to be accessed
2293 * with variable offset. With uninitialized buffer it's hard to
2294 * guarantee that whole memory is marked as initialized on
2295 * helper return since specific bounds are unknown what may
2296 * cause uninitialized stack leaking.
2298 if (meta
&& meta
->raw_mode
)
2301 if (reg
->smax_value
>= BPF_MAX_VAR_OFF
||
2302 reg
->smax_value
<= -BPF_MAX_VAR_OFF
) {
2303 verbose(env
, "R%d unbounded indirect variable offset stack access\n",
2307 min_off
= reg
->smin_value
+ reg
->off
;
2308 max_off
= reg
->smax_value
+ reg
->off
;
2309 err
= __check_stack_boundary(env
, regno
, min_off
, access_size
,
2312 verbose(env
, "R%d min value is outside of stack bound\n",
2316 err
= __check_stack_boundary(env
, regno
, max_off
, access_size
,
2319 verbose(env
, "R%d max value is outside of stack bound\n",
2325 if (meta
&& meta
->raw_mode
) {
2326 meta
->access_size
= access_size
;
2327 meta
->regno
= regno
;
2331 for (i
= min_off
; i
< max_off
+ access_size
; i
++) {
2335 spi
= slot
/ BPF_REG_SIZE
;
2336 if (state
->allocated_stack
<= slot
)
2338 stype
= &state
->stack
[spi
].slot_type
[slot
% BPF_REG_SIZE
];
2339 if (*stype
== STACK_MISC
)
2341 if (*stype
== STACK_ZERO
) {
2342 /* helper can write anything into the stack */
2343 *stype
= STACK_MISC
;
2347 if (tnum_is_const(reg
->var_off
)) {
2348 verbose(env
, "invalid indirect read from stack off %d+%d size %d\n",
2349 min_off
, i
- min_off
, access_size
);
2353 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2354 verbose(env
, "invalid indirect read from stack var_off %s+%d size %d\n",
2355 tn_buf
, i
- min_off
, access_size
);
2359 /* reading any byte out of 8-byte 'spill_slot' will cause
2360 * the whole slot to be marked as 'read'
2362 mark_reg_read(env
, &state
->stack
[spi
].spilled_ptr
,
2363 state
->stack
[spi
].spilled_ptr
.parent
);
2365 return update_stack_depth(env
, state
, min_off
);
2368 static int check_helper_mem_access(struct bpf_verifier_env
*env
, int regno
,
2369 int access_size
, bool zero_size_allowed
,
2370 struct bpf_call_arg_meta
*meta
)
2372 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
2374 switch (reg
->type
) {
2376 case PTR_TO_PACKET_META
:
2377 return check_packet_access(env
, regno
, reg
->off
, access_size
,
2379 case PTR_TO_MAP_VALUE
:
2380 if (check_map_access_type(env
, regno
, reg
->off
, access_size
,
2381 meta
&& meta
->raw_mode
? BPF_WRITE
:
2384 return check_map_access(env
, regno
, reg
->off
, access_size
,
2386 default: /* scalar_value|ptr_to_stack or invalid ptr */
2387 return check_stack_boundary(env
, regno
, access_size
,
2388 zero_size_allowed
, meta
);
2392 /* Implementation details:
2393 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2394 * Two bpf_map_lookups (even with the same key) will have different reg->id.
2395 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2396 * value_or_null->value transition, since the verifier only cares about
2397 * the range of access to valid map value pointer and doesn't care about actual
2398 * address of the map element.
2399 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2400 * reg->id > 0 after value_or_null->value transition. By doing so
2401 * two bpf_map_lookups will be considered two different pointers that
2402 * point to different bpf_spin_locks.
2403 * The verifier allows taking only one bpf_spin_lock at a time to avoid
2405 * Since only one bpf_spin_lock is allowed the checks are simpler than
2406 * reg_is_refcounted() logic. The verifier needs to remember only
2407 * one spin_lock instead of array of acquired_refs.
2408 * cur_state->active_spin_lock remembers which map value element got locked
2409 * and clears it after bpf_spin_unlock.
2411 static int process_spin_lock(struct bpf_verifier_env
*env
, int regno
,
2414 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
2415 struct bpf_verifier_state
*cur
= env
->cur_state
;
2416 bool is_const
= tnum_is_const(reg
->var_off
);
2417 struct bpf_map
*map
= reg
->map_ptr
;
2418 u64 val
= reg
->var_off
.value
;
2420 if (reg
->type
!= PTR_TO_MAP_VALUE
) {
2421 verbose(env
, "R%d is not a pointer to map_value\n", regno
);
2426 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2432 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
2436 if (!map_value_has_spin_lock(map
)) {
2437 if (map
->spin_lock_off
== -E2BIG
)
2439 "map '%s' has more than one 'struct bpf_spin_lock'\n",
2441 else if (map
->spin_lock_off
== -ENOENT
)
2443 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
2447 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2451 if (map
->spin_lock_off
!= val
+ reg
->off
) {
2452 verbose(env
, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2457 if (cur
->active_spin_lock
) {
2459 "Locking two bpf_spin_locks are not allowed\n");
2462 cur
->active_spin_lock
= reg
->id
;
2464 if (!cur
->active_spin_lock
) {
2465 verbose(env
, "bpf_spin_unlock without taking a lock\n");
2468 if (cur
->active_spin_lock
!= reg
->id
) {
2469 verbose(env
, "bpf_spin_unlock of different lock\n");
2472 cur
->active_spin_lock
= 0;
2477 static bool arg_type_is_mem_ptr(enum bpf_arg_type type
)
2479 return type
== ARG_PTR_TO_MEM
||
2480 type
== ARG_PTR_TO_MEM_OR_NULL
||
2481 type
== ARG_PTR_TO_UNINIT_MEM
;
2484 static bool arg_type_is_mem_size(enum bpf_arg_type type
)
2486 return type
== ARG_CONST_SIZE
||
2487 type
== ARG_CONST_SIZE_OR_ZERO
;
2490 static bool arg_type_is_int_ptr(enum bpf_arg_type type
)
2492 return type
== ARG_PTR_TO_INT
||
2493 type
== ARG_PTR_TO_LONG
;
2496 static int int_ptr_type_to_size(enum bpf_arg_type type
)
2498 if (type
== ARG_PTR_TO_INT
)
2500 else if (type
== ARG_PTR_TO_LONG
)
2506 static int check_func_arg(struct bpf_verifier_env
*env
, u32 regno
,
2507 enum bpf_arg_type arg_type
,
2508 struct bpf_call_arg_meta
*meta
)
2510 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
2511 enum bpf_reg_type expected_type
, type
= reg
->type
;
2514 if (arg_type
== ARG_DONTCARE
)
2517 err
= check_reg_arg(env
, regno
, SRC_OP
);
2521 if (arg_type
== ARG_ANYTHING
) {
2522 if (is_pointer_value(env
, regno
)) {
2523 verbose(env
, "R%d leaks addr into helper function\n",
2530 if (type_is_pkt_pointer(type
) &&
2531 !may_access_direct_pkt_data(env
, meta
, BPF_READ
)) {
2532 verbose(env
, "helper access to the packet is not allowed\n");
2536 if (arg_type
== ARG_PTR_TO_MAP_KEY
||
2537 arg_type
== ARG_PTR_TO_MAP_VALUE
||
2538 arg_type
== ARG_PTR_TO_UNINIT_MAP_VALUE
||
2539 arg_type
== ARG_PTR_TO_MAP_VALUE_OR_NULL
) {
2540 expected_type
= PTR_TO_STACK
;
2541 if (register_is_null(reg
) &&
2542 arg_type
== ARG_PTR_TO_MAP_VALUE_OR_NULL
)
2543 /* final test in check_stack_boundary() */;
2544 else if (!type_is_pkt_pointer(type
) &&
2545 type
!= PTR_TO_MAP_VALUE
&&
2546 type
!= expected_type
)
2548 } else if (arg_type
== ARG_CONST_SIZE
||
2549 arg_type
== ARG_CONST_SIZE_OR_ZERO
) {
2550 expected_type
= SCALAR_VALUE
;
2551 if (type
!= expected_type
)
2553 } else if (arg_type
== ARG_CONST_MAP_PTR
) {
2554 expected_type
= CONST_PTR_TO_MAP
;
2555 if (type
!= expected_type
)
2557 } else if (arg_type
== ARG_PTR_TO_CTX
) {
2558 expected_type
= PTR_TO_CTX
;
2559 if (type
!= expected_type
)
2561 err
= check_ctx_reg(env
, reg
, regno
);
2564 } else if (arg_type
== ARG_PTR_TO_SOCK_COMMON
) {
2565 expected_type
= PTR_TO_SOCK_COMMON
;
2566 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2567 if (!type_is_sk_pointer(type
))
2569 if (reg
->ref_obj_id
) {
2570 if (meta
->ref_obj_id
) {
2571 verbose(env
, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2572 regno
, reg
->ref_obj_id
,
2576 meta
->ref_obj_id
= reg
->ref_obj_id
;
2578 } else if (arg_type
== ARG_PTR_TO_SOCKET
) {
2579 expected_type
= PTR_TO_SOCKET
;
2580 if (type
!= expected_type
)
2582 } else if (arg_type
== ARG_PTR_TO_SPIN_LOCK
) {
2583 if (meta
->func_id
== BPF_FUNC_spin_lock
) {
2584 if (process_spin_lock(env
, regno
, true))
2586 } else if (meta
->func_id
== BPF_FUNC_spin_unlock
) {
2587 if (process_spin_lock(env
, regno
, false))
2590 verbose(env
, "verifier internal error\n");
2593 } else if (arg_type_is_mem_ptr(arg_type
)) {
2594 expected_type
= PTR_TO_STACK
;
2595 /* One exception here. In case function allows for NULL to be
2596 * passed in as argument, it's a SCALAR_VALUE type. Final test
2597 * happens during stack boundary checking.
2599 if (register_is_null(reg
) &&
2600 arg_type
== ARG_PTR_TO_MEM_OR_NULL
)
2601 /* final test in check_stack_boundary() */;
2602 else if (!type_is_pkt_pointer(type
) &&
2603 type
!= PTR_TO_MAP_VALUE
&&
2604 type
!= expected_type
)
2606 meta
->raw_mode
= arg_type
== ARG_PTR_TO_UNINIT_MEM
;
2607 } else if (arg_type_is_int_ptr(arg_type
)) {
2608 expected_type
= PTR_TO_STACK
;
2609 if (!type_is_pkt_pointer(type
) &&
2610 type
!= PTR_TO_MAP_VALUE
&&
2611 type
!= expected_type
)
2614 verbose(env
, "unsupported arg_type %d\n", arg_type
);
2618 if (arg_type
== ARG_CONST_MAP_PTR
) {
2619 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2620 meta
->map_ptr
= reg
->map_ptr
;
2621 } else if (arg_type
== ARG_PTR_TO_MAP_KEY
) {
2622 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2623 * check that [key, key + map->key_size) are within
2624 * stack limits and initialized
2626 if (!meta
->map_ptr
) {
2627 /* in function declaration map_ptr must come before
2628 * map_key, so that it's verified and known before
2629 * we have to check map_key here. Otherwise it means
2630 * that kernel subsystem misconfigured verifier
2632 verbose(env
, "invalid map_ptr to access map->key\n");
2635 err
= check_helper_mem_access(env
, regno
,
2636 meta
->map_ptr
->key_size
, false,
2638 } else if (arg_type
== ARG_PTR_TO_MAP_VALUE
||
2639 (arg_type
== ARG_PTR_TO_MAP_VALUE_OR_NULL
&&
2640 !register_is_null(reg
)) ||
2641 arg_type
== ARG_PTR_TO_UNINIT_MAP_VALUE
) {
2642 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2643 * check [value, value + map->value_size) validity
2645 if (!meta
->map_ptr
) {
2646 /* kernel subsystem misconfigured verifier */
2647 verbose(env
, "invalid map_ptr to access map->value\n");
2650 meta
->raw_mode
= (arg_type
== ARG_PTR_TO_UNINIT_MAP_VALUE
);
2651 err
= check_helper_mem_access(env
, regno
,
2652 meta
->map_ptr
->value_size
, false,
2654 } else if (arg_type_is_mem_size(arg_type
)) {
2655 bool zero_size_allowed
= (arg_type
== ARG_CONST_SIZE_OR_ZERO
);
2657 /* remember the mem_size which may be used later
2658 * to refine return values.
2660 meta
->msize_smax_value
= reg
->smax_value
;
2661 meta
->msize_umax_value
= reg
->umax_value
;
2663 /* The register is SCALAR_VALUE; the access check
2664 * happens using its boundaries.
2666 if (!tnum_is_const(reg
->var_off
))
2667 /* For unprivileged variable accesses, disable raw
2668 * mode so that the program is required to
2669 * initialize all the memory that the helper could
2670 * just partially fill up.
2674 if (reg
->smin_value
< 0) {
2675 verbose(env
, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2680 if (reg
->umin_value
== 0) {
2681 err
= check_helper_mem_access(env
, regno
- 1, 0,
2688 if (reg
->umax_value
>= BPF_MAX_VAR_SIZ
) {
2689 verbose(env
, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2693 err
= check_helper_mem_access(env
, regno
- 1,
2695 zero_size_allowed
, meta
);
2696 } else if (arg_type_is_int_ptr(arg_type
)) {
2697 int size
= int_ptr_type_to_size(arg_type
);
2699 err
= check_helper_mem_access(env
, regno
, size
, false, meta
);
2702 err
= check_ptr_alignment(env
, reg
, 0, size
, true);
2707 verbose(env
, "R%d type=%s expected=%s\n", regno
,
2708 reg_type_str
[type
], reg_type_str
[expected_type
]);
2712 static int check_map_func_compatibility(struct bpf_verifier_env
*env
,
2713 struct bpf_map
*map
, int func_id
)
2718 /* We need a two way check, first is from map perspective ... */
2719 switch (map
->map_type
) {
2720 case BPF_MAP_TYPE_PROG_ARRAY
:
2721 if (func_id
!= BPF_FUNC_tail_call
)
2724 case BPF_MAP_TYPE_PERF_EVENT_ARRAY
:
2725 if (func_id
!= BPF_FUNC_perf_event_read
&&
2726 func_id
!= BPF_FUNC_perf_event_output
&&
2727 func_id
!= BPF_FUNC_perf_event_read_value
)
2730 case BPF_MAP_TYPE_STACK_TRACE
:
2731 if (func_id
!= BPF_FUNC_get_stackid
)
2734 case BPF_MAP_TYPE_CGROUP_ARRAY
:
2735 if (func_id
!= BPF_FUNC_skb_under_cgroup
&&
2736 func_id
!= BPF_FUNC_current_task_under_cgroup
)
2739 case BPF_MAP_TYPE_CGROUP_STORAGE
:
2740 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
:
2741 if (func_id
!= BPF_FUNC_get_local_storage
)
2744 /* devmap returns a pointer to a live net_device ifindex that we cannot
2745 * allow to be modified from bpf side. So do not allow lookup elements
2748 case BPF_MAP_TYPE_DEVMAP
:
2749 if (func_id
!= BPF_FUNC_redirect_map
)
2752 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2755 case BPF_MAP_TYPE_CPUMAP
:
2756 case BPF_MAP_TYPE_XSKMAP
:
2757 if (func_id
!= BPF_FUNC_redirect_map
)
2760 case BPF_MAP_TYPE_ARRAY_OF_MAPS
:
2761 case BPF_MAP_TYPE_HASH_OF_MAPS
:
2762 if (func_id
!= BPF_FUNC_map_lookup_elem
)
2765 case BPF_MAP_TYPE_SOCKMAP
:
2766 if (func_id
!= BPF_FUNC_sk_redirect_map
&&
2767 func_id
!= BPF_FUNC_sock_map_update
&&
2768 func_id
!= BPF_FUNC_map_delete_elem
&&
2769 func_id
!= BPF_FUNC_msg_redirect_map
)
2772 case BPF_MAP_TYPE_SOCKHASH
:
2773 if (func_id
!= BPF_FUNC_sk_redirect_hash
&&
2774 func_id
!= BPF_FUNC_sock_hash_update
&&
2775 func_id
!= BPF_FUNC_map_delete_elem
&&
2776 func_id
!= BPF_FUNC_msg_redirect_hash
)
2779 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY
:
2780 if (func_id
!= BPF_FUNC_sk_select_reuseport
)
2783 case BPF_MAP_TYPE_QUEUE
:
2784 case BPF_MAP_TYPE_STACK
:
2785 if (func_id
!= BPF_FUNC_map_peek_elem
&&
2786 func_id
!= BPF_FUNC_map_pop_elem
&&
2787 func_id
!= BPF_FUNC_map_push_elem
)
2790 case BPF_MAP_TYPE_SK_STORAGE
:
2791 if (func_id
!= BPF_FUNC_sk_storage_get
&&
2792 func_id
!= BPF_FUNC_sk_storage_delete
)
2799 /* ... and second from the function itself. */
2801 case BPF_FUNC_tail_call
:
2802 if (map
->map_type
!= BPF_MAP_TYPE_PROG_ARRAY
)
2804 if (env
->subprog_cnt
> 1) {
2805 verbose(env
, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2809 case BPF_FUNC_perf_event_read
:
2810 case BPF_FUNC_perf_event_output
:
2811 case BPF_FUNC_perf_event_read_value
:
2812 if (map
->map_type
!= BPF_MAP_TYPE_PERF_EVENT_ARRAY
)
2815 case BPF_FUNC_get_stackid
:
2816 if (map
->map_type
!= BPF_MAP_TYPE_STACK_TRACE
)
2819 case BPF_FUNC_current_task_under_cgroup
:
2820 case BPF_FUNC_skb_under_cgroup
:
2821 if (map
->map_type
!= BPF_MAP_TYPE_CGROUP_ARRAY
)
2824 case BPF_FUNC_redirect_map
:
2825 if (map
->map_type
!= BPF_MAP_TYPE_DEVMAP
&&
2826 map
->map_type
!= BPF_MAP_TYPE_CPUMAP
&&
2827 map
->map_type
!= BPF_MAP_TYPE_XSKMAP
)
2830 case BPF_FUNC_sk_redirect_map
:
2831 case BPF_FUNC_msg_redirect_map
:
2832 case BPF_FUNC_sock_map_update
:
2833 if (map
->map_type
!= BPF_MAP_TYPE_SOCKMAP
)
2836 case BPF_FUNC_sk_redirect_hash
:
2837 case BPF_FUNC_msg_redirect_hash
:
2838 case BPF_FUNC_sock_hash_update
:
2839 if (map
->map_type
!= BPF_MAP_TYPE_SOCKHASH
)
2842 case BPF_FUNC_get_local_storage
:
2843 if (map
->map_type
!= BPF_MAP_TYPE_CGROUP_STORAGE
&&
2844 map
->map_type
!= BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
)
2847 case BPF_FUNC_sk_select_reuseport
:
2848 if (map
->map_type
!= BPF_MAP_TYPE_REUSEPORT_SOCKARRAY
)
2851 case BPF_FUNC_map_peek_elem
:
2852 case BPF_FUNC_map_pop_elem
:
2853 case BPF_FUNC_map_push_elem
:
2854 if (map
->map_type
!= BPF_MAP_TYPE_QUEUE
&&
2855 map
->map_type
!= BPF_MAP_TYPE_STACK
)
2858 case BPF_FUNC_sk_storage_get
:
2859 case BPF_FUNC_sk_storage_delete
:
2860 if (map
->map_type
!= BPF_MAP_TYPE_SK_STORAGE
)
2869 verbose(env
, "cannot pass map_type %d into func %s#%d\n",
2870 map
->map_type
, func_id_name(func_id
), func_id
);
2874 static bool check_raw_mode_ok(const struct bpf_func_proto
*fn
)
2878 if (fn
->arg1_type
== ARG_PTR_TO_UNINIT_MEM
)
2880 if (fn
->arg2_type
== ARG_PTR_TO_UNINIT_MEM
)
2882 if (fn
->arg3_type
== ARG_PTR_TO_UNINIT_MEM
)
2884 if (fn
->arg4_type
== ARG_PTR_TO_UNINIT_MEM
)
2886 if (fn
->arg5_type
== ARG_PTR_TO_UNINIT_MEM
)
2889 /* We only support one arg being in raw mode at the moment,
2890 * which is sufficient for the helper functions we have
2896 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr
,
2897 enum bpf_arg_type arg_next
)
2899 return (arg_type_is_mem_ptr(arg_curr
) &&
2900 !arg_type_is_mem_size(arg_next
)) ||
2901 (!arg_type_is_mem_ptr(arg_curr
) &&
2902 arg_type_is_mem_size(arg_next
));
2905 static bool check_arg_pair_ok(const struct bpf_func_proto
*fn
)
2907 /* bpf_xxx(..., buf, len) call will access 'len'
2908 * bytes from memory 'buf'. Both arg types need
2909 * to be paired, so make sure there's no buggy
2910 * helper function specification.
2912 if (arg_type_is_mem_size(fn
->arg1_type
) ||
2913 arg_type_is_mem_ptr(fn
->arg5_type
) ||
2914 check_args_pair_invalid(fn
->arg1_type
, fn
->arg2_type
) ||
2915 check_args_pair_invalid(fn
->arg2_type
, fn
->arg3_type
) ||
2916 check_args_pair_invalid(fn
->arg3_type
, fn
->arg4_type
) ||
2917 check_args_pair_invalid(fn
->arg4_type
, fn
->arg5_type
))
2923 static bool check_refcount_ok(const struct bpf_func_proto
*fn
, int func_id
)
2927 if (arg_type_may_be_refcounted(fn
->arg1_type
))
2929 if (arg_type_may_be_refcounted(fn
->arg2_type
))
2931 if (arg_type_may_be_refcounted(fn
->arg3_type
))
2933 if (arg_type_may_be_refcounted(fn
->arg4_type
))
2935 if (arg_type_may_be_refcounted(fn
->arg5_type
))
2938 /* A reference acquiring function cannot acquire
2939 * another refcounted ptr.
2941 if (is_acquire_function(func_id
) && count
)
2944 /* We only support one arg being unreferenced at the moment,
2945 * which is sufficient for the helper functions we have right now.
2950 static int check_func_proto(const struct bpf_func_proto
*fn
, int func_id
)
2952 return check_raw_mode_ok(fn
) &&
2953 check_arg_pair_ok(fn
) &&
2954 check_refcount_ok(fn
, func_id
) ? 0 : -EINVAL
;
2957 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2958 * are now invalid, so turn them into unknown SCALAR_VALUE.
2960 static void __clear_all_pkt_pointers(struct bpf_verifier_env
*env
,
2961 struct bpf_func_state
*state
)
2963 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
2966 for (i
= 0; i
< MAX_BPF_REG
; i
++)
2967 if (reg_is_pkt_pointer_any(®s
[i
]))
2968 mark_reg_unknown(env
, regs
, i
);
2970 bpf_for_each_spilled_reg(i
, state
, reg
) {
2973 if (reg_is_pkt_pointer_any(reg
))
2974 __mark_reg_unknown(reg
);
2978 static void clear_all_pkt_pointers(struct bpf_verifier_env
*env
)
2980 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2983 for (i
= 0; i
<= vstate
->curframe
; i
++)
2984 __clear_all_pkt_pointers(env
, vstate
->frame
[i
]);
2987 static void release_reg_references(struct bpf_verifier_env
*env
,
2988 struct bpf_func_state
*state
,
2991 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
2994 for (i
= 0; i
< MAX_BPF_REG
; i
++)
2995 if (regs
[i
].ref_obj_id
== ref_obj_id
)
2996 mark_reg_unknown(env
, regs
, i
);
2998 bpf_for_each_spilled_reg(i
, state
, reg
) {
3001 if (reg
->ref_obj_id
== ref_obj_id
)
3002 __mark_reg_unknown(reg
);
3006 /* The pointer with the specified id has released its reference to kernel
3007 * resources. Identify all copies of the same pointer and clear the reference.
