Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / kernel / rcu / tree.c
blob980ca3ca643fbf09c35b4e1b7810d196be511f23
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
5 * Copyright IBM Corporation, 2008
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
55 #include "tree.h"
56 #include "rcu.h"
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "rcutree."
63 /* Data structures. */
66 * Steal a bit from the bottom of ->dynticks for idle entry/exit
67 * control. Initially this is for TLB flushing.
69 #define RCU_DYNTICK_CTRL_MASK 0x1
70 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
71 #ifndef rcu_eqs_special_exit
72 #define rcu_eqs_special_exit() do { } while (0)
73 #endif
75 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
76 .dynticks_nesting = 1,
77 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
78 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
80 struct rcu_state rcu_state = {
81 .level = { &rcu_state.node[0] },
82 .gp_state = RCU_GP_IDLE,
83 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
84 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
85 .name = RCU_NAME,
86 .abbr = RCU_ABBR,
87 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
88 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
89 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
92 /* Dump rcu_node combining tree at boot to verify correct setup. */
93 static bool dump_tree;
94 module_param(dump_tree, bool, 0444);
95 /* Control rcu_node-tree auto-balancing at boot time. */
96 static bool rcu_fanout_exact;
97 module_param(rcu_fanout_exact, bool, 0444);
98 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
99 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
100 module_param(rcu_fanout_leaf, int, 0444);
101 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
102 /* Number of rcu_nodes at specified level. */
103 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
104 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
107 * The rcu_scheduler_active variable is initialized to the value
108 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
109 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
110 * RCU can assume that there is but one task, allowing RCU to (for example)
111 * optimize synchronize_rcu() to a simple barrier(). When this variable
112 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
113 * to detect real grace periods. This variable is also used to suppress
114 * boot-time false positives from lockdep-RCU error checking. Finally, it
115 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
116 * is fully initialized, including all of its kthreads having been spawned.
118 int rcu_scheduler_active __read_mostly;
119 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
122 * The rcu_scheduler_fully_active variable transitions from zero to one
123 * during the early_initcall() processing, which is after the scheduler
124 * is capable of creating new tasks. So RCU processing (for example,
125 * creating tasks for RCU priority boosting) must be delayed until after
126 * rcu_scheduler_fully_active transitions from zero to one. We also
127 * currently delay invocation of any RCU callbacks until after this point.
129 * It might later prove better for people registering RCU callbacks during
130 * early boot to take responsibility for these callbacks, but one step at
131 * a time.
133 static int rcu_scheduler_fully_active __read_mostly;
135 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
136 unsigned long gps, unsigned long flags);
137 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
138 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
139 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
140 static void invoke_rcu_core(void);
141 static void invoke_rcu_callbacks(struct rcu_data *rdp);
142 static void rcu_report_exp_rdp(struct rcu_data *rdp);
143 static void sync_sched_exp_online_cleanup(int cpu);
145 /* rcuc/rcub kthread realtime priority */
146 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
147 module_param(kthread_prio, int, 0444);
149 /* Delay in jiffies for grace-period initialization delays, debug only. */
151 static int gp_preinit_delay;
152 module_param(gp_preinit_delay, int, 0444);
153 static int gp_init_delay;
154 module_param(gp_init_delay, int, 0444);
155 static int gp_cleanup_delay;
156 module_param(gp_cleanup_delay, int, 0444);
158 /* Retrieve RCU kthreads priority for rcutorture */
159 int rcu_get_gp_kthreads_prio(void)
161 return kthread_prio;
163 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
166 * Number of grace periods between delays, normalized by the duration of
167 * the delay. The longer the delay, the more the grace periods between
168 * each delay. The reason for this normalization is that it means that,
169 * for non-zero delays, the overall slowdown of grace periods is constant
170 * regardless of the duration of the delay. This arrangement balances
171 * the need for long delays to increase some race probabilities with the
172 * need for fast grace periods to increase other race probabilities.
174 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
177 * Compute the mask of online CPUs for the specified rcu_node structure.
178 * This will not be stable unless the rcu_node structure's ->lock is
179 * held, but the bit corresponding to the current CPU will be stable
180 * in most contexts.
182 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
184 return READ_ONCE(rnp->qsmaskinitnext);
188 * Return true if an RCU grace period is in progress. The READ_ONCE()s
189 * permit this function to be invoked without holding the root rcu_node
190 * structure's ->lock, but of course results can be subject to change.
192 static int rcu_gp_in_progress(void)
194 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
198 * Return the number of callbacks queued on the specified CPU.
199 * Handles both the nocbs and normal cases.
201 static long rcu_get_n_cbs_cpu(int cpu)
203 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
205 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
206 return rcu_segcblist_n_cbs(&rdp->cblist);
207 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
210 void rcu_softirq_qs(void)
212 rcu_qs();
213 rcu_preempt_deferred_qs(current);
217 * Record entry into an extended quiescent state. This is only to be
218 * called when not already in an extended quiescent state.
220 static void rcu_dynticks_eqs_enter(void)
222 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
223 int seq;
226 * CPUs seeing atomic_add_return() must see prior RCU read-side
227 * critical sections, and we also must force ordering with the
228 * next idle sojourn.
230 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
231 /* Better be in an extended quiescent state! */
232 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
233 (seq & RCU_DYNTICK_CTRL_CTR));
234 /* Better not have special action (TLB flush) pending! */
235 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
236 (seq & RCU_DYNTICK_CTRL_MASK));
240 * Record exit from an extended quiescent state. This is only to be
241 * called from an extended quiescent state.
243 static void rcu_dynticks_eqs_exit(void)
245 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
246 int seq;
249 * CPUs seeing atomic_add_return() must see prior idle sojourns,
250 * and we also must force ordering with the next RCU read-side
251 * critical section.
253 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
254 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
255 !(seq & RCU_DYNTICK_CTRL_CTR));
256 if (seq & RCU_DYNTICK_CTRL_MASK) {
257 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
258 smp_mb__after_atomic(); /* _exit after clearing mask. */
259 /* Prefer duplicate flushes to losing a flush. */
260 rcu_eqs_special_exit();
265 * Reset the current CPU's ->dynticks counter to indicate that the
266 * newly onlined CPU is no longer in an extended quiescent state.
267 * This will either leave the counter unchanged, or increment it
268 * to the next non-quiescent value.
270 * The non-atomic test/increment sequence works because the upper bits
271 * of the ->dynticks counter are manipulated only by the corresponding CPU,
272 * or when the corresponding CPU is offline.
274 static void rcu_dynticks_eqs_online(void)
276 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
278 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
279 return;
280 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
284 * Is the current CPU in an extended quiescent state?
286 * No ordering, as we are sampling CPU-local information.
288 bool rcu_dynticks_curr_cpu_in_eqs(void)
290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
292 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
296 * Snapshot the ->dynticks counter with full ordering so as to allow
297 * stable comparison of this counter with past and future snapshots.
299 int rcu_dynticks_snap(struct rcu_data *rdp)
301 int snap = atomic_add_return(0, &rdp->dynticks);
303 return snap & ~RCU_DYNTICK_CTRL_MASK;
307 * Return true if the snapshot returned from rcu_dynticks_snap()
308 * indicates that RCU is in an extended quiescent state.
310 static bool rcu_dynticks_in_eqs(int snap)
312 return !(snap & RCU_DYNTICK_CTRL_CTR);
316 * Return true if the CPU corresponding to the specified rcu_data
317 * structure has spent some time in an extended quiescent state since
318 * rcu_dynticks_snap() returned the specified snapshot.
320 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
322 return snap != rcu_dynticks_snap(rdp);
326 * Set the special (bottom) bit of the specified CPU so that it
327 * will take special action (such as flushing its TLB) on the
328 * next exit from an extended quiescent state. Returns true if
329 * the bit was successfully set, or false if the CPU was not in
330 * an extended quiescent state.
332 bool rcu_eqs_special_set(int cpu)
334 int old;
335 int new;
336 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
338 do {
339 old = atomic_read(&rdp->dynticks);
340 if (old & RCU_DYNTICK_CTRL_CTR)
341 return false;
342 new = old | RCU_DYNTICK_CTRL_MASK;
343 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
344 return true;
348 * Let the RCU core know that this CPU has gone through the scheduler,
349 * which is a quiescent state. This is called when the need for a
350 * quiescent state is urgent, so we burn an atomic operation and full
351 * memory barriers to let the RCU core know about it, regardless of what
352 * this CPU might (or might not) do in the near future.
354 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
356 * The caller must have disabled interrupts and must not be idle.
358 static void __maybe_unused rcu_momentary_dyntick_idle(void)
360 int special;
362 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
363 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
364 &this_cpu_ptr(&rcu_data)->dynticks);
365 /* It is illegal to call this from idle state. */
366 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
367 rcu_preempt_deferred_qs(current);
371 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
373 * If the current CPU is idle or running at a first-level (not nested)
374 * interrupt from idle, return true. The caller must have at least
375 * disabled preemption.
377 static int rcu_is_cpu_rrupt_from_idle(void)
379 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
380 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
383 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
384 static long blimit = DEFAULT_RCU_BLIMIT;
385 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
386 static long qhimark = DEFAULT_RCU_QHIMARK;
387 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
388 static long qlowmark = DEFAULT_RCU_QLOMARK;
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
394 static ulong jiffies_till_first_fqs = ULONG_MAX;
395 static ulong jiffies_till_next_fqs = ULONG_MAX;
396 static bool rcu_kick_kthreads;
399 * How long the grace period must be before we start recruiting
400 * quiescent-state help from rcu_note_context_switch().
402 static ulong jiffies_till_sched_qs = ULONG_MAX;
403 module_param(jiffies_till_sched_qs, ulong, 0444);
404 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
405 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
408 * Make sure that we give the grace-period kthread time to detect any
409 * idle CPUs before taking active measures to force quiescent states.
410 * However, don't go below 100 milliseconds, adjusted upwards for really
411 * large systems.
413 static void adjust_jiffies_till_sched_qs(void)
415 unsigned long j;
417 /* If jiffies_till_sched_qs was specified, respect the request. */
418 if (jiffies_till_sched_qs != ULONG_MAX) {
419 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
420 return;
422 /* Otherwise, set to third fqs scan, but bound below on large system. */
423 j = READ_ONCE(jiffies_till_first_fqs) +
424 2 * READ_ONCE(jiffies_till_next_fqs);
425 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
426 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
427 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
428 WRITE_ONCE(jiffies_to_sched_qs, j);
431 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
433 ulong j;
434 int ret = kstrtoul(val, 0, &j);
436 if (!ret) {
437 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
438 adjust_jiffies_till_sched_qs();
440 return ret;
443 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
445 ulong j;
446 int ret = kstrtoul(val, 0, &j);
448 if (!ret) {
449 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
450 adjust_jiffies_till_sched_qs();
452 return ret;
455 static struct kernel_param_ops first_fqs_jiffies_ops = {
456 .set = param_set_first_fqs_jiffies,
457 .get = param_get_ulong,
460 static struct kernel_param_ops next_fqs_jiffies_ops = {
461 .set = param_set_next_fqs_jiffies,
462 .get = param_get_ulong,
465 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
466 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
467 module_param(rcu_kick_kthreads, bool, 0644);
469 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
470 static int rcu_pending(void);
473 * Return the number of RCU GPs completed thus far for debug & stats.
475 unsigned long rcu_get_gp_seq(void)
477 return READ_ONCE(rcu_state.gp_seq);
479 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
482 * Return the number of RCU expedited batches completed thus far for
483 * debug & stats. Odd numbers mean that a batch is in progress, even
484 * numbers mean idle. The value returned will thus be roughly double
485 * the cumulative batches since boot.
487 unsigned long rcu_exp_batches_completed(void)
489 return rcu_state.expedited_sequence;
491 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
494 * Return the root node of the rcu_state structure.
496 static struct rcu_node *rcu_get_root(void)
498 return &rcu_state.node[0];
502 * Convert a ->gp_state value to a character string.
504 static const char *gp_state_getname(short gs)
506 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
507 return "???";
508 return gp_state_names[gs];
512 * Send along grace-period-related data for rcutorture diagnostics.
