1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2016 Thomas Gleixner.
4 * Copyright (C) 2016-2017 Christoph Hellwig.
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
11 static void irq_spread_init_one(struct cpumask
*irqmsk
, struct cpumask
*nmsk
,
12 unsigned int cpus_per_vec
)
14 const struct cpumask
*siblmsk
;
17 for ( ; cpus_per_vec
> 0; ) {
18 cpu
= cpumask_first(nmsk
);
20 /* Should not happen, but I'm too lazy to think about it */
21 if (cpu
>= nr_cpu_ids
)
24 cpumask_clear_cpu(cpu
, nmsk
);
25 cpumask_set_cpu(cpu
, irqmsk
);
28 /* If the cpu has siblings, use them first */
29 siblmsk
= topology_sibling_cpumask(cpu
);
30 for (sibl
= -1; cpus_per_vec
> 0; ) {
31 sibl
= cpumask_next(sibl
, siblmsk
);
32 if (sibl
>= nr_cpu_ids
)
34 if (!cpumask_test_and_clear_cpu(sibl
, nmsk
))
36 cpumask_set_cpu(sibl
, irqmsk
);
42 static cpumask_var_t
*alloc_node_to_cpumask(void)
47 masks
= kcalloc(nr_node_ids
, sizeof(cpumask_var_t
), GFP_KERNEL
);
51 for (node
= 0; node
< nr_node_ids
; node
++) {
52 if (!zalloc_cpumask_var(&masks
[node
], GFP_KERNEL
))
60 free_cpumask_var(masks
[node
]);
65 static void free_node_to_cpumask(cpumask_var_t
*masks
)
69 for (node
= 0; node
< nr_node_ids
; node
++)
70 free_cpumask_var(masks
[node
]);
74 static void build_node_to_cpumask(cpumask_var_t
*masks
)
78 for_each_possible_cpu(cpu
)
79 cpumask_set_cpu(cpu
, masks
[cpu_to_node(cpu
)]);
82 static int get_nodes_in_cpumask(cpumask_var_t
*node_to_cpumask
,
83 const struct cpumask
*mask
, nodemask_t
*nodemsk
)
87 /* Calculate the number of nodes in the supplied affinity mask */
89 if (cpumask_intersects(mask
, node_to_cpumask
[n
])) {
90 node_set(n
, *nodemsk
);
97 static int __irq_build_affinity_masks(const struct irq_affinity
*affd
,
98 unsigned int startvec
,
100 unsigned int firstvec
,
101 cpumask_var_t
*node_to_cpumask
,
102 const struct cpumask
*cpu_mask
,
103 struct cpumask
*nmsk
,
104 struct irq_affinity_desc
*masks
)
106 unsigned int n
, nodes
, cpus_per_vec
, extra_vecs
, done
= 0;
107 unsigned int last_affv
= firstvec
+ numvecs
;
108 unsigned int curvec
= startvec
;
109 nodemask_t nodemsk
= NODE_MASK_NONE
;
111 if (!cpumask_weight(cpu_mask
))
114 nodes
= get_nodes_in_cpumask(node_to_cpumask
, cpu_mask
, &nodemsk
);
117 * If the number of nodes in the mask is greater than or equal the
118 * number of vectors we just spread the vectors across the nodes.
120 if (numvecs
<= nodes
) {
121 for_each_node_mask(n
, nodemsk
) {
122 cpumask_or(&masks
[curvec
].mask
, &masks
[curvec
].mask
,
124 if (++curvec
== last_affv
)
130 for_each_node_mask(n
, nodemsk
) {
131 unsigned int ncpus
, v
, vecs_to_assign
, vecs_per_node
;
133 /* Spread the vectors per node */
134 vecs_per_node
= (numvecs
- (curvec
- firstvec
)) / nodes
;
136 /* Get the cpus on this node which are in the mask */
137 cpumask_and(nmsk
, cpu_mask
, node_to_cpumask
[n
]);
139 /* Calculate the number of cpus per vector */
140 ncpus
= cpumask_weight(nmsk
);
141 vecs_to_assign
= min(vecs_per_node
, ncpus
);
143 /* Account for rounding errors */
144 extra_vecs
= ncpus
- vecs_to_assign
* (ncpus
/ vecs_to_assign
);
146 for (v
= 0; curvec
< last_affv
&& v
< vecs_to_assign
;
148 cpus_per_vec
= ncpus
/ vecs_to_assign
;
150 /* Account for extra vectors to compensate rounding errors */
155 irq_spread_init_one(&masks
[curvec
].mask
, nmsk
,
162 if (curvec
>= last_affv
)
170 * build affinity in two stages:
171 * 1) spread present CPU on these vectors
172 * 2) spread other possible CPUs on these vectors
174 static int irq_build_affinity_masks(const struct irq_affinity
*affd
,
175 unsigned int startvec
, unsigned int numvecs
,
176 unsigned int firstvec
,
177 struct irq_affinity_desc
*masks
)
179 unsigned int curvec
= startvec
, nr_present
, nr_others
;
180 cpumask_var_t
*node_to_cpumask
;
181 cpumask_var_t nmsk
, npresmsk
;
184 if (!zalloc_cpumask_var(&nmsk
, GFP_KERNEL
))
187 if (!zalloc_cpumask_var(&npresmsk
, GFP_KERNEL
))
190 node_to_cpumask
= alloc_node_to_cpumask();