3009 static int release_reference(struct bpf_verifier_env
*env
,
3012 struct bpf_verifier_state
*vstate
= env
->cur_state
;
3016 err
= release_reference_state(cur_func(env
), ref_obj_id
);
3020 for (i
= 0; i
<= vstate
->curframe
; i
++)
3021 release_reg_references(env
, vstate
->frame
[i
], ref_obj_id
);
3026 static int check_func_call(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
,
3029 struct bpf_verifier_state
*state
= env
->cur_state
;
3030 struct bpf_func_state
*caller
, *callee
;
3031 int i
, err
, subprog
, target_insn
;
3033 if (state
->curframe
+ 1 >= MAX_CALL_FRAMES
) {
3034 verbose(env
, "the call stack of %d frames is too deep\n",
3035 state
->curframe
+ 2);
3039 target_insn
= *insn_idx
+ insn
->imm
;
3040 subprog
= find_subprog(env
, target_insn
+ 1);
3042 verbose(env
, "verifier bug. No program starts at insn %d\n",
3047 caller
= state
->frame
[state
->curframe
];
3048 if (state
->frame
[state
->curframe
+ 1]) {
3049 verbose(env
, "verifier bug. Frame %d already allocated\n",
3050 state
->curframe
+ 1);
3054 callee
= kzalloc(sizeof(*callee
), GFP_KERNEL
);
3057 state
->frame
[state
->curframe
+ 1] = callee
;
3059 /* callee cannot access r0, r6 - r9 for reading and has to write
3060 * into its own stack before reading from it.
3061 * callee can read/write into caller's stack
3063 init_func_state(env
, callee
,
3064 /* remember the callsite, it will be used by bpf_exit */
3065 *insn_idx
/* callsite */,
3066 state
->curframe
+ 1 /* frameno within this callchain */,
3067 subprog
/* subprog number within this prog */);
3069 /* Transfer references to the callee */
3070 err
= transfer_reference_state(callee
, caller
);
3074 /* copy r1 - r5 args that callee can access. The copy includes parent
3075 * pointers, which connects us up to the liveness chain
3077 for (i
= BPF_REG_1
; i
<= BPF_REG_5
; i
++)
3078 callee
->regs
[i
] = caller
->regs
[i
];
3080 /* after the call registers r0 - r5 were scratched */
3081 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
3082 mark_reg_not_init(env
, caller
->regs
, caller_saved
[i
]);
3083 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
3086 /* only increment it after check_reg_arg() finished */
3089 /* and go analyze first insn of the callee */
3090 *insn_idx
= target_insn
;
3092 if (env
->log
.level
& BPF_LOG_LEVEL
) {
3093 verbose(env
, "caller:\n");
3094 print_verifier_state(env
, caller
);
3095 verbose(env
, "callee:\n");
3096 print_verifier_state(env
, callee
);
3101 static int prepare_func_exit(struct bpf_verifier_env
*env
, int *insn_idx
)
3103 struct bpf_verifier_state
*state
= env
->cur_state
;
3104 struct bpf_func_state
*caller
, *callee
;
3105 struct bpf_reg_state
*r0
;
3108 callee
= state
->frame
[state
->curframe
];
3109 r0
= &callee
->regs
[BPF_REG_0
];
3110 if (r0
->type
== PTR_TO_STACK
) {
3111 /* technically it's ok to return caller's stack pointer
3112 * (or caller's caller's pointer) back to the caller,
3113 * since these pointers are valid. Only current stack
3114 * pointer will be invalid as soon as function exits,
3115 * but let's be conservative
3117 verbose(env
, "cannot return stack pointer to the caller\n");
3122 caller
= state
->frame
[state
->curframe
];
3123 /* return to the caller whatever r0 had in the callee */
3124 caller
->regs
[BPF_REG_0
] = *r0
;
3126 /* Transfer references to the caller */
3127 err
= transfer_reference_state(caller
, callee
);
3131 *insn_idx
= callee
->callsite
+ 1;
3132 if (env
->log
.level
& BPF_LOG_LEVEL
) {
3133 verbose(env
, "returning from callee:\n");
3134 print_verifier_state(env
, callee
);
3135 verbose(env
, "to caller at %d:\n", *insn_idx
);
3136 print_verifier_state(env
, caller
);
3138 /* clear everything in the callee */
3139 free_func_state(callee
);
3140 state
->frame
[state
->curframe
+ 1] = NULL
;
3144 static void do_refine_retval_range(struct bpf_reg_state
*regs
, int ret_type
,
3146 struct bpf_call_arg_meta
*meta
)
3148 struct bpf_reg_state
*ret_reg
= ®s
[BPF_REG_0
];
3150 if (ret_type
!= RET_INTEGER
||
3151 (func_id
!= BPF_FUNC_get_stack
&&
3152 func_id
!= BPF_FUNC_probe_read_str
))
3155 ret_reg
->smax_value
= meta
->msize_smax_value
;
3156 ret_reg
->umax_value
= meta
->msize_umax_value
;
3157 __reg_deduce_bounds(ret_reg
);
3158 __reg_bound_offset(ret_reg
);
3162 record_func_map(struct bpf_verifier_env
*env
, struct bpf_call_arg_meta
*meta
,
3163 int func_id
, int insn_idx
)
3165 struct bpf_insn_aux_data
*aux
= &env
->insn_aux_data
[insn_idx
];
3166 struct bpf_map
*map
= meta
->map_ptr
;
3168 if (func_id
!= BPF_FUNC_tail_call
&&
3169 func_id
!= BPF_FUNC_map_lookup_elem
&&
3170 func_id
!= BPF_FUNC_map_update_elem
&&
3171 func_id
!= BPF_FUNC_map_delete_elem
&&
3172 func_id
!= BPF_FUNC_map_push_elem
&&
3173 func_id
!= BPF_FUNC_map_pop_elem
&&
3174 func_id
!= BPF_FUNC_map_peek_elem
)
3178 verbose(env
, "kernel subsystem misconfigured verifier\n");
3182 /* In case of read-only, some additional restrictions
3183 * need to be applied in order to prevent altering the
3184 * state of the map from program side.
3186 if ((map
->map_flags
& BPF_F_RDONLY_PROG
) &&
3187 (func_id
== BPF_FUNC_map_delete_elem
||
3188 func_id
== BPF_FUNC_map_update_elem
||
3189 func_id
== BPF_FUNC_map_push_elem
||
3190 func_id
== BPF_FUNC_map_pop_elem
)) {
3191 verbose(env
, "write into map forbidden\n");
3195 if (!BPF_MAP_PTR(aux
->map_state
))
3196 bpf_map_ptr_store(aux
, meta
->map_ptr
,
3197 meta
->map_ptr
->unpriv_array
);
3198 else if (BPF_MAP_PTR(aux
->map_state
) != meta
->map_ptr
)
3199 bpf_map_ptr_store(aux
, BPF_MAP_PTR_POISON
,
3200 meta
->map_ptr
->unpriv_array
);
3204 static int check_reference_leak(struct bpf_verifier_env
*env
)
3206 struct bpf_func_state
*state
= cur_func(env
);
3209 for (i
= 0; i
< state
->acquired_refs
; i
++) {
3210 verbose(env
, "Unreleased reference id=%d alloc_insn=%d\n",
3211 state
->refs
[i
].id
, state
->refs
[i
].insn_idx
);
3213 return state
->acquired_refs
? -EINVAL
: 0;
3216 static int check_helper_call(struct bpf_verifier_env
*env
, int func_id
, int insn_idx
)
3218 const struct bpf_func_proto
*fn
= NULL
;
3219 struct bpf_reg_state
*regs
;
3220 struct bpf_call_arg_meta meta
;
3224 /* find function prototype */
3225 if (func_id
< 0 || func_id
>= __BPF_FUNC_MAX_ID
) {
3226 verbose(env
, "invalid func %s#%d\n", func_id_name(func_id
),
3231 if (env
->ops
->get_func_proto
)
3232 fn
= env
->ops
->get_func_proto(func_id
, env
->prog
);
3234 verbose(env
, "unknown func %s#%d\n", func_id_name(func_id
),
3239 /* eBPF programs must be GPL compatible to use GPL-ed functions */
3240 if (!env
->prog
->gpl_compatible
&& fn
->gpl_only
) {
3241 verbose(env
, "cannot call GPL-restricted function from non-GPL compatible program\n");
3245 /* With LD_ABS/IND some JITs save/restore skb from r1. */
3246 changes_data
= bpf_helper_changes_pkt_data(fn
->func
);
3247 if (changes_data
&& fn
->arg1_type
!= ARG_PTR_TO_CTX
) {
3248 verbose(env
, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3249 func_id_name(func_id
), func_id
);
3253 memset(&meta
, 0, sizeof(meta
));
3254 meta
.pkt_access
= fn
->pkt_access
;
3256 err
= check_func_proto(fn
, func_id
);
3258 verbose(env
, "kernel subsystem misconfigured func %s#%d\n",
3259 func_id_name(func_id
), func_id
);
3263 meta
.func_id
= func_id
;
3265 err
= check_func_arg(env
, BPF_REG_1
, fn
->arg1_type
, &meta
);
3268 err
= check_func_arg(env
, BPF_REG_2
, fn
->arg2_type
, &meta
);
3271 err
= check_func_arg(env
, BPF_REG_3
, fn
->arg3_type
, &meta
);
3274 err
= check_func_arg(env
, BPF_REG_4
, fn
->arg4_type
, &meta
);
3277 err
= check_func_arg(env
, BPF_REG_5
, fn
->arg5_type
, &meta
);
3281 err
= record_func_map(env
, &meta
, func_id
, insn_idx
);
3285 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3286 * is inferred from register state.
3288 for (i
= 0; i
< meta
.access_size
; i
++) {
3289 err
= check_mem_access(env
, insn_idx
, meta
.regno
, i
, BPF_B
,
3290 BPF_WRITE
, -1, false);
3295 if (func_id
== BPF_FUNC_tail_call
) {
3296 err
= check_reference_leak(env
);
3298 verbose(env
, "tail_call would lead to reference leak\n");
3301 } else if (is_release_function(func_id
)) {
3302 err
= release_reference(env
, meta
.ref_obj_id
);
3304 verbose(env
, "func %s#%d reference has not been acquired before\n",
3305 func_id_name(func_id
), func_id
);
3310 regs
= cur_regs(env
);
3312 /* check that flags argument in get_local_storage(map, flags) is 0,
3313 * this is required because get_local_storage() can't return an error.
3315 if (func_id
== BPF_FUNC_get_local_storage
&&
3316 !register_is_null(®s
[BPF_REG_2
])) {
3317 verbose(env
, "get_local_storage() doesn't support non-zero flags\n");
3321 /* reset caller saved regs */
3322 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
3323 mark_reg_not_init(env
, regs
, caller_saved
[i
]);
3324 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
3327 /* update return register (already marked as written above) */
3328 if (fn
->ret_type
== RET_INTEGER
) {
3329 /* sets type to SCALAR_VALUE */
3330 mark_reg_unknown(env
, regs
, BPF_REG_0
);
3331 } else if (fn
->ret_type
== RET_VOID
) {
3332 regs
[BPF_REG_0
].type
= NOT_INIT
;
3333 } else if (fn
->ret_type
== RET_PTR_TO_MAP_VALUE_OR_NULL
||
3334 fn
->ret_type
== RET_PTR_TO_MAP_VALUE
) {
3335 /* There is no offset yet applied, variable or fixed */
3336 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
3337 /* remember map_ptr, so that check_map_access()
3338 * can check 'value_size' boundary of memory access
3339 * to map element returned from bpf_map_lookup_elem()
3341 if (meta
.map_ptr
== NULL
) {
3343 "kernel subsystem misconfigured verifier\n");
3346 regs
[BPF_REG_0
].map_ptr
= meta
.map_ptr
;
3347 if (fn
->ret_type
== RET_PTR_TO_MAP_VALUE
) {
3348 regs
[BPF_REG_0
].type
= PTR_TO_MAP_VALUE
;
3349 if (map_value_has_spin_lock(meta
.map_ptr
))
3350 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
3352 regs
[BPF_REG_0
].type
= PTR_TO_MAP_VALUE_OR_NULL
;
3353 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
3355 } else if (fn
->ret_type
== RET_PTR_TO_SOCKET_OR_NULL
) {
3356 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
3357 regs
[BPF_REG_0
].type
= PTR_TO_SOCKET_OR_NULL
;
3358 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
3359 } else if (fn
->ret_type
== RET_PTR_TO_SOCK_COMMON_OR_NULL
) {
3360 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
3361 regs
[BPF_REG_0
].type
= PTR_TO_SOCK_COMMON_OR_NULL
;
3362 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
3363 } else if (fn
->ret_type
== RET_PTR_TO_TCP_SOCK_OR_NULL
) {
3364 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
3365 regs
[BPF_REG_0
].type
= PTR_TO_TCP_SOCK_OR_NULL
;
3366 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
3368 verbose(env
, "unknown return type %d of func %s#%d\n",
3369 fn
->ret_type
, func_id_name(func_id
), func_id
);
3373 if (is_ptr_cast_function(func_id
)) {
3374 /* For release_reference() */
3375 regs
[BPF_REG_0
].ref_obj_id
= meta
.ref_obj_id
;
3376 } else if (is_acquire_function(func_id
)) {
3377 int id
= acquire_reference_state(env
, insn_idx
);
3381 /* For mark_ptr_or_null_reg() */
3382 regs
[BPF_REG_0
].id
= id
;
3383 /* For release_reference() */
3384 regs
[BPF_REG_0
].ref_obj_id
= id
;
3387 do_refine_retval_range(regs
, fn
->ret_type
, func_id
, &meta
);
3389 err
= check_map_func_compatibility(env
, meta
.map_ptr
, func_id
);
3393 if (func_id
== BPF_FUNC_get_stack
&& !env
->prog
->has_callchain_buf
) {
3394 const char *err_str
;
3396 #ifdef CONFIG_PERF_EVENTS
3397 err
= get_callchain_buffers(sysctl_perf_event_max_stack
);
3398 err_str
= "cannot get callchain buffer for func %s#%d\n";
3401 err_str
= "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3404 verbose(env
, err_str
, func_id_name(func_id
), func_id
);
3408 env
->prog
->has_callchain_buf
= true;
3412 clear_all_pkt_pointers(env
);
3416 static bool signed_add_overflows(s64 a
, s64 b
)
3418 /* Do the add in u64, where overflow is well-defined */
3419 s64 res
= (s64
)((u64
)a
+ (u64
)b
);
3426 static bool signed_sub_overflows(s64 a
, s64 b
)
3428 /* Do the sub in u64, where overflow is well-defined */
3429 s64 res
= (s64
)((u64
)a
- (u64
)b
);
3436 static bool check_reg_sane_offset(struct bpf_verifier_env
*env
,
3437 const struct bpf_reg_state
*reg
,
3438 enum bpf_reg_type type
)
3440 bool known
= tnum_is_const(reg
->var_off
);
3441 s64 val
= reg
->var_off
.value
;
3442 s64 smin
= reg
->smin_value
;
3444 if (known
&& (val
>= BPF_MAX_VAR_OFF
|| val
<= -BPF_MAX_VAR_OFF
)) {
3445 verbose(env
, "math between %s pointer and %lld is not allowed\n",
3446 reg_type_str
[type
], val
);
3450 if (reg
->off
>= BPF_MAX_VAR_OFF
|| reg
->off
<= -BPF_MAX_VAR_OFF
) {
3451 verbose(env
, "%s pointer offset %d is not allowed\n",
3452 reg_type_str
[type
], reg
->off
);
3456 if (smin
== S64_MIN
) {
3457 verbose(env
, "math between %s pointer and register with unbounded min value is not allowed\n",
3458 reg_type_str
[type
]);
3462 if (smin
>= BPF_MAX_VAR_OFF
|| smin
<= -BPF_MAX_VAR_OFF
) {
3463 verbose(env
, "value %lld makes %s pointer be out of bounds\n",
3464 smin
, reg_type_str
[type
]);
3471 static struct bpf_insn_aux_data
*cur_aux(struct bpf_verifier_env
*env
)
3473 return &env
->insn_aux_data
[env
->insn_idx
];
3476 static int retrieve_ptr_limit(const struct bpf_reg_state
*ptr_reg
,
3477 u32
*ptr_limit
, u8 opcode
, bool off_is_neg
)
3479 bool mask_to_left
= (opcode
== BPF_ADD
&& off_is_neg
) ||
3480 (opcode
== BPF_SUB
&& !off_is_neg
);
3483 switch (ptr_reg
->type
) {
3485 /* Indirect variable offset stack access is prohibited in
3486 * unprivileged mode so it's not handled here.
3488 off
= ptr_reg
->off
+ ptr_reg
->var_off
.value
;
3490 *ptr_limit
= MAX_BPF_STACK
+ off
;
3494 case PTR_TO_MAP_VALUE
:
3496 *ptr_limit
= ptr_reg
->umax_value
+ ptr_reg
->off
;
3498 off
= ptr_reg
->smin_value
+ ptr_reg
->off
;
3499 *ptr_limit
= ptr_reg
->map_ptr
->value_size
- off
;
3507 static bool can_skip_alu_sanitation(const struct bpf_verifier_env
*env
,
3508 const struct bpf_insn
*insn
)
3510 return env
->allow_ptr_leaks
|| BPF_SRC(insn
->code
) == BPF_K
;
3513 static int update_alu_sanitation_state(struct bpf_insn_aux_data
*aux
,
3514 u32 alu_state
, u32 alu_limit
)
3516 /* If we arrived here from different branches with different
3517 * state or limits to sanitize, then this won't work.
3519 if (aux
->alu_state
&&
3520 (aux
->alu_state
!= alu_state
||
3521 aux
->alu_limit
!= alu_limit
))
3524 /* Corresponding fixup done in fixup_bpf_calls(). */
3525 aux
->alu_state
= alu_state
;
3526 aux
->alu_limit
= alu_limit
;
3530 static int sanitize_val_alu(struct bpf_verifier_env
*env
,
3531 struct bpf_insn
*insn
)
3533 struct bpf_insn_aux_data
*aux
= cur_aux(env
);
3535 if (can_skip_alu_sanitation(env
, insn
))
3538 return update_alu_sanitation_state(aux
, BPF_ALU_NON_POINTER
, 0);
3541 static int sanitize_ptr_alu(struct bpf_verifier_env
*env
,
3542 struct bpf_insn
*insn
,
3543 const struct bpf_reg_state
*ptr_reg
,
3544 struct bpf_reg_state
*dst_reg
,
3547 struct bpf_verifier_state
*vstate
= env
->cur_state
;
3548 struct bpf_insn_aux_data
*aux
= cur_aux(env
);
3549 bool ptr_is_dst_reg
= ptr_reg
== dst_reg
;
3550 u8 opcode
= BPF_OP(insn
->code
);
3551 u32 alu_state
, alu_limit
;
3552 struct bpf_reg_state tmp
;
3555 if (can_skip_alu_sanitation(env
, insn
))
3558 /* We already marked aux for masking from non-speculative
3559 * paths, thus we got here in the first place. We only care
3560 * to explore bad access from here.
3562 if (vstate
->speculative
)
3565 alu_state
= off_is_neg
? BPF_ALU_NEG_VALUE
: 0;
3566 alu_state
|= ptr_is_dst_reg
?
3567 BPF_ALU_SANITIZE_SRC
: BPF_ALU_SANITIZE_DST
;
3569 if (retrieve_ptr_limit(ptr_reg
, &alu_limit
, opcode
, off_is_neg
))
3571 if (update_alu_sanitation_state(aux
, alu_state
, alu_limit
))
3574 /* Simulate and find potential out-of-bounds access under
3575 * speculative execution from truncation as a result of
3576 * masking when off was not within expected range. If off
3577 * sits in dst, then we temporarily need to move ptr there
3578 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3579 * for cases where we use K-based arithmetic in one direction
3580 * and truncated reg-based in the other in order to explore
3583 if (!ptr_is_dst_reg
) {
3585 *dst_reg
= *ptr_reg
;
3587 ret
= push_stack(env
, env
->insn_idx
+ 1, env
->insn_idx
, true);
3588 if (!ptr_is_dst_reg
&& ret
)
3590 return !ret
? -EFAULT
: 0;
3593 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3594 * Caller should also handle BPF_MOV case separately.
3595 * If we return -EACCES, caller may want to try again treating pointer as a
3596 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3598 static int adjust_ptr_min_max_vals(struct bpf_verifier_env
*env
,
3599 struct bpf_insn
*insn
,
3600 const struct bpf_reg_state
*ptr_reg
,
3601 const struct bpf_reg_state
*off_reg
)
3603 struct bpf_verifier_state
*vstate
= env
->cur_state
;
3604 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
3605 struct bpf_reg_state
*regs
= state
->regs
, *dst_reg
;
3606 bool known
= tnum_is_const(off_reg
->var_off
);
3607 s64 smin_val
= off_reg
->smin_value
, smax_val
= off_reg
->smax_value
,
3608 smin_ptr
= ptr_reg
->smin_value
, smax_ptr
= ptr_reg
->smax_value
;
3609 u64 umin_val
= off_reg
->umin_value
, umax_val
= off_reg
->umax_value
,
3610 umin_ptr
= ptr_reg
->umin_value
, umax_ptr
= ptr_reg
->umax_value
;
3611 u32 dst
= insn
->dst_reg
, src
= insn
->src_reg
;
3612 u8 opcode
= BPF_OP(insn
->code
);
3615 dst_reg
= ®s
[dst
];
3617 if ((known
&& (smin_val
!= smax_val
|| umin_val
!= umax_val
)) ||
3618 smin_val
> smax_val
|| umin_val
> umax_val
) {
3619 /* Taint dst register if offset had invalid bounds derived from
3620 * e.g. dead branches.
3622 __mark_reg_unknown(dst_reg
);
3626 if (BPF_CLASS(insn
->code
) != BPF_ALU64
) {
3627 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
3629 "R%d 32-bit pointer arithmetic prohibited\n",
3634 switch (ptr_reg
->type
) {
3635 case PTR_TO_MAP_VALUE_OR_NULL
:
3636 verbose(env
, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3637 dst
, reg_type_str
[ptr_reg
->type
]);
3639 case CONST_PTR_TO_MAP
:
3640 case PTR_TO_PACKET_END
:
3642 case PTR_TO_SOCKET_OR_NULL
:
3643 case PTR_TO_SOCK_COMMON
:
3644 case PTR_TO_SOCK_COMMON_OR_NULL
:
3645 case PTR_TO_TCP_SOCK
:
3646 case PTR_TO_TCP_SOCK_OR_NULL
:
3647 verbose(env
, "R%d pointer arithmetic on %s prohibited\n",
3648 dst
, reg_type_str
[ptr_reg
->type
]);
3650 case PTR_TO_MAP_VALUE
:
3651 if (!env
->allow_ptr_leaks
&& !known
&& (smin_val
< 0) != (smax_val
< 0)) {
3652 verbose(env
, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3653 off_reg
== dst_reg
? dst
: src
);
3661 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3662 * The id may be overwritten later if we create a new variable offset.
3664 dst_reg
->type
= ptr_reg
->type
;
3665 dst_reg
->id
= ptr_reg
->id
;
3667 if (!check_reg_sane_offset(env
, off_reg
, ptr_reg
->type
) ||
3668 !check_reg_sane_offset(env
, ptr_reg
, ptr_reg
->type
))
3673 ret
= sanitize_ptr_alu(env
, insn
, ptr_reg
, dst_reg
, smin_val
< 0);
3675 verbose(env
, "R%d tried to add from different maps or paths\n", dst
);
3678 /* We can take a fixed offset as long as it doesn't overflow
3679 * the s32 'off' field
3681 if (known
&& (ptr_reg
->off
+ smin_val
==
3682 (s64
)(s32
)(ptr_reg
->off
+ smin_val
))) {
3683 /* pointer += K. Accumulate it into fixed offset */
3684 dst_reg
->smin_value
= smin_ptr
;
3685 dst_reg
->smax_value
= smax_ptr
;
3686 dst_reg
->umin_value
= umin_ptr
;
3687 dst_reg
->umax_value
= umax_ptr
;
3688 dst_reg
->var_off
= ptr_reg
->var_off
;
3689 dst_reg
->off
= ptr_reg
->off
+ smin_val
;
3690 dst_reg
->raw
= ptr_reg
->raw
;
3693 /* A new variable offset is created. Note that off_reg->off
3694 * == 0, since it's a scalar.
3695 * dst_reg gets the pointer type and since some positive
3696 * integer value was added to the pointer, give it a new 'id'
3697 * if it's a PTR_TO_PACKET.