514 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
515 unsigned long *gp_seq)
517 switch (test_type) {
518 case RCU_FLAVOR:
519 *flags = READ_ONCE(rcu_state.gp_flags);
520 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
521 break;
522 default:
523 break;
526 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
529 * Enter an RCU extended quiescent state, which can be either the
530 * idle loop or adaptive-tickless usermode execution.
532 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
533 * the possibility of usermode upcalls having messed up our count
534 * of interrupt nesting level during the prior busy period.
536 static void rcu_eqs_enter(bool user)
538 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
540 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
541 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
542 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
543 rdp->dynticks_nesting == 0);
544 if (rdp->dynticks_nesting != 1) {
545 rdp->dynticks_nesting--;
546 return;
549 lockdep_assert_irqs_disabled();
550 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
551 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
552 rdp = this_cpu_ptr(&rcu_data);
553 do_nocb_deferred_wakeup(rdp);
554 rcu_prepare_for_idle();
555 rcu_preempt_deferred_qs(current);
556 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
557 rcu_dynticks_eqs_enter();
558 rcu_dynticks_task_enter();
562 * rcu_idle_enter - inform RCU that current CPU is entering idle
564 * Enter idle mode, in other words, -leave- the mode in which RCU
565 * read-side critical sections can occur. (Though RCU read-side
566 * critical sections can occur in irq handlers in idle, a possibility
567 * handled by irq_enter() and irq_exit().)
569 * If you add or remove a call to rcu_idle_enter(), be sure to test with
570 * CONFIG_RCU_EQS_DEBUG=y.
572 void rcu_idle_enter(void)
574 lockdep_assert_irqs_disabled();
575 rcu_eqs_enter(false);
578 #ifdef CONFIG_NO_HZ_FULL
580 * rcu_user_enter - inform RCU that we are resuming userspace.
582 * Enter RCU idle mode right before resuming userspace. No use of RCU
583 * is permitted between this call and rcu_user_exit(). This way the
584 * CPU doesn't need to maintain the tick for RCU maintenance purposes
585 * when the CPU runs in userspace.
587 * If you add or remove a call to rcu_user_enter(), be sure to test with
588 * CONFIG_RCU_EQS_DEBUG=y.
590 void rcu_user_enter(void)
592 lockdep_assert_irqs_disabled();
593 rcu_eqs_enter(true);
595 #endif /* CONFIG_NO_HZ_FULL */
598 * If we are returning from the outermost NMI handler that interrupted an
599 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
600 * to let the RCU grace-period handling know that the CPU is back to
601 * being RCU-idle.
603 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
604 * with CONFIG_RCU_EQS_DEBUG=y.
606 static __always_inline void rcu_nmi_exit_common(bool irq)
608 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
611 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
612 * (We are exiting an NMI handler, so RCU better be paying attention
613 * to us!)
615 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
616 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
619 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
620 * leave it in non-RCU-idle state.
622 if (rdp->dynticks_nmi_nesting != 1) {
623 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
624 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
625 rdp->dynticks_nmi_nesting - 2);
626 return;
629 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
630 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
631 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
633 if (irq)
634 rcu_prepare_for_idle();
636 rcu_dynticks_eqs_enter();
638 if (irq)
639 rcu_dynticks_task_enter();
643 * rcu_nmi_exit - inform RCU of exit from NMI context
645 * If you add or remove a call to rcu_nmi_exit(), be sure to test
646 * with CONFIG_RCU_EQS_DEBUG=y.
648 void rcu_nmi_exit(void)
650 rcu_nmi_exit_common(false);
654 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
656 * Exit from an interrupt handler, which might possibly result in entering
657 * idle mode, in other words, leaving the mode in which read-side critical
658 * sections can occur. The caller must have disabled interrupts.
660 * This code assumes that the idle loop never does anything that might
661 * result in unbalanced calls to irq_enter() and irq_exit(). If your
662 * architecture's idle loop violates this assumption, RCU will give you what
663 * you deserve, good and hard. But very infrequently and irreproducibly.
665 * Use things like work queues to work around this limitation.
667 * You have been warned.
669 * If you add or remove a call to rcu_irq_exit(), be sure to test with
670 * CONFIG_RCU_EQS_DEBUG=y.
672 void rcu_irq_exit(void)
674 lockdep_assert_irqs_disabled();
675 rcu_nmi_exit_common(true);
679 * Wrapper for rcu_irq_exit() where interrupts are enabled.
681 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
682 * with CONFIG_RCU_EQS_DEBUG=y.
684 void rcu_irq_exit_irqson(void)
686 unsigned long flags;
688 local_irq_save(flags);
689 rcu_irq_exit();
690 local_irq_restore(flags);
694 * Exit an RCU extended quiescent state, which can be either the
695 * idle loop or adaptive-tickless usermode execution.
697 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
698 * allow for the possibility of usermode upcalls messing up our count of
699 * interrupt nesting level during the busy period that is just now starting.
701 static void rcu_eqs_exit(bool user)
703 struct rcu_data *rdp;
704 long oldval;
706 lockdep_assert_irqs_disabled();
707 rdp = this_cpu_ptr(&rcu_data);
708 oldval = rdp->dynticks_nesting;
709 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
710 if (oldval) {
711 rdp->dynticks_nesting++;
712 return;
714 rcu_dynticks_task_exit();
715 rcu_dynticks_eqs_exit();
716 rcu_cleanup_after_idle();
717 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
718 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
719 WRITE_ONCE(rdp->dynticks_nesting, 1);
720 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
721 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
725 * rcu_idle_exit - inform RCU that current CPU is leaving idle
727 * Exit idle mode, in other words, -enter- the mode in which RCU
728 * read-side critical sections can occur.
730 * If you add or remove a call to rcu_idle_exit(), be sure to test with
731 * CONFIG_RCU_EQS_DEBUG=y.
733 void rcu_idle_exit(void)
735 unsigned long flags;
737 local_irq_save(flags);
738 rcu_eqs_exit(false);
739 local_irq_restore(flags);
742 #ifdef CONFIG_NO_HZ_FULL
744 * rcu_user_exit - inform RCU that we are exiting userspace.
746 * Exit RCU idle mode while entering the kernel because it can
747 * run a RCU read side critical section anytime.
749 * If you add or remove a call to rcu_user_exit(), be sure to test with
750 * CONFIG_RCU_EQS_DEBUG=y.
752 void rcu_user_exit(void)
754 rcu_eqs_exit(1);
756 #endif /* CONFIG_NO_HZ_FULL */
759 * rcu_nmi_enter_common - inform RCU of entry to NMI context
760 * @irq: Is this call from rcu_irq_enter?
762 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
763 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
764 * that the CPU is active. This implementation permits nested NMIs, as
765 * long as the nesting level does not overflow an int. (You will probably
766 * run out of stack space first.)
768 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
769 * with CONFIG_RCU_EQS_DEBUG=y.
771 static __always_inline void rcu_nmi_enter_common(bool irq)
773 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
774 long incby = 2;
776 /* Complain about underflow. */
777 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
780 * If idle from RCU viewpoint, atomically increment ->dynticks
781 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
782 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
783 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
784 * to be in the outermost NMI handler that interrupted an RCU-idle
785 * period (observation due to Andy Lutomirski).
787 if (rcu_dynticks_curr_cpu_in_eqs()) {
789 if (irq)
790 rcu_dynticks_task_exit();
792 rcu_dynticks_eqs_exit();
794 if (irq)
795 rcu_cleanup_after_idle();
797 incby = 1;
799 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
800 rdp->dynticks_nmi_nesting,
801 rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
802 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
803 rdp->dynticks_nmi_nesting + incby);
804 barrier();
808 * rcu_nmi_enter - inform RCU of entry to NMI context
810 void rcu_nmi_enter(void)
812 rcu_nmi_enter_common(false);
814 NOKPROBE_SYMBOL(rcu_nmi_enter);
817 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
819 * Enter an interrupt handler, which might possibly result in exiting
820 * idle mode, in other words, entering the mode in which read-side critical
821 * sections can occur. The caller must have disabled interrupts.
823 * Note that the Linux kernel is fully capable of entering an interrupt
824 * handler that it never exits, for example when doing upcalls to user mode!
825 * This code assumes that the idle loop never does upcalls to user mode.
826 * If your architecture's idle loop does do upcalls to user mode (or does
827 * anything else that results in unbalanced calls to the irq_enter() and
828 * irq_exit() functions), RCU will give you what you deserve, good and hard.
829 * But very infrequently and irreproducibly.
831 * Use things like work queues to work around this limitation.
833 * You have been warned.
835 * If you add or remove a call to rcu_irq_enter(), be sure to test with
836 * CONFIG_RCU_EQS_DEBUG=y.
838 void rcu_irq_enter(void)
840 lockdep_assert_irqs_disabled();
841 rcu_nmi_enter_common(true);
845 * Wrapper for rcu_irq_enter() where interrupts are enabled.
847 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
848 * with CONFIG_RCU_EQS_DEBUG=y.
850 void rcu_irq_enter_irqson(void)
852 unsigned long flags;
854 local_irq_save(flags);
855 rcu_irq_enter();
856 local_irq_restore(flags);
860 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
862 * Return true if RCU is watching the running CPU, which means that this
863 * CPU can safely enter RCU read-side critical sections. In other words,
864 * if the current CPU is not in its idle loop or is in an interrupt or
865 * NMI handler, return true.
867 bool notrace rcu_is_watching(void)
869 bool ret;
871 preempt_disable_notrace();
872 ret = !rcu_dynticks_curr_cpu_in_eqs();
873 preempt_enable_notrace();
874 return ret;
876 EXPORT_SYMBOL_GPL(rcu_is_watching);
879 * If a holdout task is actually running, request an urgent quiescent
880 * state from its CPU. This is unsynchronized, so migrations can cause
881 * the request to go to the wrong CPU. Which is OK, all that will happen
882 * is that the CPU's next context switch will be a bit slower and next
883 * time around this task will generate another request.
885 void rcu_request_urgent_qs_task(struct task_struct *t)
887 int cpu;
889 barrier();
890 cpu = task_cpu(t);
891 if (!task_curr(t))
892 return; /* This task is not running on that CPU. */
893 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
896 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
899 * Is the current CPU online as far as RCU is concerned?
901 * Disable preemption to avoid false positives that could otherwise
902 * happen due to the current CPU number being sampled, this task being
903 * preempted, its old CPU being taken offline, resuming on some other CPU,
904 * then determining that its old CPU is now offline.
906 * Disable checking if in an NMI handler because we cannot safely
907 * report errors from NMI handlers anyway. In addition, it is OK to use
908 * RCU on an offline processor during initial boot, hence the check for
909 * rcu_scheduler_fully_active.
911 bool rcu_lockdep_current_cpu_online(void)
913 struct rcu_data *rdp;
914 struct rcu_node *rnp;
915 bool ret = false;
917 if (in_nmi() || !rcu_scheduler_fully_active)
918 return true;
919 preempt_disable();
920 rdp = this_cpu_ptr(&rcu_data);
921 rnp = rdp->mynode;
922 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
923 ret = true;
924 preempt_enable();
925 return ret;
927 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
929 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
932 * We are reporting a quiescent state on behalf of some other CPU, so
933 * it is our responsibility to check for and handle potential overflow
934 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
935 * After all, the CPU might be in deep idle state, and thus executing no
936 * code whatsoever.
938 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
940 raw_lockdep_assert_held_rcu_node(rnp);
941 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
942 rnp->gp_seq))
943 WRITE_ONCE(rdp->gpwrap, true);
944 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
945 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
949 * Snapshot the specified CPU's dynticks counter so that we can later
950 * credit them with an implicit quiescent state. Return 1 if this CPU
951 * is in dynticks idle mode, which is an extended quiescent state.
953 static int dyntick_save_progress_counter(struct rcu_data *rdp)
955 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
956 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
957 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
958 rcu_gpnum_ovf(rdp->mynode, rdp);
959 return 1;
961 return 0;
965 * Return true if the specified CPU has passed through a quiescent
966 * state by virtue of being in or having passed through an dynticks
967 * idle state since the last call to dyntick_save_progress_counter()
968 * for this same CPU, or by virtue of having been offline.