191 if (!node_to_cpumask
)
195 /* Stabilize the cpumasks */
197 build_node_to_cpumask(node_to_cpumask
);
199 /* Spread on present CPUs starting from affd->pre_vectors */
200 nr_present
= __irq_build_affinity_masks(affd
, curvec
, numvecs
,
201 firstvec
, node_to_cpumask
,
202 cpu_present_mask
, nmsk
, masks
);
205 * Spread on non present CPUs starting from the next vector to be
206 * handled. If the spreading of present CPUs already exhausted the
207 * vector space, assign the non present CPUs to the already spread
210 if (nr_present
>= numvecs
)
213 curvec
= firstvec
+ nr_present
;
214 cpumask_andnot(npresmsk
, cpu_possible_mask
, cpu_present_mask
);
215 nr_others
= __irq_build_affinity_masks(affd
, curvec
, numvecs
,
216 firstvec
, node_to_cpumask
,
217 npresmsk
, nmsk
, masks
);
220 if (nr_present
< numvecs
)
221 WARN_ON(nr_present
+ nr_others
< numvecs
);
223 free_node_to_cpumask(node_to_cpumask
);
226 free_cpumask_var(npresmsk
);
229 free_cpumask_var(nmsk
);
233 static void default_calc_sets(struct irq_affinity
*affd
, unsigned int affvecs
)
236 affd
->set_size
[0] = affvecs
;
240 * irq_create_affinity_masks - Create affinity masks for multiqueue spreading
241 * @nvecs: The total number of vectors
242 * @affd: Description of the affinity requirements
244 * Returns the irq_affinity_desc pointer or NULL if allocation failed.
246 struct irq_affinity_desc
*
247 irq_create_affinity_masks(unsigned int nvecs
, struct irq_affinity
*affd
)
249 unsigned int affvecs
, curvec
, usedvecs
, i
;
250 struct irq_affinity_desc
*masks
= NULL
;
253 * Determine the number of vectors which need interrupt affinities
254 * assigned. If the pre/post request exhausts the available vectors
255 * then nothing to do here except for invoking the calc_sets()
256 * callback so the device driver can adjust to the situation. If there
257 * is only a single vector, then managing the queue is pointless as
260 if (nvecs
> 1 && nvecs
> affd
->pre_vectors
+ affd
->post_vectors
)
261 affvecs
= nvecs
- affd
->pre_vectors
- affd
->post_vectors
;
266 * Simple invocations do not provide a calc_sets() callback. Install
269 if (!affd
->calc_sets
)
270 affd
->calc_sets
= default_calc_sets
;
272 /* Recalculate the sets */
273 affd
->calc_sets(affd
, affvecs
);
275 if (WARN_ON_ONCE(affd
->nr_sets
> IRQ_AFFINITY_MAX_SETS
))
278 /* Nothing to assign? */
282 masks
= kcalloc(nvecs
, sizeof(*masks
), GFP_KERNEL
);
286 /* Fill out vectors at the beginning that don't need affinity */
287 for (curvec
= 0; curvec
< affd
->pre_vectors
; curvec
++)
288 cpumask_copy(&masks
[curvec
].mask
, irq_default_affinity
);
291 * Spread on present CPUs starting from affd->pre_vectors. If we
292 * have multiple sets, build each sets affinity mask separately.
294 for (i
= 0, usedvecs
= 0; i
< affd
->nr_sets
; i
++) {
295 unsigned int this_vecs
= affd
->set_size
[i
];
298 ret
= irq_build_affinity_masks(affd
, curvec
, this_vecs
,
305 usedvecs
+= this_vecs
;
308 /* Fill out vectors at the end that don't need affinity */
309 if (usedvecs
>= affvecs
)
310 curvec
= affd
->pre_vectors
+ affvecs
;
312 curvec
= affd
->pre_vectors
+ usedvecs
;
313 for (; curvec
< nvecs
; curvec
++)
314 cpumask_copy(&masks
[curvec
].mask
, irq_default_affinity
);
316 /* Mark the managed interrupts */
317 for (i
= affd
->pre_vectors
; i
< nvecs
- affd
->post_vectors
; i
++)
318 masks
[i
].is_managed
= 1;
324 * irq_calc_affinity_vectors - Calculate the optimal number of vectors
325 * @minvec: The minimum number of vectors available
326 * @maxvec: The maximum number of vectors available
327 * @affd: Description of the affinity requirements
329 unsigned int irq_calc_affinity_vectors(unsigned int minvec
, unsigned int maxvec
,
330 const struct irq_affinity
*affd
)
332 unsigned int resv
= affd
->pre_vectors
+ affd
->post_vectors
;
333 unsigned int set_vecs
;
338 if (affd
->calc_sets
) {
339 set_vecs
= maxvec
- resv
;
342 set_vecs
= cpumask_weight(cpu_possible_mask
);
346 return resv
+ min(set_vecs
, maxvec
- resv
);