3698 * this creates a new 'base' pointer, off_reg (variable) gets
3699 * added into the variable offset, and we copy the fixed offset
3702 if (signed_add_overflows(smin_ptr
, smin_val
) ||
3703 signed_add_overflows(smax_ptr
, smax_val
)) {
3704 dst_reg
->smin_value
= S64_MIN
;
3705 dst_reg
->smax_value
= S64_MAX
;
3707 dst_reg
->smin_value
= smin_ptr
+ smin_val
;
3708 dst_reg
->smax_value
= smax_ptr
+ smax_val
;
3710 if (umin_ptr
+ umin_val
< umin_ptr
||
3711 umax_ptr
+ umax_val
< umax_ptr
) {
3712 dst_reg
->umin_value
= 0;
3713 dst_reg
->umax_value
= U64_MAX
;
3715 dst_reg
->umin_value
= umin_ptr
+ umin_val
;
3716 dst_reg
->umax_value
= umax_ptr
+ umax_val
;
3718 dst_reg
->var_off
= tnum_add(ptr_reg
->var_off
, off_reg
->var_off
);
3719 dst_reg
->off
= ptr_reg
->off
;
3720 dst_reg
->raw
= ptr_reg
->raw
;
3721 if (reg_is_pkt_pointer(ptr_reg
)) {
3722 dst_reg
->id
= ++env
->id_gen
;
3723 /* something was added to pkt_ptr, set range to zero */
3728 ret
= sanitize_ptr_alu(env
, insn
, ptr_reg
, dst_reg
, smin_val
< 0);
3730 verbose(env
, "R%d tried to sub from different maps or paths\n", dst
);
3733 if (dst_reg
== off_reg
) {
3734 /* scalar -= pointer. Creates an unknown scalar */
3735 verbose(env
, "R%d tried to subtract pointer from scalar\n",
3739 /* We don't allow subtraction from FP, because (according to
3740 * test_verifier.c test "invalid fp arithmetic", JITs might not
3741 * be able to deal with it.
3743 if (ptr_reg
->type
== PTR_TO_STACK
) {
3744 verbose(env
, "R%d subtraction from stack pointer prohibited\n",
3748 if (known
&& (ptr_reg
->off
- smin_val
==
3749 (s64
)(s32
)(ptr_reg
->off
- smin_val
))) {
3750 /* pointer -= K. Subtract it from fixed offset */
3751 dst_reg
->smin_value
= smin_ptr
;
3752 dst_reg
->smax_value
= smax_ptr
;
3753 dst_reg
->umin_value
= umin_ptr
;
3754 dst_reg
->umax_value
= umax_ptr
;
3755 dst_reg
->var_off
= ptr_reg
->var_off
;
3756 dst_reg
->id
= ptr_reg
->id
;
3757 dst_reg
->off
= ptr_reg
->off
- smin_val
;
3758 dst_reg
->raw
= ptr_reg
->raw
;
3761 /* A new variable offset is created. If the subtrahend is known
3762 * nonnegative, then any reg->range we had before is still good.
3764 if (signed_sub_overflows(smin_ptr
, smax_val
) ||
3765 signed_sub_overflows(smax_ptr
, smin_val
)) {
3766 /* Overflow possible, we know nothing */
3767 dst_reg
->smin_value
= S64_MIN
;
3768 dst_reg
->smax_value
= S64_MAX
;
3770 dst_reg
->smin_value
= smin_ptr
- smax_val
;
3771 dst_reg
->smax_value
= smax_ptr
- smin_val
;
3773 if (umin_ptr
< umax_val
) {
3774 /* Overflow possible, we know nothing */
3775 dst_reg
->umin_value
= 0;
3776 dst_reg
->umax_value
= U64_MAX
;
3778 /* Cannot overflow (as long as bounds are consistent) */
3779 dst_reg
->umin_value
= umin_ptr
- umax_val
;
3780 dst_reg
->umax_value
= umax_ptr
- umin_val
;
3782 dst_reg
->var_off
= tnum_sub(ptr_reg
->var_off
, off_reg
->var_off
);
3783 dst_reg
->off
= ptr_reg
->off
;
3784 dst_reg
->raw
= ptr_reg
->raw
;
3785 if (reg_is_pkt_pointer(ptr_reg
)) {
3786 dst_reg
->id
= ++env
->id_gen
;
3787 /* something was added to pkt_ptr, set range to zero */
3795 /* bitwise ops on pointers are troublesome, prohibit. */
3796 verbose(env
, "R%d bitwise operator %s on pointer prohibited\n",
3797 dst
, bpf_alu_string
[opcode
>> 4]);
3800 /* other operators (e.g. MUL,LSH) produce non-pointer results */
3801 verbose(env
, "R%d pointer arithmetic with %s operator prohibited\n",
3802 dst
, bpf_alu_string
[opcode
>> 4]);
3806 if (!check_reg_sane_offset(env
, dst_reg
, ptr_reg
->type
))
3809 __update_reg_bounds(dst_reg
);
3810 __reg_deduce_bounds(dst_reg
);
3811 __reg_bound_offset(dst_reg
);
3813 /* For unprivileged we require that resulting offset must be in bounds
3814 * in order to be able to sanitize access later on.
3816 if (!env
->allow_ptr_leaks
) {
3817 if (dst_reg
->type
== PTR_TO_MAP_VALUE
&&
3818 check_map_access(env
, dst
, dst_reg
->off
, 1, false)) {
3819 verbose(env
, "R%d pointer arithmetic of map value goes out of range, "
3820 "prohibited for !root\n", dst
);
3822 } else if (dst_reg
->type
== PTR_TO_STACK
&&
3823 check_stack_access(env
, dst_reg
, dst_reg
->off
+
3824 dst_reg
->var_off
.value
, 1)) {
3825 verbose(env
, "R%d stack pointer arithmetic goes out of range, "
3826 "prohibited for !root\n", dst
);
3834 /* WARNING: This function does calculations on 64-bit values, but the actual
3835 * execution may occur on 32-bit values. Therefore, things like bitshifts
3836 * need extra checks in the 32-bit case.
3838 static int adjust_scalar_min_max_vals(struct bpf_verifier_env
*env
,
3839 struct bpf_insn
*insn
,
3840 struct bpf_reg_state
*dst_reg
,
3841 struct bpf_reg_state src_reg
)
3843 struct bpf_reg_state
*regs
= cur_regs(env
);
3844 u8 opcode
= BPF_OP(insn
->code
);
3845 bool src_known
, dst_known
;
3846 s64 smin_val
, smax_val
;
3847 u64 umin_val
, umax_val
;
3848 u64 insn_bitness
= (BPF_CLASS(insn
->code
) == BPF_ALU64
) ? 64 : 32;
3849 u32 dst
= insn
->dst_reg
;
3852 if (insn_bitness
== 32) {
3853 /* Relevant for 32-bit RSH: Information can propagate towards
3854 * LSB, so it isn't sufficient to only truncate the output to
3857 coerce_reg_to_size(dst_reg
, 4);
3858 coerce_reg_to_size(&src_reg
, 4);
3861 smin_val
= src_reg
.smin_value
;
3862 smax_val
= src_reg
.smax_value
;
3863 umin_val
= src_reg
.umin_value
;
3864 umax_val
= src_reg
.umax_value
;
3865 src_known
= tnum_is_const(src_reg
.var_off
);
3866 dst_known
= tnum_is_const(dst_reg
->var_off
);
3868 if ((src_known
&& (smin_val
!= smax_val
|| umin_val
!= umax_val
)) ||
3869 smin_val
> smax_val
|| umin_val
> umax_val
) {
3870 /* Taint dst register if offset had invalid bounds derived from
3871 * e.g. dead branches.
3873 __mark_reg_unknown(dst_reg
);
3878 opcode
!= BPF_ADD
&& opcode
!= BPF_SUB
&& opcode
!= BPF_AND
) {
3879 __mark_reg_unknown(dst_reg
);
3885 ret
= sanitize_val_alu(env
, insn
);
3887 verbose(env
, "R%d tried to add from different pointers or scalars\n", dst
);
3890 if (signed_add_overflows(dst_reg
->smin_value
, smin_val
) ||
3891 signed_add_overflows(dst_reg
->smax_value
, smax_val
)) {
3892 dst_reg
->smin_value
= S64_MIN
;
3893 dst_reg
->smax_value
= S64_MAX
;
3895 dst_reg
->smin_value
+= smin_val
;
3896 dst_reg
->smax_value
+= smax_val
;
3898 if (dst_reg
->umin_value
+ umin_val
< umin_val
||
3899 dst_reg
->umax_value
+ umax_val
< umax_val
) {
3900 dst_reg
->umin_value
= 0;
3901 dst_reg
->umax_value
= U64_MAX
;
3903 dst_reg
->umin_value
+= umin_val
;
3904 dst_reg
->umax_value
+= umax_val
;
3906 dst_reg
->var_off
= tnum_add(dst_reg
->var_off
, src_reg
.var_off
);
3909 ret
= sanitize_val_alu(env
, insn
);
3911 verbose(env
, "R%d tried to sub from different pointers or scalars\n", dst
);
3914 if (signed_sub_overflows(dst_reg
->smin_value
, smax_val
) ||
3915 signed_sub_overflows(dst_reg
->smax_value
, smin_val
)) {
3916 /* Overflow possible, we know nothing */
3917 dst_reg
->smin_value
= S64_MIN
;
3918 dst_reg
->smax_value
= S64_MAX
;
3920 dst_reg
->smin_value
-= smax_val
;
3921 dst_reg
->smax_value
-= smin_val
;
3923 if (dst_reg
->umin_value
< umax_val
) {
3924 /* Overflow possible, we know nothing */
3925 dst_reg
->umin_value
= 0;
3926 dst_reg
->umax_value
= U64_MAX
;
3928 /* Cannot overflow (as long as bounds are consistent) */
3929 dst_reg
->umin_value
-= umax_val
;
3930 dst_reg
->umax_value
-= umin_val
;
3932 dst_reg
->var_off
= tnum_sub(dst_reg
->var_off
, src_reg
.var_off
);
3935 dst_reg
->var_off
= tnum_mul(dst_reg
->var_off
, src_reg
.var_off
);
3936 if (smin_val
< 0 || dst_reg
->smin_value
< 0) {
3937 /* Ain't nobody got time to multiply that sign */
3938 __mark_reg_unbounded(dst_reg
);
3939 __update_reg_bounds(dst_reg
);
3942 /* Both values are positive, so we can work with unsigned and
3943 * copy the result to signed (unless it exceeds S64_MAX).
3945 if (umax_val
> U32_MAX
|| dst_reg
->umax_value
> U32_MAX
) {
3946 /* Potential overflow, we know nothing */
3947 __mark_reg_unbounded(dst_reg
);
3948 /* (except what we can learn from the var_off) */
3949 __update_reg_bounds(dst_reg
);
3952 dst_reg
->umin_value
*= umin_val
;
3953 dst_reg
->umax_value
*= umax_val
;
3954 if (dst_reg
->umax_value
> S64_MAX
) {
3955 /* Overflow possible, we know nothing */
3956 dst_reg
->smin_value
= S64_MIN
;
3957 dst_reg
->smax_value
= S64_MAX
;
3959 dst_reg
->smin_value
= dst_reg
->umin_value
;
3960 dst_reg
->smax_value
= dst_reg
->umax_value
;
3964 if (src_known
&& dst_known
) {
3965 __mark_reg_known(dst_reg
, dst_reg
->var_off
.value
&
3966 src_reg
.var_off
.value
);
3969 /* We get our minimum from the var_off, since that's inherently
3970 * bitwise. Our maximum is the minimum of the operands' maxima.
3972 dst_reg
->var_off
= tnum_and(dst_reg
->var_off
, src_reg
.var_off
);
3973 dst_reg
->umin_value
= dst_reg
->var_off
.value
;
3974 dst_reg
->umax_value
= min(dst_reg
->umax_value
, umax_val
);
3975 if (dst_reg
->smin_value
< 0 || smin_val
< 0) {
3976 /* Lose signed bounds when ANDing negative numbers,
3977 * ain't nobody got time for that.
3979 dst_reg
->smin_value
= S64_MIN
;
3980 dst_reg
->smax_value
= S64_MAX
;
3982 /* ANDing two positives gives a positive, so safe to
3983 * cast result into s64.
3985 dst_reg
->smin_value
= dst_reg
->umin_value
;
3986 dst_reg
->smax_value
= dst_reg
->umax_value
;
3988 /* We may learn something more from the var_off */
3989 __update_reg_bounds(dst_reg
);
3992 if (src_known
&& dst_known
) {
3993 __mark_reg_known(dst_reg
, dst_reg
->var_off
.value
|
3994 src_reg
.var_off
.value
);
3997 /* We get our maximum from the var_off, and our minimum is the
3998 * maximum of the operands' minima
4000 dst_reg
->var_off
= tnum_or(dst_reg
->var_off
, src_reg
.var_off
);
4001 dst_reg
->umin_value
= max(dst_reg
->umin_value
, umin_val
);
4002 dst_reg
->umax_value
= dst_reg
->var_off
.value
|
4003 dst_reg
->var_off
.mask
;
4004 if (dst_reg
->smin_value
< 0 || smin_val
< 0) {
4005 /* Lose signed bounds when ORing negative numbers,
4006 * ain't nobody got time for that.
4008 dst_reg
->smin_value
= S64_MIN
;
4009 dst_reg
->smax_value
= S64_MAX
;
4011 /* ORing two positives gives a positive, so safe to
4012 * cast result into s64.
4014 dst_reg
->smin_value
= dst_reg
->umin_value
;
4015 dst_reg
->smax_value
= dst_reg
->umax_value
;
4017 /* We may learn something more from the var_off */
4018 __update_reg_bounds(dst_reg
);
4021 if (umax_val
>= insn_bitness
) {
4022 /* Shifts greater than 31 or 63 are undefined.
4023 * This includes shifts by a negative number.
4025 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4028 /* We lose all sign bit information (except what we can pick
4031 dst_reg
->smin_value
= S64_MIN
;
4032 dst_reg
->smax_value
= S64_MAX
;
4033 /* If we might shift our top bit out, then we know nothing */
4034 if (dst_reg
->umax_value
> 1ULL << (63 - umax_val
)) {
4035 dst_reg
->umin_value
= 0;
4036 dst_reg
->umax_value
= U64_MAX
;
4038 dst_reg
->umin_value
<<= umin_val
;
4039 dst_reg
->umax_value
<<= umax_val
;
4041 dst_reg
->var_off
= tnum_lshift(dst_reg
->var_off
, umin_val
);
4042 /* We may learn something more from the var_off */
4043 __update_reg_bounds(dst_reg
);
4046 if (umax_val
>= insn_bitness
) {
4047 /* Shifts greater than 31 or 63 are undefined.
4048 * This includes shifts by a negative number.
4050 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4053 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4054 * be negative, then either:
4055 * 1) src_reg might be zero, so the sign bit of the result is
4056 * unknown, so we lose our signed bounds
4057 * 2) it's known negative, thus the unsigned bounds capture the
4059 * 3) the signed bounds cross zero, so they tell us nothing
4061 * If the value in dst_reg is known nonnegative, then again the
4062 * unsigned bounts capture the signed bounds.
4063 * Thus, in all cases it suffices to blow away our signed bounds
4064 * and rely on inferring new ones from the unsigned bounds and
4065 * var_off of the result.
4067 dst_reg
->smin_value
= S64_MIN
;
4068 dst_reg
->smax_value
= S64_MAX
;
4069 dst_reg
->var_off
= tnum_rshift(dst_reg
->var_off
, umin_val
);
4070 dst_reg
->umin_value
>>= umax_val
;
4071 dst_reg
->umax_value
>>= umin_val
;
4072 /* We may learn something more from the var_off */
4073 __update_reg_bounds(dst_reg
);
4076 if (umax_val
>= insn_bitness
) {
4077 /* Shifts greater than 31 or 63 are undefined.
4078 * This includes shifts by a negative number.
4080 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4084 /* Upon reaching here, src_known is true and
4085 * umax_val is equal to umin_val.
4087 dst_reg
->smin_value
>>= umin_val
;
4088 dst_reg
->smax_value
>>= umin_val
;
4089 dst_reg
->var_off
= tnum_arshift(dst_reg
->var_off
, umin_val
);
4091 /* blow away the dst_reg umin_value/umax_value and rely on
4092 * dst_reg var_off to refine the result.
4094 dst_reg
->umin_value
= 0;
4095 dst_reg
->umax_value
= U64_MAX
;
4096 __update_reg_bounds(dst_reg
);
4099 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4103 if (BPF_CLASS(insn
->code
) != BPF_ALU64
) {
4104 /* 32-bit ALU ops are (32,32)->32 */
4105 coerce_reg_to_size(dst_reg
, 4);
4108 __reg_deduce_bounds(dst_reg
);
4109 __reg_bound_offset(dst_reg
);
4113 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4116 static int adjust_reg_min_max_vals(struct bpf_verifier_env
*env
,
4117 struct bpf_insn
*insn
)
4119 struct bpf_verifier_state
*vstate
= env
->cur_state
;
4120 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
4121 struct bpf_reg_state
*regs
= state
->regs
, *dst_reg
, *src_reg
;
4122 struct bpf_reg_state
*ptr_reg
= NULL
, off_reg
= {0};
4123 u8 opcode
= BPF_OP(insn
->code
);
4125 dst_reg
= ®s
[insn
->dst_reg
];
4127 if (dst_reg
->type
!= SCALAR_VALUE
)
4129 if (BPF_SRC(insn
->code
) == BPF_X
) {
4130 src_reg
= ®s
[insn
->src_reg
];
4131 if (src_reg
->type
!= SCALAR_VALUE
) {
4132 if (dst_reg
->type
!= SCALAR_VALUE
) {
4133 /* Combining two pointers by any ALU op yields
4134 * an arbitrary scalar. Disallow all math except
4135 * pointer subtraction
4137 if (opcode
== BPF_SUB
&& env
->allow_ptr_leaks
) {
4138 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4141 verbose(env
, "R%d pointer %s pointer prohibited\n",
4143 bpf_alu_string
[opcode
>> 4]);
4146 /* scalar += pointer
4147 * This is legal, but we have to reverse our
4148 * src/dest handling in computing the range
4150 return adjust_ptr_min_max_vals(env
, insn
,
4153 } else if (ptr_reg
) {
4154 /* pointer += scalar */
4155 return adjust_ptr_min_max_vals(env
, insn
,
4159 /* Pretend the src is a reg with a known value, since we only
4160 * need to be able to read from this state.
4162 off_reg
.type
= SCALAR_VALUE
;
4163 __mark_reg_known(&off_reg
, insn
->imm
);
4165 if (ptr_reg
) /* pointer += K */
4166 return adjust_ptr_min_max_vals(env
, insn
,
4170 /* Got here implies adding two SCALAR_VALUEs */
4171 if (WARN_ON_ONCE(ptr_reg
)) {
4172 print_verifier_state(env
, state
);
4173 verbose(env
, "verifier internal error: unexpected ptr_reg\n");
4176 if (WARN_ON(!src_reg
)) {
4177 print_verifier_state(env
, state
);
4178 verbose(env
, "verifier internal error: no src_reg\n");
4181 return adjust_scalar_min_max_vals(env
, insn
, dst_reg
, *src_reg
);
4184 /* check validity of 32-bit and 64-bit arithmetic operations */
4185 static int check_alu_op(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
4187 struct bpf_reg_state
*regs
= cur_regs(env
);
4188 u8 opcode
= BPF_OP(insn
->code
);
4191 if (opcode
== BPF_END
|| opcode
== BPF_NEG
) {
4192 if (opcode
== BPF_NEG
) {
4193 if (BPF_SRC(insn
->code
) != 0 ||
4194 insn
->src_reg
!= BPF_REG_0
||
4195 insn
->off
!= 0 || insn
->imm
!= 0) {
4196 verbose(env
, "BPF_NEG uses reserved fields\n");
4200 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
4201 (insn
->imm
!= 16 && insn
->imm
!= 32 && insn
->imm
!= 64) ||
4202 BPF_CLASS(insn
->code
) == BPF_ALU64
) {
4203 verbose(env
, "BPF_END uses reserved fields\n");
4208 /* check src operand */
4209 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
4213 if (is_pointer_value(env
, insn
->dst_reg
)) {
4214 verbose(env
, "R%d pointer arithmetic prohibited\n",
4219 /* check dest operand */
4220 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
4224 } else if (opcode
== BPF_MOV
) {
4226 if (BPF_SRC(insn
->code
) == BPF_X
) {
4227 if (insn
->imm
!= 0 || insn
->off
!= 0) {
4228 verbose(env
, "BPF_MOV uses reserved fields\n");
4232 /* check src operand */
4233 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
4237 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
4238 verbose(env
, "BPF_MOV uses reserved fields\n");
4243 /* check dest operand, mark as required later */
4244 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
4248 if (BPF_SRC(insn
->code
) == BPF_X
) {
4249 struct bpf_reg_state
*src_reg
= regs
+ insn
->src_reg
;
4250 struct bpf_reg_state
*dst_reg
= regs
+ insn
->dst_reg
;
4252 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
4254 * copy register state to dest reg
4256 *dst_reg
= *src_reg
;
4257 dst_reg
->live
|= REG_LIVE_WRITTEN
;
4260 if (is_pointer_value(env
, insn
->src_reg
)) {
4262 "R%d partial copy of pointer\n",
4265 } else if (src_reg
->type
== SCALAR_VALUE
) {
4266 *dst_reg
= *src_reg
;
4267 dst_reg
->live
|= REG_LIVE_WRITTEN
;
4269 mark_reg_unknown(env
, regs
,
4272 coerce_reg_to_size(dst_reg
, 4);
4276 * remember the value we stored into this reg
4278 /* clear any state __mark_reg_known doesn't set */
4279 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4280 regs
[insn
->dst_reg
].type
= SCALAR_VALUE
;
4281 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
4282 __mark_reg_known(regs
+ insn
->dst_reg
,
4285 __mark_reg_known(regs
+ insn
->dst_reg
,
4290 } else if (opcode
> BPF_END
) {
4291 verbose(env
, "invalid BPF_ALU opcode %x\n", opcode
);
4294 } else { /* all other ALU ops: and, sub, xor, add, ... */
4296 if (BPF_SRC(insn
->code
) == BPF_X
) {
4297 if (insn
->imm
!= 0 || insn
->off
!= 0) {
4298 verbose(env
, "BPF_ALU uses reserved fields\n");
4301 /* check src1 operand */
4302 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
4306 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
4307 verbose(env
, "BPF_ALU uses reserved fields\n");
4312 /* check src2 operand */
4313 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
4317 if ((opcode
== BPF_MOD
|| opcode
== BPF_DIV
) &&
4318 BPF_SRC(insn
->code
) == BPF_K
&& insn
->imm
== 0) {
4319 verbose(env
, "div by zero\n");
4323 if ((opcode
== BPF_LSH
|| opcode
== BPF_RSH
||
4324 opcode
== BPF_ARSH
) && BPF_SRC(insn
->code
) == BPF_K
) {
4325 int size
= BPF_CLASS(insn
->code
) == BPF_ALU64
? 64 : 32;
4327 if (insn
->imm
< 0 || insn
->imm
>= size
) {
4328 verbose(env
, "invalid shift %d\n", insn
->imm
);
4333 /* check dest operand */
4334 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
4338 return adjust_reg_min_max_vals(env
, insn
);
4344 static void __find_good_pkt_pointers(struct bpf_func_state
*state
,
4345 struct bpf_reg_state
*dst_reg
,
4346 enum bpf_reg_type type
, u16 new_range
)
4348 struct bpf_reg_state
*reg
;
4351 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
4352 reg
= &state
->regs
[i
];
4353 if (reg
->type
== type
&& reg
->id
== dst_reg
->id
)
4354 /* keep the maximum range already checked */
4355 reg
->range
= max(reg
->range
, new_range
);
4358 bpf_for_each_spilled_reg(i
, state
, reg
) {
4361 if (reg
->type
== type
&& reg
->id
== dst_reg
->id
)
4362 reg
->range
= max(reg
->range
, new_range
);
4366 static void find_good_pkt_pointers(struct bpf_verifier_state
*vstate
,
4367 struct bpf_reg_state
*dst_reg
,
4368 enum bpf_reg_type type
,
4369 bool range_right_open
)
4374 if (dst_reg
->off
< 0 ||
4375 (dst_reg
->off
== 0 && range_right_open
))
4376 /* This doesn't give us any range */
4379 if (dst_reg
->umax_value
> MAX_PACKET_OFF
||
4380 dst_reg
->umax_value
+ dst_reg
->off
> MAX_PACKET_OFF
)
4381 /* Risk of overflow. For instance, ptr + (1<<63) may be less
4382 * than pkt_end, but that's because it's also less than pkt.