970 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
972 unsigned long jtsq;
973 bool *rnhqp;
974 bool *ruqp;
975 struct rcu_node *rnp = rdp->mynode;
978 * If the CPU passed through or entered a dynticks idle phase with
979 * no active irq/NMI handlers, then we can safely pretend that the CPU
980 * already acknowledged the request to pass through a quiescent
981 * state. Either way, that CPU cannot possibly be in an RCU
982 * read-side critical section that started before the beginning
983 * of the current RCU grace period.
985 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
986 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
987 rcu_gpnum_ovf(rnp, rdp);
988 return 1;
991 /* If waiting too long on an offline CPU, complain. */
992 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
993 time_after(jiffies, rcu_state.gp_start + HZ)) {
994 bool onl;
995 struct rcu_node *rnp1;
997 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
998 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
999 __func__, rnp->grplo, rnp->grphi, rnp->level,
1000 (long)rnp->gp_seq, (long)rnp->completedqs);
1001 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1002 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1003 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1004 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1005 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1006 __func__, rdp->cpu, ".o"[onl],
1007 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1008 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1009 return 1; /* Break things loose after complaining. */
1013 * A CPU running for an extended time within the kernel can
1014 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1015 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1016 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1017 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1018 * variable are safe because the assignments are repeated if this
1019 * CPU failed to pass through a quiescent state. This code
1020 * also checks .jiffies_resched in case jiffies_to_sched_qs
1021 * is set way high.
1023 jtsq = READ_ONCE(jiffies_to_sched_qs);
1024 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1025 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1026 if (!READ_ONCE(*rnhqp) &&
1027 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1028 time_after(jiffies, rcu_state.jiffies_resched))) {
1029 WRITE_ONCE(*rnhqp, true);
1030 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1031 smp_store_release(ruqp, true);
1032 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1033 WRITE_ONCE(*ruqp, true);
1037 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1038 * The above code handles this, but only for straight cond_resched().
1039 * And some in-kernel loops check need_resched() before calling
1040 * cond_resched(), which defeats the above code for CPUs that are
1041 * running in-kernel with scheduling-clock interrupts disabled.
1042 * So hit them over the head with the resched_cpu() hammer!
1044 if (tick_nohz_full_cpu(rdp->cpu) &&
1045 time_after(jiffies,
1046 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1047 resched_cpu(rdp->cpu);
1048 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1052 * If more than halfway to RCU CPU stall-warning time, invoke
1053 * resched_cpu() more frequently to try to loosen things up a bit.
1054 * Also check to see if the CPU is getting hammered with interrupts,
1055 * but only once per grace period, just to keep the IPIs down to
1056 * a dull roar.
1058 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1059 if (time_after(jiffies,
1060 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1061 resched_cpu(rdp->cpu);
1062 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1064 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1065 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1066 (rnp->ffmask & rdp->grpmask)) {
1067 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1068 rdp->rcu_iw_pending = true;
1069 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1070 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1074 return 0;
1077 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1078 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1079 unsigned long gp_seq_req, const char *s)
1081 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1082 rnp->level, rnp->grplo, rnp->grphi, s);
1086 * rcu_start_this_gp - Request the start of a particular grace period
1087 * @rnp_start: The leaf node of the CPU from which to start.
1088 * @rdp: The rcu_data corresponding to the CPU from which to start.
1089 * @gp_seq_req: The gp_seq of the grace period to start.
1091 * Start the specified grace period, as needed to handle newly arrived
1092 * callbacks. The required future grace periods are recorded in each
1093 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1094 * is reason to awaken the grace-period kthread.
1096 * The caller must hold the specified rcu_node structure's ->lock, which
1097 * is why the caller is responsible for waking the grace-period kthread.
1099 * Returns true if the GP thread needs to be awakened else false.
1101 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1102 unsigned long gp_seq_req)
1104 bool ret = false;
1105 struct rcu_node *rnp;
1108 * Use funnel locking to either acquire the root rcu_node
1109 * structure's lock or bail out if the need for this grace period
1110 * has already been recorded -- or if that grace period has in
1111 * fact already started. If there is already a grace period in
1112 * progress in a non-leaf node, no recording is needed because the
1113 * end of the grace period will scan the leaf rcu_node structures.
1114 * Note that rnp_start->lock must not be released.
1116 raw_lockdep_assert_held_rcu_node(rnp_start);
1117 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1118 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1119 if (rnp != rnp_start)
1120 raw_spin_lock_rcu_node(rnp);
1121 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1122 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1123 (rnp != rnp_start &&
1124 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1125 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1126 TPS("Prestarted"));
1127 goto unlock_out;
1129 rnp->gp_seq_needed = gp_seq_req;
1130 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1132 * We just marked the leaf or internal node, and a
1133 * grace period is in progress, which means that
1134 * rcu_gp_cleanup() will see the marking. Bail to
1135 * reduce contention.
1137 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1138 TPS("Startedleaf"));
1139 goto unlock_out;
1141 if (rnp != rnp_start && rnp->parent != NULL)
1142 raw_spin_unlock_rcu_node(rnp);
1143 if (!rnp->parent)
1144 break; /* At root, and perhaps also leaf. */
1147 /* If GP already in progress, just leave, otherwise start one. */
1148 if (rcu_gp_in_progress()) {
1149 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1150 goto unlock_out;
1152 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1153 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1154 rcu_state.gp_req_activity = jiffies;
1155 if (!rcu_state.gp_kthread) {
1156 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1157 goto unlock_out;
1159 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1160 ret = true; /* Caller must wake GP kthread. */
1161 unlock_out:
1162 /* Push furthest requested GP to leaf node and rcu_data structure. */
1163 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1164 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1165 rdp->gp_seq_needed = rnp->gp_seq_needed;
1167 if (rnp != rnp_start)
1168 raw_spin_unlock_rcu_node(rnp);
1169 return ret;
1173 * Clean up any old requests for the just-ended grace period. Also return
1174 * whether any additional grace periods have been requested.
1176 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1178 bool needmore;
1179 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1181 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1182 if (!needmore)
1183 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1184 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1185 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1186 return needmore;
1190 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1191 * an interrupt or softirq handler), and don't bother awakening when there
1192 * is nothing for the grace-period kthread to do (as in several CPUs raced
1193 * to awaken, and we lost), and finally don't try to awaken a kthread that
1194 * has not yet been created. If all those checks are passed, track some
1195 * debug information and awaken.
1197 * So why do the self-wakeup when in an interrupt or softirq handler
1198 * in the grace-period kthread's context? Because the kthread might have
1199 * been interrupted just as it was going to sleep, and just after the final
1200 * pre-sleep check of the awaken condition. In this case, a wakeup really
1201 * is required, and is therefore supplied.
1203 static void rcu_gp_kthread_wake(void)
1205 if ((current == rcu_state.gp_kthread &&
1206 !in_irq() && !in_serving_softirq()) ||
1207 !READ_ONCE(rcu_state.gp_flags) ||
1208 !rcu_state.gp_kthread)
1209 return;
1210 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1211 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1212 swake_up_one(&rcu_state.gp_wq);
1216 * If there is room, assign a ->gp_seq number to any callbacks on this
1217 * CPU that have not already been assigned. Also accelerate any callbacks
1218 * that were previously assigned a ->gp_seq number that has since proven
1219 * to be too conservative, which can happen if callbacks get assigned a
1220 * ->gp_seq number while RCU is idle, but with reference to a non-root
1221 * rcu_node structure. This function is idempotent, so it does not hurt
1222 * to call it repeatedly. Returns an flag saying that we should awaken
1223 * the RCU grace-period kthread.
1225 * The caller must hold rnp->lock with interrupts disabled.
1227 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1229 unsigned long gp_seq_req;
1230 bool ret = false;
1232 raw_lockdep_assert_held_rcu_node(rnp);
1234 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1235 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1236 return false;
1239 * Callbacks are often registered with incomplete grace-period
1240 * information. Something about the fact that getting exact
1241 * information requires acquiring a global lock... RCU therefore
1242 * makes a conservative estimate of the grace period number at which
1243 * a given callback will become ready to invoke. The following
1244 * code checks this estimate and improves it when possible, thus
1245 * accelerating callback invocation to an earlier grace-period
1246 * number.
1248 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1249 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1250 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1252 /* Trace depending on how much we were able to accelerate. */
1253 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1254 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1255 else
1256 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1257 return ret;
1261 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1262 * rcu_node structure's ->lock be held. It consults the cached value
1263 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1264 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1265 * while holding the leaf rcu_node structure's ->lock.
1267 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1268 struct rcu_data *rdp)
1270 unsigned long c;
1271 bool needwake;
1273 lockdep_assert_irqs_disabled();
1274 c = rcu_seq_snap(&rcu_state.gp_seq);
1275 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1276 /* Old request still live, so mark recent callbacks. */
1277 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1278 return;
1280 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1281 needwake = rcu_accelerate_cbs(rnp, rdp);
1282 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1283 if (needwake)
1284 rcu_gp_kthread_wake();
1288 * Move any callbacks whose grace period has completed to the
1289 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1290 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1291 * sublist. This function is idempotent, so it does not hurt to
1292 * invoke it repeatedly. As long as it is not invoked -too- often...
1293 * Returns true if the RCU grace-period kthread needs to be awakened.
1295 * The caller must hold rnp->lock with interrupts disabled.
1297 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1299 raw_lockdep_assert_held_rcu_node(rnp);
1301 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1302 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1303 return false;
1306 * Find all callbacks whose ->gp_seq numbers indicate that they
1307 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1309 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1311 /* Classify any remaining callbacks. */
1312 return rcu_accelerate_cbs(rnp, rdp);
1316 * Update CPU-local rcu_data state to record the beginnings and ends of
1317 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1318 * structure corresponding to the current CPU, and must have irqs disabled.
1319 * Returns true if the grace-period kthread needs to be awakened.
1321 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1323 bool ret;
1324 bool need_gp;
1326 raw_lockdep_assert_held_rcu_node(rnp);
1328 if (rdp->gp_seq == rnp->gp_seq)
1329 return false; /* Nothing to do. */
1331 /* Handle the ends of any preceding grace periods first. */
1332 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1333 unlikely(READ_ONCE(rdp->gpwrap))) {
1334 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1335 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1336 } else {
1337 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1340 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1341 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1342 unlikely(READ_ONCE(rdp->gpwrap))) {
1344 * If the current grace period is waiting for this CPU,
1345 * set up to detect a quiescent state, otherwise don't
1346 * go looking for one.
1348 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1349 need_gp = !!(rnp->qsmask & rdp->grpmask);
1350 rdp->cpu_no_qs.b.norm = need_gp;
1351 rdp->core_needs_qs = need_gp;
1352 zero_cpu_stall_ticks(rdp);
1354 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1355 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1356 rdp->gp_seq_needed = rnp->gp_seq_needed;
1357 WRITE_ONCE(rdp->gpwrap, false);
1358 rcu_gpnum_ovf(rnp, rdp);
1359 return ret;
1362 static void note_gp_changes(struct rcu_data *rdp)
1364 unsigned long flags;
1365 bool needwake;
1366 struct rcu_node *rnp;
1368 local_irq_save(flags);
1369 rnp = rdp->mynode;
1370 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1371 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1372 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1373 local_irq_restore(flags);
1374 return;
1376 needwake = __note_gp_changes(rnp, rdp);
1377 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1378 if (needwake)
1379 rcu_gp_kthread_wake();
1382 static void rcu_gp_slow(int delay)
1384 if (delay > 0 &&
1385 !(rcu_seq_ctr(rcu_state.gp_seq) %
1386 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1387 schedule_timeout_uninterruptible(delay);
1391 * Initialize a new grace period. Return false if no grace period required.