4386 new_range
= dst_reg
->off
;
4387 if (range_right_open
)
4390 /* Examples for register markings:
4392 * pkt_data in dst register:
4396 * if (r2 > pkt_end) goto <handle exception>
4401 * if (r2 < pkt_end) goto <access okay>
4402 * <handle exception>
4405 * r2 == dst_reg, pkt_end == src_reg
4406 * r2=pkt(id=n,off=8,r=0)
4407 * r3=pkt(id=n,off=0,r=0)
4409 * pkt_data in src register:
4413 * if (pkt_end >= r2) goto <access okay>
4414 * <handle exception>
4418 * if (pkt_end <= r2) goto <handle exception>
4422 * pkt_end == dst_reg, r2 == src_reg
4423 * r2=pkt(id=n,off=8,r=0)
4424 * r3=pkt(id=n,off=0,r=0)
4426 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4427 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4428 * and [r3, r3 + 8-1) respectively is safe to access depending on
4432 /* If our ids match, then we must have the same max_value. And we
4433 * don't care about the other reg's fixed offset, since if it's too big
4434 * the range won't allow anything.
4435 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4437 for (i
= 0; i
<= vstate
->curframe
; i
++)
4438 __find_good_pkt_pointers(vstate
->frame
[i
], dst_reg
, type
,
4442 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4444 * 1 - branch will be taken and "goto target" will be executed
4445 * 0 - branch will not be taken and fall-through to next insn
4446 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4448 static int is_branch_taken(struct bpf_reg_state
*reg
, u64 val
, u8 opcode
,
4451 struct bpf_reg_state reg_lo
;
4454 if (__is_pointer_value(false, reg
))
4460 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4461 * could truncate high bits and update umin/umax according to
4462 * information of low bits.
4464 coerce_reg_to_size(reg
, 4);
4465 /* smin/smax need special handling. For example, after coerce,
4466 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4467 * used as operand to JMP32. It is a negative number from s32's
4468 * point of view, while it is a positive number when seen as
4469 * s64. The smin/smax are kept as s64, therefore, when used with
4470 * JMP32, they need to be transformed into s32, then sign
4471 * extended back to s64.
4473 * Also, smin/smax were copied from umin/umax. If umin/umax has
4474 * different sign bit, then min/max relationship doesn't
4475 * maintain after casting into s32, for this case, set smin/smax
4478 if ((reg
->umax_value
^ reg
->umin_value
) &
4480 reg
->smin_value
= S32_MIN
;
4481 reg
->smax_value
= S32_MAX
;
4483 reg
->smin_value
= (s64
)(s32
)reg
->smin_value
;
4484 reg
->smax_value
= (s64
)(s32
)reg
->smax_value
;
4487 sval
= (s64
)(s32
)val
;
4494 if (tnum_is_const(reg
->var_off
))
4495 return !!tnum_equals_const(reg
->var_off
, val
);
4498 if (tnum_is_const(reg
->var_off
))
4499 return !tnum_equals_const(reg
->var_off
, val
);
4502 if ((~reg
->var_off
.mask
& reg
->var_off
.value
) & val
)
4504 if (!((reg
->var_off
.mask
| reg
->var_off
.value
) & val
))
4508 if (reg
->umin_value
> val
)
4510 else if (reg
->umax_value
<= val
)
4514 if (reg
->smin_value
> sval
)
4516 else if (reg
->smax_value
< sval
)
4520 if (reg
->umax_value
< val
)
4522 else if (reg
->umin_value
>= val
)
4526 if (reg
->smax_value
< sval
)
4528 else if (reg
->smin_value
>= sval
)
4532 if (reg
->umin_value
>= val
)
4534 else if (reg
->umax_value
< val
)
4538 if (reg
->smin_value
>= sval
)
4540 else if (reg
->smax_value
< sval
)
4544 if (reg
->umax_value
<= val
)
4546 else if (reg
->umin_value
> val
)
4550 if (reg
->smax_value
<= sval
)
4552 else if (reg
->smin_value
> sval
)
4560 /* Generate min value of the high 32-bit from TNUM info. */
4561 static u64
gen_hi_min(struct tnum var
)
4563 return var
.value
& ~0xffffffffULL
;
4566 /* Generate max value of the high 32-bit from TNUM info. */
4567 static u64
gen_hi_max(struct tnum var
)
4569 return (var
.value
| var
.mask
) & ~0xffffffffULL
;
4572 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4573 * are with the same signedness.
4575 static bool cmp_val_with_extended_s64(s64 sval
, struct bpf_reg_state
*reg
)
4577 return ((s32
)sval
>= 0 &&
4578 reg
->smin_value
>= 0 && reg
->smax_value
<= S32_MAX
) ||
4580 reg
->smax_value
<= 0 && reg
->smin_value
>= S32_MIN
);
4583 /* Adjusts the register min/max values in the case that the dst_reg is the
4584 * variable register that we are working on, and src_reg is a constant or we're
4585 * simply doing a BPF_K check.
4586 * In JEQ/JNE cases we also adjust the var_off values.
4588 static void reg_set_min_max(struct bpf_reg_state
*true_reg
,
4589 struct bpf_reg_state
*false_reg
, u64 val
,
4590 u8 opcode
, bool is_jmp32
)
4594 /* If the dst_reg is a pointer, we can't learn anything about its
4595 * variable offset from the compare (unless src_reg were a pointer into
4596 * the same object, but we don't bother with that.
4597 * Since false_reg and true_reg have the same type by construction, we
4598 * only need to check one of them for pointerness.
4600 if (__is_pointer_value(false, false_reg
))
4603 val
= is_jmp32
? (u32
)val
: val
;
4604 sval
= is_jmp32
? (s64
)(s32
)val
: (s64
)val
;
4610 struct bpf_reg_state
*reg
=
4611 opcode
== BPF_JEQ
? true_reg
: false_reg
;
4613 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4614 * if it is true we know the value for sure. Likewise for
4618 u64 old_v
= reg
->var_off
.value
;
4619 u64 hi_mask
= ~0xffffffffULL
;
4621 reg
->var_off
.value
= (old_v
& hi_mask
) | val
;
4622 reg
->var_off
.mask
&= hi_mask
;
4624 __mark_reg_known(reg
, val
);
4629 false_reg
->var_off
= tnum_and(false_reg
->var_off
,
4631 if (is_power_of_2(val
))
4632 true_reg
->var_off
= tnum_or(true_reg
->var_off
,
4638 u64 false_umax
= opcode
== BPF_JGT
? val
: val
- 1;
4639 u64 true_umin
= opcode
== BPF_JGT
? val
+ 1 : val
;
4642 false_umax
+= gen_hi_max(false_reg
->var_off
);
4643 true_umin
+= gen_hi_min(true_reg
->var_off
);
4645 false_reg
->umax_value
= min(false_reg
->umax_value
, false_umax
);
4646 true_reg
->umin_value
= max(true_reg
->umin_value
, true_umin
);
4652 s64 false_smax
= opcode
== BPF_JSGT
? sval
: sval
- 1;
4653 s64 true_smin
= opcode
== BPF_JSGT
? sval
+ 1 : sval
;
4655 /* If the full s64 was not sign-extended from s32 then don't
4656 * deduct further info.
4658 if (is_jmp32
&& !cmp_val_with_extended_s64(sval
, false_reg
))
4660 false_reg
->smax_value
= min(false_reg
->smax_value
, false_smax
);
4661 true_reg
->smin_value
= max(true_reg
->smin_value
, true_smin
);
4667 u64 false_umin
= opcode
== BPF_JLT
? val
: val
+ 1;
4668 u64 true_umax
= opcode
== BPF_JLT
? val
- 1 : val
;
4671 false_umin
+= gen_hi_min(false_reg
->var_off
);
4672 true_umax
+= gen_hi_max(true_reg
->var_off
);
4674 false_reg
->umin_value
= max(false_reg
->umin_value
, false_umin
);
4675 true_reg
->umax_value
= min(true_reg
->umax_value
, true_umax
);
4681 s64 false_smin
= opcode
== BPF_JSLT
? sval
: sval
+ 1;
4682 s64 true_smax
= opcode
== BPF_JSLT
? sval
- 1 : sval
;
4684 if (is_jmp32
&& !cmp_val_with_extended_s64(sval
, false_reg
))
4686 false_reg
->smin_value
= max(false_reg
->smin_value
, false_smin
);
4687 true_reg
->smax_value
= min(true_reg
->smax_value
, true_smax
);
4694 __reg_deduce_bounds(false_reg
);
4695 __reg_deduce_bounds(true_reg
);
4696 /* We might have learned some bits from the bounds. */
4697 __reg_bound_offset(false_reg
);
4698 __reg_bound_offset(true_reg
);
4699 /* Intersecting with the old var_off might have improved our bounds
4700 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4701 * then new var_off is (0; 0x7f...fc) which improves our umax.
4703 __update_reg_bounds(false_reg
);
4704 __update_reg_bounds(true_reg
);
4707 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4710 static void reg_set_min_max_inv(struct bpf_reg_state
*true_reg
,
4711 struct bpf_reg_state
*false_reg
, u64 val
,
4712 u8 opcode
, bool is_jmp32
)
4716 if (__is_pointer_value(false, false_reg
))
4719 val
= is_jmp32
? (u32
)val
: val
;
4720 sval
= is_jmp32
? (s64
)(s32
)val
: (s64
)val
;
4726 struct bpf_reg_state
*reg
=
4727 opcode
== BPF_JEQ
? true_reg
: false_reg
;
4730 u64 old_v
= reg
->var_off
.value
;
4731 u64 hi_mask
= ~0xffffffffULL
;
4733 reg
->var_off
.value
= (old_v
& hi_mask
) | val
;
4734 reg
->var_off
.mask
&= hi_mask
;
4736 __mark_reg_known(reg
, val
);
4741 false_reg
->var_off
= tnum_and(false_reg
->var_off
,
4743 if (is_power_of_2(val
))
4744 true_reg
->var_off
= tnum_or(true_reg
->var_off
,
4750 u64 false_umin
= opcode
== BPF_JGT
? val
: val
+ 1;
4751 u64 true_umax
= opcode
== BPF_JGT
? val
- 1 : val
;
4754 false_umin
+= gen_hi_min(false_reg
->var_off
);
4755 true_umax
+= gen_hi_max(true_reg
->var_off
);
4757 false_reg
->umin_value
= max(false_reg
->umin_value
, false_umin
);
4758 true_reg
->umax_value
= min(true_reg
->umax_value
, true_umax
);
4764 s64 false_smin
= opcode
== BPF_JSGT
? sval
: sval
+ 1;
4765 s64 true_smax
= opcode
== BPF_JSGT
? sval
- 1 : sval
;
4767 if (is_jmp32
&& !cmp_val_with_extended_s64(sval
, false_reg
))
4769 false_reg
->smin_value
= max(false_reg
->smin_value
, false_smin
);
4770 true_reg
->smax_value
= min(true_reg
->smax_value
, true_smax
);
4776 u64 false_umax
= opcode
== BPF_JLT
? val
: val
- 1;
4777 u64 true_umin
= opcode
== BPF_JLT
? val
+ 1 : val
;
4780 false_umax
+= gen_hi_max(false_reg
->var_off
);
4781 true_umin
+= gen_hi_min(true_reg
->var_off
);
4783 false_reg
->umax_value
= min(false_reg
->umax_value
, false_umax
);
4784 true_reg
->umin_value
= max(true_reg
->umin_value
, true_umin
);
4790 s64 false_smax
= opcode
== BPF_JSLT
? sval
: sval
- 1;
4791 s64 true_smin
= opcode
== BPF_JSLT
? sval
+ 1 : sval
;
4793 if (is_jmp32
&& !cmp_val_with_extended_s64(sval
, false_reg
))
4795 false_reg
->smax_value
= min(false_reg
->smax_value
, false_smax
);
4796 true_reg
->smin_value
= max(true_reg
->smin_value
, true_smin
);
4803 __reg_deduce_bounds(false_reg
);
4804 __reg_deduce_bounds(true_reg
);
4805 /* We might have learned some bits from the bounds. */
4806 __reg_bound_offset(false_reg
);
4807 __reg_bound_offset(true_reg
);
4808 /* Intersecting with the old var_off might have improved our bounds
4809 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4810 * then new var_off is (0; 0x7f...fc) which improves our umax.
4812 __update_reg_bounds(false_reg
);
4813 __update_reg_bounds(true_reg
);
4816 /* Regs are known to be equal, so intersect their min/max/var_off */
4817 static void __reg_combine_min_max(struct bpf_reg_state
*src_reg
,
4818 struct bpf_reg_state
*dst_reg
)
4820 src_reg
->umin_value
= dst_reg
->umin_value
= max(src_reg
->umin_value
,
4821 dst_reg
->umin_value
);
4822 src_reg
->umax_value
= dst_reg
->umax_value
= min(src_reg
->umax_value
,
4823 dst_reg
->umax_value
);
4824 src_reg
->smin_value
= dst_reg
->smin_value
= max(src_reg
->smin_value
,
4825 dst_reg
->smin_value
);
4826 src_reg
->smax_value
= dst_reg
->smax_value
= min(src_reg
->smax_value
,
4827 dst_reg
->smax_value
);
4828 src_reg
->var_off
= dst_reg
->var_off
= tnum_intersect(src_reg
->var_off
,
4830 /* We might have learned new bounds from the var_off. */
4831 __update_reg_bounds(src_reg
);
4832 __update_reg_bounds(dst_reg
);
4833 /* We might have learned something about the sign bit. */
4834 __reg_deduce_bounds(src_reg
);
4835 __reg_deduce_bounds(dst_reg
);
4836 /* We might have learned some bits from the bounds. */
4837 __reg_bound_offset(src_reg
);
4838 __reg_bound_offset(dst_reg
);
4839 /* Intersecting with the old var_off might have improved our bounds
4840 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4841 * then new var_off is (0; 0x7f...fc) which improves our umax.
4843 __update_reg_bounds(src_reg
);
4844 __update_reg_bounds(dst_reg
);
4847 static void reg_combine_min_max(struct bpf_reg_state
*true_src
,
4848 struct bpf_reg_state
*true_dst
,
4849 struct bpf_reg_state
*false_src
,
4850 struct bpf_reg_state
*false_dst
,
4855 __reg_combine_min_max(true_src
, true_dst
);
4858 __reg_combine_min_max(false_src
, false_dst
);
4863 static void mark_ptr_or_null_reg(struct bpf_func_state
*state
,
4864 struct bpf_reg_state
*reg
, u32 id
,
4867 if (reg_type_may_be_null(reg
->type
) && reg
->id
== id
) {
4868 /* Old offset (both fixed and variable parts) should
4869 * have been known-zero, because we don't allow pointer
4870 * arithmetic on pointers that might be NULL.
4872 if (WARN_ON_ONCE(reg
->smin_value
|| reg
->smax_value
||
4873 !tnum_equals_const(reg
->var_off
, 0) ||
4875 __mark_reg_known_zero(reg
);
4879 reg
->type
= SCALAR_VALUE
;
4880 } else if (reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
) {
4881 if (reg
->map_ptr
->inner_map_meta
) {
4882 reg
->type
= CONST_PTR_TO_MAP
;
4883 reg
->map_ptr
= reg
->map_ptr
->inner_map_meta
;
4885 reg
->type
= PTR_TO_MAP_VALUE
;
4887 } else if (reg
->type
== PTR_TO_SOCKET_OR_NULL
) {
4888 reg
->type
= PTR_TO_SOCKET
;
4889 } else if (reg
->type
== PTR_TO_SOCK_COMMON_OR_NULL
) {
4890 reg
->type
= PTR_TO_SOCK_COMMON
;
4891 } else if (reg
->type
== PTR_TO_TCP_SOCK_OR_NULL
) {
4892 reg
->type
= PTR_TO_TCP_SOCK
;
4895 /* We don't need id and ref_obj_id from this point
4896 * onwards anymore, thus we should better reset it,
4897 * so that state pruning has chances to take effect.
4900 reg
->ref_obj_id
= 0;
4901 } else if (!reg_may_point_to_spin_lock(reg
)) {
4902 /* For not-NULL ptr, reg->ref_obj_id will be reset
4903 * in release_reg_references().
4905 * reg->id is still used by spin_lock ptr. Other
4906 * than spin_lock ptr type, reg->id can be reset.
4913 static void __mark_ptr_or_null_regs(struct bpf_func_state
*state
, u32 id
,
4916 struct bpf_reg_state
*reg
;
4919 for (i
= 0; i
< MAX_BPF_REG
; i
++)
4920 mark_ptr_or_null_reg(state
, &state
->regs
[i
], id
, is_null
);
4922 bpf_for_each_spilled_reg(i
, state
, reg
) {
4925 mark_ptr_or_null_reg(state
, reg
, id
, is_null
);
4929 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4930 * be folded together at some point.
4932 static void mark_ptr_or_null_regs(struct bpf_verifier_state
*vstate
, u32 regno
,
4935 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
4936 struct bpf_reg_state
*regs
= state
->regs
;
4937 u32 ref_obj_id
= regs
[regno
].ref_obj_id
;
4938 u32 id
= regs
[regno
].id
;
4941 if (ref_obj_id
&& ref_obj_id
== id
&& is_null
)
4942 /* regs[regno] is in the " == NULL" branch.
4943 * No one could have freed the reference state before
4944 * doing the NULL check.
4946 WARN_ON_ONCE(release_reference_state(state
, id
));
4948 for (i
= 0; i
<= vstate
->curframe
; i
++)
4949 __mark_ptr_or_null_regs(vstate
->frame
[i
], id
, is_null
);
4952 static bool try_match_pkt_pointers(const struct bpf_insn
*insn
,
4953 struct bpf_reg_state
*dst_reg
,
4954 struct bpf_reg_state
*src_reg
,
4955 struct bpf_verifier_state
*this_branch
,
4956 struct bpf_verifier_state
*other_branch
)
4958 if (BPF_SRC(insn
->code
) != BPF_X
)
4961 /* Pointers are always 64-bit. */
4962 if (BPF_CLASS(insn
->code
) == BPF_JMP32
)
4965 switch (BPF_OP(insn
->code
)) {
4967 if ((dst_reg
->type
== PTR_TO_PACKET
&&
4968 src_reg
->type
== PTR_TO_PACKET_END
) ||
4969 (dst_reg
->type
== PTR_TO_PACKET_META
&&
4970 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
4971 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4972 find_good_pkt_pointers(this_branch
, dst_reg
,
4973 dst_reg
->type
, false);
4974 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
4975 src_reg
->type
== PTR_TO_PACKET
) ||
4976 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
4977 src_reg
->type
== PTR_TO_PACKET_META
)) {
4978 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4979 find_good_pkt_pointers(other_branch
, src_reg
,
4980 src_reg
->type
, true);
4986 if ((dst_reg
->type
== PTR_TO_PACKET
&&
4987 src_reg
->type
== PTR_TO_PACKET_END
) ||
4988 (dst_reg
->type
== PTR_TO_PACKET_META
&&
4989 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
4990 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4991 find_good_pkt_pointers(other_branch
, dst_reg
,
4992 dst_reg
->type
, true);
4993 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
4994 src_reg
->type
== PTR_TO_PACKET
) ||
4995 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
4996 src_reg
->type
== PTR_TO_PACKET_META
)) {
4997 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4998 find_good_pkt_pointers(this_branch
, src_reg
,
4999 src_reg
->type
, false);
5005 if ((dst_reg
->type
== PTR_TO_PACKET
&&
5006 src_reg
->type
== PTR_TO_PACKET_END
) ||
5007 (dst_reg
->type
== PTR_TO_PACKET_META
&&
5008 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
5009 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5010 find_good_pkt_pointers(this_branch
, dst_reg
,
5011 dst_reg
->type
, true);
5012 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
5013 src_reg
->type
== PTR_TO_PACKET
) ||
5014 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
5015 src_reg
->type
== PTR_TO_PACKET_META
)) {
5016 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5017 find_good_pkt_pointers(other_branch
, src_reg
,
5018 src_reg
->type
, false);
5024 if ((dst_reg
->type
== PTR_TO_PACKET
&&
5025 src_reg
->type
== PTR_TO_PACKET_END
) ||
5026 (dst_reg
->type
== PTR_TO_PACKET_META
&&
5027 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
5028 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5029 find_good_pkt_pointers(other_branch
, dst_reg
,
5030 dst_reg
->type
, false);
5031 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
5032 src_reg
->type
== PTR_TO_PACKET
) ||
5033 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
5034 src_reg
->type
== PTR_TO_PACKET_META
)) {
5035 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5036 find_good_pkt_pointers(this_branch
, src_reg
,
5037 src_reg
->type
, true);
5049 static int check_cond_jmp_op(struct bpf_verifier_env
*env
,
5050 struct bpf_insn
*insn
, int *insn_idx
)
5052 struct bpf_verifier_state
*this_branch
= env
->cur_state
;
5053 struct bpf_verifier_state
*other_branch
;
5054 struct bpf_reg_state
*regs
= this_branch
->frame
[this_branch
->curframe
]->regs
;
5055 struct bpf_reg_state
*dst_reg
, *other_branch_regs
;
5056 u8 opcode
= BPF_OP(insn
->code
);
5060 /* Only conditional jumps are expected to reach here. */
5061 if (opcode
== BPF_JA
|| opcode
> BPF_JSLE
) {
5062 verbose(env
, "invalid BPF_JMP/JMP32 opcode %x\n", opcode
);
5066 if (BPF_SRC(insn
->code
) == BPF_X
) {
5067 if (insn
->imm
!= 0) {
5068 verbose(env
, "BPF_JMP/JMP32 uses reserved fields\n");
5072 /* check src1 operand */
5073 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
5077 if (is_pointer_value(env
, insn
->src_reg
)) {
5078 verbose(env
, "R%d pointer comparison prohibited\n",
5083 if (insn
->src_reg
!= BPF_REG_0
) {
5084 verbose(env
, "BPF_JMP/JMP32 uses reserved fields\n");
5089 /* check src2 operand */
5090 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
5094 dst_reg
= ®s
[insn
->dst_reg
];
5095 is_jmp32
= BPF_CLASS(insn
->code
) == BPF_JMP32
;
5097 if (BPF_SRC(insn
->code
) == BPF_K
) {
5098 int pred
= is_branch_taken(dst_reg
, insn
->imm
, opcode
,
5102 /* only follow the goto, ignore fall-through */
5103 *insn_idx
+= insn
->off
;
5105 } else if (pred
== 0) {
5106 /* only follow fall-through branch, since
5107 * that's where the program will go
5113 other_branch
= push_stack(env
, *insn_idx
+ insn
->off
+ 1, *insn_idx
,
5117 other_branch_regs
= other_branch
->frame
[other_branch
->curframe
]->regs
;
5119 /* detect if we are comparing against a constant value so we can adjust
5120 * our min/max values for our dst register.
5121 * this is only legit if both are scalars (or pointers to the same
5122 * object, I suppose, but we don't support that right now), because
5123 * otherwise the different base pointers mean the offsets aren't
5126 if (BPF_SRC(insn
->code
) == BPF_X
) {
5127 struct bpf_reg_state
*src_reg
= ®s
[insn
->src_reg
];
5128 struct bpf_reg_state lo_reg0
= *dst_reg
;
5129 struct bpf_reg_state lo_reg1
= *src_reg
;
5130 struct bpf_reg_state
*src_lo
, *dst_lo
;
5134 coerce_reg_to_size(dst_lo
, 4);
5135 coerce_reg_to_size(src_lo
, 4);
5137 if (dst_reg
->type
== SCALAR_VALUE
&&
5138 src_reg
->type
== SCALAR_VALUE
) {
5139 if (tnum_is_const(src_reg
->var_off
) ||
5140 (is_jmp32
&& tnum_is_const(src_lo
->var_off
)))
5141 reg_set_min_max(&other_branch_regs
[insn
->dst_reg
],
5144 ? src_lo
->var_off
.value
5145 : src_reg
->var_off
.value
,
5147 else if (tnum_is_const(dst_reg
->var_off
) ||
5148 (is_jmp32
&& tnum_is_const(dst_lo
->var_off
)))
5149 reg_set_min_max_inv(&other_branch_regs
[insn
->src_reg
],
5152 ? dst_lo
->var_off
.value
5153 : dst_reg
->var_off
.value
,
5155 else if (!is_jmp32
&&
5156 (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
))
5157 /* Comparing for equality, we can combine knowledge */
5158 reg_combine_min_max(&other_branch_regs
[insn
->src_reg
],
5159 &other_branch_regs
[insn
->dst_reg
],
5160 src_reg
, dst_reg
, opcode
);
5162 } else if (dst_reg
->type
== SCALAR_VALUE
) {
5163 reg_set_min_max(&other_branch_regs
[insn
->dst_reg
],
5164 dst_reg
, insn
->imm
, opcode
, is_jmp32
);
5167 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5168 * NOTE: these optimizations below are related with pointer comparison
5169 * which will never be JMP32.