1393 static bool rcu_gp_init(void)
1395 unsigned long flags;
1396 unsigned long oldmask;
1397 unsigned long mask;
1398 struct rcu_data *rdp;
1399 struct rcu_node *rnp = rcu_get_root();
1401 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1402 raw_spin_lock_irq_rcu_node(rnp);
1403 if (!READ_ONCE(rcu_state.gp_flags)) {
1404 /* Spurious wakeup, tell caller to go back to sleep. */
1405 raw_spin_unlock_irq_rcu_node(rnp);
1406 return false;
1408 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1410 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1412 * Grace period already in progress, don't start another.
1413 * Not supposed to be able to happen.
1415 raw_spin_unlock_irq_rcu_node(rnp);
1416 return false;
1419 /* Advance to a new grace period and initialize state. */
1420 record_gp_stall_check_time();
1421 /* Record GP times before starting GP, hence rcu_seq_start(). */
1422 rcu_seq_start(&rcu_state.gp_seq);
1423 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1424 raw_spin_unlock_irq_rcu_node(rnp);
1427 * Apply per-leaf buffered online and offline operations to the
1428 * rcu_node tree. Note that this new grace period need not wait
1429 * for subsequent online CPUs, and that quiescent-state forcing
1430 * will handle subsequent offline CPUs.
1432 rcu_state.gp_state = RCU_GP_ONOFF;
1433 rcu_for_each_leaf_node(rnp) {
1434 raw_spin_lock(&rcu_state.ofl_lock);
1435 raw_spin_lock_irq_rcu_node(rnp);
1436 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1437 !rnp->wait_blkd_tasks) {
1438 /* Nothing to do on this leaf rcu_node structure. */
1439 raw_spin_unlock_irq_rcu_node(rnp);
1440 raw_spin_unlock(&rcu_state.ofl_lock);
1441 continue;
1444 /* Record old state, apply changes to ->qsmaskinit field. */
1445 oldmask = rnp->qsmaskinit;
1446 rnp->qsmaskinit = rnp->qsmaskinitnext;
1448 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1449 if (!oldmask != !rnp->qsmaskinit) {
1450 if (!oldmask) { /* First online CPU for rcu_node. */
1451 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1452 rcu_init_new_rnp(rnp);
1453 } else if (rcu_preempt_has_tasks(rnp)) {
1454 rnp->wait_blkd_tasks = true; /* blocked tasks */
1455 } else { /* Last offline CPU and can propagate. */
1456 rcu_cleanup_dead_rnp(rnp);
1461 * If all waited-on tasks from prior grace period are
1462 * done, and if all this rcu_node structure's CPUs are
1463 * still offline, propagate up the rcu_node tree and
1464 * clear ->wait_blkd_tasks. Otherwise, if one of this
1465 * rcu_node structure's CPUs has since come back online,
1466 * simply clear ->wait_blkd_tasks.
1468 if (rnp->wait_blkd_tasks &&
1469 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1470 rnp->wait_blkd_tasks = false;
1471 if (!rnp->qsmaskinit)
1472 rcu_cleanup_dead_rnp(rnp);
1475 raw_spin_unlock_irq_rcu_node(rnp);
1476 raw_spin_unlock(&rcu_state.ofl_lock);
1478 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1481 * Set the quiescent-state-needed bits in all the rcu_node
1482 * structures for all currently online CPUs in breadth-first
1483 * order, starting from the root rcu_node structure, relying on the
1484 * layout of the tree within the rcu_state.node[] array. Note that
1485 * other CPUs will access only the leaves of the hierarchy, thus
1486 * seeing that no grace period is in progress, at least until the
1487 * corresponding leaf node has been initialized.
1489 * The grace period cannot complete until the initialization
1490 * process finishes, because this kthread handles both.
1492 rcu_state.gp_state = RCU_GP_INIT;
1493 rcu_for_each_node_breadth_first(rnp) {
1494 rcu_gp_slow(gp_init_delay);
1495 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1496 rdp = this_cpu_ptr(&rcu_data);
1497 rcu_preempt_check_blocked_tasks(rnp);
1498 rnp->qsmask = rnp->qsmaskinit;
1499 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1500 if (rnp == rdp->mynode)
1501 (void)__note_gp_changes(rnp, rdp);
1502 rcu_preempt_boost_start_gp(rnp);
1503 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1504 rnp->level, rnp->grplo,
1505 rnp->grphi, rnp->qsmask);
1506 /* Quiescent states for tasks on any now-offline CPUs. */
1507 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1508 rnp->rcu_gp_init_mask = mask;
1509 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1510 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1511 else
1512 raw_spin_unlock_irq_rcu_node(rnp);
1513 cond_resched_tasks_rcu_qs();
1514 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1517 return true;
1521 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1522 * time.
1524 static bool rcu_gp_fqs_check_wake(int *gfp)
1526 struct rcu_node *rnp = rcu_get_root();
1528 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1529 *gfp = READ_ONCE(rcu_state.gp_flags);
1530 if (*gfp & RCU_GP_FLAG_FQS)
1531 return true;
1533 /* The current grace period has completed. */
1534 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1535 return true;
1537 return false;
1541 * Do one round of quiescent-state forcing.
1543 static void rcu_gp_fqs(bool first_time)
1545 struct rcu_node *rnp = rcu_get_root();
1547 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1548 rcu_state.n_force_qs++;
1549 if (first_time) {
1550 /* Collect dyntick-idle snapshots. */
1551 force_qs_rnp(dyntick_save_progress_counter);
1552 } else {
1553 /* Handle dyntick-idle and offline CPUs. */
1554 force_qs_rnp(rcu_implicit_dynticks_qs);
1556 /* Clear flag to prevent immediate re-entry. */
1557 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1558 raw_spin_lock_irq_rcu_node(rnp);
1559 WRITE_ONCE(rcu_state.gp_flags,
1560 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1561 raw_spin_unlock_irq_rcu_node(rnp);
1566 * Loop doing repeated quiescent-state forcing until the grace period ends.
1568 static void rcu_gp_fqs_loop(void)
1570 bool first_gp_fqs;
1571 int gf;
1572 unsigned long j;
1573 int ret;
1574 struct rcu_node *rnp = rcu_get_root();
1576 first_gp_fqs = true;
1577 j = READ_ONCE(jiffies_till_first_fqs);
1578 ret = 0;
1579 for (;;) {
1580 if (!ret) {
1581 rcu_state.jiffies_force_qs = jiffies + j;
1582 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1583 jiffies + (j ? 3 * j : 2));
1585 trace_rcu_grace_period(rcu_state.name,
1586 READ_ONCE(rcu_state.gp_seq),
1587 TPS("fqswait"));
1588 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1589 ret = swait_event_idle_timeout_exclusive(
1590 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1591 rcu_state.gp_state = RCU_GP_DOING_FQS;
1592 /* Locking provides needed memory barriers. */
1593 /* If grace period done, leave loop. */
1594 if (!READ_ONCE(rnp->qsmask) &&
1595 !rcu_preempt_blocked_readers_cgp(rnp))
1596 break;
1597 /* If time for quiescent-state forcing, do it. */
1598 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1599 (gf & RCU_GP_FLAG_FQS)) {
1600 trace_rcu_grace_period(rcu_state.name,
1601 READ_ONCE(rcu_state.gp_seq),
1602 TPS("fqsstart"));
1603 rcu_gp_fqs(first_gp_fqs);
1604 first_gp_fqs = false;
1605 trace_rcu_grace_period(rcu_state.name,
1606 READ_ONCE(rcu_state.gp_seq),
1607 TPS("fqsend"));
1608 cond_resched_tasks_rcu_qs();
1609 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1610 ret = 0; /* Force full wait till next FQS. */
1611 j = READ_ONCE(jiffies_till_next_fqs);
1612 } else {
1613 /* Deal with stray signal. */
1614 cond_resched_tasks_rcu_qs();
1615 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1616 WARN_ON(signal_pending(current));
1617 trace_rcu_grace_period(rcu_state.name,
1618 READ_ONCE(rcu_state.gp_seq),
1619 TPS("fqswaitsig"));
1620 ret = 1; /* Keep old FQS timing. */
1621 j = jiffies;
1622 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1623 j = 1;
1624 else
1625 j = rcu_state.jiffies_force_qs - j;
1631 * Clean up after the old grace period.
1633 static void rcu_gp_cleanup(void)
1635 unsigned long gp_duration;
1636 bool needgp = false;
1637 unsigned long new_gp_seq;
1638 struct rcu_data *rdp;
1639 struct rcu_node *rnp = rcu_get_root();
1640 struct swait_queue_head *sq;
1642 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1643 raw_spin_lock_irq_rcu_node(rnp);
1644 rcu_state.gp_end = jiffies;
1645 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1646 if (gp_duration > rcu_state.gp_max)
1647 rcu_state.gp_max = gp_duration;
1650 * We know the grace period is complete, but to everyone else
1651 * it appears to still be ongoing. But it is also the case
1652 * that to everyone else it looks like there is nothing that
1653 * they can do to advance the grace period. It is therefore
1654 * safe for us to drop the lock in order to mark the grace
1655 * period as completed in all of the rcu_node structures.
1657 raw_spin_unlock_irq_rcu_node(rnp);
1660 * Propagate new ->gp_seq value to rcu_node structures so that
1661 * other CPUs don't have to wait until the start of the next grace
1662 * period to process their callbacks. This also avoids some nasty
1663 * RCU grace-period initialization races by forcing the end of
1664 * the current grace period to be completely recorded in all of
1665 * the rcu_node structures before the beginning of the next grace
1666 * period is recorded in any of the rcu_node structures.
1668 new_gp_seq = rcu_state.gp_seq;
1669 rcu_seq_end(&new_gp_seq);
1670 rcu_for_each_node_breadth_first(rnp) {
1671 raw_spin_lock_irq_rcu_node(rnp);
1672 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1673 dump_blkd_tasks(rnp, 10);
1674 WARN_ON_ONCE(rnp->qsmask);
1675 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1676 rdp = this_cpu_ptr(&rcu_data);
1677 if (rnp == rdp->mynode)
1678 needgp = __note_gp_changes(rnp, rdp) || needgp;
1679 /* smp_mb() provided by prior unlock-lock pair. */
1680 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1681 sq = rcu_nocb_gp_get(rnp);
1682 raw_spin_unlock_irq_rcu_node(rnp);
1683 rcu_nocb_gp_cleanup(sq);
1684 cond_resched_tasks_rcu_qs();
1685 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1686 rcu_gp_slow(gp_cleanup_delay);
1688 rnp = rcu_get_root();
1689 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1691 /* Declare grace period done, trace first to use old GP number. */
1692 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1693 rcu_seq_end(&rcu_state.gp_seq);
1694 rcu_state.gp_state = RCU_GP_IDLE;
1695 /* Check for GP requests since above loop. */
1696 rdp = this_cpu_ptr(&rcu_data);
1697 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1698 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1699 TPS("CleanupMore"));
1700 needgp = true;
1702 /* Advance CBs to reduce false positives below. */
1703 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
1704 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1705 rcu_state.gp_req_activity = jiffies;
1706 trace_rcu_grace_period(rcu_state.name,
1707 READ_ONCE(rcu_state.gp_seq),
1708 TPS("newreq"));
1709 } else {
1710 WRITE_ONCE(rcu_state.gp_flags,
1711 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1713 raw_spin_unlock_irq_rcu_node(rnp);
1717 * Body of kthread that handles grace periods.
1719 static int __noreturn rcu_gp_kthread(void *unused)
1721 rcu_bind_gp_kthread();
1722 for (;;) {
1724 /* Handle grace-period start. */
1725 for (;;) {
1726 trace_rcu_grace_period(rcu_state.name,
1727 READ_ONCE(rcu_state.gp_seq),
1728 TPS("reqwait"));
1729 rcu_state.gp_state = RCU_GP_WAIT_GPS;
1730 swait_event_idle_exclusive(rcu_state.gp_wq,
1731 READ_ONCE(rcu_state.gp_flags) &
1732 RCU_GP_FLAG_INIT);
1733 rcu_state.gp_state = RCU_GP_DONE_GPS;
1734 /* Locking provides needed memory barrier. */
1735 if (rcu_gp_init())
1736 break;
1737 cond_resched_tasks_rcu_qs();
1738 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1739 WARN_ON(signal_pending(current));
1740 trace_rcu_grace_period(rcu_state.name,
1741 READ_ONCE(rcu_state.gp_seq),
1742 TPS("reqwaitsig"));
1745 /* Handle quiescent-state forcing. */
1746 rcu_gp_fqs_loop();
1748 /* Handle grace-period end. */
1749 rcu_state.gp_state = RCU_GP_CLEANUP;
1750 rcu_gp_cleanup();
1751 rcu_state.gp_state = RCU_GP_CLEANED;
1756 * Report a full set of quiescent states to the rcu_state data structure.
1757 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1758 * another grace period is required. Whether we wake the grace-period
1759 * kthread or it awakens itself for the next round of quiescent-state
1760 * forcing, that kthread will clean up after the just-completed grace
1761 * period. Note that the caller must hold rnp->lock, which is released
1762 * before return.
1764 static void rcu_report_qs_rsp(unsigned long flags)
1765 __releases(rcu_get_root()->lock)
1767 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1768 WARN_ON_ONCE(!rcu_gp_in_progress());
1769 WRITE_ONCE(rcu_state.gp_flags,
1770 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1771 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1772 rcu_gp_kthread_wake();
1776 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1777 * Allows quiescent states for a group of CPUs to be reported at one go
1778 * to the specified rcu_node structure, though all the CPUs in the group
1779 * must be represented by the same rcu_node structure (which need not be a
1780 * leaf rcu_node structure, though it often will be). The gps parameter
1781 * is the grace-period snapshot, which means that the quiescent states
1782 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1783 * must be held upon entry, and it is released before return.
1785 * As a special case, if mask is zero, the bit-already-cleared check is
1786 * disabled. This allows propagating quiescent state due to resumed tasks
1787 * during grace-period initialization.
1789 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1790 unsigned long gps, unsigned long flags)
1791 __releases(rnp->lock)
1793 unsigned long oldmask = 0;
1794 struct rcu_node *rnp_c;
1796 raw_lockdep_assert_held_rcu_node(rnp);
1798 /* Walk up the rcu_node hierarchy. */
1799 for (;;) {
1800 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1803 * Our bit has already been cleared, or the
1804 * relevant grace period is already over, so done.
1806 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1807 return;
1809 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1810 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1811 rcu_preempt_blocked_readers_cgp(rnp));
1812 rnp->qsmask &= ~mask;
1813 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1814 mask, rnp->qsmask, rnp->level,
1815 rnp->grplo, rnp->grphi,
1816 !!rnp->gp_tasks);
1817 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1819 /* Other bits still set at this level, so done. */
1820 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1821 return;
1823 rnp->completedqs = rnp->gp_seq;
1824 mask = rnp->grpmask;
1825 if (rnp->parent == NULL) {
1827 /* No more levels. Exit loop holding root lock. */
1829 break;
1831 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1832 rnp_c = rnp;
1833 rnp = rnp->parent;
1834 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1835 oldmask = rnp_c->qsmask;
1839 * Get here if we are the last CPU to pass through a quiescent
1840 * state for this grace period. Invoke rcu_report_qs_rsp()
1841 * to clean up and start the next grace period if one is needed.
1843 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1847 * Record a quiescent state for all tasks that were previously queued
1848 * on the specified rcu_node structure and that were blocking the current
1849 * RCU grace period. The caller must hold the corresponding rnp->lock with
1850 * irqs disabled, and this lock is released upon return, but irqs remain
1851 * disabled.
1853 static void __maybe_unused
1854 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1855 __releases(rnp->lock)
1857 unsigned long gps;
1858 unsigned long mask;
1859 struct rcu_node *rnp_p;
1861 raw_lockdep_assert_held_rcu_node(rnp);
1862 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
1863 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1864 rnp->qsmask != 0) {
1865 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1866 return; /* Still need more quiescent states! */
1869 rnp->completedqs = rnp->gp_seq;
1870 rnp_p = rnp->parent;
1871 if (rnp_p == NULL) {
1873 * Only one rcu_node structure in the tree, so don't
1874 * try to report up to its nonexistent parent!
1876 rcu_report_qs_rsp(flags);
1877 return;
1880 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1881 gps = rnp->gp_seq;
1882 mask = rnp->grpmask;
1883 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1884 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
1885 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1889 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1890 * structure. This must be called from the specified CPU.
1892 static void
1893 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1895 unsigned long flags;
1896 unsigned long mask;
1897 bool needwake;
1898 struct rcu_node *rnp;
1900 rnp = rdp->mynode;
1901 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1902 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1903 rdp->gpwrap) {
1906 * The grace period in which this quiescent state was
1907 * recorded has ended, so don't report it upwards.
1908 * We will instead need a new quiescent state that lies
1909 * within the current grace period.
1911 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
1912 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1913 return;
1915 mask = rdp->grpmask;
1916 rdp->core_needs_qs = false;
1917 if ((rnp->qsmask & mask) == 0) {
1918 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1919 } else {
1921 * This GP can't end until cpu checks in, so all of our
1922 * callbacks can be processed during the next GP.
1924 needwake = rcu_accelerate_cbs(rnp, rdp);
1926 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1927 /* ^^^ Released rnp->lock */
1928 if (needwake)
1929 rcu_gp_kthread_wake();
1934 * Check to see if there is a new grace period of which this CPU
1935 * is not yet aware, and if so, set up local rcu_data state for it.
1936 * Otherwise, see if this CPU has just passed through its first
1937 * quiescent state for this grace period, and record that fact if so.
1939 static void
1940 rcu_check_quiescent_state(struct rcu_data *rdp)
1942 /* Check for grace-period ends and beginnings. */
1943 note_gp_changes(rdp);
1946 * Does this CPU still need to do its part for current grace period?
1947 * If no, return and let the other CPUs do their part as well.
1949 if (!rdp->core_needs_qs)
1950 return;
1953 * Was there a quiescent state since the beginning of the grace
1954 * period? If no, then exit and wait for the next call.
1956 if (rdp->cpu_no_qs.b.norm)
1957 return;
1960 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1961 * judge of that).
1963 rcu_report_qs_rdp(rdp->cpu, rdp);
1967 * Near the end of the offline process. Trace the fact that this CPU
1968 * is going offline.
1970 int rcutree_dying_cpu(unsigned int cpu)
1972 bool blkd;
1973 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1974 struct rcu_node *rnp = rdp->mynode;
1976 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
1977 return 0;
1979 blkd = !!(rnp->qsmask & rdp->grpmask);
1980 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
1981 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
1982 return 0;
1986 * All CPUs for the specified rcu_node structure have gone offline,
1987 * and all tasks that were preempted within an RCU read-side critical
1988 * section while running on one of those CPUs have since exited their RCU
1989 * read-side critical section. Some other CPU is reporting this fact with
1990 * the specified rcu_node structure's ->lock held and interrupts disabled.
1991 * This function therefore goes up the tree of rcu_node structures,
1992 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
1993 * the leaf rcu_node structure's ->qsmaskinit field has already been
1994 * updated.
1996 * This function does check that the specified rcu_node structure has
1997 * all CPUs offline and no blocked tasks, so it is OK to invoke it
1998 * prematurely. That said, invoking it after the fact will cost you
1999 * a needless lock acquisition. So once it has done its work, don't
2000 * invoke it again.
2002 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2004 long mask;
2005 struct rcu_node *rnp = rnp_leaf;
2007 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2008 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2009 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2010 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2011 return;
2012 for (;;) {
2013 mask = rnp->grpmask;
2014 rnp = rnp->parent;
2015 if (!rnp)
2016 break;
2017 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2018 rnp->qsmaskinit &= ~mask;
2019 /* Between grace periods, so better already be zero! */
2020 WARN_ON_ONCE(rnp->qsmask);
2021 if (rnp->qsmaskinit) {
2022 raw_spin_unlock_rcu_node(rnp);
2023 /* irqs remain disabled. */
2024 return;
2026 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2031 * The CPU has been completely removed, and some other CPU is reporting
2032 * this fact from process context. Do the remainder of the cleanup.
2033 * There can only be one CPU hotplug operation at a time, so no need for
2034 * explicit locking.
2036 int rcutree_dead_cpu(unsigned int cpu)
2038 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2039 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2041 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2042 return 0;
2044 /* Adjust any no-longer-needed kthreads. */
2045 rcu_boost_kthread_setaffinity(rnp, -1);
2046 /* Do any needed no-CB deferred wakeups from this CPU. */
2047 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2048 return 0;
2052 * Invoke any RCU callbacks that have made it to the end of their grace
2053 * period. Thottle as specified by rdp->blimit.
2055 static void rcu_do_batch(struct rcu_data *rdp)
2057 unsigned long flags;
2058 struct rcu_head *rhp;
2059 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2060 long bl, count;
2062 /* If no callbacks are ready, just return. */
2063 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2064 trace_rcu_batch_start(rcu_state.name,
2065 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2066 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2067 trace_rcu_batch_end(rcu_state.name, 0,
2068 !rcu_segcblist_empty(&rdp->cblist),
2069 need_resched(), is_idle_task(current),
2070 rcu_is_callbacks_kthread());
2071 return;
2075 * Extract the list of ready callbacks, disabling to prevent
2076 * races with call_rcu() from interrupt handlers. Leave the
2077 * callback counts, as rcu_barrier() needs to be conservative.
2079 local_irq_save(flags);
2080 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2081 bl = rdp->blimit;
2082 trace_rcu_batch_start(rcu_state.name,
2083 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2084 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2085 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2086 local_irq_restore(flags);
2088 /* Invoke callbacks. */
2089 rhp = rcu_cblist_dequeue(&rcl);
2090 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2091 debug_rcu_head_unqueue(rhp);
2092 if (__rcu_reclaim(rcu_state.name, rhp))
2093 rcu_cblist_dequeued_lazy(&rcl);
2095 * Stop only if limit reached and CPU has something to do.
2096 * Note: The rcl structure counts down from zero.
2098 if (-rcl.len >= bl &&
2099 (need_resched() ||
2100 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2101 break;
2104 local_irq_save(flags);
2105 count = -rcl.len;
2106 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2107 is_idle_task(current), rcu_is_callbacks_kthread());
2109 /* Update counts and requeue any remaining callbacks. */
2110 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2111 smp_mb(); /* List handling before counting for rcu_barrier(). */
2112 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2114 /* Reinstate batch limit if we have worked down the excess. */
2115 count = rcu_segcblist_n_cbs(&rdp->cblist);
2116 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2117 rdp->blimit = blimit;
2119 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2120 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2121 rdp->qlen_last_fqs_check = 0;
2122 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2123 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2124 rdp->qlen_last_fqs_check = count;
2127 * The following usually indicates a double call_rcu(). To track
2128 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2130 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2132 local_irq_restore(flags);
2134 /* Re-invoke RCU core processing if there are callbacks remaining. */
2135 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2136 invoke_rcu_core();
2140 * This function is invoked from each scheduling-clock interrupt,
2141 * and checks to see if this CPU is in a non-context-switch quiescent
2142 * state, for example, user mode or idle loop. It also schedules RCU
2143 * core processing. If the current grace period has gone on too long,
2144 * it will ask the scheduler to manufacture a context switch for the sole
2145 * purpose of providing a providing the needed quiescent state.
2147 void rcu_sched_clock_irq(int user)
2149 trace_rcu_utilization(TPS("Start scheduler-tick"));
2150 raw_cpu_inc(rcu_data.ticks_this_gp);
2151 /* The load-acquire pairs with the store-release setting to true. */
2152 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2153 /* Idle and userspace execution already are quiescent states. */
2154 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2155 set_tsk_need_resched(current);
2156 set_preempt_need_resched();
2158 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2160 rcu_flavor_sched_clock_irq(user);
2161 if (rcu_pending())
2162 invoke_rcu_core();
2164 trace_rcu_utilization(TPS("End scheduler-tick"));
2168 * Scan the leaf rcu_node structures. For each structure on which all
2169 * CPUs have reported a quiescent state and on which there are tasks
2170 * blocking the current grace period, initiate RCU priority boosting.
2171 * Otherwise, invoke the specified function to check dyntick state for
2172 * each CPU that has not yet reported a quiescent state.