5171 if (!is_jmp32
&& BPF_SRC(insn
->code
) == BPF_K
&&
5172 insn
->imm
== 0 && (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
5173 reg_type_may_be_null(dst_reg
->type
)) {
5174 /* Mark all identical registers in each branch as either
5175 * safe or unknown depending R == 0 or R != 0 conditional.
5177 mark_ptr_or_null_regs(this_branch
, insn
->dst_reg
,
5179 mark_ptr_or_null_regs(other_branch
, insn
->dst_reg
,
5181 } else if (!try_match_pkt_pointers(insn
, dst_reg
, ®s
[insn
->src_reg
],
5182 this_branch
, other_branch
) &&
5183 is_pointer_value(env
, insn
->dst_reg
)) {
5184 verbose(env
, "R%d pointer comparison prohibited\n",
5188 if (env
->log
.level
& BPF_LOG_LEVEL
)
5189 print_verifier_state(env
, this_branch
->frame
[this_branch
->curframe
]);
5193 /* verify BPF_LD_IMM64 instruction */
5194 static int check_ld_imm(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
5196 struct bpf_insn_aux_data
*aux
= cur_aux(env
);
5197 struct bpf_reg_state
*regs
= cur_regs(env
);
5198 struct bpf_map
*map
;
5201 if (BPF_SIZE(insn
->code
) != BPF_DW
) {
5202 verbose(env
, "invalid BPF_LD_IMM insn\n");
5205 if (insn
->off
!= 0) {
5206 verbose(env
, "BPF_LD_IMM64 uses reserved fields\n");
5210 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
5214 if (insn
->src_reg
== 0) {
5215 u64 imm
= ((u64
)(insn
+ 1)->imm
<< 32) | (u32
)insn
->imm
;
5217 regs
[insn
->dst_reg
].type
= SCALAR_VALUE
;
5218 __mark_reg_known(®s
[insn
->dst_reg
], imm
);
5222 map
= env
->used_maps
[aux
->map_index
];
5223 mark_reg_known_zero(env
, regs
, insn
->dst_reg
);
5224 regs
[insn
->dst_reg
].map_ptr
= map
;
5226 if (insn
->src_reg
== BPF_PSEUDO_MAP_VALUE
) {
5227 regs
[insn
->dst_reg
].type
= PTR_TO_MAP_VALUE
;
5228 regs
[insn
->dst_reg
].off
= aux
->map_off
;
5229 if (map_value_has_spin_lock(map
))
5230 regs
[insn
->dst_reg
].id
= ++env
->id_gen
;
5231 } else if (insn
->src_reg
== BPF_PSEUDO_MAP_FD
) {
5232 regs
[insn
->dst_reg
].type
= CONST_PTR_TO_MAP
;
5234 verbose(env
, "bpf verifier is misconfigured\n");
5241 static bool may_access_skb(enum bpf_prog_type type
)
5244 case BPF_PROG_TYPE_SOCKET_FILTER
:
5245 case BPF_PROG_TYPE_SCHED_CLS
:
5246 case BPF_PROG_TYPE_SCHED_ACT
:
5253 /* verify safety of LD_ABS|LD_IND instructions:
5254 * - they can only appear in the programs where ctx == skb
5255 * - since they are wrappers of function calls, they scratch R1-R5 registers,
5256 * preserve R6-R9, and store return value into R0
5259 * ctx == skb == R6 == CTX
5262 * SRC == any register
5263 * IMM == 32-bit immediate
5266 * R0 - 8/16/32-bit skb data converted to cpu endianness
5268 static int check_ld_abs(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
5270 struct bpf_reg_state
*regs
= cur_regs(env
);
5271 u8 mode
= BPF_MODE(insn
->code
);
5274 if (!may_access_skb(env
->prog
->type
)) {
5275 verbose(env
, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5279 if (!env
->ops
->gen_ld_abs
) {
5280 verbose(env
, "bpf verifier is misconfigured\n");
5284 if (env
->subprog_cnt
> 1) {
5285 /* when program has LD_ABS insn JITs and interpreter assume
5286 * that r1 == ctx == skb which is not the case for callees
5287 * that can have arbitrary arguments. It's problematic
5288 * for main prog as well since JITs would need to analyze
5289 * all functions in order to make proper register save/restore
5290 * decisions in the main prog. Hence disallow LD_ABS with calls
5292 verbose(env
, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5296 if (insn
->dst_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
5297 BPF_SIZE(insn
->code
) == BPF_DW
||
5298 (mode
== BPF_ABS
&& insn
->src_reg
!= BPF_REG_0
)) {
5299 verbose(env
, "BPF_LD_[ABS|IND] uses reserved fields\n");
5303 /* check whether implicit source operand (register R6) is readable */
5304 err
= check_reg_arg(env
, BPF_REG_6
, SRC_OP
);
5308 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5309 * gen_ld_abs() may terminate the program at runtime, leading to
5312 err
= check_reference_leak(env
);
5314 verbose(env
, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5318 if (env
->cur_state
->active_spin_lock
) {
5319 verbose(env
, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5323 if (regs
[BPF_REG_6
].type
!= PTR_TO_CTX
) {
5325 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5329 if (mode
== BPF_IND
) {
5330 /* check explicit source operand */
5331 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
5336 /* reset caller saved regs to unreadable */
5337 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
5338 mark_reg_not_init(env
, regs
, caller_saved
[i
]);
5339 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
5342 /* mark destination R0 register as readable, since it contains
5343 * the value fetched from the packet.
5344 * Already marked as written above.
5346 mark_reg_unknown(env
, regs
, BPF_REG_0
);
5350 static int check_return_code(struct bpf_verifier_env
*env
)
5352 struct bpf_reg_state
*reg
;
5353 struct tnum range
= tnum_range(0, 1);
5355 switch (env
->prog
->type
) {
5356 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR
:
5357 if (env
->prog
->expected_attach_type
== BPF_CGROUP_UDP4_RECVMSG
||
5358 env
->prog
->expected_attach_type
== BPF_CGROUP_UDP6_RECVMSG
)
5359 range
= tnum_range(1, 1);
5360 case BPF_PROG_TYPE_CGROUP_SKB
:
5361 case BPF_PROG_TYPE_CGROUP_SOCK
:
5362 case BPF_PROG_TYPE_SOCK_OPS
:
5363 case BPF_PROG_TYPE_CGROUP_DEVICE
:
5364 case BPF_PROG_TYPE_CGROUP_SYSCTL
:
5370 reg
= cur_regs(env
) + BPF_REG_0
;
5371 if (reg
->type
!= SCALAR_VALUE
) {
5372 verbose(env
, "At program exit the register R0 is not a known value (%s)\n",
5373 reg_type_str
[reg
->type
]);
5377 if (!tnum_in(range
, reg
->var_off
)) {
5380 verbose(env
, "At program exit the register R0 ");
5381 if (!tnum_is_unknown(reg
->var_off
)) {
5382 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
5383 verbose(env
, "has value %s", tn_buf
);
5385 verbose(env
, "has unknown scalar value");
5387 tnum_strn(tn_buf
, sizeof(tn_buf
), range
);
5388 verbose(env
, " should have been in %s\n", tn_buf
);
5394 /* non-recursive DFS pseudo code
5395 * 1 procedure DFS-iterative(G,v):
5396 * 2 label v as discovered
5397 * 3 let S be a stack
5399 * 5 while S is not empty
5401 * 7 if t is what we're looking for:
5403 * 9 for all edges e in G.adjacentEdges(t) do
5404 * 10 if edge e is already labelled
5405 * 11 continue with the next edge
5406 * 12 w <- G.adjacentVertex(t,e)
5407 * 13 if vertex w is not discovered and not explored
5408 * 14 label e as tree-edge
5409 * 15 label w as discovered
5412 * 18 else if vertex w is discovered
5413 * 19 label e as back-edge
5415 * 21 // vertex w is explored
5416 * 22 label e as forward- or cross-edge
5417 * 23 label t as explored
5422 * 0x11 - discovered and fall-through edge labelled
5423 * 0x12 - discovered and fall-through and branch edges labelled
5434 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5436 /* t, w, e - match pseudo-code above:
5437 * t - index of current instruction
5438 * w - next instruction
5441 static int push_insn(int t
, int w
, int e
, struct bpf_verifier_env
*env
)
5443 int *insn_stack
= env
->cfg
.insn_stack
;
5444 int *insn_state
= env
->cfg
.insn_state
;
5446 if (e
== FALLTHROUGH
&& insn_state
[t
] >= (DISCOVERED
| FALLTHROUGH
))
5449 if (e
== BRANCH
&& insn_state
[t
] >= (DISCOVERED
| BRANCH
))
5452 if (w
< 0 || w
>= env
->prog
->len
) {
5453 verbose_linfo(env
, t
, "%d: ", t
);
5454 verbose(env
, "jump out of range from insn %d to %d\n", t
, w
);
5459 /* mark branch target for state pruning */
5460 env
->explored_states
[w
] = STATE_LIST_MARK
;
5462 if (insn_state
[w
] == 0) {
5464 insn_state
[t
] = DISCOVERED
| e
;
5465 insn_state
[w
] = DISCOVERED
;
5466 if (env
->cfg
.cur_stack
>= env
->prog
->len
)
5468 insn_stack
[env
->cfg
.cur_stack
++] = w
;
5470 } else if ((insn_state
[w
] & 0xF0) == DISCOVERED
) {
5471 verbose_linfo(env
, t
, "%d: ", t
);
5472 verbose_linfo(env
, w
, "%d: ", w
);
5473 verbose(env
, "back-edge from insn %d to %d\n", t
, w
);
5475 } else if (insn_state
[w
] == EXPLORED
) {
5476 /* forward- or cross-edge */
5477 insn_state
[t
] = DISCOVERED
| e
;
5479 verbose(env
, "insn state internal bug\n");
5485 /* non-recursive depth-first-search to detect loops in BPF program
5486 * loop == back-edge in directed graph
5488 static int check_cfg(struct bpf_verifier_env
*env
)
5490 struct bpf_insn
*insns
= env
->prog
->insnsi
;
5491 int insn_cnt
= env
->prog
->len
;
5492 int *insn_stack
, *insn_state
;
5496 insn_state
= env
->cfg
.insn_state
= kvcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
5500 insn_stack
= env
->cfg
.insn_stack
= kvcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
5506 insn_state
[0] = DISCOVERED
; /* mark 1st insn as discovered */
5507 insn_stack
[0] = 0; /* 0 is the first instruction */
5508 env
->cfg
.cur_stack
= 1;
5511 if (env
->cfg
.cur_stack
== 0)
5513 t
= insn_stack
[env
->cfg
.cur_stack
- 1];
5515 if (BPF_CLASS(insns
[t
].code
) == BPF_JMP
||
5516 BPF_CLASS(insns
[t
].code
) == BPF_JMP32
) {
5517 u8 opcode
= BPF_OP(insns
[t
].code
);
5519 if (opcode
== BPF_EXIT
) {
5521 } else if (opcode
== BPF_CALL
) {
5522 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
5527 if (t
+ 1 < insn_cnt
)
5528 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
5529 if (insns
[t
].src_reg
== BPF_PSEUDO_CALL
) {
5530 env
->explored_states
[t
] = STATE_LIST_MARK
;
5531 ret
= push_insn(t
, t
+ insns
[t
].imm
+ 1, BRANCH
, env
);
5537 } else if (opcode
== BPF_JA
) {
5538 if (BPF_SRC(insns
[t
].code
) != BPF_K
) {
5542 /* unconditional jump with single edge */
5543 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1,
5549 /* tell verifier to check for equivalent states
5550 * after every call and jump
5552 if (t
+ 1 < insn_cnt
)
5553 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
5555 /* conditional jump with two edges */
5556 env
->explored_states
[t
] = STATE_LIST_MARK
;
5557 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
5563 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1, BRANCH
, env
);
5570 /* all other non-branch instructions with single
5573 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
5581 insn_state
[t
] = EXPLORED
;
5582 if (env
->cfg
.cur_stack
-- <= 0) {
5583 verbose(env
, "pop stack internal bug\n");
5590 for (i
= 0; i
< insn_cnt
; i
++) {
5591 if (insn_state
[i
] != EXPLORED
) {
5592 verbose(env
, "unreachable insn %d\n", i
);
5597 ret
= 0; /* cfg looks good */
5602 env
->cfg
.insn_state
= env
->cfg
.insn_stack
= NULL
;
5606 /* The minimum supported BTF func info size */
5607 #define MIN_BPF_FUNCINFO_SIZE 8
5608 #define MAX_FUNCINFO_REC_SIZE 252
5610 static int check_btf_func(struct bpf_verifier_env
*env
,
5611 const union bpf_attr
*attr
,
5612 union bpf_attr __user
*uattr
)
5614 u32 i
, nfuncs
, urec_size
, min_size
;
5615 u32 krec_size
= sizeof(struct bpf_func_info
);
5616 struct bpf_func_info
*krecord
;
5617 const struct btf_type
*type
;
5618 struct bpf_prog
*prog
;
5619 const struct btf
*btf
;
5620 void __user
*urecord
;
5621 u32 prev_offset
= 0;
5624 nfuncs
= attr
->func_info_cnt
;
5628 if (nfuncs
!= env
->subprog_cnt
) {
5629 verbose(env
, "number of funcs in func_info doesn't match number of subprogs\n");
5633 urec_size
= attr
->func_info_rec_size
;
5634 if (urec_size
< MIN_BPF_FUNCINFO_SIZE
||
5635 urec_size
> MAX_FUNCINFO_REC_SIZE
||
5636 urec_size
% sizeof(u32
)) {
5637 verbose(env
, "invalid func info rec size %u\n", urec_size
);
5642 btf
= prog
->aux
->btf
;
5644 urecord
= u64_to_user_ptr(attr
->func_info
);
5645 min_size
= min_t(u32
, krec_size
, urec_size
);
5647 krecord
= kvcalloc(nfuncs
, krec_size
, GFP_KERNEL
| __GFP_NOWARN
);
5651 for (i
= 0; i
< nfuncs
; i
++) {
5652 ret
= bpf_check_uarg_tail_zero(urecord
, krec_size
, urec_size
);
5654 if (ret
== -E2BIG
) {
5655 verbose(env
, "nonzero tailing record in func info");
5656 /* set the size kernel expects so loader can zero
5657 * out the rest of the record.
5659 if (put_user(min_size
, &uattr
->func_info_rec_size
))
5665 if (copy_from_user(&krecord
[i
], urecord
, min_size
)) {
5670 /* check insn_off */
5672 if (krecord
[i
].insn_off
) {
5674 "nonzero insn_off %u for the first func info record",
5675 krecord
[i
].insn_off
);
5679 } else if (krecord
[i
].insn_off
<= prev_offset
) {
5681 "same or smaller insn offset (%u) than previous func info record (%u)",
5682 krecord
[i
].insn_off
, prev_offset
);
5687 if (env
->subprog_info
[i
].start
!= krecord
[i
].insn_off
) {
5688 verbose(env
, "func_info BTF section doesn't match subprog layout in BPF program\n");
5694 type
= btf_type_by_id(btf
, krecord
[i
].type_id
);
5695 if (!type
|| BTF_INFO_KIND(type
->info
) != BTF_KIND_FUNC
) {
5696 verbose(env
, "invalid type id %d in func info",
5697 krecord
[i
].type_id
);
5702 prev_offset
= krecord
[i
].insn_off
;
5703 urecord
+= urec_size
;
5706 prog
->aux
->func_info
= krecord
;
5707 prog
->aux
->func_info_cnt
= nfuncs
;
5715 static void adjust_btf_func(struct bpf_verifier_env
*env
)
5719 if (!env
->prog
->aux
->func_info
)
5722 for (i
= 0; i
< env
->subprog_cnt
; i
++)
5723 env
->prog
->aux
->func_info
[i
].insn_off
= env
->subprog_info
[i
].start
;
5726 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
5727 sizeof(((struct bpf_line_info *)(0))->line_col))
5728 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
5730 static int check_btf_line(struct bpf_verifier_env
*env
,
5731 const union bpf_attr
*attr
,
5732 union bpf_attr __user
*uattr
)
5734 u32 i
, s
, nr_linfo
, ncopy
, expected_size
, rec_size
, prev_offset
= 0;
5735 struct bpf_subprog_info
*sub
;
5736 struct bpf_line_info
*linfo
;
5737 struct bpf_prog
*prog
;
5738 const struct btf
*btf
;
5739 void __user
*ulinfo
;
5742 nr_linfo
= attr
->line_info_cnt
;
5746 rec_size
= attr
->line_info_rec_size
;
5747 if (rec_size
< MIN_BPF_LINEINFO_SIZE
||
5748 rec_size
> MAX_LINEINFO_REC_SIZE
||
5749 rec_size
& (sizeof(u32
) - 1))
5752 /* Need to zero it in case the userspace may
5753 * pass in a smaller bpf_line_info object.
5755 linfo
= kvcalloc(nr_linfo
, sizeof(struct bpf_line_info
),
5756 GFP_KERNEL
| __GFP_NOWARN
);
5761 btf
= prog
->aux
->btf
;
5764 sub
= env
->subprog_info
;
5765 ulinfo
= u64_to_user_ptr(attr
->line_info
);
5766 expected_size
= sizeof(struct bpf_line_info
);
5767 ncopy
= min_t(u32
, expected_size
, rec_size
);
5768 for (i
= 0; i
< nr_linfo
; i
++) {
5769 err
= bpf_check_uarg_tail_zero(ulinfo
, expected_size
, rec_size
);
5771 if (err
== -E2BIG
) {
5772 verbose(env
, "nonzero tailing record in line_info");
5773 if (put_user(expected_size
,
5774 &uattr
->line_info_rec_size
))
5780 if (copy_from_user(&linfo
[i
], ulinfo
, ncopy
)) {
5786 * Check insn_off to ensure
5787 * 1) strictly increasing AND
5788 * 2) bounded by prog->len
5790 * The linfo[0].insn_off == 0 check logically falls into
5791 * the later "missing bpf_line_info for func..." case
5792 * because the first linfo[0].insn_off must be the
5793 * first sub also and the first sub must have
5794 * subprog_info[0].start == 0.
5796 if ((i
&& linfo
[i
].insn_off
<= prev_offset
) ||
5797 linfo
[i
].insn_off
>= prog
->len
) {
5798 verbose(env
, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5799 i
, linfo
[i
].insn_off
, prev_offset
,
5805 if (!prog
->insnsi
[linfo
[i
].insn_off
].code
) {
5807 "Invalid insn code at line_info[%u].insn_off\n",
5813 if (!btf_name_by_offset(btf
, linfo
[i
].line_off
) ||
5814 !btf_name_by_offset(btf
, linfo
[i
].file_name_off
)) {
5815 verbose(env
, "Invalid line_info[%u].line_off or .file_name_off\n", i
);
5820 if (s
!= env
->subprog_cnt
) {
5821 if (linfo
[i
].insn_off
== sub
[s
].start
) {
5822 sub
[s
].linfo_idx
= i
;
5824 } else if (sub
[s
].start
< linfo
[i
].insn_off
) {
5825 verbose(env
, "missing bpf_line_info for func#%u\n", s
);
5831 prev_offset
= linfo
[i
].insn_off
;
5835 if (s
!= env
->subprog_cnt
) {
5836 verbose(env
, "missing bpf_line_info for %u funcs starting from func#%u\n",
5837 env
->subprog_cnt
- s
, s
);
5842 prog
->aux
->linfo
= linfo
;
5843 prog
->aux
->nr_linfo
= nr_linfo
;
5852 static int check_btf_info(struct bpf_verifier_env
*env
,
5853 const union bpf_attr
*attr
,
5854 union bpf_attr __user
*uattr
)
5859 if (!attr
->func_info_cnt
&& !attr
->line_info_cnt
)
5862 btf
= btf_get_by_fd(attr
->prog_btf_fd
);
5864 return PTR_ERR(btf
);
5865 env
->prog
->aux
->btf
= btf
;
5867 err
= check_btf_func(env
, attr
, uattr
);
5871 err
= check_btf_line(env
, attr
, uattr
);
5878 /* check %cur's range satisfies %old's */
5879 static bool range_within(struct bpf_reg_state
*old
,
5880 struct bpf_reg_state
*cur
)
5882 return old
->umin_value
<= cur
->umin_value
&&
5883 old
->umax_value
>= cur
->umax_value
&&
5884 old
->smin_value
<= cur
->smin_value
&&
5885 old
->smax_value
>= cur
->smax_value
;
5888 /* Maximum number of register states that can exist at once */
5889 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5895 /* If in the old state two registers had the same id, then they need to have
5896 * the same id in the new state as well. But that id could be different from
5897 * the old state, so we need to track the mapping from old to new ids.
5898 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5899 * regs with old id 5 must also have new id 9 for the new state to be safe. But
5900 * regs with a different old id could still have new id 9, we don't care about
5902 * So we look through our idmap to see if this old id has been seen before. If
5903 * so, we require the new id to match; otherwise, we add the id pair to the map.
5905 static bool check_ids(u32 old_id
, u32 cur_id
, struct idpair
*idmap
)
5909 for (i
= 0; i
< ID_MAP_SIZE
; i
++) {
5910 if (!idmap
[i
].old
) {
5911 /* Reached an empty slot; haven't seen this id before */
5912 idmap
[i
].old
= old_id
;
5913 idmap
[i
].cur
= cur_id
;
5916 if (idmap
[i
].old
== old_id
)
5917 return idmap
[i
].cur
== cur_id
;
5919 /* We ran out of idmap slots, which should be impossible */
5924 static void clean_func_state(struct bpf_verifier_env
*env
,
5925 struct bpf_func_state
*st
)
5927 enum bpf_reg_liveness live
;
5930 for (i
= 0; i
< BPF_REG_FP
; i
++) {
5931 live
= st
->regs
[i
].live
;
5932 /* liveness must not touch this register anymore */
5933 st
->regs
[i
].live
|= REG_LIVE_DONE
;
5934 if (!(live
& REG_LIVE_READ
))
5935 /* since the register is unused, clear its state
5936 * to make further comparison simpler
5938 __mark_reg_not_init(&st
->regs
[i
]);
5941 for (i
= 0; i
< st
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
5942 live
= st
->stack
[i
].spilled_ptr
.live
;
5943 /* liveness must not touch this stack slot anymore */
5944 st
->stack
[i
].spilled_ptr
.live
|= REG_LIVE_DONE
;
5945 if (!(live
& REG_LIVE_READ
)) {
5946 __mark_reg_not_init(&st
->stack
[i
].spilled_ptr
);
5947 for (j
= 0; j
< BPF_REG_SIZE
; j
++)
5948 st
->stack
[i
].slot_type
[j
] = STACK_INVALID
;
5953 static void clean_verifier_state(struct bpf_verifier_env
*env
,
5954 struct bpf_verifier_state
*st
)
5958 if (st
->frame
[0]->regs
[0].live
& REG_LIVE_DONE
)
5959 /* all regs in this state in all frames were already marked */
5962 for (i
= 0; i
<= st
->curframe
; i
++)
5963 clean_func_state(env
, st
->frame
[i
]);
5966 /* the parentage chains form a tree.
5967 * the verifier states are added to state lists at given insn and
5968 * pushed into state stack for future exploration.
5969 * when the verifier reaches bpf_exit insn some of the verifer states
5970 * stored in the state lists have their final liveness state already,
5971 * but a lot of states will get revised from liveness point of view when
5972 * the verifier explores other branches.
5975 * 2: if r1 == 100 goto pc+1
5978 * when the verifier reaches exit insn the register r0 in the state list of
5979 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5980 * of insn 2 and goes exploring further. At the insn 4 it will walk the
5981 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5983 * Since the verifier pushes the branch states as it sees them while exploring
5984 * the program the condition of walking the branch instruction for the second
5985 * time means that all states below this branch were already explored and
5986 * their final liveness markes are already propagated.
5987 * Hence when the verifier completes the search of state list in is_state_visited()
5988 * we can call this clean_live_states() function to mark all liveness states
5989 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5991 * This function also clears the registers and stack for states that !READ
5992 * to simplify state merging.
5994 * Important note here that walking the same branch instruction in the callee
5995 * doesn't meant that the states are DONE. The verifier has to compare
5998 static void clean_live_states(struct bpf_verifier_env
*env
, int insn
,
5999 struct bpf_verifier_state
*cur
)
6001 struct bpf_verifier_state_list
*sl
;
6004 sl
= env
->explored_states
[insn
];
6008 while (sl
!= STATE_LIST_MARK
) {
6009 if (sl
->state
.curframe
!= cur
->curframe
)
6011 for (i
= 0; i
<= cur
->curframe
; i
++)
6012 if (sl
->state
.frame
[i
]->callsite
!= cur
->frame
[i
]->callsite
)
6014 clean_verifier_state(env
, &sl
->state
);
6020 /* Returns true if (rold safe implies rcur safe) */
6021 static bool regsafe(struct bpf_reg_state
*rold
, struct bpf_reg_state
*rcur
,
6022 struct idpair
*idmap
)
6026 if (!(rold
->live
& REG_LIVE_READ
))
6027 /* explored state didn't use this */
6030 equal
= memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, parent
)) == 0;
6032 if (rold
->type
== PTR_TO_STACK
)
6033 /* two stack pointers are equal only if they're pointing to
6034 * the same stack frame, since fp-8 in foo != fp-8 in bar
6036 return equal
&& rold
->frameno
== rcur
->frameno
;
6041 if (rold
->type
== NOT_INIT
)
6042 /* explored state can't have used this */
6044 if (rcur
->type
== NOT_INIT
)
6046 switch (rold
->type
) {
6048 if (rcur
->type
== SCALAR_VALUE
) {
6049 /* new val must satisfy old val knowledge */
6050 return range_within(rold
, rcur
) &&
6051 tnum_in(rold
->var_off
, rcur
->var_off
);
6053 /* We're trying to use a pointer in place of a scalar.
6054 * Even if the scalar was unbounded, this could lead to
6055 * pointer leaks because scalars are allowed to leak
6056 * while pointers are not. We could make this safe in
6057 * special cases if root is calling us, but it's
6058 * probably not worth the hassle.
6062 case PTR_TO_MAP_VALUE
:
6063 /* If the new min/max/var_off satisfy the old ones and
6064 * everything else matches, we are OK.
6065 * 'id' is not compared, since it's only used for maps with
6066 * bpf_spin_lock inside map element and in such cases if
6067 * the rest of the prog is valid for one map element then
6068 * it's valid for all map elements regardless of the key
6069 * used in bpf_map_lookup()
6071 return memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, id
)) == 0 &&
6072 range_within(rold
, rcur
) &&
6073 tnum_in(rold
->var_off
, rcur
->var_off
);
6074 case PTR_TO_MAP_VALUE_OR_NULL
:
6075 /* a PTR_TO_MAP_VALUE could be safe to use as a
6076 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6077 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6078 * checked, doing so could have affected others with the same
6079 * id, and we can't check for that because we lost the id when
6080 * we converted to a PTR_TO_MAP_VALUE.
6082 if (rcur
->type
!= PTR_TO_MAP_VALUE_OR_NULL
)
6084 if (memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, id
)))
6086 /* Check our ids match any regs they're supposed to */
6087 return check_ids(rold
->id
, rcur
->id
, idmap
);
6088 case PTR_TO_PACKET_META
:
6090 if (rcur
->type
!= rold
->type
)
6092 /* We must have at least as much range as the old ptr
6093 * did, so that any accesses which were safe before are
6094 * still safe. This is true even if old range < old off,
6095 * since someone could have accessed through (ptr - k), or
6096 * even done ptr -= k in a register, to get a safe access.
6098 if (rold
->range
> rcur
->range
)
6100 /* If the offsets don't match, we can't trust our alignment;
6101 * nor can we be sure that we won't fall out of range.
6103 if (rold
->off
!= rcur
->off
)
6105 /* id relations must be preserved */
6106 if (rold
->id
&& !check_ids(rold
->id
, rcur
->id
, idmap
))
6108 /* new val must satisfy old val knowledge */
6109 return range_within(rold
, rcur
) &&
6110 tnum_in(rold
->var_off
, rcur
->var_off
);
6112 case CONST_PTR_TO_MAP
:
6113 case PTR_TO_PACKET_END
:
6114 case PTR_TO_FLOW_KEYS
:
6116 case PTR_TO_SOCKET_OR_NULL
:
6117 case PTR_TO_SOCK_COMMON
:
6118 case PTR_TO_SOCK_COMMON_OR_NULL
:
6119 case PTR_TO_TCP_SOCK
:
6120 case PTR_TO_TCP_SOCK_OR_NULL
:
6121 /* Only valid matches are exact, which memcmp() above
6122 * would have accepted
6125 /* Don't know what's going on, just say it's not safe */
6129 /* Shouldn't get here; if we do, say it's not safe */
6134 static bool stacksafe(struct bpf_func_state
*old
,
6135 struct bpf_func_state
*cur
,
6136 struct idpair
*idmap
)
6140 /* walk slots of the explored stack and ignore any additional
6141 * slots in the current stack, since explored(safe) state
6144 for (i
= 0; i
< old
->allocated_stack
; i
++) {
6145 spi
= i
/ BPF_REG_SIZE
;
6147 if (!(old
->stack
[spi
].spilled_ptr
.live
& REG_LIVE_READ
)) {
6148 i
+= BPF_REG_SIZE
- 1;
6149 /* explored state didn't use this */
6153 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_INVALID
)
6156 /* explored stack has more populated slots than current stack
6157 * and these slots were used
6159 if (i
>= cur
->allocated_stack
)
6162 /* if old state was safe with misc data in the stack
6163 * it will be safe with zero-initialized stack.
6164 * The opposite is not true
6166 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_MISC
&&
6167 cur
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_ZERO
)
6169 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] !=
6170 cur
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
])
6171 /* Ex: old explored (safe) state has STACK_SPILL in
6172 * this stack slot, but current has has STACK_MISC ->
6173 * this verifier states are not equivalent,
6174 * return false to continue verification of this path
6177 if (i
% BPF_REG_SIZE
)
6179 if (old
->stack
[spi
].slot_type
[0] != STACK_SPILL
)
6181 if (!regsafe(&old
->stack
[spi
].spilled_ptr
,
6182 &cur
->stack
[spi
].spilled_ptr
,
6184 /* when explored and current stack slot are both storing
6185 * spilled registers, check that stored pointers types
6186 * are the same as well.
6187 * Ex: explored safe path could have stored
6188 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6189 * but current path has stored:
6190 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6191 * such verifier states are not equivalent.
6192 * return false to continue verification of this path
6199 static bool refsafe(struct bpf_func_state
*old
, struct bpf_func_state
*cur
)
6201 if (old
->acquired_refs
!= cur
->acquired_refs
)
6203 return !memcmp(old
->refs
, cur
->refs
,
6204 sizeof(*old
->refs
) * old
->acquired_refs
);
6207 /* compare two verifier states
6209 * all states stored in state_list are known to be valid, since
6210 * verifier reached 'bpf_exit' instruction through them
6212 * this function is called when verifier exploring different branches of
6213 * execution popped from the state stack. If it sees an old state that has
6214 * more strict register state and more strict stack state then this execution
6215 * branch doesn't need to be explored further, since verifier already
6216 * concluded that more strict state leads to valid finish.
6218 * Therefore two states are equivalent if register state is more conservative
6219 * and explored stack state is more conservative than the current one.
6222 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6223 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6225 * In other words if current stack state (one being explored) has more
6226 * valid slots than old one that already passed validation, it means
6227 * the verifier can stop exploring and conclude that current state is valid too
6229 * Similarly with registers. If explored state has register type as invalid
6230 * whereas register type in current state is meaningful, it means that
6231 * the current state will reach 'bpf_exit' instruction safely
6233 static bool func_states_equal(struct bpf_func_state
*old
,
6234 struct bpf_func_state
*cur
)
6236 struct idpair
*idmap
;
6240 idmap
= kcalloc(ID_MAP_SIZE
, sizeof(struct idpair
), GFP_KERNEL
);
6241 /* If we failed to allocate the idmap, just say it's not safe */
6245 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
6246 if (!regsafe(&old
->regs
[i
], &cur
->regs
[i
], idmap
))
6250 if (!stacksafe(old
, cur
, idmap
))
6253 if (!refsafe(old
, cur
))
6261 static bool states_equal(struct bpf_verifier_env
*env
,
6262 struct bpf_verifier_state
*old
,
6263 struct bpf_verifier_state
*cur
)
6267 if (old
->curframe
!= cur
->curframe
)
6270 /* Verification state from speculative execution simulation
6271 * must never prune a non-speculative execution one.
6273 if (old
->speculative
&& !cur
->speculative
)
6276 if (old
->active_spin_lock
!= cur
->active_spin_lock
)
6279 /* for states to be equal callsites have to be the same
6280 * and all frame states need to be equivalent
6282 for (i
= 0; i
<= old
->curframe
; i
++) {
6283 if (old
->frame
[i
]->callsite
!= cur
->frame
[i
]->callsite
)
6285 if (!func_states_equal(old
->frame
[i
], cur
->frame
[i
]))
6291 static int propagate_liveness_reg(struct bpf_verifier_env
*env
,
6292 struct bpf_reg_state
*reg
,
6293 struct bpf_reg_state
*parent_reg
)
6297 if (parent_reg
->live
& REG_LIVE_READ
|| !(reg
->live
& REG_LIVE_READ
))
6300 err
= mark_reg_read(env
, reg
, parent_reg
);
6307 /* A write screens off any subsequent reads; but write marks come from the
6308 * straight-line code between a state and its parent. When we arrive at an
6309 * equivalent state (jump target or such) we didn't arrive by the straight-line
6310 * code, so read marks in the state must propagate to the parent regardless
6311 * of the state's write marks. That's what 'parent == state->parent' comparison
6312 * in mark_reg_read() is for.
6314 static int propagate_liveness(struct bpf_verifier_env
*env
,
6315 const struct bpf_verifier_state
*vstate
,
6316 struct bpf_verifier_state
*vparent
)
6318 struct bpf_reg_state
*state_reg
, *parent_reg
;
6319 struct bpf_func_state
*state
, *parent
;
6320 int i
, frame
, err
= 0;
6322 if (vparent
->curframe
!= vstate
->curframe
) {
6323 WARN(1, "propagate_live: parent frame %d current frame %d\n",
6324 vparent
->curframe
, vstate
->curframe
);
6327 /* Propagate read liveness of registers... */
6328 BUILD_BUG_ON(BPF_REG_FP
+ 1 != MAX_BPF_REG
);
6329 for (frame
= 0; frame
<= vstate
->curframe
; frame
++) {
6330 parent
= vparent
->frame
[frame
];
6331 state
= vstate
->frame
[frame
];
6332 parent_reg
= parent
->regs
;
6333 state_reg
= state
->regs
;
6334 /* We don't need to worry about FP liveness, it's read-only */
6335 for (i
= frame
< vstate
->curframe
? BPF_REG_6
: 0; i
< BPF_REG_FP
; i
++) {
6336 err
= propagate_liveness_reg(env
, &state_reg
[i
],
6342 /* Propagate stack slots. */
6343 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
&&
6344 i
< parent
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
6345 parent_reg
= &parent
->stack
[i
].spilled_ptr
;
6346 state_reg
= &state
->stack
[i
].spilled_ptr
;
6347 err
= propagate_liveness_reg(env
, state_reg
,
6356 static int is_state_visited(struct bpf_verifier_env
*env
, int insn_idx
)
6358 struct bpf_verifier_state_list
*new_sl
;
6359 struct bpf_verifier_state_list
*sl
, **pprev
;
6360 struct bpf_verifier_state
*cur
= env
->cur_state
, *new;
6361 int i
, j
, err
, states_cnt
= 0;
6363 pprev
= &env
->explored_states
[insn_idx
];
6367 /* this 'insn_idx' instruction wasn't marked, so we will not
6368 * be doing state search here
6372 clean_live_states(env
, insn_idx
, cur
);
6374 while (sl
!= STATE_LIST_MARK
) {
6375 if (states_equal(env
, &sl
->state
, cur
)) {
6377 /* reached equivalent register/stack state,
6379 * Registers read by the continuation are read by us.
6380 * If we have any write marks in env->cur_state, they
6381 * will prevent corresponding reads in the continuation
6382 * from reaching our parent (an explored_state). Our
6383 * own state will get the read marks recorded, but
6384 * they'll be immediately forgotten as we're pruning
6385 * this state and will pop a new one.
6387 err
= propagate_liveness(env
, &sl
->state
, cur
);
6394 /* heuristic to determine whether this state is beneficial
6395 * to keep checking from state equivalence point of view.
6396 * Higher numbers increase max_states_per_insn and verification time,
6397 * but do not meaningfully decrease insn_processed.
6399 if (sl
->miss_cnt
> sl
->hit_cnt
* 3 + 3) {
6400 /* the state is unlikely to be useful. Remove it to
6401 * speed up verification
6404 if (sl
->state
.frame
[0]->regs
[0].live
& REG_LIVE_DONE
) {
6405 free_verifier_state(&sl
->state
, false);
6409 /* cannot free this state, since parentage chain may
6410 * walk it later. Add it for free_list instead to
6411 * be freed at the end of verification
6413 sl
->next
= env
->free_list
;
6414 env
->free_list
= sl
;
6423 if (env
->max_states_per_insn
< states_cnt
)
6424 env
->max_states_per_insn
= states_cnt
;
6426 if (!env
->allow_ptr_leaks
&& states_cnt
> BPF_COMPLEXITY_LIMIT_STATES
)
6429 /* there were no equivalent states, remember current one.
6430 * technically the current state is not proven to be safe yet,
6431 * but it will either reach outer most bpf_exit (which means it's safe)
6432 * or it will be rejected. Since there are no loops, we won't be
6433 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6434 * again on the way to bpf_exit
6436 new_sl
= kzalloc(sizeof(struct bpf_verifier_state_list
), GFP_KERNEL
);
6439 env
->total_states
++;
6442 /* add new state to the head of linked list */
6443 new = &new_sl
->state
;
6444 err
= copy_verifier_state(new, cur
);
6446 free_verifier_state(new, false);
6450 new_sl
->next
= env
->explored_states
[insn_idx
];
6451 env
->explored_states
[insn_idx
] = new_sl
;
6452 /* connect new state to parentage chain. Current frame needs all
6453 * registers connected. Only r6 - r9 of the callers are alive (pushed
6454 * to the stack implicitly by JITs) so in callers' frames connect just
6455 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6456 * the state of the call instruction (with WRITTEN set), and r0 comes
6457 * from callee with its full parentage chain, anyway.
6459 for (j
= 0; j
<= cur
->curframe
; j
++)
6460 for (i
= j
< cur
->curframe
? BPF_REG_6
: 0; i
< BPF_REG_FP
; i
++)
6461 cur
->frame
[j
]->regs
[i
].parent
= &new->frame
[j
]->regs
[i
];
6462 /* clear write marks in current state: the writes we did are not writes
6463 * our child did, so they don't screen off its reads from us.
6464 * (There are no read marks in current state, because reads always mark
6465 * their parent and current state never has children yet. Only
6466 * explored_states can get read marks.)
6468 for (i
= 0; i
< BPF_REG_FP
; i
++)
6469 cur
->frame
[cur
->curframe
]->regs
[i
].live
= REG_LIVE_NONE
;
6471 /* all stack frames are accessible from callee, clear them all */
6472 for (j
= 0; j
<= cur
->curframe
; j
++) {
6473 struct bpf_func_state
*frame
= cur
->frame
[j
];
6474 struct bpf_func_state
*newframe
= new->frame
[j
];
6476 for (i
= 0; i
< frame
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
6477 frame
->stack
[i
].spilled_ptr
.live
= REG_LIVE_NONE
;
6478 frame
->stack
[i
].spilled_ptr
.parent
=
6479 &newframe
->stack
[i
].spilled_ptr
;
6485 /* Return true if it's OK to have the same insn return a different type. */
6486 static bool reg_type_mismatch_ok(enum bpf_reg_type type
)
6491 case PTR_TO_SOCKET_OR_NULL
:
6492 case PTR_TO_SOCK_COMMON
:
6493 case PTR_TO_SOCK_COMMON_OR_NULL
:
6494 case PTR_TO_TCP_SOCK
:
6495 case PTR_TO_TCP_SOCK_OR_NULL
:
6502 /* If an instruction was previously used with particular pointer types, then we
6503 * need to be careful to avoid cases such as the below, where it may be ok
6504 * for one branch accessing the pointer, but not ok for the other branch:
6509 * R1 = some_other_valid_ptr;
6512 * R2 = *(u32 *)(R1 + 0);
6514 static bool reg_type_mismatch(enum bpf_reg_type src
, enum bpf_reg_type prev
)
6516 return src
!= prev
&& (!reg_type_mismatch_ok(src
) ||
6517 !reg_type_mismatch_ok(prev
));
6520 static int do_check(struct bpf_verifier_env
*env
)
6522 struct bpf_verifier_state
*state
;
6523 struct bpf_insn
*insns
= env
->prog
->insnsi
;
6524 struct bpf_reg_state
*regs
;
6525 int insn_cnt
= env
->prog
->len
;
6526 bool do_print_state
= false;
6528 env
->prev_linfo
= NULL
;
6530 state
= kzalloc(sizeof(struct bpf_verifier_state
), GFP_KERNEL
);
6533 state
->curframe
= 0;
6534 state
->speculative
= false;
6535 state
->frame
[0] = kzalloc(sizeof(struct bpf_func_state
), GFP_KERNEL
);
6536 if (!state
->frame
[0]) {
6540 env
->cur_state
= state
;
6541 init_func_state(env
, state
->frame
[0],
6542 BPF_MAIN_FUNC
/* callsite */,
6544 0 /* subprogno, zero == main subprog */);
6547 struct bpf_insn
*insn
;
6551 if (env
->insn_idx
>= insn_cnt
) {
6552 verbose(env
, "invalid insn idx %d insn_cnt %d\n",
6553 env
->insn_idx
, insn_cnt
);
6557 insn
= &insns
[env
->insn_idx
];
6558 class = BPF_CLASS(insn
->code
);
6560 if (++env
->insn_processed
> BPF_COMPLEXITY_LIMIT_INSNS
) {
6562 "BPF program is too large. Processed %d insn\n",
6563 env
->insn_processed
);
6567 err
= is_state_visited(env
, env
->insn_idx
);
6571 /* found equivalent state, can prune the search */
6572 if (env
->log
.level
& BPF_LOG_LEVEL
) {
6574 verbose(env
, "\nfrom %d to %d%s: safe\n",
6575 env
->prev_insn_idx
, env
->insn_idx
,
6576 env
->cur_state
->speculative
?
6577 " (speculative execution)" : "");
6579 verbose(env
, "%d: safe\n", env
->insn_idx
);
6581 goto process_bpf_exit
;
6584 if (signal_pending(current
))
6590 if (env
->log
.level
& BPF_LOG_LEVEL2
||
6591 (env
->log
.level
& BPF_LOG_LEVEL
&& do_print_state
)) {
6592 if (env
->log
.level
& BPF_LOG_LEVEL2
)
6593 verbose(env
, "%d:", env
->insn_idx
);
6595 verbose(env
, "\nfrom %d to %d%s:",
6596 env
->prev_insn_idx
, env
->insn_idx
,
6597 env
->cur_state
->speculative
?
6598 " (speculative execution)" : "");
6599 print_verifier_state(env
, state
->frame
[state
->curframe
]);
6600 do_print_state
= false;
6603 if (env
->log
.level
& BPF_LOG_LEVEL
) {
6604 const struct bpf_insn_cbs cbs
= {
6605 .cb_print
= verbose
,
6606 .private_data
= env
,
6609 verbose_linfo(env
, env
->insn_idx
, "; ");
6610 verbose(env
, "%d: ", env
->insn_idx
);
6611 print_bpf_insn(&cbs
, insn
, env
->allow_ptr_leaks
);
6614 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
6615 err
= bpf_prog_offload_verify_insn(env
, env
->insn_idx
,
6616 env
->prev_insn_idx
);
6621 regs
= cur_regs(env
);
6622 env
->insn_aux_data
[env
->insn_idx
].seen
= true;
6624 if (class == BPF_ALU
|| class == BPF_ALU64
) {
6625 err
= check_alu_op(env
, insn
);
6629 } else if (class == BPF_LDX
) {
6630 enum bpf_reg_type
*prev_src_type
, src_reg_type
;
6632 /* check for reserved fields is already done */
6634 /* check src operand */
6635 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
6639 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
6643 src_reg_type
= regs
[insn
->src_reg
].type
;
6645 /* check that memory (src_reg + off) is readable,
6646 * the state of dst_reg will be updated by this func
6648 err
= check_mem_access(env
, env
->insn_idx
, insn
->src_reg
,
6649 insn
->off
, BPF_SIZE(insn
->code
),
6650 BPF_READ
, insn
->dst_reg
, false);
6654 prev_src_type
= &env
->insn_aux_data
[env
->insn_idx
].ptr_type
;
6656 if (*prev_src_type
== NOT_INIT
) {
6658 * dst_reg = *(u32 *)(src_reg + off)
6659 * save type to validate intersecting paths
6661 *prev_src_type
= src_reg_type
;
6663 } else if (reg_type_mismatch(src_reg_type
, *prev_src_type
)) {
6664 /* ABuser program is trying to use the same insn
6665 * dst_reg = *(u32*) (src_reg + off)
6666 * with different pointer types:
6667 * src_reg == ctx in one branch and
6668 * src_reg == stack|map in some other branch.
6671 verbose(env
, "same insn cannot be used with different pointers\n");
6675 } else if (class == BPF_STX
) {
6676 enum bpf_reg_type
*prev_dst_type
, dst_reg_type
;
6678 if (BPF_MODE(insn
->code
) == BPF_XADD
) {
6679 err
= check_xadd(env
, env
->insn_idx
, insn
);
6686 /* check src1 operand */
6687 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
6690 /* check src2 operand */
6691 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
6695 dst_reg_type
= regs
[insn
->dst_reg
].type
;
6697 /* check that memory (dst_reg + off) is writeable */
6698 err
= check_mem_access(env
, env
->insn_idx
, insn
->dst_reg
,
6699 insn
->off
, BPF_SIZE(insn
->code
),
6700 BPF_WRITE
, insn
->src_reg
, false);
6704 prev_dst_type
= &env
->insn_aux_data
[env
->insn_idx
].ptr_type
;
6706 if (*prev_dst_type
== NOT_INIT
) {
6707 *prev_dst_type
= dst_reg_type
;
6708 } else if (reg_type_mismatch(dst_reg_type
, *prev_dst_type
)) {
6709 verbose(env
, "same insn cannot be used with different pointers\n");
6713 } else if (class == BPF_ST
) {
6714 if (BPF_MODE(insn
->code
) != BPF_MEM
||
6715 insn
->src_reg
!= BPF_REG_0
) {
6716 verbose(env
, "BPF_ST uses reserved fields\n");
6719 /* check src operand */
6720 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
6724 if (is_ctx_reg(env
, insn
->dst_reg
)) {
6725 verbose(env
, "BPF_ST stores into R%d %s is not allowed\n",
6727 reg_type_str
[reg_state(env
, insn
->dst_reg
)->type
]);
6731 /* check that memory (dst_reg + off) is writeable */
6732 err
= check_mem_access(env
, env
->insn_idx
, insn
->dst_reg
,
6733 insn
->off
, BPF_SIZE(insn
->code
),
6734 BPF_WRITE
, -1, false);
6738 } else if (class == BPF_JMP
|| class == BPF_JMP32
) {
6739 u8 opcode
= BPF_OP(insn
->code
);
6741 if (opcode
== BPF_CALL
) {
6742 if (BPF_SRC(insn
->code
) != BPF_K
||
6744 (insn
->src_reg
!= BPF_REG_0
&&
6745 insn
->src_reg
!= BPF_PSEUDO_CALL
) ||
6746 insn
->dst_reg
!= BPF_REG_0
||
6747 class == BPF_JMP32
) {
6748 verbose(env
, "BPF_CALL uses reserved fields\n");
6752 if (env
->cur_state
->active_spin_lock
&&
6753 (insn
->src_reg
== BPF_PSEUDO_CALL
||
6754 insn
->imm
!= BPF_FUNC_spin_unlock
)) {
6755 verbose(env
, "function calls are not allowed while holding a lock\n");
6758 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
6759 err
= check_func_call(env
, insn
, &env
->insn_idx
);
6761 err
= check_helper_call(env
, insn
->imm
, env
->insn_idx
);
6765 } else if (opcode
== BPF_JA
) {
6766 if (BPF_SRC(insn
->code
) != BPF_K
||
6768 insn
->src_reg
!= BPF_REG_0
||
6769 insn
->dst_reg
!= BPF_REG_0
||
6770 class == BPF_JMP32
) {
6771 verbose(env
, "BPF_JA uses reserved fields\n");
6775 env
->insn_idx
+= insn
->off
+ 1;
6778 } else if (opcode
== BPF_EXIT
) {
6779 if (BPF_SRC(insn
->code
) != BPF_K
||
6781 insn
->src_reg
!= BPF_REG_0
||
6782 insn
->dst_reg
!= BPF_REG_0
||
6783 class == BPF_JMP32
) {
6784 verbose(env
, "BPF_EXIT uses reserved fields\n");
6788 if (env
->cur_state
->active_spin_lock
) {
6789 verbose(env
, "bpf_spin_unlock is missing\n");
6793 if (state
->curframe
) {
6794 /* exit from nested function */
6795 env
->prev_insn_idx
= env
->insn_idx
;
6796 err
= prepare_func_exit(env
, &env
->insn_idx
);
6799 do_print_state
= true;
6803 err
= check_reference_leak(env
);
6807 /* eBPF calling convetion is such that R0 is used
6808 * to return the value from eBPF program.