2174 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2176 int cpu;
2177 unsigned long flags;
2178 unsigned long mask;
2179 struct rcu_node *rnp;
2181 rcu_for_each_leaf_node(rnp) {
2182 cond_resched_tasks_rcu_qs();
2183 mask = 0;
2184 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2185 if (rnp->qsmask == 0) {
2186 if (!IS_ENABLED(CONFIG_PREEMPT) ||
2187 rcu_preempt_blocked_readers_cgp(rnp)) {
2189 * No point in scanning bits because they
2190 * are all zero. But we might need to
2191 * priority-boost blocked readers.
2193 rcu_initiate_boost(rnp, flags);
2194 /* rcu_initiate_boost() releases rnp->lock */
2195 continue;
2197 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2198 continue;
2200 for_each_leaf_node_possible_cpu(rnp, cpu) {
2201 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2202 if ((rnp->qsmask & bit) != 0) {
2203 if (f(per_cpu_ptr(&rcu_data, cpu)))
2204 mask |= bit;
2207 if (mask != 0) {
2208 /* Idle/offline CPUs, report (releases rnp->lock). */
2209 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2210 } else {
2211 /* Nothing to do here, so just drop the lock. */
2212 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2218 * Force quiescent states on reluctant CPUs, and also detect which
2219 * CPUs are in dyntick-idle mode.
2221 void rcu_force_quiescent_state(void)
2223 unsigned long flags;
2224 bool ret;
2225 struct rcu_node *rnp;
2226 struct rcu_node *rnp_old = NULL;
2228 /* Funnel through hierarchy to reduce memory contention. */
2229 rnp = __this_cpu_read(rcu_data.mynode);
2230 for (; rnp != NULL; rnp = rnp->parent) {
2231 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2232 !raw_spin_trylock(&rnp->fqslock);
2233 if (rnp_old != NULL)
2234 raw_spin_unlock(&rnp_old->fqslock);
2235 if (ret)
2236 return;
2237 rnp_old = rnp;
2239 /* rnp_old == rcu_get_root(), rnp == NULL. */
2241 /* Reached the root of the rcu_node tree, acquire lock. */
2242 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2243 raw_spin_unlock(&rnp_old->fqslock);
2244 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2245 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2246 return; /* Someone beat us to it. */
2248 WRITE_ONCE(rcu_state.gp_flags,
2249 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2250 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2251 rcu_gp_kthread_wake();
2253 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2255 /* Perform RCU core processing work for the current CPU. */
2256 static __latent_entropy void rcu_core(struct softirq_action *unused)
2258 unsigned long flags;
2259 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2260 struct rcu_node *rnp = rdp->mynode;
2262 if (cpu_is_offline(smp_processor_id()))
2263 return;
2264 trace_rcu_utilization(TPS("Start RCU core"));
2265 WARN_ON_ONCE(!rdp->beenonline);
2267 /* Report any deferred quiescent states if preemption enabled. */
2268 if (!(preempt_count() & PREEMPT_MASK)) {
2269 rcu_preempt_deferred_qs(current);
2270 } else if (rcu_preempt_need_deferred_qs(current)) {
2271 set_tsk_need_resched(current);
2272 set_preempt_need_resched();
2275 /* Update RCU state based on any recent quiescent states. */
2276 rcu_check_quiescent_state(rdp);
2278 /* No grace period and unregistered callbacks? */
2279 if (!rcu_gp_in_progress() &&
2280 rcu_segcblist_is_enabled(&rdp->cblist)) {
2281 local_irq_save(flags);
2282 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2283 rcu_accelerate_cbs_unlocked(rnp, rdp);
2284 local_irq_restore(flags);
2287 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2289 /* If there are callbacks ready, invoke them. */
2290 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2291 invoke_rcu_callbacks(rdp);
2293 /* Do any needed deferred wakeups of rcuo kthreads. */
2294 do_nocb_deferred_wakeup(rdp);
2295 trace_rcu_utilization(TPS("End RCU core"));
2299 * Schedule RCU callback invocation. If the running implementation of RCU
2300 * does not support RCU priority boosting, just do a direct call, otherwise
2301 * wake up the per-CPU kernel kthread. Note that because we are running
2302 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2303 * cannot disappear out from under us.
2305 static void invoke_rcu_callbacks(struct rcu_data *rdp)
2307 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2308 return;
2309 if (likely(!rcu_state.boost)) {
2310 rcu_do_batch(rdp);
2311 return;
2313 invoke_rcu_callbacks_kthread();
2316 static void invoke_rcu_core(void)
2318 if (cpu_online(smp_processor_id()))
2319 raise_softirq(RCU_SOFTIRQ);
2323 * Handle any core-RCU processing required by a call_rcu() invocation.
2325 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2326 unsigned long flags)
2329 * If called from an extended quiescent state, invoke the RCU
2330 * core in order to force a re-evaluation of RCU's idleness.
2332 if (!rcu_is_watching())
2333 invoke_rcu_core();
2335 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2336 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2337 return;
2340 * Force the grace period if too many callbacks or too long waiting.
2341 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2342 * if some other CPU has recently done so. Also, don't bother
2343 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2344 * is the only one waiting for a grace period to complete.
2346 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2347 rdp->qlen_last_fqs_check + qhimark)) {
2349 /* Are we ignoring a completed grace period? */
2350 note_gp_changes(rdp);
2352 /* Start a new grace period if one not already started. */
2353 if (!rcu_gp_in_progress()) {
2354 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2355 } else {
2356 /* Give the grace period a kick. */
2357 rdp->blimit = LONG_MAX;
2358 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2359 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2360 rcu_force_quiescent_state();
2361 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2362 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2368 * RCU callback function to leak a callback.
2370 static void rcu_leak_callback(struct rcu_head *rhp)
2375 * Helper function for call_rcu() and friends. The cpu argument will
2376 * normally be -1, indicating "currently running CPU". It may specify
2377 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
2378 * is expected to specify a CPU.
2380 static void
2381 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2383 unsigned long flags;
2384 struct rcu_data *rdp;
2386 /* Misaligned rcu_head! */
2387 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2389 if (debug_rcu_head_queue(head)) {
2391 * Probable double call_rcu(), so leak the callback.
2392 * Use rcu:rcu_callback trace event to find the previous
2393 * time callback was passed to __call_rcu().
2395 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2396 head, head->func);
2397 WRITE_ONCE(head->func, rcu_leak_callback);
2398 return;
2400 head->func = func;
2401 head->next = NULL;
2402 local_irq_save(flags);
2403 rdp = this_cpu_ptr(&rcu_data);
2405 /* Add the callback to our list. */
2406 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2407 int offline;
2409 if (cpu != -1)
2410 rdp = per_cpu_ptr(&rcu_data, cpu);
2411 if (likely(rdp->mynode)) {
2412 /* Post-boot, so this should be for a no-CBs CPU. */
2413 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2414 WARN_ON_ONCE(offline);
2415 /* Offline CPU, _call_rcu() illegal, leak callback. */
2416 local_irq_restore(flags);
2417 return;
2420 * Very early boot, before rcu_init(). Initialize if needed
2421 * and then drop through to queue the callback.
2423 WARN_ON_ONCE(cpu != -1);
2424 WARN_ON_ONCE(!rcu_is_watching());
2425 if (rcu_segcblist_empty(&rdp->cblist))
2426 rcu_segcblist_init(&rdp->cblist);
2428 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2429 if (__is_kfree_rcu_offset((unsigned long)func))
2430 trace_rcu_kfree_callback(rcu_state.name, head,
2431 (unsigned long)func,
2432 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2433 rcu_segcblist_n_cbs(&rdp->cblist));
2434 else
2435 trace_rcu_callback(rcu_state.name, head,
2436 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2437 rcu_segcblist_n_cbs(&rdp->cblist));
2439 /* Go handle any RCU core processing required. */
2440 __call_rcu_core(rdp, head, flags);
2441 local_irq_restore(flags);
2445 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2446 * @head: structure to be used for queueing the RCU updates.
2447 * @func: actual callback function to be invoked after the grace period
2449 * The callback function will be invoked some time after a full grace
2450 * period elapses, in other words after all pre-existing RCU read-side
2451 * critical sections have completed. However, the callback function
2452 * might well execute concurrently with RCU read-side critical sections
2453 * that started after call_rcu() was invoked. RCU read-side critical
2454 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2455 * may be nested. In addition, regions of code across which interrupts,
2456 * preemption, or softirqs have been disabled also serve as RCU read-side
2457 * critical sections. This includes hardware interrupt handlers, softirq
2458 * handlers, and NMI handlers.
2460 * Note that all CPUs must agree that the grace period extended beyond
2461 * all pre-existing RCU read-side critical section. On systems with more
2462 * than one CPU, this means that when "func()" is invoked, each CPU is
2463 * guaranteed to have executed a full memory barrier since the end of its
2464 * last RCU read-side critical section whose beginning preceded the call
2465 * to call_rcu(). It also means that each CPU executing an RCU read-side
2466 * critical section that continues beyond the start of "func()" must have
2467 * executed a memory barrier after the call_rcu() but before the beginning
2468 * of that RCU read-side critical section. Note that these guarantees
2469 * include CPUs that are offline, idle, or executing in user mode, as
2470 * well as CPUs that are executing in the kernel.
2472 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2473 * resulting RCU callback function "func()", then both CPU A and CPU B are
2474 * guaranteed to execute a full memory barrier during the time interval
2475 * between the call to call_rcu() and the invocation of "func()" -- even
2476 * if CPU A and CPU B are the same CPU (but again only if the system has
2477 * more than one CPU).
2479 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2481 __call_rcu(head, func, -1, 0);
2483 EXPORT_SYMBOL_GPL(call_rcu);
2486 * Queue an RCU callback for lazy invocation after a grace period.
2487 * This will likely be later named something like "call_rcu_lazy()",
2488 * but this change will require some way of tagging the lazy RCU
2489 * callbacks in the list of pending callbacks. Until then, this
2490 * function may only be called from __kfree_rcu().
2492 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2494 __call_rcu(head, func, -1, 1);
2496 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2499 * During early boot, any blocking grace-period wait automatically
2500 * implies a grace period. Later on, this is never the case for PREEMPT.
2502 * Howevr, because a context switch is a grace period for !PREEMPT, any
2503 * blocking grace-period wait automatically implies a grace period if
2504 * there is only one CPU online at any point time during execution of
2505 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
2506 * occasionally incorrectly indicate that there are multiple CPUs online
2507 * when there was in fact only one the whole time, as this just adds some
2508 * overhead: RCU still operates correctly.
2510 static int rcu_blocking_is_gp(void)
2512 int ret;
2514 if (IS_ENABLED(CONFIG_PREEMPT))
2515 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2516 might_sleep(); /* Check for RCU read-side critical section. */
2517 preempt_disable();
2518 ret = num_online_cpus() <= 1;
2519 preempt_enable();
2520 return ret;
2524 * synchronize_rcu - wait until a grace period has elapsed.
2526 * Control will return to the caller some time after a full grace
2527 * period has elapsed, in other words after all currently executing RCU
2528 * read-side critical sections have completed. Note, however, that
2529 * upon return from synchronize_rcu(), the caller might well be executing
2530 * concurrently with new RCU read-side critical sections that began while
2531 * synchronize_rcu() was waiting. RCU read-side critical sections are
2532 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2533 * In addition, regions of code across which interrupts, preemption, or
2534 * softirqs have been disabled also serve as RCU read-side critical
2535 * sections. This includes hardware interrupt handlers, softirq handlers,
2536 * and NMI handlers.
2538 * Note that this guarantee implies further memory-ordering guarantees.
2539 * On systems with more than one CPU, when synchronize_rcu() returns,
2540 * each CPU is guaranteed to have executed a full memory barrier since
2541 * the end of its last RCU read-side critical section whose beginning
2542 * preceded the call to synchronize_rcu(). In addition, each CPU having
2543 * an RCU read-side critical section that extends beyond the return from
2544 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2545 * after the beginning of synchronize_rcu() and before the beginning of
2546 * that RCU read-side critical section. Note that these guarantees include
2547 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2548 * that are executing in the kernel.
2550 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2551 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2552 * to have executed a full memory barrier during the execution of
2553 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2554 * again only if the system has more than one CPU).
2556 void synchronize_rcu(void)
2558 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2559 lock_is_held(&rcu_lock_map) ||
2560 lock_is_held(&rcu_sched_lock_map),
2561 "Illegal synchronize_rcu() in RCU read-side critical section");
2562 if (rcu_blocking_is_gp())
2563 return;
2564 if (rcu_gp_is_expedited())
2565 synchronize_rcu_expedited();
2566 else
2567 wait_rcu_gp(call_rcu);
2569 EXPORT_SYMBOL_GPL(synchronize_rcu);
2572 * get_state_synchronize_rcu - Snapshot current RCU state
2574 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2575 * to determine whether or not a full grace period has elapsed in the
2576 * meantime.
2578 unsigned long get_state_synchronize_rcu(void)
2581 * Any prior manipulation of RCU-protected data must happen
2582 * before the load from ->gp_seq.
2584 smp_mb(); /* ^^^ */
2585 return rcu_seq_snap(&rcu_state.gp_seq);
2587 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2590 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2592 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2594 * If a full RCU grace period has elapsed since the earlier call to
2595 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2596 * synchronize_rcu() to wait for a full grace period.
2598 * Yes, this function does not take counter wrap into account. But
2599 * counter wrap is harmless. If the counter wraps, we have waited for
2600 * more than 2 billion grace periods (and way more on a 64-bit system!),
2601 * so waiting for one additional grace period should be just fine.
2603 void cond_synchronize_rcu(unsigned long oldstate)
2605 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2606 synchronize_rcu();
2607 else
2608 smp_mb(); /* Ensure GP ends before subsequent accesses. */
2610 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2613 * Check to see if there is any immediate RCU-related work to be done by
2614 * the current CPU, returning 1 if so and zero otherwise. The checks are
2615 * in order of increasing expense: checks that can be carried out against
2616 * CPU-local state are performed first. However, we must check for CPU
2617 * stalls first, else we might not get a chance.
2619 static int rcu_pending(void)
2621 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2622 struct rcu_node *rnp = rdp->mynode;
2624 /* Check for CPU stalls, if enabled. */
2625 check_cpu_stall(rdp);
2627 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2628 if (rcu_nohz_full_cpu())
2629 return 0;
2631 /* Is the RCU core waiting for a quiescent state from this CPU? */
2632 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2633 return 1;
2635 /* Does this CPU have callbacks ready to invoke? */
2636 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2637 return 1;
2639 /* Has RCU gone idle with this CPU needing another grace period? */
2640 if (!rcu_gp_in_progress() &&
2641 rcu_segcblist_is_enabled(&rdp->cblist) &&
2642 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2643 return 1;
2645 /* Have RCU grace period completed or started? */
2646 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2647 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2648 return 1;
2650 /* Does this CPU need a deferred NOCB wakeup? */
2651 if (rcu_nocb_need_deferred_wakeup(rdp))
2652 return 1;
2654 /* nothing to do */
2655 return 0;
2659 * Helper function for rcu_barrier() tracing. If tracing is disabled,
2660 * the compiler is expected to optimize this away.
2662 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2664 trace_rcu_barrier(rcu_state.name, s, cpu,
2665 atomic_read(&rcu_state.barrier_cpu_count), done);
2669 * RCU callback function for rcu_barrier(). If we are last, wake
2670 * up the task executing rcu_barrier().
2672 static void rcu_barrier_callback(struct rcu_head *rhp)
2674 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2675 rcu_barrier_trace(TPS("LastCB"), -1,
2676 rcu_state.barrier_sequence);
2677 complete(&rcu_state.barrier_completion);
2678 } else {
2679 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2684 * Called with preemption disabled, and from cross-cpu IRQ context.
2686 static void rcu_barrier_func(void *unused)
2688 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2690 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2691 rdp->barrier_head.func = rcu_barrier_callback;
2692 debug_rcu_head_queue(&rdp->barrier_head);
2693 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2694 atomic_inc(&rcu_state.barrier_cpu_count);
2695 } else {
2696 debug_rcu_head_unqueue(&rdp->barrier_head);
2697 rcu_barrier_trace(TPS("IRQNQ"), -1,
2698 rcu_state.barrier_sequence);
2703 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2705 * Note that this primitive does not necessarily wait for an RCU grace period
2706 * to complete. For example, if there are no RCU callbacks queued anywhere
2707 * in the system, then rcu_barrier() is within its rights to return
2708 * immediately, without waiting for anything, much less an RCU grace period.
2710 void rcu_barrier(void)
2712 int cpu;
2713 struct rcu_data *rdp;
2714 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2716 rcu_barrier_trace(TPS("Begin"), -1, s);
2718 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2719 mutex_lock(&rcu_state.barrier_mutex);
2721 /* Did someone else do our work for us? */
2722 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2723 rcu_barrier_trace(TPS("EarlyExit"), -1,
2724 rcu_state.barrier_sequence);
2725 smp_mb(); /* caller's subsequent code after above check. */
2726 mutex_unlock(&rcu_state.barrier_mutex);
2727 return;
2730 /* Mark the start of the barrier operation. */
2731 rcu_seq_start(&rcu_state.barrier_sequence);
2732 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2735 * Initialize the count to one rather than to zero in order to
2736 * avoid a too-soon return to zero in case of a short grace period
2737 * (or preemption of this task). Exclude CPU-hotplug operations
2738 * to ensure that no offline CPU has callbacks queued.
2740 init_completion(&rcu_state.barrier_completion);
2741 atomic_set(&rcu_state.barrier_cpu_count, 1);
2742 get_online_cpus();
2745 * Force each CPU with callbacks to register a new callback.
2746 * When that callback is invoked, we will know that all of the
2747 * corresponding CPU's preceding callbacks have been invoked.
2749 for_each_possible_cpu(cpu) {
2750 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2751 continue;
2752 rdp = per_cpu_ptr(&rcu_data, cpu);
2753 if (rcu_is_nocb_cpu(cpu)) {
2754 if (!rcu_nocb_cpu_needs_barrier(cpu)) {
2755 rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
2756 rcu_state.barrier_sequence);
2757 } else {
2758 rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
2759 rcu_state.barrier_sequence);
2760 smp_mb__before_atomic();
2761 atomic_inc(&rcu_state.barrier_cpu_count);
2762 __call_rcu(&rdp->barrier_head,
2763 rcu_barrier_callback, cpu, 0);
2765 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2766 rcu_barrier_trace(TPS("OnlineQ"), cpu,
2767 rcu_state.barrier_sequence);
2768 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2769 } else {
2770 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2771 rcu_state.barrier_sequence);
2774 put_online_cpus();
2777 * Now that we have an rcu_barrier_callback() callback on each
2778 * CPU, and thus each counted, remove the initial count.
2780 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2781 complete(&rcu_state.barrier_completion);
2783 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2784 wait_for_completion(&rcu_state.barrier_completion);
2786 /* Mark the end of the barrier operation. */
2787 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2788 rcu_seq_end(&rcu_state.barrier_sequence);
2790 /* Other rcu_barrier() invocations can now safely proceed. */
2791 mutex_unlock(&rcu_state.barrier_mutex);
2793 EXPORT_SYMBOL_GPL(rcu_barrier);
2796 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2797 * first CPU in a given leaf rcu_node structure coming online. The caller
2798 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2799 * disabled.
2801 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2803 long mask;
2804 long oldmask;
2805 struct rcu_node *rnp = rnp_leaf;
2807 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2808 WARN_ON_ONCE(rnp->wait_blkd_tasks);
2809 for (;;) {
2810 mask = rnp->grpmask;
2811 rnp = rnp->parent;
2812 if (rnp == NULL)
2813 return;
2814 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2815 oldmask = rnp->qsmaskinit;
2816 rnp->qsmaskinit |= mask;
2817 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2818 if (oldmask)
2819 return;
2824 * Do boot-time initialization of a CPU's per-CPU RCU data.
2826 static void __init
2827 rcu_boot_init_percpu_data(int cpu)
2829 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2831 /* Set up local state, ensuring consistent view of global state. */
2832 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
2833 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2834 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
2835 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
2836 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
2837 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
2838 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
2839 rdp->cpu = cpu;
2840 rcu_boot_init_nocb_percpu_data(rdp);
2844 * Invoked early in the CPU-online process, when pretty much all services
2845 * are available. The incoming CPU is not present.
2847 * Initializes a CPU's per-CPU RCU data. Note that only one online or
2848 * offline event can be happening at a given time. Note also that we can
2849 * accept some slop in the rsp->gp_seq access due to the fact that this
2850 * CPU cannot possibly have any RCU callbacks in flight yet.
2852 int rcutree_prepare_cpu(unsigned int cpu)
2854 unsigned long flags;
2855 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2856 struct rcu_node *rnp = rcu_get_root();
2858 /* Set up local state, ensuring consistent view of global state. */
2859 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2860 rdp->qlen_last_fqs_check = 0;
2861 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2862 rdp->blimit = blimit;
2863 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
2864 !init_nocb_callback_list(rdp))
2865 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
2866 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
2867 rcu_dynticks_eqs_online();
2868 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2871 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
2872 * propagation up the rcu_node tree will happen at the beginning
2873 * of the next grace period.
2875 rnp = rdp->mynode;
2876 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2877 rdp->beenonline = true; /* We have now been online. */
2878 rdp->gp_seq = rnp->gp_seq;
2879 rdp->gp_seq_needed = rnp->gp_seq;
2880 rdp->cpu_no_qs.b.norm = true;
2881 rdp->core_needs_qs = false;
2882 rdp->rcu_iw_pending = false;
2883 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
2884 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
2885 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2886 rcu_prepare_kthreads(cpu);
2887 rcu_spawn_cpu_nocb_kthread(cpu);
2889 return 0;
2893 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
2895 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
2897 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2899 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
2903 * Near the end of the CPU-online process. Pretty much all services
2904 * enabled, and the CPU is now very much alive.
2906 int rcutree_online_cpu(unsigned int cpu)
2908 unsigned long flags;
2909 struct rcu_data *rdp;
2910 struct rcu_node *rnp;
2912 rdp = per_cpu_ptr(&rcu_data, cpu);
2913 rnp = rdp->mynode;
2914 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2915 rnp->ffmask |= rdp->grpmask;
2916 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2917 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
2918 return 0; /* Too early in boot for scheduler work. */
2919 sync_sched_exp_online_cleanup(cpu);
2920 rcutree_affinity_setting(cpu, -1);
2921 return 0;
2925 * Near the beginning of the process. The CPU is still very much alive
2926 * with pretty much all services enabled.
2928 int rcutree_offline_cpu(unsigned int cpu)
2930 unsigned long flags;
2931 struct rcu_data *rdp;
2932 struct rcu_node *rnp;
2934 rdp = per_cpu_ptr(&rcu_data, cpu);
2935 rnp = rdp->mynode;
2936 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2937 rnp->ffmask &= ~rdp->grpmask;
2938 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2940 rcutree_affinity_setting(cpu, cpu);
2941 return 0;
2944 static DEFINE_PER_CPU(int, rcu_cpu_started);
2947 * Mark the specified CPU as being online so that subsequent grace periods
2948 * (both expedited and normal) will wait on it. Note that this means that
2949 * incoming CPUs are not allowed to use RCU read-side critical sections
2950 * until this function is called. Failing to observe this restriction
2951 * will result in lockdep splats.
2953 * Note that this function is special in that it is invoked directly
2954 * from the incoming CPU rather than from the cpuhp_step mechanism.
2955 * This is because this function must be invoked at a precise location.