6809 * Make sure that it's readable at this time
6810 * of bpf_exit, which means that program wrote
6811 * something into it earlier
6813 err
= check_reg_arg(env
, BPF_REG_0
, SRC_OP
);
6817 if (is_pointer_value(env
, BPF_REG_0
)) {
6818 verbose(env
, "R0 leaks addr as return value\n");
6822 err
= check_return_code(env
);
6826 err
= pop_stack(env
, &env
->prev_insn_idx
,
6833 do_print_state
= true;
6837 err
= check_cond_jmp_op(env
, insn
, &env
->insn_idx
);
6841 } else if (class == BPF_LD
) {
6842 u8 mode
= BPF_MODE(insn
->code
);
6844 if (mode
== BPF_ABS
|| mode
== BPF_IND
) {
6845 err
= check_ld_abs(env
, insn
);
6849 } else if (mode
== BPF_IMM
) {
6850 err
= check_ld_imm(env
, insn
);
6855 env
->insn_aux_data
[env
->insn_idx
].seen
= true;
6857 verbose(env
, "invalid BPF_LD mode\n");
6861 verbose(env
, "unknown insn class %d\n", class);
6868 env
->prog
->aux
->stack_depth
= env
->subprog_info
[0].stack_depth
;
6872 static int check_map_prealloc(struct bpf_map
*map
)
6874 return (map
->map_type
!= BPF_MAP_TYPE_HASH
&&
6875 map
->map_type
!= BPF_MAP_TYPE_PERCPU_HASH
&&
6876 map
->map_type
!= BPF_MAP_TYPE_HASH_OF_MAPS
) ||
6877 !(map
->map_flags
& BPF_F_NO_PREALLOC
);
6880 static bool is_tracing_prog_type(enum bpf_prog_type type
)
6883 case BPF_PROG_TYPE_KPROBE
:
6884 case BPF_PROG_TYPE_TRACEPOINT
:
6885 case BPF_PROG_TYPE_PERF_EVENT
:
6886 case BPF_PROG_TYPE_RAW_TRACEPOINT
:
6893 static int check_map_prog_compatibility(struct bpf_verifier_env
*env
,
6894 struct bpf_map
*map
,
6895 struct bpf_prog
*prog
)
6898 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6899 * preallocated hash maps, since doing memory allocation
6900 * in overflow_handler can crash depending on where nmi got
6903 if (prog
->type
== BPF_PROG_TYPE_PERF_EVENT
) {
6904 if (!check_map_prealloc(map
)) {
6905 verbose(env
, "perf_event programs can only use preallocated hash map\n");
6908 if (map
->inner_map_meta
&&
6909 !check_map_prealloc(map
->inner_map_meta
)) {
6910 verbose(env
, "perf_event programs can only use preallocated inner hash map\n");
6915 if ((is_tracing_prog_type(prog
->type
) ||
6916 prog
->type
== BPF_PROG_TYPE_SOCKET_FILTER
) &&
6917 map_value_has_spin_lock(map
)) {
6918 verbose(env
, "tracing progs cannot use bpf_spin_lock yet\n");
6922 if ((bpf_prog_is_dev_bound(prog
->aux
) || bpf_map_is_dev_bound(map
)) &&
6923 !bpf_offload_prog_map_match(prog
, map
)) {
6924 verbose(env
, "offload device mismatch between prog and map\n");
6931 static bool bpf_map_is_cgroup_storage(struct bpf_map
*map
)
6933 return (map
->map_type
== BPF_MAP_TYPE_CGROUP_STORAGE
||
6934 map
->map_type
== BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
);
6937 /* look for pseudo eBPF instructions that access map FDs and
6938 * replace them with actual map pointers
6940 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env
*env
)
6942 struct bpf_insn
*insn
= env
->prog
->insnsi
;
6943 int insn_cnt
= env
->prog
->len
;
6946 err
= bpf_prog_calc_tag(env
->prog
);
6950 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
6951 if (BPF_CLASS(insn
->code
) == BPF_LDX
&&
6952 (BPF_MODE(insn
->code
) != BPF_MEM
|| insn
->imm
!= 0)) {
6953 verbose(env
, "BPF_LDX uses reserved fields\n");
6957 if (BPF_CLASS(insn
->code
) == BPF_STX
&&
6958 ((BPF_MODE(insn
->code
) != BPF_MEM
&&
6959 BPF_MODE(insn
->code
) != BPF_XADD
) || insn
->imm
!= 0)) {
6960 verbose(env
, "BPF_STX uses reserved fields\n");
6964 if (insn
[0].code
== (BPF_LD
| BPF_IMM
| BPF_DW
)) {
6965 struct bpf_insn_aux_data
*aux
;
6966 struct bpf_map
*map
;
6970 if (i
== insn_cnt
- 1 || insn
[1].code
!= 0 ||
6971 insn
[1].dst_reg
!= 0 || insn
[1].src_reg
!= 0 ||
6973 verbose(env
, "invalid bpf_ld_imm64 insn\n");
6977 if (insn
[0].src_reg
== 0)
6978 /* valid generic load 64-bit imm */
6981 /* In final convert_pseudo_ld_imm64() step, this is
6982 * converted into regular 64-bit imm load insn.
6984 if ((insn
[0].src_reg
!= BPF_PSEUDO_MAP_FD
&&
6985 insn
[0].src_reg
!= BPF_PSEUDO_MAP_VALUE
) ||
6986 (insn
[0].src_reg
== BPF_PSEUDO_MAP_FD
&&
6987 insn
[1].imm
!= 0)) {
6989 "unrecognized bpf_ld_imm64 insn\n");
6993 f
= fdget(insn
[0].imm
);
6994 map
= __bpf_map_get(f
);
6996 verbose(env
, "fd %d is not pointing to valid bpf_map\n",
6998 return PTR_ERR(map
);
7001 err
= check_map_prog_compatibility(env
, map
, env
->prog
);
7007 aux
= &env
->insn_aux_data
[i
];
7008 if (insn
->src_reg
== BPF_PSEUDO_MAP_FD
) {
7009 addr
= (unsigned long)map
;
7011 u32 off
= insn
[1].imm
;
7013 if (off
>= BPF_MAX_VAR_OFF
) {
7014 verbose(env
, "direct value offset of %u is not allowed\n", off
);
7019 if (!map
->ops
->map_direct_value_addr
) {
7020 verbose(env
, "no direct value access support for this map type\n");
7025 err
= map
->ops
->map_direct_value_addr(map
, &addr
, off
);
7027 verbose(env
, "invalid access to map value pointer, value_size=%u off=%u\n",
7028 map
->value_size
, off
);
7037 insn
[0].imm
= (u32
)addr
;
7038 insn
[1].imm
= addr
>> 32;
7040 /* check whether we recorded this map already */
7041 for (j
= 0; j
< env
->used_map_cnt
; j
++) {
7042 if (env
->used_maps
[j
] == map
) {
7049 if (env
->used_map_cnt
>= MAX_USED_MAPS
) {
7054 /* hold the map. If the program is rejected by verifier,
7055 * the map will be released by release_maps() or it
7056 * will be used by the valid program until it's unloaded
7057 * and all maps are released in free_used_maps()
7059 map
= bpf_map_inc(map
, false);
7062 return PTR_ERR(map
);
7065 aux
->map_index
= env
->used_map_cnt
;
7066 env
->used_maps
[env
->used_map_cnt
++] = map
;
7068 if (bpf_map_is_cgroup_storage(map
) &&
7069 bpf_cgroup_storage_assign(env
->prog
, map
)) {
7070 verbose(env
, "only one cgroup storage of each type is allowed\n");
7082 /* Basic sanity check before we invest more work here. */
7083 if (!bpf_opcode_in_insntable(insn
->code
)) {
7084 verbose(env
, "unknown opcode %02x\n", insn
->code
);
7089 /* now all pseudo BPF_LD_IMM64 instructions load valid
7090 * 'struct bpf_map *' into a register instead of user map_fd.
7091 * These pointers will be used later by verifier to validate map access.
7096 /* drop refcnt of maps used by the rejected program */
7097 static void release_maps(struct bpf_verifier_env
*env
)
7099 enum bpf_cgroup_storage_type stype
;
7102 for_each_cgroup_storage_type(stype
) {
7103 if (!env
->prog
->aux
->cgroup_storage
[stype
])
7105 bpf_cgroup_storage_release(env
->prog
,
7106 env
->prog
->aux
->cgroup_storage
[stype
]);
7109 for (i
= 0; i
< env
->used_map_cnt
; i
++)
7110 bpf_map_put(env
->used_maps
[i
]);
7113 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7114 static void convert_pseudo_ld_imm64(struct bpf_verifier_env
*env
)
7116 struct bpf_insn
*insn
= env
->prog
->insnsi
;
7117 int insn_cnt
= env
->prog
->len
;
7120 for (i
= 0; i
< insn_cnt
; i
++, insn
++)
7121 if (insn
->code
== (BPF_LD
| BPF_IMM
| BPF_DW
))
7125 /* single env->prog->insni[off] instruction was replaced with the range
7126 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
7127 * [0, off) and [off, end) to new locations, so the patched range stays zero
7129 static int adjust_insn_aux_data(struct bpf_verifier_env
*env
, u32 prog_len
,
7132 struct bpf_insn_aux_data
*new_data
, *old_data
= env
->insn_aux_data
;
7137 new_data
= vzalloc(array_size(prog_len
,
7138 sizeof(struct bpf_insn_aux_data
)));
7141 memcpy(new_data
, old_data
, sizeof(struct bpf_insn_aux_data
) * off
);
7142 memcpy(new_data
+ off
+ cnt
- 1, old_data
+ off
,
7143 sizeof(struct bpf_insn_aux_data
) * (prog_len
- off
- cnt
+ 1));
7144 for (i
= off
; i
< off
+ cnt
- 1; i
++)
7145 new_data
[i
].seen
= true;
7146 env
->insn_aux_data
= new_data
;
7151 static void adjust_subprog_starts(struct bpf_verifier_env
*env
, u32 off
, u32 len
)
7157 /* NOTE: fake 'exit' subprog should be updated as well. */
7158 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
7159 if (env
->subprog_info
[i
].start
<= off
)
7161 env
->subprog_info
[i
].start
+= len
- 1;
7165 static struct bpf_prog
*bpf_patch_insn_data(struct bpf_verifier_env
*env
, u32 off
,
7166 const struct bpf_insn
*patch
, u32 len
)
7168 struct bpf_prog
*new_prog
;
7170 new_prog
= bpf_patch_insn_single(env
->prog
, off
, patch
, len
);
7171 if (IS_ERR(new_prog
)) {
7172 if (PTR_ERR(new_prog
) == -ERANGE
)
7174 "insn %d cannot be patched due to 16-bit range\n",
7175 env
->insn_aux_data
[off
].orig_idx
);
7178 if (adjust_insn_aux_data(env
, new_prog
->len
, off
, len
))
7180 adjust_subprog_starts(env
, off
, len
);
7184 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env
*env
,
7189 /* find first prog starting at or after off (first to remove) */
7190 for (i
= 0; i
< env
->subprog_cnt
; i
++)
7191 if (env
->subprog_info
[i
].start
>= off
)
7193 /* find first prog starting at or after off + cnt (first to stay) */
7194 for (j
= i
; j
< env
->subprog_cnt
; j
++)
7195 if (env
->subprog_info
[j
].start
>= off
+ cnt
)
7197 /* if j doesn't start exactly at off + cnt, we are just removing
7198 * the front of previous prog
7200 if (env
->subprog_info
[j
].start
!= off
+ cnt
)
7204 struct bpf_prog_aux
*aux
= env
->prog
->aux
;
7207 /* move fake 'exit' subprog as well */
7208 move
= env
->subprog_cnt
+ 1 - j
;
7210 memmove(env
->subprog_info
+ i
,
7211 env
->subprog_info
+ j
,
7212 sizeof(*env
->subprog_info
) * move
);
7213 env
->subprog_cnt
-= j
- i
;
7215 /* remove func_info */
7216 if (aux
->func_info
) {
7217 move
= aux
->func_info_cnt
- j
;
7219 memmove(aux
->func_info
+ i
,
7221 sizeof(*aux
->func_info
) * move
);
7222 aux
->func_info_cnt
-= j
- i
;
7223 /* func_info->insn_off is set after all code rewrites,
7224 * in adjust_btf_func() - no need to adjust
7228 /* convert i from "first prog to remove" to "first to adjust" */
7229 if (env
->subprog_info
[i
].start
== off
)
7233 /* update fake 'exit' subprog as well */
7234 for (; i
<= env
->subprog_cnt
; i
++)
7235 env
->subprog_info
[i
].start
-= cnt
;
7240 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env
*env
, u32 off
,
7243 struct bpf_prog
*prog
= env
->prog
;
7244 u32 i
, l_off
, l_cnt
, nr_linfo
;
7245 struct bpf_line_info
*linfo
;
7247 nr_linfo
= prog
->aux
->nr_linfo
;
7251 linfo
= prog
->aux
->linfo
;
7253 /* find first line info to remove, count lines to be removed */
7254 for (i
= 0; i
< nr_linfo
; i
++)
7255 if (linfo
[i
].insn_off
>= off
)
7260 for (; i
< nr_linfo
; i
++)
7261 if (linfo
[i
].insn_off
< off
+ cnt
)
7266 /* First live insn doesn't match first live linfo, it needs to "inherit"
7267 * last removed linfo. prog is already modified, so prog->len == off
7268 * means no live instructions after (tail of the program was removed).
7270 if (prog
->len
!= off
&& l_cnt
&&
7271 (i
== nr_linfo
|| linfo
[i
].insn_off
!= off
+ cnt
)) {
7273 linfo
[--i
].insn_off
= off
+ cnt
;
7276 /* remove the line info which refer to the removed instructions */
7278 memmove(linfo
+ l_off
, linfo
+ i
,
7279 sizeof(*linfo
) * (nr_linfo
- i
));
7281 prog
->aux
->nr_linfo
-= l_cnt
;
7282 nr_linfo
= prog
->aux
->nr_linfo
;
7285 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
7286 for (i
= l_off
; i
< nr_linfo
; i
++)
7287 linfo
[i
].insn_off
-= cnt
;
7289 /* fix up all subprogs (incl. 'exit') which start >= off */
7290 for (i
= 0; i
<= env
->subprog_cnt
; i
++)
7291 if (env
->subprog_info
[i
].linfo_idx
> l_off
) {
7292 /* program may have started in the removed region but
7293 * may not be fully removed
7295 if (env
->subprog_info
[i
].linfo_idx
>= l_off
+ l_cnt
)
7296 env
->subprog_info
[i
].linfo_idx
-= l_cnt
;
7298 env
->subprog_info
[i
].linfo_idx
= l_off
;
7304 static int verifier_remove_insns(struct bpf_verifier_env
*env
, u32 off
, u32 cnt
)
7306 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
7307 unsigned int orig_prog_len
= env
->prog
->len
;
7310 if (bpf_prog_is_dev_bound(env
->prog
->aux
))
7311 bpf_prog_offload_remove_insns(env
, off
, cnt
);
7313 err
= bpf_remove_insns(env
->prog
, off
, cnt
);
7317 err
= adjust_subprog_starts_after_remove(env
, off
, cnt
);
7321 err
= bpf_adj_linfo_after_remove(env
, off
, cnt
);
7325 memmove(aux_data
+ off
, aux_data
+ off
+ cnt
,
7326 sizeof(*aux_data
) * (orig_prog_len
- off
- cnt
));
7331 /* The verifier does more data flow analysis than llvm and will not
7332 * explore branches that are dead at run time. Malicious programs can
7333 * have dead code too. Therefore replace all dead at-run-time code
7336 * Just nops are not optimal, e.g. if they would sit at the end of the
7337 * program and through another bug we would manage to jump there, then
7338 * we'd execute beyond program memory otherwise. Returning exception
7339 * code also wouldn't work since we can have subprogs where the dead
7340 * code could be located.
7342 static void sanitize_dead_code(struct bpf_verifier_env
*env
)
7344 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
7345 struct bpf_insn trap
= BPF_JMP_IMM(BPF_JA
, 0, 0, -1);
7346 struct bpf_insn
*insn
= env
->prog
->insnsi
;
7347 const int insn_cnt
= env
->prog
->len
;
7350 for (i
= 0; i
< insn_cnt
; i
++) {
7351 if (aux_data
[i
].seen
)
7353 memcpy(insn
+ i
, &trap
, sizeof(trap
));
7357 static bool insn_is_cond_jump(u8 code
)
7361 if (BPF_CLASS(code
) == BPF_JMP32
)
7364 if (BPF_CLASS(code
) != BPF_JMP
)
7368 return op
!= BPF_JA
&& op
!= BPF_EXIT
&& op
!= BPF_CALL
;
7371 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env
*env
)
7373 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
7374 struct bpf_insn ja
= BPF_JMP_IMM(BPF_JA
, 0, 0, 0);
7375 struct bpf_insn
*insn
= env
->prog
->insnsi
;
7376 const int insn_cnt
= env
->prog
->len
;
7379 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
7380 if (!insn_is_cond_jump(insn
->code
))
7383 if (!aux_data
[i
+ 1].seen
)
7385 else if (!aux_data
[i
+ 1 + insn
->off
].seen
)
7390 if (bpf_prog_is_dev_bound(env
->prog
->aux
))
7391 bpf_prog_offload_replace_insn(env
, i
, &ja
);
7393 memcpy(insn
, &ja
, sizeof(ja
));
7397 static int opt_remove_dead_code(struct bpf_verifier_env
*env
)
7399 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
7400 int insn_cnt
= env
->prog
->len
;
7403 for (i
= 0; i
< insn_cnt
; i
++) {
7407 while (i
+ j
< insn_cnt
&& !aux_data
[i
+ j
].seen
)
7412 err
= verifier_remove_insns(env
, i
, j
);
7415 insn_cnt
= env
->prog
->len
;
7421 static int opt_remove_nops(struct bpf_verifier_env
*env
)
7423 const struct bpf_insn ja
= BPF_JMP_IMM(BPF_JA
, 0, 0, 0);
7424 struct bpf_insn
*insn
= env
->prog
->insnsi
;
7425 int insn_cnt
= env
->prog
->len
;
7428 for (i
= 0; i
< insn_cnt
; i
++) {
7429 if (memcmp(&insn
[i
], &ja
, sizeof(ja
)))
7432 err
= verifier_remove_insns(env
, i
, 1);
7442 /* convert load instructions that access fields of a context type into a
7443 * sequence of instructions that access fields of the underlying structure:
7444 * struct __sk_buff -> struct sk_buff
7445 * struct bpf_sock_ops -> struct sock
7447 static int convert_ctx_accesses(struct bpf_verifier_env
*env
)
7449 const struct bpf_verifier_ops
*ops
= env
->ops
;
7450 int i
, cnt
, size
, ctx_field_size
, delta
= 0;
7451 const int insn_cnt
= env
->prog
->len
;
7452 struct bpf_insn insn_buf
[16], *insn
;
7453 u32 target_size
, size_default
, off
;
7454 struct bpf_prog
*new_prog
;
7455 enum bpf_access_type type
;
7456 bool is_narrower_load
;
7458 if (ops
->gen_prologue
|| env
->seen_direct_write
) {
7459 if (!ops
->gen_prologue
) {
7460 verbose(env
, "bpf verifier is misconfigured\n");
7463 cnt
= ops
->gen_prologue(insn_buf
, env
->seen_direct_write
,
7465 if (cnt
>= ARRAY_SIZE(insn_buf
)) {
7466 verbose(env
, "bpf verifier is misconfigured\n");
7469 new_prog
= bpf_patch_insn_data(env
, 0, insn_buf
, cnt
);
7473 env
->prog
= new_prog
;
7478 if (bpf_prog_is_dev_bound(env
->prog
->aux
))
7481 insn
= env
->prog
->insnsi
+ delta
;
7483 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
7484 bpf_convert_ctx_access_t convert_ctx_access
;
7486 if (insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_B
) ||
7487 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_H
) ||
7488 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_W
) ||
7489 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_DW
))
7491 else if (insn
->code
== (BPF_STX
| BPF_MEM
| BPF_B
) ||
7492 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_H
) ||
7493 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_W
) ||
7494 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_DW
))
7499 if (type
== BPF_WRITE
&&
7500 env
->insn_aux_data
[i
+ delta
].sanitize_stack_off
) {
7501 struct bpf_insn patch
[] = {
7502 /* Sanitize suspicious stack slot with zero.
7503 * There are no memory dependencies for this store,
7504 * since it's only using frame pointer and immediate
7507 BPF_ST_MEM(BPF_DW
, BPF_REG_FP
,
7508 env
->insn_aux_data
[i
+ delta
].sanitize_stack_off
,
7510 /* the original STX instruction will immediately
7511 * overwrite the same stack slot with appropriate value
7516 cnt
= ARRAY_SIZE(patch
);
7517 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, patch
, cnt
);
7522 env
->prog
= new_prog
;
7523 insn
= new_prog
->insnsi
+ i
+ delta
;
7527 switch (env
->insn_aux_data
[i
+ delta
].ptr_type
) {
7529 if (!ops
->convert_ctx_access
)
7531 convert_ctx_access
= ops
->convert_ctx_access
;
7534 case PTR_TO_SOCK_COMMON
:
7535 convert_ctx_access
= bpf_sock_convert_ctx_access
;
7537 case PTR_TO_TCP_SOCK
:
7538 convert_ctx_access
= bpf_tcp_sock_convert_ctx_access
;
7544 ctx_field_size
= env
->insn_aux_data
[i
+ delta
].ctx_field_size
;
7545 size
= BPF_LDST_BYTES(insn
);
7547 /* If the read access is a narrower load of the field,
7548 * convert to a 4/8-byte load, to minimum program type specific
7549 * convert_ctx_access changes. If conversion is successful,
7550 * we will apply proper mask to the result.
7552 is_narrower_load
= size
< ctx_field_size
;
7553 size_default
= bpf_ctx_off_adjust_machine(ctx_field_size
);
7555 if (is_narrower_load
) {
7558 if (type
== BPF_WRITE
) {
7559 verbose(env
, "bpf verifier narrow ctx access misconfigured\n");
7564 if (ctx_field_size
== 4)
7566 else if (ctx_field_size
== 8)
7569 insn
->off
= off
& ~(size_default
- 1);
7570 insn
->code
= BPF_LDX
| BPF_MEM
| size_code
;
7574 cnt
= convert_ctx_access(type
, insn
, insn_buf
, env
->prog
,
7576 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
) ||
7577 (ctx_field_size
&& !target_size
)) {
7578 verbose(env
, "bpf verifier is misconfigured\n");
7582 if (is_narrower_load
&& size
< target_size
) {
7583 u8 shift
= (off
& (size_default
- 1)) * 8;
7585 if (ctx_field_size
<= 4) {
7587 insn_buf
[cnt
++] = BPF_ALU32_IMM(BPF_RSH
,
7590 insn_buf
[cnt
++] = BPF_ALU32_IMM(BPF_AND
, insn
->dst_reg
,
7591 (1 << size
* 8) - 1);
7594 insn_buf
[cnt
++] = BPF_ALU64_IMM(BPF_RSH
,
7597 insn_buf
[cnt
++] = BPF_ALU64_IMM(BPF_AND
, insn
->dst_reg
,
7598 (1ULL << size
* 8) - 1);
7602 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
7608 /* keep walking new program and skip insns we just inserted */
7609 env
->prog
= new_prog
;
7610 insn
= new_prog
->insnsi
+ i
+ delta
;
7616 static int jit_subprogs(struct bpf_verifier_env
*env
)
7618 struct bpf_prog
*prog
= env
->prog
, **func
, *tmp
;
7619 int i
, j
, subprog_start
, subprog_end
= 0, len
, subprog
;
7620 struct bpf_insn
*insn
;
7624 if (env
->subprog_cnt
<= 1)
7627 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
7628 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
7629 insn
->src_reg
!= BPF_PSEUDO_CALL
)
7631 /* Upon error here we cannot fall back to interpreter but
7632 * need a hard reject of the program. Thus -EFAULT is
7633 * propagated in any case.