2957 void rcu_cpu_starting(unsigned int cpu)
2959 unsigned long flags;
2960 unsigned long mask;
2961 int nbits;
2962 unsigned long oldmask;
2963 struct rcu_data *rdp;
2964 struct rcu_node *rnp;
2966 if (per_cpu(rcu_cpu_started, cpu))
2967 return;
2969 per_cpu(rcu_cpu_started, cpu) = 1;
2971 rdp = per_cpu_ptr(&rcu_data, cpu);
2972 rnp = rdp->mynode;
2973 mask = rdp->grpmask;
2974 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2975 rnp->qsmaskinitnext |= mask;
2976 oldmask = rnp->expmaskinitnext;
2977 rnp->expmaskinitnext |= mask;
2978 oldmask ^= rnp->expmaskinitnext;
2979 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
2980 /* Allow lockless access for expedited grace periods. */
2981 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
2982 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
2983 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
2984 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
2985 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
2986 /* Report QS -after- changing ->qsmaskinitnext! */
2987 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2988 } else {
2989 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2991 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
2994 #ifdef CONFIG_HOTPLUG_CPU
2996 * The outgoing function has no further need of RCU, so remove it from
2997 * the rcu_node tree's ->qsmaskinitnext bit masks.
2999 * Note that this function is special in that it is invoked directly
3000 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3001 * This is because this function must be invoked at a precise location.
3003 void rcu_report_dead(unsigned int cpu)
3005 unsigned long flags;
3006 unsigned long mask;
3007 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3008 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3010 /* QS for any half-done expedited grace period. */
3011 preempt_disable();
3012 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3013 preempt_enable();
3014 rcu_preempt_deferred_qs(current);
3016 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3017 mask = rdp->grpmask;
3018 raw_spin_lock(&rcu_state.ofl_lock);
3019 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3020 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3021 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3022 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3023 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3024 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3025 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3027 rnp->qsmaskinitnext &= ~mask;
3028 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3029 raw_spin_unlock(&rcu_state.ofl_lock);
3031 per_cpu(rcu_cpu_started, cpu) = 0;
3035 * The outgoing CPU has just passed through the dying-idle state, and we
3036 * are being invoked from the CPU that was IPIed to continue the offline
3037 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3039 void rcutree_migrate_callbacks(int cpu)
3041 unsigned long flags;
3042 struct rcu_data *my_rdp;
3043 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3044 struct rcu_node *rnp_root = rcu_get_root();
3045 bool needwake;
3047 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3048 return; /* No callbacks to migrate. */
3050 local_irq_save(flags);
3051 my_rdp = this_cpu_ptr(&rcu_data);
3052 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3053 local_irq_restore(flags);
3054 return;
3056 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3057 /* Leverage recent GPs and set GP for new callbacks. */
3058 needwake = rcu_advance_cbs(rnp_root, rdp) ||
3059 rcu_advance_cbs(rnp_root, my_rdp);
3060 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3061 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3062 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3063 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3064 if (needwake)
3065 rcu_gp_kthread_wake();
3066 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3067 !rcu_segcblist_empty(&rdp->cblist),
3068 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3069 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3070 rcu_segcblist_first_cb(&rdp->cblist));
3072 #endif
3075 * On non-huge systems, use expedited RCU grace periods to make suspend
3076 * and hibernation run faster.
3078 static int rcu_pm_notify(struct notifier_block *self,
3079 unsigned long action, void *hcpu)
3081 switch (action) {
3082 case PM_HIBERNATION_PREPARE:
3083 case PM_SUSPEND_PREPARE:
3084 rcu_expedite_gp();
3085 break;
3086 case PM_POST_HIBERNATION:
3087 case PM_POST_SUSPEND:
3088 rcu_unexpedite_gp();
3089 break;
3090 default:
3091 break;
3093 return NOTIFY_OK;
3097 * Spawn the kthreads that handle RCU's grace periods.
3099 static int __init rcu_spawn_gp_kthread(void)
3101 unsigned long flags;
3102 int kthread_prio_in = kthread_prio;
3103 struct rcu_node *rnp;
3104 struct sched_param sp;
3105 struct task_struct *t;
3107 /* Force priority into range. */
3108 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3109 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3110 kthread_prio = 2;
3111 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3112 kthread_prio = 1;
3113 else if (kthread_prio < 0)
3114 kthread_prio = 0;
3115 else if (kthread_prio > 99)
3116 kthread_prio = 99;
3118 if (kthread_prio != kthread_prio_in)
3119 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3120 kthread_prio, kthread_prio_in);
3122 rcu_scheduler_fully_active = 1;
3123 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3124 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3125 return 0;
3126 rnp = rcu_get_root();
3127 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3128 rcu_state.gp_kthread = t;
3129 if (kthread_prio) {
3130 sp.sched_priority = kthread_prio;
3131 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3133 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3134 wake_up_process(t);
3135 rcu_spawn_nocb_kthreads();
3136 rcu_spawn_boost_kthreads();
3137 return 0;
3139 early_initcall(rcu_spawn_gp_kthread);
3142 * This function is invoked towards the end of the scheduler's
3143 * initialization process. Before this is called, the idle task might
3144 * contain synchronous grace-period primitives (during which time, this idle
3145 * task is booting the system, and such primitives are no-ops). After this
3146 * function is called, any synchronous grace-period primitives are run as
3147 * expedited, with the requesting task driving the grace period forward.
3148 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3149 * runtime RCU functionality.
3151 void rcu_scheduler_starting(void)
3153 WARN_ON(num_online_cpus() != 1);
3154 WARN_ON(nr_context_switches() > 0);
3155 rcu_test_sync_prims();
3156 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3157 rcu_test_sync_prims();
3161 * Helper function for rcu_init() that initializes the rcu_state structure.
3163 static void __init rcu_init_one(void)
3165 static const char * const buf[] = RCU_NODE_NAME_INIT;
3166 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3167 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3168 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3170 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3171 int cpustride = 1;
3172 int i;
3173 int j;
3174 struct rcu_node *rnp;
3176 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3178 /* Silence gcc 4.8 false positive about array index out of range. */
3179 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3180 panic("rcu_init_one: rcu_num_lvls out of range");
3182 /* Initialize the level-tracking arrays. */
3184 for (i = 1; i < rcu_num_lvls; i++)
3185 rcu_state.level[i] =
3186 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3187 rcu_init_levelspread(levelspread, num_rcu_lvl);
3189 /* Initialize the elements themselves, starting from the leaves. */
3191 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3192 cpustride *= levelspread[i];
3193 rnp = rcu_state.level[i];
3194 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3195 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3196 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3197 &rcu_node_class[i], buf[i]);
3198 raw_spin_lock_init(&rnp->fqslock);
3199 lockdep_set_class_and_name(&rnp->fqslock,
3200 &rcu_fqs_class[i], fqs[i]);
3201 rnp->gp_seq = rcu_state.gp_seq;
3202 rnp->gp_seq_needed = rcu_state.gp_seq;
3203 rnp->completedqs = rcu_state.gp_seq;
3204 rnp->qsmask = 0;
3205 rnp->qsmaskinit = 0;
3206 rnp->grplo = j * cpustride;
3207 rnp->grphi = (j + 1) * cpustride - 1;
3208 if (rnp->grphi >= nr_cpu_ids)
3209 rnp->grphi = nr_cpu_ids - 1;
3210 if (i == 0) {
3211 rnp->grpnum = 0;
3212 rnp->grpmask = 0;
3213 rnp->parent = NULL;
3214 } else {
3215 rnp->grpnum = j % levelspread[i - 1];
3216 rnp->grpmask = BIT(rnp->grpnum);
3217 rnp->parent = rcu_state.level[i - 1] +
3218 j / levelspread[i - 1];
3220 rnp->level = i;
3221 INIT_LIST_HEAD(&rnp->blkd_tasks);
3222 rcu_init_one_nocb(rnp);
3223 init_waitqueue_head(&rnp->exp_wq[0]);
3224 init_waitqueue_head(&rnp->exp_wq[1]);
3225 init_waitqueue_head(&rnp->exp_wq[2]);
3226 init_waitqueue_head(&rnp->exp_wq[3]);
3227 spin_lock_init(&rnp->exp_lock);
3231 init_swait_queue_head(&rcu_state.gp_wq);
3232 init_swait_queue_head(&rcu_state.expedited_wq);
3233 rnp = rcu_first_leaf_node();
3234 for_each_possible_cpu(i) {
3235 while (i > rnp->grphi)
3236 rnp++;
3237 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3238 rcu_boot_init_percpu_data(i);
3243 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3244 * replace the definitions in tree.h because those are needed to size
3245 * the ->node array in the rcu_state structure.
3247 static void __init rcu_init_geometry(void)
3249 ulong d;
3250 int i;
3251 int rcu_capacity[RCU_NUM_LVLS];
3254 * Initialize any unspecified boot parameters.
3255 * The default values of jiffies_till_first_fqs and
3256 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3257 * value, which is a function of HZ, then adding one for each
3258 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3260 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3261 if (jiffies_till_first_fqs == ULONG_MAX)
3262 jiffies_till_first_fqs = d;
3263 if (jiffies_till_next_fqs == ULONG_MAX)
3264 jiffies_till_next_fqs = d;
3265 adjust_jiffies_till_sched_qs();
3267 /* If the compile-time values are accurate, just leave. */
3268 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3269 nr_cpu_ids == NR_CPUS)
3270 return;
3271 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3272 rcu_fanout_leaf, nr_cpu_ids);
3275 * The boot-time rcu_fanout_leaf parameter must be at least two
3276 * and cannot exceed the number of bits in the rcu_node masks.
3277 * Complain and fall back to the compile-time values if this
3278 * limit is exceeded.
3280 if (rcu_fanout_leaf < 2 ||
3281 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3282 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3283 WARN_ON(1);
3284 return;
3288 * Compute number of nodes that can be handled an rcu_node tree
3289 * with the given number of levels.
3291 rcu_capacity[0] = rcu_fanout_leaf;
3292 for (i = 1; i < RCU_NUM_LVLS; i++)
3293 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3296 * The tree must be able to accommodate the configured number of CPUs.
3297 * If this limit is exceeded, fall back to the compile-time values.
3299 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3300 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3301 WARN_ON(1);
3302 return;
3305 /* Calculate the number of levels in the tree. */
3306 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3308 rcu_num_lvls = i + 1;
3310 /* Calculate the number of rcu_nodes at each level of the tree. */
3311 for (i = 0; i < rcu_num_lvls; i++) {
3312 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3313 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3316 /* Calculate the total number of rcu_node structures. */
3317 rcu_num_nodes = 0;
3318 for (i = 0; i < rcu_num_lvls; i++)
3319 rcu_num_nodes += num_rcu_lvl[i];
3323 * Dump out the structure of the rcu_node combining tree associated
3324 * with the rcu_state structure.
3326 static void __init rcu_dump_rcu_node_tree(void)
3328 int level = 0;
3329 struct rcu_node *rnp;
3331 pr_info("rcu_node tree layout dump\n");
3332 pr_info(" ");
3333 rcu_for_each_node_breadth_first(rnp) {
3334 if (rnp->level != level) {
3335 pr_cont("\n");
3336 pr_info(" ");
3337 level = rnp->level;
3339 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3341 pr_cont("\n");
3344 struct workqueue_struct *rcu_gp_wq;
3345 struct workqueue_struct *rcu_par_gp_wq;
3347 void __init rcu_init(void)
3349 int cpu;
3351 rcu_early_boot_tests();
3353 rcu_bootup_announce();
3354 rcu_init_geometry();
3355 rcu_init_one();
3356 if (dump_tree)
3357 rcu_dump_rcu_node_tree();
3358 open_softirq(RCU_SOFTIRQ, rcu_core);
3361 * We don't need protection against CPU-hotplug here because
3362 * this is called early in boot, before either interrupts
3363 * or the scheduler are operational.
3365 pm_notifier(rcu_pm_notify, 0);
3366 for_each_online_cpu(cpu) {
3367 rcutree_prepare_cpu(cpu);
3368 rcu_cpu_starting(cpu);
3369 rcutree_online_cpu(cpu);
3372 /* Create workqueue for expedited GPs and for Tree SRCU. */
3373 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3374 WARN_ON(!rcu_gp_wq);
3375 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3376 WARN_ON(!rcu_par_gp_wq);
3377 srcu_init();
3380 #include "tree_stall.h"
3381 #include "tree_exp.h"
3382 #include "tree_plugin.h"