7635 subprog
= find_subprog(env
, i
+ insn
->imm
+ 1);
7637 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7641 /* temporarily remember subprog id inside insn instead of
7642 * aux_data, since next loop will split up all insns into funcs
7644 insn
->off
= subprog
;
7645 /* remember original imm in case JIT fails and fallback
7646 * to interpreter will be needed
7648 env
->insn_aux_data
[i
].call_imm
= insn
->imm
;
7649 /* point imm to __bpf_call_base+1 from JITs point of view */
7653 err
= bpf_prog_alloc_jited_linfo(prog
);
7658 func
= kcalloc(env
->subprog_cnt
, sizeof(prog
), GFP_KERNEL
);
7662 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
7663 subprog_start
= subprog_end
;
7664 subprog_end
= env
->subprog_info
[i
+ 1].start
;
7666 len
= subprog_end
- subprog_start
;
7667 /* BPF_PROG_RUN doesn't call subprogs directly,
7668 * hence main prog stats include the runtime of subprogs.
7669 * subprogs don't have IDs and not reachable via prog_get_next_id
7670 * func[i]->aux->stats will never be accessed and stays NULL
7672 func
[i
] = bpf_prog_alloc_no_stats(bpf_prog_size(len
), GFP_USER
);
7675 memcpy(func
[i
]->insnsi
, &prog
->insnsi
[subprog_start
],
7676 len
* sizeof(struct bpf_insn
));
7677 func
[i
]->type
= prog
->type
;
7679 if (bpf_prog_calc_tag(func
[i
]))
7681 func
[i
]->is_func
= 1;
7682 func
[i
]->aux
->func_idx
= i
;
7683 /* the btf and func_info will be freed only at prog->aux */
7684 func
[i
]->aux
->btf
= prog
->aux
->btf
;
7685 func
[i
]->aux
->func_info
= prog
->aux
->func_info
;
7687 /* Use bpf_prog_F_tag to indicate functions in stack traces.
7688 * Long term would need debug info to populate names
7690 func
[i
]->aux
->name
[0] = 'F';
7691 func
[i
]->aux
->stack_depth
= env
->subprog_info
[i
].stack_depth
;
7692 func
[i
]->jit_requested
= 1;
7693 func
[i
]->aux
->linfo
= prog
->aux
->linfo
;
7694 func
[i
]->aux
->nr_linfo
= prog
->aux
->nr_linfo
;
7695 func
[i
]->aux
->jited_linfo
= prog
->aux
->jited_linfo
;
7696 func
[i
]->aux
->linfo_idx
= env
->subprog_info
[i
].linfo_idx
;
7697 func
[i
] = bpf_int_jit_compile(func
[i
]);
7698 if (!func
[i
]->jited
) {
7704 /* at this point all bpf functions were successfully JITed
7705 * now populate all bpf_calls with correct addresses and
7706 * run last pass of JIT
7708 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
7709 insn
= func
[i
]->insnsi
;
7710 for (j
= 0; j
< func
[i
]->len
; j
++, insn
++) {
7711 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
7712 insn
->src_reg
!= BPF_PSEUDO_CALL
)
7714 subprog
= insn
->off
;
7715 insn
->imm
= BPF_CAST_CALL(func
[subprog
]->bpf_func
) -
7719 /* we use the aux data to keep a list of the start addresses
7720 * of the JITed images for each function in the program
7722 * for some architectures, such as powerpc64, the imm field
7723 * might not be large enough to hold the offset of the start
7724 * address of the callee's JITed image from __bpf_call_base
7726 * in such cases, we can lookup the start address of a callee
7727 * by using its subprog id, available from the off field of
7728 * the call instruction, as an index for this list
7730 func
[i
]->aux
->func
= func
;
7731 func
[i
]->aux
->func_cnt
= env
->subprog_cnt
;
7733 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
7734 old_bpf_func
= func
[i
]->bpf_func
;
7735 tmp
= bpf_int_jit_compile(func
[i
]);
7736 if (tmp
!= func
[i
] || func
[i
]->bpf_func
!= old_bpf_func
) {
7737 verbose(env
, "JIT doesn't support bpf-to-bpf calls\n");
7744 /* finally lock prog and jit images for all functions and
7747 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
7748 bpf_prog_lock_ro(func
[i
]);
7749 bpf_prog_kallsyms_add(func
[i
]);
7752 /* Last step: make now unused interpreter insns from main
7753 * prog consistent for later dump requests, so they can
7754 * later look the same as if they were interpreted only.
7756 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
7757 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
7758 insn
->src_reg
!= BPF_PSEUDO_CALL
)
7760 insn
->off
= env
->insn_aux_data
[i
].call_imm
;
7761 subprog
= find_subprog(env
, i
+ insn
->off
+ 1);
7762 insn
->imm
= subprog
;
7766 prog
->bpf_func
= func
[0]->bpf_func
;
7767 prog
->aux
->func
= func
;
7768 prog
->aux
->func_cnt
= env
->subprog_cnt
;
7769 bpf_prog_free_unused_jited_linfo(prog
);
7772 for (i
= 0; i
< env
->subprog_cnt
; i
++)
7774 bpf_jit_free(func
[i
]);
7777 /* cleanup main prog to be interpreted */
7778 prog
->jit_requested
= 0;
7779 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
7780 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
7781 insn
->src_reg
!= BPF_PSEUDO_CALL
)
7784 insn
->imm
= env
->insn_aux_data
[i
].call_imm
;
7786 bpf_prog_free_jited_linfo(prog
);
7790 static int fixup_call_args(struct bpf_verifier_env
*env
)
7792 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7793 struct bpf_prog
*prog
= env
->prog
;
7794 struct bpf_insn
*insn
= prog
->insnsi
;
7799 if (env
->prog
->jit_requested
&&
7800 !bpf_prog_is_dev_bound(env
->prog
->aux
)) {
7801 err
= jit_subprogs(env
);
7807 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7808 for (i
= 0; i
< prog
->len
; i
++, insn
++) {
7809 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
7810 insn
->src_reg
!= BPF_PSEUDO_CALL
)
7812 depth
= get_callee_stack_depth(env
, insn
, i
);
7815 bpf_patch_call_args(insn
, depth
);
7822 /* fixup insn->imm field of bpf_call instructions
7823 * and inline eligible helpers as explicit sequence of BPF instructions
7825 * this function is called after eBPF program passed verification
7827 static int fixup_bpf_calls(struct bpf_verifier_env
*env
)
7829 struct bpf_prog
*prog
= env
->prog
;
7830 struct bpf_insn
*insn
= prog
->insnsi
;
7831 const struct bpf_func_proto
*fn
;
7832 const int insn_cnt
= prog
->len
;
7833 const struct bpf_map_ops
*ops
;
7834 struct bpf_insn_aux_data
*aux
;
7835 struct bpf_insn insn_buf
[16];
7836 struct bpf_prog
*new_prog
;
7837 struct bpf_map
*map_ptr
;
7838 int i
, cnt
, delta
= 0;
7840 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
7841 if (insn
->code
== (BPF_ALU64
| BPF_MOD
| BPF_X
) ||
7842 insn
->code
== (BPF_ALU64
| BPF_DIV
| BPF_X
) ||
7843 insn
->code
== (BPF_ALU
| BPF_MOD
| BPF_X
) ||
7844 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
7845 bool is64
= BPF_CLASS(insn
->code
) == BPF_ALU64
;
7846 struct bpf_insn mask_and_div
[] = {
7847 BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
),
7849 BPF_JMP_IMM(BPF_JNE
, insn
->src_reg
, 0, 2),
7850 BPF_ALU32_REG(BPF_XOR
, insn
->dst_reg
, insn
->dst_reg
),
7851 BPF_JMP_IMM(BPF_JA
, 0, 0, 1),
7854 struct bpf_insn mask_and_mod
[] = {
7855 BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
),
7856 /* Rx mod 0 -> Rx */
7857 BPF_JMP_IMM(BPF_JEQ
, insn
->src_reg
, 0, 1),
7860 struct bpf_insn
*patchlet
;
7862 if (insn
->code
== (BPF_ALU64
| BPF_DIV
| BPF_X
) ||
7863 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
7864 patchlet
= mask_and_div
+ (is64
? 1 : 0);
7865 cnt
= ARRAY_SIZE(mask_and_div
) - (is64
? 1 : 0);
7867 patchlet
= mask_and_mod
+ (is64
? 1 : 0);
7868 cnt
= ARRAY_SIZE(mask_and_mod
) - (is64
? 1 : 0);
7871 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, patchlet
, cnt
);
7876 env
->prog
= prog
= new_prog
;
7877 insn
= new_prog
->insnsi
+ i
+ delta
;
7881 if (BPF_CLASS(insn
->code
) == BPF_LD
&&
7882 (BPF_MODE(insn
->code
) == BPF_ABS
||
7883 BPF_MODE(insn
->code
) == BPF_IND
)) {
7884 cnt
= env
->ops
->gen_ld_abs(insn
, insn_buf
);
7885 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
)) {
7886 verbose(env
, "bpf verifier is misconfigured\n");
7890 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
7895 env
->prog
= prog
= new_prog
;
7896 insn
= new_prog
->insnsi
+ i
+ delta
;
7900 if (insn
->code
== (BPF_ALU64
| BPF_ADD
| BPF_X
) ||
7901 insn
->code
== (BPF_ALU64
| BPF_SUB
| BPF_X
)) {
7902 const u8 code_add
= BPF_ALU64
| BPF_ADD
| BPF_X
;
7903 const u8 code_sub
= BPF_ALU64
| BPF_SUB
| BPF_X
;
7904 struct bpf_insn insn_buf
[16];
7905 struct bpf_insn
*patch
= &insn_buf
[0];
7909 aux
= &env
->insn_aux_data
[i
+ delta
];
7910 if (!aux
->alu_state
||
7911 aux
->alu_state
== BPF_ALU_NON_POINTER
)
7914 isneg
= aux
->alu_state
& BPF_ALU_NEG_VALUE
;
7915 issrc
= (aux
->alu_state
& BPF_ALU_SANITIZE
) ==
7916 BPF_ALU_SANITIZE_SRC
;
7918 off_reg
= issrc
? insn
->src_reg
: insn
->dst_reg
;
7920 *patch
++ = BPF_ALU64_IMM(BPF_MUL
, off_reg
, -1);
7921 *patch
++ = BPF_MOV32_IMM(BPF_REG_AX
, aux
->alu_limit
- 1);
7922 *patch
++ = BPF_ALU64_REG(BPF_SUB
, BPF_REG_AX
, off_reg
);
7923 *patch
++ = BPF_ALU64_REG(BPF_OR
, BPF_REG_AX
, off_reg
);
7924 *patch
++ = BPF_ALU64_IMM(BPF_NEG
, BPF_REG_AX
, 0);
7925 *patch
++ = BPF_ALU64_IMM(BPF_ARSH
, BPF_REG_AX
, 63);
7927 *patch
++ = BPF_ALU64_REG(BPF_AND
, BPF_REG_AX
,
7929 insn
->src_reg
= BPF_REG_AX
;
7931 *patch
++ = BPF_ALU64_REG(BPF_AND
, off_reg
,
7935 insn
->code
= insn
->code
== code_add
?
7936 code_sub
: code_add
;
7939 *patch
++ = BPF_ALU64_IMM(BPF_MUL
, off_reg
, -1);
7940 cnt
= patch
- insn_buf
;
7942 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
7947 env
->prog
= prog
= new_prog
;
7948 insn
= new_prog
->insnsi
+ i
+ delta
;
7952 if (insn
->code
!= (BPF_JMP
| BPF_CALL
))
7954 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
7957 if (insn
->imm
== BPF_FUNC_get_route_realm
)
7958 prog
->dst_needed
= 1;
7959 if (insn
->imm
== BPF_FUNC_get_prandom_u32
)
7960 bpf_user_rnd_init_once();
7961 if (insn
->imm
== BPF_FUNC_override_return
)
7962 prog
->kprobe_override
= 1;
7963 if (insn
->imm
== BPF_FUNC_tail_call
) {
7964 /* If we tail call into other programs, we
7965 * cannot make any assumptions since they can
7966 * be replaced dynamically during runtime in
7967 * the program array.
7969 prog
->cb_access
= 1;
7970 env
->prog
->aux
->stack_depth
= MAX_BPF_STACK
;
7971 env
->prog
->aux
->max_pkt_offset
= MAX_PACKET_OFF
;
7973 /* mark bpf_tail_call as different opcode to avoid
7974 * conditional branch in the interpeter for every normal
7975 * call and to prevent accidental JITing by JIT compiler
7976 * that doesn't support bpf_tail_call yet
7979 insn
->code
= BPF_JMP
| BPF_TAIL_CALL
;
7981 aux
= &env
->insn_aux_data
[i
+ delta
];
7982 if (!bpf_map_ptr_unpriv(aux
))
7985 /* instead of changing every JIT dealing with tail_call
7986 * emit two extra insns:
7987 * if (index >= max_entries) goto out;
7988 * index &= array->index_mask;
7989 * to avoid out-of-bounds cpu speculation
7991 if (bpf_map_ptr_poisoned(aux
)) {
7992 verbose(env
, "tail_call abusing map_ptr\n");
7996 map_ptr
= BPF_MAP_PTR(aux
->map_state
);
7997 insn_buf
[0] = BPF_JMP_IMM(BPF_JGE
, BPF_REG_3
,
7998 map_ptr
->max_entries
, 2);
7999 insn_buf
[1] = BPF_ALU32_IMM(BPF_AND
, BPF_REG_3
,
8000 container_of(map_ptr
,
8003 insn_buf
[2] = *insn
;
8005 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
8010 env
->prog
= prog
= new_prog
;
8011 insn
= new_prog
->insnsi
+ i
+ delta
;
8015 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
8016 * and other inlining handlers are currently limited to 64 bit
8019 if (prog
->jit_requested
&& BITS_PER_LONG
== 64 &&
8020 (insn
->imm
== BPF_FUNC_map_lookup_elem
||
8021 insn
->imm
== BPF_FUNC_map_update_elem
||
8022 insn
->imm
== BPF_FUNC_map_delete_elem
||
8023 insn
->imm
== BPF_FUNC_map_push_elem
||
8024 insn
->imm
== BPF_FUNC_map_pop_elem
||
8025 insn
->imm
== BPF_FUNC_map_peek_elem
)) {
8026 aux
= &env
->insn_aux_data
[i
+ delta
];
8027 if (bpf_map_ptr_poisoned(aux
))
8028 goto patch_call_imm
;
8030 map_ptr
= BPF_MAP_PTR(aux
->map_state
);
8032 if (insn
->imm
== BPF_FUNC_map_lookup_elem
&&
8033 ops
->map_gen_lookup
) {
8034 cnt
= ops
->map_gen_lookup(map_ptr
, insn_buf
);
8035 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
)) {
8036 verbose(env
, "bpf verifier is misconfigured\n");
8040 new_prog
= bpf_patch_insn_data(env
, i
+ delta
,
8046 env
->prog
= prog
= new_prog
;
8047 insn
= new_prog
->insnsi
+ i
+ delta
;
8051 BUILD_BUG_ON(!__same_type(ops
->map_lookup_elem
,
8052 (void *(*)(struct bpf_map
*map
, void *key
))NULL
));
8053 BUILD_BUG_ON(!__same_type(ops
->map_delete_elem
,
8054 (int (*)(struct bpf_map
*map
, void *key
))NULL
));
8055 BUILD_BUG_ON(!__same_type(ops
->map_update_elem
,
8056 (int (*)(struct bpf_map
*map
, void *key
, void *value
,
8058 BUILD_BUG_ON(!__same_type(ops
->map_push_elem
,
8059 (int (*)(struct bpf_map
*map
, void *value
,
8061 BUILD_BUG_ON(!__same_type(ops
->map_pop_elem
,
8062 (int (*)(struct bpf_map
*map
, void *value
))NULL
));
8063 BUILD_BUG_ON(!__same_type(ops
->map_peek_elem
,
8064 (int (*)(struct bpf_map
*map
, void *value
))NULL
));
8066 switch (insn
->imm
) {
8067 case BPF_FUNC_map_lookup_elem
:
8068 insn
->imm
= BPF_CAST_CALL(ops
->map_lookup_elem
) -
8071 case BPF_FUNC_map_update_elem
:
8072 insn
->imm
= BPF_CAST_CALL(ops
->map_update_elem
) -
8075 case BPF_FUNC_map_delete_elem
:
8076 insn
->imm
= BPF_CAST_CALL(ops
->map_delete_elem
) -
8079 case BPF_FUNC_map_push_elem
:
8080 insn
->imm
= BPF_CAST_CALL(ops
->map_push_elem
) -
8083 case BPF_FUNC_map_pop_elem
:
8084 insn
->imm
= BPF_CAST_CALL(ops
->map_pop_elem
) -
8087 case BPF_FUNC_map_peek_elem
:
8088 insn
->imm
= BPF_CAST_CALL(ops
->map_peek_elem
) -
8093 goto patch_call_imm
;
8097 fn
= env
->ops
->get_func_proto(insn
->imm
, env
->prog
);
8098 /* all functions that have prototype and verifier allowed
8099 * programs to call them, must be real in-kernel functions
8103 "kernel subsystem misconfigured func %s#%d\n",
8104 func_id_name(insn
->imm
), insn
->imm
);
8107 insn
->imm
= fn
->func
- __bpf_call_base
;
8113 static void free_states(struct bpf_verifier_env
*env
)
8115 struct bpf_verifier_state_list
*sl
, *sln
;
8118 sl
= env
->free_list
;
8121 free_verifier_state(&sl
->state
, false);
8126 if (!env
->explored_states
)
8129 for (i
= 0; i
< env
->prog
->len
; i
++) {
8130 sl
= env
->explored_states
[i
];
8133 while (sl
!= STATE_LIST_MARK
) {
8135 free_verifier_state(&sl
->state
, false);
8141 kvfree(env
->explored_states
);
8144 static void print_verification_stats(struct bpf_verifier_env
*env
)
8148 if (env
->log
.level
& BPF_LOG_STATS
) {
8149 verbose(env
, "verification time %lld usec\n",
8150 div_u64(env
->verification_time
, 1000));
8151 verbose(env
, "stack depth ");
8152 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
8153 u32 depth
= env
->subprog_info
[i
].stack_depth
;
8155 verbose(env
, "%d", depth
);
8156 if (i
+ 1 < env
->subprog_cnt
)
8161 verbose(env
, "processed %d insns (limit %d) max_states_per_insn %d "
8162 "total_states %d peak_states %d mark_read %d\n",
8163 env
->insn_processed
, BPF_COMPLEXITY_LIMIT_INSNS
,
8164 env
->max_states_per_insn
, env
->total_states
,
8165 env
->peak_states
, env
->longest_mark_read_walk
);
8168 int bpf_check(struct bpf_prog
**prog
, union bpf_attr
*attr
,
8169 union bpf_attr __user
*uattr
)
8171 u64 start_time
= ktime_get_ns();
8172 struct bpf_verifier_env
*env
;
8173 struct bpf_verifier_log
*log
;
8174 int i
, len
, ret
= -EINVAL
;
8177 /* no program is valid */
8178 if (ARRAY_SIZE(bpf_verifier_ops
) == 0)
8181 /* 'struct bpf_verifier_env' can be global, but since it's not small,
8182 * allocate/free it every time bpf_check() is called
8184 env
= kzalloc(sizeof(struct bpf_verifier_env
), GFP_KERNEL
);
8190 env
->insn_aux_data
=
8191 vzalloc(array_size(sizeof(struct bpf_insn_aux_data
), len
));
8193 if (!env
->insn_aux_data
)
8195 for (i
= 0; i
< len
; i
++)
8196 env
->insn_aux_data
[i
].orig_idx
= i
;
8198 env
->ops
= bpf_verifier_ops
[env
->prog
->type
];
8199 is_priv
= capable(CAP_SYS_ADMIN
);
8201 /* grab the mutex to protect few globals used by verifier */
8203 mutex_lock(&bpf_verifier_lock
);
8205 if (attr
->log_level
|| attr
->log_buf
|| attr
->log_size
) {
8206 /* user requested verbose verifier output
8207 * and supplied buffer to store the verification trace
8209 log
->level
= attr
->log_level
;
8210 log
->ubuf
= (char __user
*) (unsigned long) attr
->log_buf
;
8211 log
->len_total
= attr
->log_size
;
8214 /* log attributes have to be sane */
8215 if (log
->len_total
< 128 || log
->len_total
> UINT_MAX
>> 2 ||
8216 !log
->level
|| !log
->ubuf
|| log
->level
& ~BPF_LOG_MASK
)
8220 env
->strict_alignment
= !!(attr
->prog_flags
& BPF_F_STRICT_ALIGNMENT
);
8221 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
))
8222 env
->strict_alignment
= true;
8223 if (attr
->prog_flags
& BPF_F_ANY_ALIGNMENT
)
8224 env
->strict_alignment
= false;
8226 env
->allow_ptr_leaks
= is_priv
;
8228 ret
= replace_map_fd_with_map_ptr(env
);
8230 goto skip_full_check
;
8232 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
8233 ret
= bpf_prog_offload_verifier_prep(env
->prog
);
8235 goto skip_full_check
;
8238 env
->explored_states
= kvcalloc(env
->prog
->len
,
8239 sizeof(struct bpf_verifier_state_list
*),
8242 if (!env
->explored_states
)
8243 goto skip_full_check
;
8245 ret
= check_subprogs(env
);
8247 goto skip_full_check
;
8249 ret
= check_btf_info(env
, attr
, uattr
);
8251 goto skip_full_check
;
8253 ret
= check_cfg(env
);
8255 goto skip_full_check
;
8257 ret
= do_check(env
);
8258 if (env
->cur_state
) {
8259 free_verifier_state(env
->cur_state
, true);
8260 env
->cur_state
= NULL
;
8263 if (ret
== 0 && bpf_prog_is_dev_bound(env
->prog
->aux
))
8264 ret
= bpf_prog_offload_finalize(env
);
8267 while (!pop_stack(env
, NULL
, NULL
));
8271 ret
= check_max_stack_depth(env
);
8273 /* instruction rewrites happen after this point */
8276 opt_hard_wire_dead_code_branches(env
);
8278 ret
= opt_remove_dead_code(env
);
8280 ret
= opt_remove_nops(env
);
8283 sanitize_dead_code(env
);
8287 /* program is valid, convert *(u32*)(ctx + off) accesses */
8288 ret
= convert_ctx_accesses(env
);
8291 ret
= fixup_bpf_calls(env
);
8294 ret
= fixup_call_args(env
);
8296 env
->verification_time
= ktime_get_ns() - start_time
;
8297 print_verification_stats(env
);
8299 if (log
->level
&& bpf_verifier_log_full(log
))
8301 if (log
->level
&& !log
->ubuf
) {
8303 goto err_release_maps
;
8306 if (ret
== 0 && env
->used_map_cnt
) {
8307 /* if program passed verifier, update used_maps in bpf_prog_info */
8308 env
->prog
->aux
->used_maps
= kmalloc_array(env
->used_map_cnt
,
8309 sizeof(env
->used_maps
[0]),
8312 if (!env
->prog
->aux
->used_maps
) {
8314 goto err_release_maps
;
8317 memcpy(env
->prog
->aux
->used_maps
, env
->used_maps
,
8318 sizeof(env
->used_maps
[0]) * env
->used_map_cnt
);
8319 env
->prog
->aux
->used_map_cnt
= env
->used_map_cnt
;
8321 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
8322 * bpf_ld_imm64 instructions
8324 convert_pseudo_ld_imm64(env
);
8328 adjust_btf_func(env
);
8331 if (!env
->prog
->aux
->used_maps
)
8332 /* if we didn't copy map pointers into bpf_prog_info, release
8333 * them now. Otherwise free_used_maps() will release them.
8339 mutex_unlock(&bpf_verifier_lock
);
8340 vfree(env
->insn_aux_data
);